code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
__UpperCAmelCase = 9.8_0665
def __UpperCamelCase ( lowercase__ : float , lowercase__ : float , lowercase__ : float = g ) -> float:
'''simple docstring'''
if fluid_density <= 0:
raise ValueError("""Impossible fluid density""" )
if volume < 0:
raise ValueError("""Impossible Object volume""" )
if gravity <= 0:
raise ValueError("""Impossible Gravity""" )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 28 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 1 |
from math import factorial
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : float ) -> float:
'''simple docstring'''
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
lowerCAmelCase_ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
lowerCAmelCase_ : List[Any] = float(factorial(lowercase__ ) )
coefficient /= factorial(lowercase__ ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('Probability of 2 successes out of 4 trails')
print('with probability of 0.75 is:', end=' ')
print(binomial_distribution(2, 4, 0.75))
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 1 |
# Usage:
# ./gen-card-allenai-wmt16.py
import os
from pathlib import Path
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : int ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = {
"""en""": """Machine learning is great, isn't it?""",
"""ru""": """Машинное обучение - это здорово, не так ли?""",
"""de""": """Maschinelles Lernen ist großartig, nicht wahr?""",
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
lowerCAmelCase_ : Optional[int] = {
"""wmt16-en-de-dist-12-1""": [28.3, 27.52],
"""wmt16-en-de-dist-6-1""": [27.4, 27.11],
"""wmt16-en-de-12-1""": [26.9, 25.75],
}
lowerCAmelCase_ : Optional[int] = f'{src_lang}-{tgt_lang}'
lowerCAmelCase_ : Optional[Any] = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n'
model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ )
lowerCAmelCase_ : List[str] = os.path.join(lowercase__ , """README.md""" )
print(f'Generating {path}' )
with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(lowercase__ )
# make sure we are under the root of the project
__UpperCAmelCase = Path(__file__).resolve().parent.parent.parent
__UpperCAmelCase = repo_dir / 'model_cards'
for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]:
__UpperCAmelCase = model_cards_dir / 'allenai' / model_name
write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
| 28 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 1 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('1.0.0a'):
raise Exception('requires fairseq >= 1.0.0a')
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = 'Hello world! cécé herlolip'
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str , lowercase__ : bool ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowercase__ )
roberta.eval() # disable dropout
lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.sentence_encoder
lowerCAmelCase_ : Any = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , )
if classification_head:
lowerCAmelCase_ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0]
print("""Our RoBERTa config:""" , lowercase__ )
lowerCAmelCase_ : Any = XLMRobertaXLForSequenceClassification(lowercase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowercase__ )
model.eval()
# Now let's copy all the weights.
# Embeddings
lowerCAmelCase_ : List[str] = roberta_sent_encoder.embed_tokens.weight
lowerCAmelCase_ : Dict = roberta_sent_encoder.embed_positions.weight
lowerCAmelCase_ : int = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
lowerCAmelCase_ : Optional[int] = roberta_sent_encoder.layer_norm.weight
lowerCAmelCase_ : List[Any] = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
lowerCAmelCase_ : BertLayer = model.roberta.encoder.layer[i]
lowerCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
lowerCAmelCase_ : RobertaAttention = layer.attention
lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.weight
lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.bias
# self attention
lowerCAmelCase_ : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.weight
lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.bias
lowerCAmelCase_ : Tuple = roberta_layer.self_attn.k_proj.weight
lowerCAmelCase_ : Dict = roberta_layer.self_attn.k_proj.bias
lowerCAmelCase_ : List[str] = roberta_layer.self_attn.v_proj.weight
lowerCAmelCase_ : int = roberta_layer.self_attn.v_proj.bias
# self-attention output
lowerCAmelCase_ : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
lowerCAmelCase_ : List[str] = roberta_layer.self_attn.out_proj.weight
lowerCAmelCase_ : Any = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
lowerCAmelCase_ : Tuple = roberta_layer.final_layer_norm.weight
lowerCAmelCase_ : Dict = roberta_layer.final_layer_norm.bias
# intermediate
lowerCAmelCase_ : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
lowerCAmelCase_ : List[str] = roberta_layer.fca.weight
lowerCAmelCase_ : Optional[int] = roberta_layer.fca.bias
# output
lowerCAmelCase_ : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
lowerCAmelCase_ : Dict = roberta_layer.fca.weight
lowerCAmelCase_ : Any = roberta_layer.fca.bias
# end of layer
if classification_head:
lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight
lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.bias
lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight
lowerCAmelCase_ : Any = roberta.model.classification_heads["""mnli"""].out_proj.bias
else:
# LM Head
lowerCAmelCase_ : List[str] = roberta.model.encoder.lm_head.dense.weight
lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias
lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight
lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.bias
lowerCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.weight
lowerCAmelCase_ : int = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
lowerCAmelCase_ : torch.Tensor = roberta.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1
lowerCAmelCase_ : str = model(lowercase__ )[0]
if classification_head:
lowerCAmelCase_ : str = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowercase__ ) )
else:
lowerCAmelCase_ : Any = roberta.model(lowercase__ )[0]
print(our_output.shape , their_output.shape )
lowerCAmelCase_ : str = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7
lowerCAmelCase_ : Optional[int] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 )
print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" )
if not success:
raise Exception("""Something went wRoNg""" )
pathlib.Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
__UpperCAmelCase = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 28 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
__UpperCAmelCase = None
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json',
'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json',
},
}
__UpperCAmelCase = {
'facebook/mbart-large-en-ro': 10_24,
'facebook/mbart-large-cc25': 10_24,
}
# fmt: off
__UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class __a ( __UpperCamelCase ):
__snake_case : Any = VOCAB_FILES_NAMES
__snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Any = ["""input_ids""", """attention_mask"""]
__snake_case : Dict = MBartTokenizer
__snake_case : List[int] = []
__snake_case : List[int] = []
def __init__( self : List[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Union[str, Any]="<s>" , UpperCAmelCase : int="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : List[Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Union[str, Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase_ : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
super().__init__(
vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : List[Any] = vocab_file
lowerCAmelCase_ : Union[str, Any] = False if not self.vocab_file else True
lowerCAmelCase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} )
lowerCAmelCase_ : List[str] = {
lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowerCAmelCase_ : List[str] = src_lang if src_lang is not None else """en_XX"""
lowerCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang )
lowerCAmelCase_ : Any = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def A ( self : Optional[int] ):
return self._src_lang
@src_lang.setter
def A ( self : List[str] , UpperCAmelCase : str ):
lowerCAmelCase_ : Union[str, Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def A ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def A ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : List[str] = [self.sep_token_id]
lowerCAmelCase_ : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def A ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ):
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
lowerCAmelCase_ : str = src_lang
lowerCAmelCase_ : Optional[Any] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : int = self.convert_tokens_to_ids(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = tgt_lang_id
return inputs
def A ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str = "en_XX" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "ro_RO" , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : str = src_lang
lowerCAmelCase_ : Any = tgt_lang
return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] ):
return self.set_src_lang_special_tokens(self.src_lang )
def A ( self : str ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def A ( self : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : Dict = self.convert_tokens_to_ids(UpperCAmelCase )
lowerCAmelCase_ : str = []
lowerCAmelCase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code]
lowerCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase_ : str = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def A ( self : Tuple , UpperCAmelCase : str ):
lowerCAmelCase_ : List[Any] = self.convert_tokens_to_ids(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = []
lowerCAmelCase_ : Tuple = [self.eos_token_id, self.cur_lang_code]
lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase_ : List[str] = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory.' )
return
lowerCAmelCase_ : Any = os.path.join(
UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ):
copyfile(self.vocab_file , UpperCAmelCase )
return (out_vocab_file,)
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> list:
'''simple docstring'''
lowerCAmelCase_ : str = len(lowercase__ )
lowerCAmelCase_ : Dict = []
for i in range(len(lowercase__ ) - pat_len + 1 ):
lowerCAmelCase_ : str = True
for j in range(lowercase__ ):
if s[i + j] != pattern[j]:
lowerCAmelCase_ : str = False
break
if match_found:
position.append(lowercase__ )
return position
if __name__ == "__main__":
assert naive_pattern_search('ABCDEFG', 'DE') == [3]
print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
__UpperCAmelCase = get_logger(__name__)
class __a ( enum.Enum ):
__snake_case : Union[str, Any] = """all_checks"""
__snake_case : List[Any] = """basic_checks"""
__snake_case : Any = """no_checks"""
class __a ( __UpperCamelCase ):
pass
class __a ( __UpperCamelCase ):
pass
class __a ( __UpperCamelCase ):
pass
class __a ( __UpperCamelCase ):
pass
def __UpperCamelCase ( lowercase__ : Optional[dict] , lowercase__ : dict , lowercase__ : str=None ) -> Any:
'''simple docstring'''
if expected_checksums is None:
logger.info("""Unable to verify checksums.""" )
return
if len(set(lowercase__ ) - set(lowercase__ ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(lowercase__ ) - set(lowercase__ ) ) )
if len(set(lowercase__ ) - set(lowercase__ ) ) > 0:
raise UnexpectedDownloadedFile(str(set(lowercase__ ) - set(lowercase__ ) ) )
lowerCAmelCase_ : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
lowerCAmelCase_ : Dict = """ for """ + verification_name if verification_name is not None else """"""
if len(lowercase__ ) > 0:
raise NonMatchingChecksumError(
f'Checksums didn\'t match{for_verification_name}:\n'
f'{bad_urls}\n'
"""Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" )
logger.info("""All the checksums matched successfully""" + for_verification_name )
class __a ( __UpperCamelCase ):
pass
class __a ( __UpperCamelCase ):
pass
class __a ( __UpperCamelCase ):
pass
class __a ( __UpperCamelCase ):
pass
def __UpperCamelCase ( lowercase__ : Optional[dict] , lowercase__ : dict ) -> List[Any]:
'''simple docstring'''
if expected_splits is None:
logger.info("""Unable to verify splits sizes.""" )
return
if len(set(lowercase__ ) - set(lowercase__ ) ) > 0:
raise ExpectedMoreSplits(str(set(lowercase__ ) - set(lowercase__ ) ) )
if len(set(lowercase__ ) - set(lowercase__ ) ) > 0:
raise UnexpectedSplits(str(set(lowercase__ ) - set(lowercase__ ) ) )
lowerCAmelCase_ : Any = [
{"""expected""": expected_splits[name], """recorded""": recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(lowercase__ ) > 0:
raise NonMatchingSplitsSizesError(str(lowercase__ ) )
logger.info("""All the splits matched successfully.""" )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : bool = True ) -> dict:
'''simple docstring'''
if record_checksum:
lowerCAmelCase_ : Optional[int] = shaaaa()
with open(lowercase__ , """rb""" ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b"""""" ):
m.update(lowercase__ )
lowerCAmelCase_ : Any = m.hexdigest()
else:
lowerCAmelCase_ : int = None
return {"num_bytes": os.path.getsize(lowercase__ ), "checksum": checksum}
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> int:
'''simple docstring'''
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 28 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 1 |
from typing import List
import numpy as np
def __UpperCamelCase ( lowercase__ : dict ) -> int:
'''simple docstring'''
lowerCAmelCase_ : int = {key: len(lowercase__ ) for key, value in gen_kwargs.items() if isinstance(lowercase__ , lowercase__ )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"""Sharding is ambiguous for this dataset: """
+ """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"""
+ """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() )
+ """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """
+ """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."""
) )
lowerCAmelCase_ : int = max(lists_lengths.values() , default=0 )
return max(1 , lowercase__ )
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> List[range]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = []
for group_idx in range(lowercase__ ):
lowerCAmelCase_ : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
lowerCAmelCase_ : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
lowerCAmelCase_ : List[str] = range(lowercase__ , start + num_shards_to_add )
shards_indices_per_group.append(lowercase__ )
return shards_indices_per_group
def __UpperCamelCase ( lowercase__ : dict , lowercase__ : int ) -> List[dict]:
'''simple docstring'''
lowerCAmelCase_ : str = _number_of_shards_in_gen_kwargs(lowercase__ )
if num_shards == 1:
return [dict(lowercase__ )]
else:
lowerCAmelCase_ : Tuple = _distribute_shards(num_shards=lowercase__ , max_num_jobs=lowercase__ )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(lowercase__ , lowercase__ )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(lowercase__ ) )
]
def __UpperCamelCase ( lowercase__ : List[dict] ) -> dict:
'''simple docstring'''
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , lowercase__ )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def __UpperCamelCase ( lowercase__ : np.random.Generator , lowercase__ : dict ) -> dict:
'''simple docstring'''
lowerCAmelCase_ : str = {len(lowercase__ ) for value in gen_kwargs.values() if isinstance(lowercase__ , lowercase__ )}
lowerCAmelCase_ : Tuple = {}
for size in list_sizes:
lowerCAmelCase_ : List[Any] = list(range(lowercase__ ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
lowerCAmelCase_ : Optional[Any] = dict(lowercase__ )
for key, value in shuffled_kwargs.items():
if isinstance(lowercase__ , lowercase__ ):
lowerCAmelCase_ : str = [value[i] for i in indices_per_size[len(lowercase__ )]]
return shuffled_kwargs
| 28 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 1 |
from __future__ import annotations
def __UpperCamelCase ( lowercase__ : list[int] , lowercase__ : int ) -> bool:
'''simple docstring'''
if len(lowercase__ ) == 0:
return False
lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , lowercase__ )
else:
return binary_search(a_list[midpoint + 1 :] , lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = input('Enter numbers separated by comma:\n').strip()
__UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')]
__UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip())
__UpperCAmelCase = '' if binary_search(sequence, target) else 'not '
print(f"""{target} was {not_str}found in {sequence}""")
| 28 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FocalNetForImageClassification',
'FocalNetForMaskedImageModeling',
'FocalNetBackbone',
'FocalNetModel',
'FocalNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class __a ( __UpperCamelCase ):
@staticmethod
@abstractmethod
def A ( UpperCAmelCase : ArgumentParser ):
raise NotImplementedError()
@abstractmethod
def A ( self : List[str] ):
raise NotImplementedError()
| 28 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 1 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'encoder.layer_norm_for_extract': 'layer_norm_for_extract',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'label_embs_concat': 'label_embeddings_concat',
'mask_emb': 'masked_spec_embed',
'spk_proj': 'speaker_proj',
}
__UpperCAmelCase = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
'label_embeddings_concat',
'speaker_proj',
'layer_norm_for_extract',
]
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : str ) -> Optional[Any]:
'''simple docstring'''
for attribute in key.split(""".""" ):
lowerCAmelCase_ : Dict = getattr(lowercase__ , lowercase__ )
if weight_type is not None:
lowerCAmelCase_ : Union[str, Any] = getattr(lowercase__ , lowercase__ ).shape
else:
lowerCAmelCase_ : Union[str, Any] = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
lowerCAmelCase_ : Any = value
elif weight_type == "weight_g":
lowerCAmelCase_ : Union[str, Any] = value
elif weight_type == "weight_v":
lowerCAmelCase_ : int = value
elif weight_type == "bias":
lowerCAmelCase_ : List[str] = value
else:
lowerCAmelCase_ : Any = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Tuple ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : str = fairseq_model.state_dict()
lowerCAmelCase_ : Tuple = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
lowerCAmelCase_ : Tuple = False
if "conv_layers" in name:
load_conv_layer(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , )
lowerCAmelCase_ : int = True
else:
for key, mapped_key in MAPPING.items():
lowerCAmelCase_ : Union[str, Any] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
lowerCAmelCase_ : Dict = True
if "*" in mapped_key:
lowerCAmelCase_ : Union[str, Any] = name.split(lowercase__ )[0].split(""".""" )[-2]
lowerCAmelCase_ : Union[str, Any] = mapped_key.replace("""*""" , lowercase__ )
if "weight_g" in name:
lowerCAmelCase_ : Tuple = """weight_g"""
elif "weight_v" in name:
lowerCAmelCase_ : Optional[Any] = """weight_v"""
elif "bias" in name:
lowerCAmelCase_ : Dict = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCAmelCase_ : Union[str, Any] = """weight"""
else:
lowerCAmelCase_ : Any = None
set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
continue
if not is_used:
unused_weights.append(lowercase__ )
logger.warning(f'Unused weights: {unused_weights}' )
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : Any ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = full_name.split("""conv_layers.""" )[-1]
lowerCAmelCase_ : Union[str, Any] = name.split(""".""" )
lowerCAmelCase_ : List[Any] = int(items[0] )
lowerCAmelCase_ : Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
lowerCAmelCase_ : Tuple = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
lowerCAmelCase_ : Optional[int] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
lowerCAmelCase_ : Optional[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
lowerCAmelCase_ : Dict = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(lowercase__ )
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=None , lowercase__ : List[Any]=None , lowercase__ : Tuple=True ) -> Dict:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Dict = UniSpeechSatConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = UniSpeechSatConfig()
lowerCAmelCase_ : List[str] = """"""
if is_finetuned:
lowerCAmelCase_ : List[str] = UniSpeechSatForCTC(lowercase__ )
else:
lowerCAmelCase_ : Optional[Any] = UniSpeechSatForPreTraining(lowercase__ )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
lowerCAmelCase_ : Dict = model[0].eval()
recursively_load_weights(lowercase__ , lowercase__ )
hf_wavavec.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
__UpperCAmelCase = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 28 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__UpperCAmelCase = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 1 |
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import SchedulerMixin, SchedulerOutput
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[int] = 1
@register_to_config
def __init__( self : str , UpperCAmelCase : int = 10_00 , UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None ):
# set `betas`, `alphas`, `timesteps`
self.set_timesteps(UpperCAmelCase )
# standard deviation of the initial noise distribution
lowerCAmelCase_ : Tuple = 1.0
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
lowerCAmelCase_ : int = 4
# running values
lowerCAmelCase_ : List[Any] = []
def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1]
lowerCAmelCase_ : Dict = torch.cat([steps, torch.tensor([0.0] )] )
if self.config.trained_betas is not None:
lowerCAmelCase_ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa )
else:
lowerCAmelCase_ : List[Any] = torch.sin(steps * math.pi / 2 ) ** 2
lowerCAmelCase_ : Optional[Any] = (1.0 - self.betas**2) ** 0.5
lowerCAmelCase_ : List[str] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1]
lowerCAmelCase_ : Tuple = timesteps.to(UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = []
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
lowerCAmelCase_ : Dict = (self.timesteps == timestep).nonzero().item()
lowerCAmelCase_ : Optional[Any] = timestep_index + 1
lowerCAmelCase_ : Optional[int] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index]
self.ets.append(UpperCAmelCase )
if len(self.ets ) == 1:
lowerCAmelCase_ : Optional[Any] = self.ets[-1]
elif len(self.ets ) == 2:
lowerCAmelCase_ : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2
elif len(self.ets ) == 3:
lowerCAmelCase_ : List[str] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12
else:
lowerCAmelCase_ : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])
lowerCAmelCase_ : Union[str, Any] = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=UpperCAmelCase )
def A ( self : int , UpperCAmelCase : torch.FloatTensor , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ):
return sample
def A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Any ):
lowerCAmelCase_ : Dict = self.alphas[timestep_index]
lowerCAmelCase_ : int = self.betas[timestep_index]
lowerCAmelCase_ : Tuple = self.alphas[prev_timestep_index]
lowerCAmelCase_ : int = self.betas[prev_timestep_index]
lowerCAmelCase_ : Optional[int] = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 )
lowerCAmelCase_ : Optional[int] = next_alpha * pred + ets * next_sigma
return prev_sample
def __len__( self : Tuple ):
return self.config.num_train_timesteps
| 28 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 1 |
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> str:
'''simple docstring'''
print("""Loading config file...""" )
def flatten_yaml_as_dict(lowercase__ : Optional[int] , lowercase__ : Any="" , lowercase__ : str="." ):
lowerCAmelCase_ : List[Any] = []
for k, v in d.items():
lowerCAmelCase_ : Optional[Any] = parent_key + sep + k if parent_key else k
if isinstance(lowercase__ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(lowercase__ , lowercase__ , sep=lowercase__ ).items() )
else:
items.append((new_key, v) )
return dict(lowercase__ )
lowerCAmelCase_ : List[Any] = argparse.Namespace()
with open(lowercase__ , """r""" ) as yaml_file:
try:
lowerCAmelCase_ : str = yaml.load(lowercase__ , Loader=yaml.FullLoader )
lowerCAmelCase_ : str = flatten_yaml_as_dict(lowercase__ )
for k, v in flat_cfg.items():
setattr(lowercase__ , lowercase__ , lowercase__ )
except yaml.YAMLError as exc:
logger.error("""Error while loading config file: {}. Error message: {}""".format(lowercase__ , str(lowercase__ ) ) )
return config
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : List[str] = MobileViTVaConfig()
lowerCAmelCase_ : str = False
# dataset
if task_name.startswith("""imagenet1k_""" ):
lowerCAmelCase_ : List[Any] = 1000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
lowerCAmelCase_ : Tuple = 384
else:
lowerCAmelCase_ : str = 256
lowerCAmelCase_ : Optional[Any] = """imagenet-1k-id2label.json"""
elif task_name.startswith("""imagenet21k_to_1k_""" ):
lowerCAmelCase_ : Dict = 21000
if int(task_name.strip().split("""_""" )[-1] ) == 384:
lowerCAmelCase_ : Tuple = 384
else:
lowerCAmelCase_ : List[Any] = 256
lowerCAmelCase_ : str = """imagenet-22k-id2label.json"""
elif task_name.startswith("""ade20k_""" ):
lowerCAmelCase_ : Optional[int] = 151
lowerCAmelCase_ : int = 512
lowerCAmelCase_ : Tuple = """ade20k-id2label.json"""
lowerCAmelCase_ : Tuple = True
elif task_name.startswith("""voc_""" ):
lowerCAmelCase_ : Dict = 21
lowerCAmelCase_ : Tuple = 512
lowerCAmelCase_ : Any = """pascal-voc-id2label.json"""
lowerCAmelCase_ : int = True
# orig_config
lowerCAmelCase_ : Optional[Any] = load_orig_config_file(lowercase__ )
assert getattr(lowercase__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model"
lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , """model.classification.mitv2.width_multiplier""" , 1.0 )
assert (
getattr(lowercase__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
lowerCAmelCase_ : Any = getattr(lowercase__ , """model.classification.activation.name""" , """swish""" )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
lowerCAmelCase_ : Union[str, Any] = getattr(lowercase__ , """model.segmentation.output_stride""" , 16 )
if "_deeplabv3" in task_name:
lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] )
lowerCAmelCase_ : List[Any] = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 )
lowerCAmelCase_ : Any = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 )
# id2label
lowerCAmelCase_ : List[str] = """huggingface/label-files"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Optional[int] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : List[str] = dct.pop(lowercase__ )
lowerCAmelCase_ : Dict = val
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : List[Any]=False ) -> Tuple:
'''simple docstring'''
if base_model:
lowerCAmelCase_ : Optional[int] = """"""
else:
lowerCAmelCase_ : List[Any] = """mobilevitv2."""
lowerCAmelCase_ : Any = []
for k in state_dict.keys():
if k[:8] == "encoder.":
lowerCAmelCase_ : int = k[8:]
else:
lowerCAmelCase_ : Optional[int] = k
if ".block." in k:
lowerCAmelCase_ : List[str] = k_new.replace(""".block.""" , """.""" )
if ".conv." in k:
lowerCAmelCase_ : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" )
if ".norm." in k:
lowerCAmelCase_ : List[Any] = k_new.replace(""".norm.""" , """.normalization.""" )
if "conv_1." in k:
lowerCAmelCase_ : Tuple = k_new.replace("""conv_1.""" , f'{model_prefix}conv_stem.' )
for i in [1, 2]:
if f'layer_{i}.' in k:
lowerCAmelCase_ : List[str] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' )
if ".exp_1x1." in k:
lowerCAmelCase_ : Union[str, Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" )
if ".red_1x1." in k:
lowerCAmelCase_ : Union[str, Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" )
for i in [3, 4, 5]:
if f'layer_{i}.0.' in k:
lowerCAmelCase_ : Union[str, Any] = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' )
if f'layer_{i}.1.local_rep.0.' in k:
lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' )
if f'layer_{i}.1.local_rep.1.' in k:
lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' )
for i in [3, 4, 5]:
if i == 3:
lowerCAmelCase_ : int = [0, 1]
elif i == 4:
lowerCAmelCase_ : Tuple = [0, 1, 2, 3]
elif i == 5:
lowerCAmelCase_ : str = [0, 1, 2]
for j in j_in:
if f'layer_{i}.1.global_rep.{j}.' in k:
lowerCAmelCase_ : Optional[int] = k_new.replace(
f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' )
if f'layer_{i}.1.global_rep.{j+1}.' in k:
lowerCAmelCase_ : List[str] = k_new.replace(
f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' )
if f'layer_{i}.1.conv_proj.' in k:
lowerCAmelCase_ : Union[str, Any] = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' )
if "pre_norm_attn.0." in k:
lowerCAmelCase_ : List[str] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" )
if "pre_norm_attn.1." in k:
lowerCAmelCase_ : List[str] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" )
if "pre_norm_ffn.0." in k:
lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" )
if "pre_norm_ffn.1." in k:
lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" )
if "pre_norm_ffn.3." in k:
lowerCAmelCase_ : Optional[Any] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" )
if "classifier.1." in k:
lowerCAmelCase_ : Optional[Any] = k_new.replace("""classifier.1.""" , """classifier.""" )
if "seg_head." in k:
lowerCAmelCase_ : Dict = k_new.replace("""seg_head.""" , """segmentation_head.""" )
if ".aspp_layer." in k:
lowerCAmelCase_ : Any = k_new.replace(""".aspp_layer.""" , """.""" )
if ".aspp_pool." in k:
lowerCAmelCase_ : Dict = k_new.replace(""".aspp_pool.""" , """.""" )
rename_keys.append((k, k_new) )
return rename_keys
def __UpperCamelCase ( lowercase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = []
for k in state_dict.keys():
if k.startswith("""seg_head.aux_head.""" ):
keys_to_ignore.append(lowercase__ )
for k in keys_to_ignore:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
lowerCAmelCase_ : int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = get_mobilevitva_config(lowercase__ , lowercase__ )
# load original state_dict
lowerCAmelCase_ : Optional[Any] = torch.load(lowercase__ , map_location="""cpu""" )
# load huggingface model
if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ):
lowerCAmelCase_ : str = MobileViTVaForSemanticSegmentation(lowercase__ ).eval()
lowerCAmelCase_ : Dict = False
else:
lowerCAmelCase_ : str = MobileViTVaForImageClassification(lowercase__ ).eval()
lowerCAmelCase_ : Union[str, Any] = False
# remove and rename some keys of load the original model
lowerCAmelCase_ : Optional[int] = checkpoint
remove_unused_keys(lowercase__ )
lowerCAmelCase_ : Optional[int] = create_rename_keys(lowercase__ , base_model=lowercase__ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
# load modified state_dict
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by MobileViTImageProcessor
lowerCAmelCase_ : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 )
lowerCAmelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : str = model(**lowercase__ )
# verify classification model
if task_name.startswith("""imagenet""" ):
lowerCAmelCase_ : Union[str, Any] = outputs.logits
lowerCAmelCase_ : Dict = logits.argmax(-1 ).item()
print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] )
if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0:
# expected_logits for base variant
lowerCAmelCase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] )
assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {task_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task',
default='imagenet1k_256',
type=str,
help=(
'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . '
'\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n '
),
choices=[
'imagenet1k_256',
'imagenet1k_384',
'imagenet21k_to_1k_256',
'imagenet21k_to_1k_384',
'ade20k_deeplabv3',
'voc_deeplabv3',
],
)
parser.add_argument(
'--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).'
)
parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.'
)
__UpperCAmelCase = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 28 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 1 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json',
'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json',
'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json',
# See all BigBird models at https://huggingface.co/models?filter=big_bird
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """big_bird"""
def __init__( self : Any , UpperCAmelCase : List[str]=5_03_58 , UpperCAmelCase : List[str]=7_68 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : str=12 , UpperCAmelCase : Any=30_72 , UpperCAmelCase : str="gelu_new" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[Any]=40_96 , UpperCAmelCase : str=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=0 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[str]=66 , UpperCAmelCase : Optional[int]="block_sparse" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=64 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[int] , ):
super().__init__(
pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , sep_token_id=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : int = vocab_size
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : List[Any] = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : str = intermediate_size
lowerCAmelCase_ : List[str] = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : List[str] = attention_probs_dropout_prob
lowerCAmelCase_ : Any = initializer_range
lowerCAmelCase_ : Any = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[Any] = use_cache
lowerCAmelCase_ : Any = rescale_embeddings
lowerCAmelCase_ : Optional[Any] = attention_type
lowerCAmelCase_ : Tuple = use_bias
lowerCAmelCase_ : Any = block_size
lowerCAmelCase_ : Dict = num_random_blocks
lowerCAmelCase_ : str = classifier_dropout
class __a ( __UpperCamelCase ):
@property
def A ( self : List[Any] ):
if self.task == "multiple-choice":
lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase_ : List[str] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 28 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 1 |
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
__UpperCAmelCase = logging.getLogger(__name__)
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = argparse.ArgumentParser(
description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" )
parser.add_argument("""--file_path""" , type=lowercase__ , default="""data/dump.txt""" , help="""The path to the data.""" )
parser.add_argument("""--tokenizer_type""" , type=lowercase__ , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] )
parser.add_argument("""--tokenizer_name""" , type=lowercase__ , default="""bert-base-uncased""" , help="""The tokenizer to use.""" )
parser.add_argument("""--dump_file""" , type=lowercase__ , default="""data/dump""" , help="""The dump file prefix.""" )
lowerCAmelCase_ : int = parser.parse_args()
logger.info(f'Loading Tokenizer ({args.tokenizer_name})' )
if args.tokenizer_type == "bert":
lowerCAmelCase_ : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]`
lowerCAmelCase_ : Any = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]`
elif args.tokenizer_type == "roberta":
lowerCAmelCase_ : Tuple = RobertaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase_ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>`
lowerCAmelCase_ : List[Any] = tokenizer.special_tokens_map["""sep_token"""] # `</s>`
elif args.tokenizer_type == "gpt2":
lowerCAmelCase_ : str = GPTaTokenizer.from_pretrained(args.tokenizer_name )
lowerCAmelCase_ : str = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>`
lowerCAmelCase_ : List[str] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>`
logger.info(f'Loading text from {args.file_path}' )
with open(args.file_path , """r""" , encoding="""utf8""" ) as fp:
lowerCAmelCase_ : List[Any] = fp.readlines()
logger.info("""Start encoding""" )
logger.info(f'{len(lowercase__ )} examples to process.' )
lowerCAmelCase_ : str = []
lowerCAmelCase_ : int = 0
lowerCAmelCase_ : Union[str, Any] = 10000
lowerCAmelCase_ : Optional[int] = time.time()
for text in data:
lowerCAmelCase_ : Dict = f'{bos} {text.strip()} {sep}'
lowerCAmelCase_ : Optional[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ )
rslt.append(lowercase__ )
iter += 1
if iter % interval == 0:
lowerCAmelCase_ : str = time.time()
logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' )
lowerCAmelCase_ : List[Any] = time.time()
logger.info("""Finished binarization""" )
logger.info(f'{len(lowercase__ )} examples processed.' )
lowerCAmelCase_ : Union[str, Any] = f'{args.dump_file}.{args.tokenizer_name}.pickle'
lowerCAmelCase_ : int = tokenizer.vocab_size
if vocab_size < (1 << 16):
lowerCAmelCase_ : Optional[Any] = [np.uintaa(lowercase__ ) for d in rslt]
else:
lowerCAmelCase_ : List[str] = [np.intaa(lowercase__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(f'Dump to {dp_file}' )
with open(lowercase__ , """wb""" ) as handle:
pickle.dump(rslt_ , lowercase__ , protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 28 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 1 |
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def A ( self : List[Any] , UpperCAmelCase : List[Any] ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : int = [label.strip() for label in labels.split(""",""" ) if label.strip()]
return labels
def __call__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] ):
if len(UpperCAmelCase ) == 0 or len(UpperCAmelCase ) == 0:
raise ValueError("""You must include at least one label and at least one sequence.""" )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
"""The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """
"""Make sure the passed template includes formatting syntax such as {{}} where the label should go."""
).format(UpperCAmelCase ) )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : str = [sequences]
lowerCAmelCase_ : Union[str, Any] = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(UpperCAmelCase )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(__UpperCamelCase )
class __a ( __UpperCamelCase ):
def __init__( self : List[str] , UpperCAmelCase : Any=ZeroShotClassificationArgumentHandler() , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
lowerCAmelCase_ : Union[str, Any] = args_parser
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.entailment_id == -1:
logger.warning(
"""Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """
"""-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" )
@property
def A ( self : Optional[Any] ):
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith("""entail""" ):
return ind
return -1
def A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=TruncationStrategy.ONLY_FIRST , **UpperCAmelCase : Tuple ):
lowerCAmelCase_ : List[str] = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
"""Tokenizer was not supporting padding necessary for zero-shot, attempting to use """
""" `pad_token=eos_token`""" )
lowerCAmelCase_ : List[Any] = self.tokenizer.eos_token
try:
lowerCAmelCase_ : List[str] = self.tokenizer(
UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , )
except Exception as e:
if "too short" in str(UpperCAmelCase ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
lowerCAmelCase_ : Union[str, Any] = self.tokenizer(
UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def A ( self : str , **UpperCAmelCase : int ):
if kwargs.get("""multi_class""" , UpperCAmelCase ) is not None:
lowerCAmelCase_ : Tuple = kwargs["""multi_class"""]
logger.warning(
"""The `multi_class` argument has been deprecated and renamed to `multi_label`. """
"""`multi_class` will be removed in a future version of Transformers.""" )
lowerCAmelCase_ : str = {}
if "candidate_labels" in kwargs:
lowerCAmelCase_ : Optional[int] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] )
if "hypothesis_template" in kwargs:
lowerCAmelCase_ : Optional[int] = kwargs["""hypothesis_template"""]
lowerCAmelCase_ : Dict = {}
if "multi_label" in kwargs:
lowerCAmelCase_ : Dict = kwargs["""multi_label"""]
return preprocess_params, {}, postprocess_params
def __call__( self : str , UpperCAmelCase : Union[str, List[str]] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] , ):
if len(UpperCAmelCase ) == 0:
pass
elif len(UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs:
lowerCAmelCase_ : int = args[0]
else:
raise ValueError(F'Unable to understand extra arguments {args}' )
return super().__call__(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any="This example is {}." ):
lowerCAmelCase_ , lowerCAmelCase_ : Dict = self._args_parser(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
for i, (candidate_label, sequence_pair) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ):
lowerCAmelCase_ : Optional[Any] = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(UpperCAmelCase ) - 1,
**model_input,
}
def A ( self : Dict , UpperCAmelCase : Optional[int] ):
lowerCAmelCase_ : List[str] = inputs["""candidate_label"""]
lowerCAmelCase_ : str = inputs["""sequence"""]
lowerCAmelCase_ : Any = {k: inputs[k] for k in self.tokenizer.model_input_names}
lowerCAmelCase_ : Optional[int] = self.model(**UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {
"""candidate_label""": candidate_label,
"""sequence""": sequence,
"""is_last""": inputs["""is_last"""],
**outputs,
}
return model_outputs
def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=False ):
lowerCAmelCase_ : Any = [outputs["""candidate_label"""] for outputs in model_outputs]
lowerCAmelCase_ : str = [outputs["""sequence"""] for outputs in model_outputs]
lowerCAmelCase_ : Dict = np.concatenate([output["""logits"""].numpy() for output in model_outputs] )
lowerCAmelCase_ : Tuple = logits.shape[0]
lowerCAmelCase_ : List[str] = len(UpperCAmelCase )
lowerCAmelCase_ : int = N // n
lowerCAmelCase_ : Any = logits.reshape((num_sequences, n, -1) )
if multi_label or len(UpperCAmelCase ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
lowerCAmelCase_ : Optional[Any] = self.entailment_id
lowerCAmelCase_ : Optional[Any] = -1 if entailment_id == 0 else 0
lowerCAmelCase_ : Tuple = reshaped_outputs[..., [contradiction_id, entailment_id]]
lowerCAmelCase_ : Dict = np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase )
lowerCAmelCase_ : Any = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
lowerCAmelCase_ : Any = reshaped_outputs[..., self.entailment_id]
lowerCAmelCase_ : Optional[int] = np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase )
lowerCAmelCase_ : int = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 28 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'andreasmadsen/efficient_mlm_m0.40': (
'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json'
),
}
class __a ( __UpperCamelCase ):
__snake_case : str = """roberta-prelayernorm"""
def __init__( self : Any , UpperCAmelCase : Any=5_02_65 , UpperCAmelCase : int=7_68 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[Any]=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[Any]="absolute" , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : str , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = vocab_size
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Optional[Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Optional[int] = hidden_act
lowerCAmelCase_ : Tuple = intermediate_size
lowerCAmelCase_ : List[Any] = hidden_dropout_prob
lowerCAmelCase_ : List[str] = attention_probs_dropout_prob
lowerCAmelCase_ : Dict = max_position_embeddings
lowerCAmelCase_ : List[str] = type_vocab_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[Any] = position_embedding_type
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Any = classifier_dropout
class __a ( __UpperCamelCase ):
@property
def A ( self : Optional[int] ):
if self.task == "multiple-choice":
lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 28 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__UpperCamelCase )
class __a ( __UpperCamelCase ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
__snake_case : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
__snake_case : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
__snake_case : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
__snake_case : str = "question"
__snake_case : str = "context"
__snake_case : str = "answers"
@property
def A ( self : str ):
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = StableDiffusionDiffEditPipeline
__snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""}
__snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""}
__snake_case : Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__snake_case : Tuple = frozenset([] )
def A ( self : str ):
torch.manual_seed(0 )
lowerCAmelCase_ : List[Any] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , )
lowerCAmelCase_ : Tuple = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , )
lowerCAmelCase_ : List[Any] = DDIMInverseScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , )
torch.manual_seed(0 )
lowerCAmelCase_ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
lowerCAmelCase_ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
lowerCAmelCase_ : int = CLIPTextModel(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCAmelCase_ : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""inverse_scheduler""": inverse_scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[str]=0 ):
lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
if str(UpperCAmelCase ).startswith("""mps""" ):
lowerCAmelCase_ : List[Any] = torch.manual_seed(UpperCAmelCase )
else:
lowerCAmelCase_ : int = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = {
"""prompt""": """a dog and a newt""",
"""mask_image""": mask,
"""image_latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def A ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=0 ):
lowerCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ : str = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" )
if str(UpperCAmelCase ).startswith("""mps""" ):
lowerCAmelCase_ : int = torch.manual_seed(UpperCAmelCase )
else:
lowerCAmelCase_ : Any = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {
"""image""": image,
"""source_prompt""": """a cat and a frog""",
"""target_prompt""": """a dog and a newt""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""num_maps_per_mask""": 2,
"""mask_encode_strength""": 1.0,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=0 ):
lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCAmelCase_ : Tuple = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" )
if str(UpperCAmelCase ).startswith("""mps""" ):
lowerCAmelCase_ : Optional[Any] = torch.manual_seed(UpperCAmelCase )
else:
lowerCAmelCase_ : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
lowerCAmelCase_ : Tuple = {
"""image""": image,
"""prompt""": """a cat and a frog""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""inpaint_strength""": 1.0,
"""guidance_scale""": 6.0,
"""decode_latents""": True,
"""output_type""": """numpy""",
}
return inputs
def A ( self : Any ):
if not hasattr(self.pipeline_class , """_optional_components""" ):
return
lowerCAmelCase_ : List[str] = self.get_dummy_components()
lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
lowerCAmelCase_ : str = self.get_dummy_inputs(UpperCAmelCase )
lowerCAmelCase_ : Any = pipe(**UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : List[str] = self.pipeline_class.from_pretrained(UpperCAmelCase )
pipe_loaded.to(UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(UpperCAmelCase , UpperCAmelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , )
lowerCAmelCase_ : Any = self.get_dummy_inputs(UpperCAmelCase )
lowerCAmelCase_ : Tuple = pipe_loaded(**UpperCAmelCase )[0]
lowerCAmelCase_ : Any = np.abs(output - output_loaded ).max()
self.assertLess(UpperCAmelCase , 1e-4 )
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = """cpu"""
lowerCAmelCase_ : Optional[Any] = self.get_dummy_components()
lowerCAmelCase_ : Tuple = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.get_dummy_mask_inputs(UpperCAmelCase )
lowerCAmelCase_ : List[str] = pipe.generate_mask(**UpperCAmelCase )
lowerCAmelCase_ : Dict = mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
lowerCAmelCase_ : Any = np.array([0] * 9 )
lowerCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def A ( self : int ):
lowerCAmelCase_ : Optional[Any] = """cpu"""
lowerCAmelCase_ : Optional[int] = self.get_dummy_components()
lowerCAmelCase_ : int = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCAmelCase_ : Dict = self.get_dummy_inversion_inputs(UpperCAmelCase )
lowerCAmelCase_ : Tuple = pipe.invert(**UpperCAmelCase ).images
lowerCAmelCase_ : Any = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
lowerCAmelCase_ : List[Any] = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , )
lowerCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
def A ( self : str ):
super().test_inference_batch_single_identical(expected_max_diff=5e-3 )
def A ( self : Tuple ):
lowerCAmelCase_ : str = """cpu"""
lowerCAmelCase_ : int = self.get_dummy_components()
lowerCAmelCase_ : Optional[Any] = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""}
lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler(**UpperCAmelCase )
lowerCAmelCase_ : Any = DPMSolverMultistepInverseScheduler(**UpperCAmelCase )
lowerCAmelCase_ : List[Any] = self.pipeline_class(**UpperCAmelCase )
pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.get_dummy_inversion_inputs(UpperCAmelCase )
lowerCAmelCase_ : int = pipe.invert(**UpperCAmelCase ).images
lowerCAmelCase_ : str = image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
lowerCAmelCase_ : List[str] = np.array(
[0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , )
lowerCAmelCase_ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCAmelCase , 1e-3 )
@require_torch_gpu
@slow
class __a ( unittest.TestCase ):
def A ( self : int ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def A ( cls : Optional[Any] ):
lowerCAmelCase_ : List[str] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" )
lowerCAmelCase_ : Any = raw_image.convert("""RGB""" ).resize((7_68, 7_68) )
lowerCAmelCase_ : Union[str, Any] = raw_image
def A ( self : int ):
lowerCAmelCase_ : Any = torch.manual_seed(0 )
lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa )
lowerCAmelCase_ : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config )
lowerCAmelCase_ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCAmelCase_ : Tuple = """a bowl of fruit"""
lowerCAmelCase_ : Any = """a bowl of pears"""
lowerCAmelCase_ : Dict = pipe.generate_mask(
image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , )
lowerCAmelCase_ : int = pipe.invert(
prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents
lowerCAmelCase_ : str = pipe(
prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0]
lowerCAmelCase_ : Optional[Any] = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""" ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = torch.manual_seed(0 )
lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa )
lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
lowerCAmelCase_ : int = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCAmelCase )
lowerCAmelCase_ : int = """a bowl of fruit"""
lowerCAmelCase_ : Dict = """a bowl of pears"""
lowerCAmelCase_ : Dict = pipe.generate_mask(
image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , )
lowerCAmelCase_ : List[Any] = pipe.invert(
prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents
lowerCAmelCase_ : Optional[Any] = pipe(
prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0]
lowerCAmelCase_ : Optional[int] = (
np.array(
load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/diffedit/pears.png""" ).resize((7_68, 7_68) ) )
/ 2_55
)
assert np.abs((expected_image - image).max() ) < 5e-1
| 28 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 1 |
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise ValueError("""iterations must be defined as integers""" )
if not isinstance(lowercase__ , lowercase__ ) or not number >= 1:
raise ValueError(
"""starting number must be
and integer and be more than 0""" )
if not iterations >= 1:
raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" )
lowerCAmelCase_ : str = """"""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(lowercase__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 1 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 1 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 1 |
import argparse
import json
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = SwinConfig()
lowerCAmelCase_ : List[str] = swin_name.split("""_""" )
lowerCAmelCase_ : List[Any] = name_split[1]
lowerCAmelCase_ : int = int(name_split[4] )
lowerCAmelCase_ : Any = int(name_split[3][-1] )
if model_size == "tiny":
lowerCAmelCase_ : List[str] = 96
lowerCAmelCase_ : Optional[int] = (2, 2, 6, 2)
lowerCAmelCase_ : Any = (3, 6, 12, 24)
elif model_size == "small":
lowerCAmelCase_ : Union[str, Any] = 96
lowerCAmelCase_ : Dict = (2, 2, 18, 2)
lowerCAmelCase_ : str = (3, 6, 12, 24)
elif model_size == "base":
lowerCAmelCase_ : Dict = 128
lowerCAmelCase_ : Any = (2, 2, 18, 2)
lowerCAmelCase_ : Optional[int] = (4, 8, 16, 32)
else:
lowerCAmelCase_ : Dict = 192
lowerCAmelCase_ : Dict = (2, 2, 18, 2)
lowerCAmelCase_ : Optional[Any] = (6, 12, 24, 48)
if "in22k" in swin_name:
lowerCAmelCase_ : List[Any] = 21841
else:
lowerCAmelCase_ : Dict = 1000
lowerCAmelCase_ : Any = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : Tuple = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : List[Any] = idalabel
lowerCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : List[str] = img_size
lowerCAmelCase_ : Any = num_classes
lowerCAmelCase_ : Tuple = embed_dim
lowerCAmelCase_ : str = depths
lowerCAmelCase_ : Any = num_heads
lowerCAmelCase_ : Tuple = window_size
return config
def __UpperCamelCase ( lowercase__ : List[str] ) -> List[str]:
'''simple docstring'''
if "patch_embed.proj" in name:
lowerCAmelCase_ : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
lowerCAmelCase_ : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if "layers" in name:
lowerCAmelCase_ : Union[str, Any] = """encoder.""" + name
if "attn.proj" in name:
lowerCAmelCase_ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
lowerCAmelCase_ : int = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
lowerCAmelCase_ : Optional[int] = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
lowerCAmelCase_ : int = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
lowerCAmelCase_ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
lowerCAmelCase_ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "norm.weight":
lowerCAmelCase_ : Optional[int] = """layernorm.weight"""
if name == "norm.bias":
lowerCAmelCase_ : Optional[Any] = """layernorm.bias"""
if "head" in name:
lowerCAmelCase_ : Any = name.replace("""head""" , """classifier""" )
else:
lowerCAmelCase_ : Union[str, Any] = """swin.""" + name
return name
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any ) -> Optional[int]:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
lowerCAmelCase_ : Any = orig_state_dict.pop(lowercase__ )
if "mask" in key:
continue
elif "qkv" in key:
lowerCAmelCase_ : int = key.split(""".""" )
lowerCAmelCase_ : int = int(key_split[1] )
lowerCAmelCase_ : Union[str, Any] = int(key_split[3] )
lowerCAmelCase_ : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
lowerCAmelCase_ : Optional[int] = val[:dim, :]
lowerCAmelCase_ : str = val[
dim : dim * 2, :
]
lowerCAmelCase_ : Optional[Any] = val[-dim:, :]
else:
lowerCAmelCase_ : Optional[Any] = val[
:dim
]
lowerCAmelCase_ : Tuple = val[
dim : dim * 2
]
lowerCAmelCase_ : Optional[Any] = val[
-dim:
]
else:
lowerCAmelCase_ : Tuple = val
return orig_state_dict
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Any ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = timm.create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
lowerCAmelCase_ : Optional[int] = get_swin_config(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = SwinForImageClassification(lowercase__ )
model.eval()
lowerCAmelCase_ : Dict = convert_state_dict(timm_model.state_dict() , lowercase__ )
model.load_state_dict(lowercase__ )
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) )
lowerCAmelCase_ : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
lowerCAmelCase_ : Union[str, Any] = image_processor(images=lowercase__ , return_tensors="""pt""" )
lowerCAmelCase_ : int = timm_model(inputs["""pixel_values"""] )
lowerCAmelCase_ : Union[str, Any] = model(**lowercase__ ).logits
assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 )
print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--swin_name',
default='swin_tiny_patch4_window7_224',
type=str,
help='Name of the Swin timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__UpperCAmelCase = parser.parse_args()
convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
| 28 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 1 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 1 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 28 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 1 |
import requests
from bsa import BeautifulSoup
def __UpperCamelCase ( lowercase__ : str = "AAPL" ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'
lowerCAmelCase_ : Tuple = BeautifulSoup(requests.get(lowercase__ ).text , """html.parser""" )
lowerCAmelCase_ : int = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""" , class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
| 28 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 1 |
from __future__ import annotations
from typing import Any
def __UpperCamelCase ( lowercase__ : list[Any] ) -> None:
'''simple docstring'''
create_state_space_tree(lowercase__ , [] , 0 )
def __UpperCamelCase ( lowercase__ : list[Any] , lowercase__ : list[Any] , lowercase__ : int ) -> None:
'''simple docstring'''
if index == len(lowercase__ ):
print(lowercase__ )
return
create_state_space_tree(lowercase__ , lowercase__ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(lowercase__ , lowercase__ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
__UpperCAmelCase = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(['A', 'B', 'C'])
generate_all_subsequences(seq)
| 28 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 1 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def __UpperCamelCase ( lowercase__ : BertModel , lowercase__ : str , lowercase__ : str ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : int = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""")
lowerCAmelCase_ : Optional[Any] = (
("""layer.""", """layer_"""),
("""word_embeddings.weight""", """word_embeddings"""),
("""position_embeddings.weight""", """position_embeddings"""),
("""token_type_embeddings.weight""", """token_type_embeddings"""),
(""".""", """/"""),
("""LayerNorm/weight""", """LayerNorm/gamma"""),
("""LayerNorm/bias""", """LayerNorm/beta"""),
("""weight""", """kernel"""),
)
if not os.path.isdir(lowercase__ ):
os.makedirs(lowercase__ )
lowerCAmelCase_ : List[str] = model.state_dict()
def to_tf_var_name(lowercase__ : str ):
for patt, repl in iter(lowercase__ ):
lowerCAmelCase_ : Dict = name.replace(lowercase__ , lowercase__ )
return f'bert/{name}'
def create_tf_var(lowercase__ : np.ndarray , lowercase__ : str , lowercase__ : tf.Session ):
lowerCAmelCase_ : int = tf.dtypes.as_dtype(tensor.dtype )
lowerCAmelCase_ : int = tf.get_variable(dtype=lowercase__ , shape=tensor.shape , name=lowercase__ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(lowercase__ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
lowerCAmelCase_ : List[Any] = to_tf_var_name(lowercase__ )
lowerCAmelCase_ : List[Any] = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
lowerCAmelCase_ : List[Any] = torch_tensor.T
lowerCAmelCase_ : Any = create_tf_var(tensor=lowercase__ , name=lowercase__ , session=lowercase__ )
tf.keras.backend.set_value(lowercase__ , lowercase__ )
lowerCAmelCase_ : Dict = session.run(lowercase__ )
print(f'Successfully created {tf_name}: {np.allclose(lowercase__ , lowercase__ )}' )
lowerCAmelCase_ : Optional[Any] = tf.train.Saver(tf.trainable_variables() )
saver.save(lowercase__ , os.path.join(lowercase__ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) )
def __UpperCamelCase ( lowercase__ : List[str]=None ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=lowercase__ , required=lowercase__ , help="""model name e.g. bert-base-uncased""" )
parser.add_argument(
"""--cache_dir""" , type=lowercase__ , default=lowercase__ , required=lowercase__ , help="""Directory containing pytorch model""" )
parser.add_argument("""--pytorch_model_path""" , type=lowercase__ , required=lowercase__ , help="""/path/to/<pytorch-model-name>.bin""" )
parser.add_argument("""--tf_cache_dir""" , type=lowercase__ , required=lowercase__ , help="""Directory in which to save tensorflow model""" )
lowerCAmelCase_ : Optional[Any] = parser.parse_args(lowercase__ )
lowerCAmelCase_ : List[str] = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=lowercase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 28 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 1 |
from __future__ import annotations
__UpperCAmelCase = 10
def __UpperCamelCase ( lowercase__ : list[int] ) -> list[int]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = 1
lowerCAmelCase_ : Tuple = max(lowercase__ )
while placement <= max_digit:
# declare and initialize empty buckets
lowerCAmelCase_ : list[list] = [[] for _ in range(lowercase__ )]
# split list_of_ints between the buckets
for i in list_of_ints:
lowerCAmelCase_ : Dict = int((i / placement) % RADIX )
buckets[tmp].append(lowercase__ )
# put each buckets' contents into list_of_ints
lowerCAmelCase_ : List[Any] = 0
for b in range(lowercase__ ):
for i in buckets[b]:
lowerCAmelCase_ : int = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 1 |
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a ( __UpperCamelCase ):
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCAmelCase , """embed_dim""" ) )
self.parent.assertTrue(hasattr(UpperCAmelCase , """num_heads""" ) )
class __a :
def __init__( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : str=64 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Any=[16, 48, 96] , UpperCAmelCase : List[Any]=[1, 3, 6] , UpperCAmelCase : List[Any]=[1, 2, 10] , UpperCAmelCase : Union[str, Any]=[7, 3, 3] , UpperCAmelCase : Union[str, Any]=[4, 2, 2] , UpperCAmelCase : Tuple=[2, 1, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 2] , UpperCAmelCase : Tuple=[False, False, True] , UpperCAmelCase : int=[0.0, 0.0, 0.0] , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Any=1e-1_2 , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=2 , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : Dict = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Any = patch_sizes
lowerCAmelCase_ : Tuple = patch_stride
lowerCAmelCase_ : Tuple = patch_padding
lowerCAmelCase_ : int = is_training
lowerCAmelCase_ : int = use_labels
lowerCAmelCase_ : Union[str, Any] = num_labels
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : int = embed_dim
lowerCAmelCase_ : List[Any] = num_heads
lowerCAmelCase_ : Dict = stride_kv
lowerCAmelCase_ : Union[str, Any] = depth
lowerCAmelCase_ : List[Any] = cls_token
lowerCAmelCase_ : List[Any] = attention_drop_rate
lowerCAmelCase_ : Optional[Any] = initializer_range
lowerCAmelCase_ : str = layer_norm_eps
def A ( self : Tuple ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : List[str] = None
if self.use_labels:
lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase_ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Union[str, Any] ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ):
lowerCAmelCase_ : List[Any] = CvtModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : Dict = model(UpperCAmelCase )
lowerCAmelCase_ : int = (self.image_size, self.image_size)
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
lowerCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
lowerCAmelCase_ : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = self.num_labels
lowerCAmelCase_ : Dict = CvtForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : List[Any] ):
lowerCAmelCase_ : int = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = config_and_inputs
lowerCAmelCase_ : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
__snake_case : Optional[Any] = (
{"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification}
if is_torch_available()
else {}
)
__snake_case : Optional[int] = False
__snake_case : List[str] = False
__snake_case : Dict = False
__snake_case : List[str] = False
__snake_case : Any = False
def A ( self : str ):
lowerCAmelCase_ : Optional[Any] = CvtModelTester(self )
lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : Optional[int] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : Optional[Any] ):
return
@unittest.skip(reason="""Cvt does not output attentions""" )
def A ( self : Optional[Any] ):
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def A ( self : int ):
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def A ( self : Optional[Any] ):
pass
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Optional[int] = model_class(UpperCAmelCase )
lowerCAmelCase_ : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : Dict = [*signature.parameters.keys()]
lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
def check_hidden_states_output(UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Any ):
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
lowerCAmelCase_ : str = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
lowerCAmelCase_ : int = outputs.hidden_states
lowerCAmelCase_ : int = len(self.model_tester.depth )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : List[str] = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ : Optional[Any] = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def A ( self : Optional[Any] ):
pass
@slow
def A ( self : Dict ):
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Any = CvtModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : Union[str, Any] ):
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def A ( self : str ):
lowerCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase )
lowerCAmelCase_ : int = self.default_image_processor
lowerCAmelCase_ : Any = prepare_img()
lowerCAmelCase_ : Any = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Dict = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Optional[Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : List[str] = torch.tensor([0.9285, 0.9015, -0.3150] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
| 28 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 1 |
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __a ( unittest.TestCase ,__UpperCamelCase ):
def A ( self : Tuple ):
lowerCAmelCase_ : Tuple = load_tool("""text-to-speech""" )
self.tool.setup()
def A ( self : Dict ):
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
lowerCAmelCase_ : Any = self.tool("""hey""" )
lowerCAmelCase_ : int = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
def A ( self : List[str] ):
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
lowerCAmelCase_ : Tuple = self.tool("""hey""" )
lowerCAmelCase_ : Union[str, Any] = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
| 28 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 1 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Union[str, Any]=0.999 , lowercase__ : Any="cosine" , ) -> Optional[Any]:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(lowercase__ : Optional[int] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(lowercase__ : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' )
lowerCAmelCase_ : Any = []
for i in range(lowercase__ ):
lowerCAmelCase_ : int = i / num_diffusion_timesteps
lowerCAmelCase_ : str = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) )
return torch.tensor(lowercase__ , dtype=torch.floataa )
class __a ( __UpperCamelCase ,__UpperCamelCase ):
@register_to_config
def __init__( self : int , UpperCAmelCase : int = 10_00 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" )
lowerCAmelCase_ : Optional[Any] = betas_for_alpha_bar(UpperCAmelCase )
lowerCAmelCase_ : int = 1.0 - self.betas
lowerCAmelCase_ : Optional[Any] = torch.cumprod(self.alphas , dim=0 )
lowerCAmelCase_ : Any = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
lowerCAmelCase_ : Optional[int] = 1.0
# setable values
lowerCAmelCase_ : List[Any] = None
lowerCAmelCase_ : Any = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
lowerCAmelCase_ : Tuple = variance_type
def A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
lowerCAmelCase_ : List[Any] = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
lowerCAmelCase_ : Any = t - 1
lowerCAmelCase_ : int = self.alphas_cumprod[t]
lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCAmelCase_ : Tuple = 1 - alpha_prod_t
lowerCAmelCase_ : Tuple = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCAmelCase_ : Tuple = self.betas[t]
else:
lowerCAmelCase_ : str = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
lowerCAmelCase_ : Any = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
lowerCAmelCase_ : Optional[Any] = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
lowerCAmelCase_ : Dict = torch.log(torch.clamp(UpperCAmelCase , min=1e-2_0 ) )
lowerCAmelCase_ : str = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
lowerCAmelCase_ : Optional[int] = variance.log()
lowerCAmelCase_ : int = beta.log()
lowerCAmelCase_ : Optional[int] = (predicted_variance + 1) / 2
lowerCAmelCase_ : Tuple = frac * max_log + (1 - frac) * min_log
return variance
def A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str=None , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : int = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
lowerCAmelCase_ : Tuple = None
# 1. compute alphas, betas
if prev_timestep is None:
lowerCAmelCase_ : Optional[Any] = t - 1
lowerCAmelCase_ : str = self.alphas_cumprod[t]
lowerCAmelCase_ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
lowerCAmelCase_ : Optional[Any] = 1 - alpha_prod_t
lowerCAmelCase_ : List[str] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
lowerCAmelCase_ : Any = self.betas[t]
lowerCAmelCase_ : Optional[int] = self.alphas[t]
else:
lowerCAmelCase_ : Any = 1 - alpha_prod_t / alpha_prod_t_prev
lowerCAmelCase_ : Tuple = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
lowerCAmelCase_ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
lowerCAmelCase_ : Dict = model_output
else:
raise ValueError(
F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'
""" for the UnCLIPScheduler.""" )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
lowerCAmelCase_ : Optional[Any] = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCAmelCase_ : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
lowerCAmelCase_ : str = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
lowerCAmelCase_ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
lowerCAmelCase_ : str = 0
if t > 0:
lowerCAmelCase_ : str = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
lowerCAmelCase_ : Any = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
lowerCAmelCase_ : int = variance
elif self.variance_type == "learned_range":
lowerCAmelCase_ : Optional[int] = (0.5 * variance).exp()
else:
raise ValueError(
F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'
""" for the UnCLIPScheduler.""" )
lowerCAmelCase_ : Optional[int] = variance * variance_noise
lowerCAmelCase_ : List[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Tuple , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
lowerCAmelCase_ : Tuple = timesteps.to(original_samples.device )
lowerCAmelCase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5
lowerCAmelCase_ : Any = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
lowerCAmelCase_ : Tuple = sqrt_alpha_prod.unsqueeze(-1 )
lowerCAmelCase_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
lowerCAmelCase_ : List[Any] = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
lowerCAmelCase_ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
lowerCAmelCase_ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 28 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 1 |
import math
class __a :
def __init__( self : Optional[int] , UpperCAmelCase : Any=0 ): # a graph with Node 0,1,...,N-1
lowerCAmelCase_ : List[str] = n
lowerCAmelCase_ : Any = [
[math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase )
] # adjacency matrix for weight
lowerCAmelCase_ : int = [
[math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase )
] # dp[i][j] stores minimum distance from i to j
def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : Union[str, Any] = w
def A ( self : Optional[Any] ):
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
lowerCAmelCase_ : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ):
return self.dp[u][v]
if __name__ == "__main__":
__UpperCAmelCase = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 28 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __a ( SCREAMING_SNAKE_CASE_ ):
__snake_case : Tuple = """canine"""
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=7_68 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : List[str]=30_72 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : List[str]=1_63_84 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : List[Any]=1e-1_2 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Dict=0xe_0_0_0 , UpperCAmelCase : List[str]=0xe_0_0_1 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Tuple=1_63_84 , UpperCAmelCase : Optional[int]=1_28 , **UpperCAmelCase : int , ):
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
lowerCAmelCase_ : Union[str, Any] = max_position_embeddings
lowerCAmelCase_ : Dict = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : str = hidden_act
lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = initializer_range
lowerCAmelCase_ : int = type_vocab_size
lowerCAmelCase_ : Any = layer_norm_eps
# Character config:
lowerCAmelCase_ : Optional[int] = downsampling_rate
lowerCAmelCase_ : List[str] = upsampling_kernel_size
lowerCAmelCase_ : List[Any] = num_hash_functions
lowerCAmelCase_ : List[Any] = num_hash_buckets
lowerCAmelCase_ : Any = local_transformer_stride
| 350 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : list , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = 0 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = right or len(lowercase__ ) - 1
if left > right:
return -1
elif list_data[left] == key:
return left
elif list_data[right] == key:
return right
else:
return search(lowercase__ , lowercase__ , left + 1 , right - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 351 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> bool:
'''simple docstring'''
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
__UpperCAmelCase = int(input('Enter number: ').strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 0 |
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__UpperCAmelCase = logging.getLogger(__name__)
def __UpperCamelCase ( lowercase__ : torch.nn.Module , lowercase__ : BnbQuantizationConfig , lowercase__ : Union[str, os.PathLike] = None , lowercase__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , lowercase__ : Optional[List[str]] = None , lowercase__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.load_in_abit
lowerCAmelCase_ : int = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"""You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"""
""" make sure you have the latest version of `bitsandbytes` installed.""" )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"""You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"""
"""make sure you have the latest version of `bitsandbytes` installed.""" )
lowerCAmelCase_ : Optional[int] = []
# custom device map
if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(device_map.keys() ) > 1:
lowerCAmelCase_ : Tuple = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
lowerCAmelCase_ : Optional[Any] = get_keys_to_not_convert(__lowerCAmelCase )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(__lowerCAmelCase )
lowerCAmelCase_ : Tuple = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(__lowerCAmelCase )
# compatibility with peft
lowerCAmelCase_ : Optional[int] = load_in_abit
lowerCAmelCase_ : Dict = load_in_abit
lowerCAmelCase_ : Tuple = get_parameter_device(__lowerCAmelCase )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"""It is not recommended to quantize a loaded model. """
"""The model should be instantiated under the `init_empty_weights` context manager.""" )
lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(__lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase )
# convert param to the right dtype
lowerCAmelCase_ : str = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
lowerCAmelCase_ : Optional[Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" )
lowerCAmelCase_ : Any = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(__lowerCAmelCase ):
param.to(__lowerCAmelCase )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info(
f'The model device type is {model_device.type}. However, cuda is needed for quantization.'
"""We move the model to cuda.""" )
return model
elif weights_location is None:
raise RuntimeError(
f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' )
else:
with init_empty_weights():
lowerCAmelCase_ : Tuple = replace_with_bnb_layers(
__lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase )
lowerCAmelCase_ : Tuple = get_quantized_model_device_map(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_memory=__lowerCAmelCase , no_split_module_classes=__lowerCAmelCase , )
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
lowerCAmelCase_ : str = True
lowerCAmelCase_ : List[str] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] )
load_checkpoint_in_model(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCAmelCase , offload_state_dict=__lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , )
return dispatch_model(__lowerCAmelCase , device_map=__lowerCAmelCase , offload_dir=__lowerCAmelCase )
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : int=None , lowercase__ : Any=None , lowercase__ : str=None ) -> Tuple:
'''simple docstring'''
if device_map is None:
if torch.cuda.is_available():
lowerCAmelCase_ : List[str] = {"""""": torch.cuda.current_device()}
else:
raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" )
logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"""If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """
"""'sequential'.""" )
lowerCAmelCase_ : Union[str, Any] = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
lowerCAmelCase_ : Union[str, Any] = {}
lowerCAmelCase_ : Optional[int] = special_dtypes
lowerCAmelCase_ : List[str] = no_split_module_classes
lowerCAmelCase_ : List[str] = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
lowerCAmelCase_ : Optional[int] = get_balanced_memory(
__lowerCAmelCase , low_zero=(device_map == """balanced_low_0""") , max_memory=__lowerCAmelCase , **__lowerCAmelCase , )
lowerCAmelCase_ : Optional[int] = max_memory
lowerCAmelCase_ : List[str] = infer_auto_device_map(__lowerCAmelCase , **__lowerCAmelCase )
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
# check if don't have any quantized module on the cpu
lowerCAmelCase_ : Dict = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
lowerCAmelCase_ : Optional[Any] = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"""
Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit
the quantized model. If you want to dispatch the model on the CPU or the disk while keeping
these modules in `torch_dtype`, you need to pass a custom `device_map` to
`load_and_quantize_model`. Check
https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk
for more details.
""" )
else:
logger.info(
"""Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" )
del device_map_without_some_modules
return device_map
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : str , lowercase__ : Optional[int]=None , lowercase__ : Dict=None ) -> Any:
'''simple docstring'''
if modules_to_not_convert is None:
lowerCAmelCase_ : Optional[Any] = []
lowerCAmelCase_ , lowerCAmelCase_ : int = _replace_with_bnb_layers(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
if not has_been_replaced:
logger.warning(
"""You are loading your model in 8bit or 4bit but no linear modules were found in your model."""
""" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."""
""" Please double check your model architecture, or submit an issue on github if you think this is"""
""" a bug.""" )
return model
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , ) -> str:
'''simple docstring'''
lowerCAmelCase_ : str = False
for name, module in model.named_children():
if current_key_name is None:
lowerCAmelCase_ : List[Any] = []
current_key_name.append(__lowerCAmelCase )
if isinstance(__lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
lowerCAmelCase_ : Optional[int] = """.""".join(__lowerCAmelCase )
lowerCAmelCase_ : int = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
lowerCAmelCase_ : Optional[int] = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
lowerCAmelCase_ : int = bnb.nn.LinearabitLt(
module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , )
elif bnb_quantization_config.load_in_abit:
lowerCAmelCase_ : Tuple = bnb.nn.Linearabit(
module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , )
else:
raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" )
lowerCAmelCase_ : int = module.weight.data
if module.bias is not None:
lowerCAmelCase_ : Union[str, Any] = module.bias.data
bnb_module.requires_grad_(__lowerCAmelCase )
setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowerCAmelCase_ : Optional[int] = True
if len(list(module.children() ) ) > 0:
lowerCAmelCase_ , lowerCAmelCase_ : Dict = _replace_with_bnb_layers(
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def __UpperCamelCase ( lowercase__ : Dict ) -> List[Any]:
'''simple docstring'''
with init_empty_weights():
lowerCAmelCase_ : Union[str, Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
lowerCAmelCase_ : Optional[int] = find_tied_parameters(__lowerCAmelCase )
# For compatibility with Accelerate < 0.18
if isinstance(__lowerCAmelCase , __lowerCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowerCAmelCase_ : Optional[Any] = sum(__lowerCAmelCase , [] )
lowerCAmelCase_ : Union[str, Any] = len(__lowerCAmelCase ) > 0
# Check if it is a base model
lowerCAmelCase_ : List[Any] = False
if hasattr(__lowerCAmelCase , """base_model_prefix""" ):
lowerCAmelCase_ : Dict = not hasattr(__lowerCAmelCase , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCAmelCase_ : Tuple = list(model.named_children() )
lowerCAmelCase_ : Union[str, Any] = [list_modules[-1][0]]
# add last module together with tied weights
lowerCAmelCase_ : Dict = set(__lowerCAmelCase ) - set(__lowerCAmelCase )
lowerCAmelCase_ : Tuple = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase )
# remove ".weight" from the keys
lowerCAmelCase_ : str = [""".weight""", """.bias"""]
lowerCAmelCase_ : str = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCAmelCase_ : int = name.replace(__lowerCAmelCase , """""" )
filtered_module_names.append(__lowerCAmelCase )
return filtered_module_names
def __UpperCamelCase ( lowercase__ : Dict ) -> str:
'''simple docstring'''
for m in model.modules():
if isinstance(__lowerCAmelCase , bnb.nn.Linearabit ):
return True
return False
def __UpperCamelCase ( lowercase__ : nn.Module ) -> int:
'''simple docstring'''
return next(parameter.parameters() ).device
def __UpperCamelCase ( lowercase__ : int , lowercase__ : str , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if fpaa_statistics is None:
set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , 0 , dtype=__lowerCAmelCase , value=__lowerCAmelCase )
lowerCAmelCase_ : int = param_name
lowerCAmelCase_ : Dict = model
if "." in tensor_name:
lowerCAmelCase_ : Optional[int] = tensor_name.split(""".""" )
for split in splits[:-1]:
lowerCAmelCase_ : str = getattr(__lowerCAmelCase , __lowerCAmelCase )
if new_module is None:
raise ValueError(f'{module} has no attribute {split}.' )
lowerCAmelCase_ : Optional[Any] = new_module
lowerCAmelCase_ : Tuple = splits[-1]
# offload weights
lowerCAmelCase_ : Optional[Any] = False
offload_weight(module._parameters[tensor_name] , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase )
if hasattr(module._parameters[tensor_name] , """SCB""" ):
offload_weight(
module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , __lowerCAmelCase , index=__lowerCAmelCase , )
else:
offload_weight(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase )
offload_weight(__lowerCAmelCase , param_name.replace("""weight""" , """SCB""" ) , __lowerCAmelCase , index=__lowerCAmelCase )
set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , """meta""" , dtype=__lowerCAmelCase , value=torch.empty(*param.size() ) )
| 353 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 0 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( a__ ):
def __init__( self : str , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"""The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use DeformableDetrImageProcessor instead.""" , _lowerCamelCase , )
super().__init__(*_lowerCamelCase , **_lowerCamelCase )
| 354 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : int = 100 ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Any = (n * (n + 1) // 2) ** 2
lowerCAmelCase_ : Tuple = n * (n + 1) * (2 * n + 1) // 6
return sum_cubes - sum_squares
if __name__ == "__main__":
print(f"""{solution() = }""")
| 355 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( lowerCamelCase__ ):
__snake_case : Dict = 'encoder-decoder'
__snake_case : int = True
def __init__( self : Dict , **UpperCAmelCase : Optional[int] ):
super().__init__(**UpperCAmelCase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
lowerCAmelCase_ : Tuple = kwargs.pop("""encoder""" )
lowerCAmelCase_ : List[Any] = encoder_config.pop("""model_type""" )
lowerCAmelCase_ : Optional[int] = kwargs.pop("""decoder""" )
lowerCAmelCase_ : Union[str, Any] = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
lowerCAmelCase_ : List[Any] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : List[str] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : List[str] = True
@classmethod
def A ( cls : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ):
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
lowerCAmelCase_ : Tuple = True
lowerCAmelCase_ : Tuple = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase )
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ : List[Any] = self.encoder.to_dict()
lowerCAmelCase_ : Any = self.decoder.to_dict()
lowerCAmelCase_ : str = self.__class__.model_type
return output
| 356 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 0 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
EulerAncestralDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPanoramaPipeline,
UNetaDConditionModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : int = StableDiffusionPanoramaPipeline
__snake_case : Any = TEXT_TO_IMAGE_PARAMS
__snake_case : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
__snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
__snake_case : Any = TEXT_TO_IMAGE_IMAGE_PARAMS
def A ( self : Tuple ):
torch.manual_seed(0 )
lowerCAmelCase_ : Any = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
lowerCAmelCase_ : Any = DDIMScheduler()
torch.manual_seed(0 )
lowerCAmelCase_ : Dict = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
lowerCAmelCase_ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
lowerCAmelCase_ : Tuple = CLIPTextModel(_snake_case )
lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCAmelCase_ : Any = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any]=0 ):
lowerCAmelCase_ : Optional[int] = torch.manual_seed(_snake_case )
lowerCAmelCase_ : str = {
"""prompt""": """a photo of the dolomites""",
"""generator""": generator,
# Setting height and width to None to prevent OOMs on CPU.
"""height""": None,
"""width""": None,
"""num_inference_steps""": 1,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def A ( self : Any ):
lowerCAmelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : Tuple = self.get_dummy_components()
lowerCAmelCase_ : str = StableDiffusionPanoramaPipeline(**_snake_case )
lowerCAmelCase_ : str = sd_pipe.to(_snake_case )
sd_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case )
lowerCAmelCase_ : Tuple = sd_pipe(**_snake_case ).images
lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ : List[str] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A ( self : Tuple ):
super().test_inference_batch_consistent(batch_sizes=[1, 2] )
def A ( self : Dict ):
super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : str = self.get_dummy_components()
lowerCAmelCase_ : List[str] = StableDiffusionPanoramaPipeline(**_snake_case )
lowerCAmelCase_ : Any = sd_pipe.to(_snake_case )
sd_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(_snake_case )
lowerCAmelCase_ : str = """french fries"""
lowerCAmelCase_ : str = sd_pipe(**_snake_case , negative_prompt=_snake_case )
lowerCAmelCase_ : str = output.images
lowerCAmelCase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ : Optional[int] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A ( self : Optional[Any] ):
lowerCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : Union[str, Any] = self.get_dummy_components()
lowerCAmelCase_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**_snake_case )
lowerCAmelCase_ : int = sd_pipe.to(_snake_case )
sd_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case )
lowerCAmelCase_ : List[Any] = sd_pipe(**_snake_case , view_batch_size=2 )
lowerCAmelCase_ : List[str] = output.images
lowerCAmelCase_ : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ : List[Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : int = self.get_dummy_components()
lowerCAmelCase_ : List[Any] = EulerAncestralDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" )
lowerCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline(**_snake_case )
lowerCAmelCase_ : int = sd_pipe.to(_snake_case )
sd_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(_snake_case )
lowerCAmelCase_ : str = sd_pipe(**_snake_case ).images
lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ : Union[str, Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def A ( self : List[str] ):
lowerCAmelCase_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : Optional[Any] = self.get_dummy_components()
lowerCAmelCase_ : Union[str, Any] = PNDMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_snake_case )
lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case )
lowerCAmelCase_ : List[Any] = sd_pipe.to(_snake_case )
sd_pipe.set_progress_bar_config(disable=_snake_case )
lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(_snake_case )
lowerCAmelCase_ : Dict = sd_pipe(**_snake_case ).images
lowerCAmelCase_ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ : str = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __a ( unittest.TestCase ):
def A ( self : Optional[Any] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : Any , UpperCAmelCase : int=0 ):
lowerCAmelCase_ : Optional[Any] = torch.manual_seed(_snake_case )
lowerCAmelCase_ : Tuple = {
"""prompt""": """a photo of the dolomites""",
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def A ( self : str ):
lowerCAmelCase_ : Tuple = """stabilityai/stable-diffusion-2-base"""
lowerCAmelCase_ : str = DDIMScheduler.from_pretrained(_snake_case , subfolder="""scheduler""" )
lowerCAmelCase_ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
pipe.enable_attention_slicing()
lowerCAmelCase_ : Any = self.get_inputs()
lowerCAmelCase_ : List[str] = pipe(**_snake_case ).images
lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
lowerCAmelCase_ : Tuple = np.array(
[
0.3696_8392,
0.2702_5372,
0.3244_6766,
0.2837_9387,
0.3636_3274,
0.3073_3347,
0.2710_0027,
0.2705_4125,
0.2553_6096,
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-2
def A ( self : Tuple ):
lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2-base""" , safety_checker=_snake_case )
lowerCAmelCase_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
pipe.enable_attention_slicing()
lowerCAmelCase_ : Tuple = self.get_inputs()
lowerCAmelCase_ : Tuple = pipe(**_snake_case ).images
lowerCAmelCase_ : Dict = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 20_48, 3)
lowerCAmelCase_ : Union[str, Any] = np.array(
[
[
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
] )
assert np.abs(expected_slice - image_slice ).max() < 1e-3
def A ( self : Dict ):
lowerCAmelCase_ : str = 0
def callback_fn(UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor ) -> None:
lowerCAmelCase_ : Optional[int] = True
nonlocal number_of_steps
number_of_steps += 1
if step == 1:
lowerCAmelCase_ : str = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
lowerCAmelCase_ : int = latents[0, -3:, -3:, -1]
lowerCAmelCase_ : int = np.array(
[
0.1868_1869,
0.3390_7816,
0.536_1276,
0.1443_2865,
-0.0285_6611,
-0.7394_1123,
0.2339_7987,
0.4732_2682,
-0.3782_3164,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
elif step == 2:
lowerCAmelCase_ : List[Any] = latents.detach().cpu().numpy()
assert latents.shape == (1, 4, 64, 2_56)
lowerCAmelCase_ : List[Any] = latents[0, -3:, -3:, -1]
lowerCAmelCase_ : Union[str, Any] = np.array(
[
0.1853_9645,
0.3398_7248,
0.537_8559,
0.1443_7142,
-0.0245_5261,
-0.733_8317,
0.2399_0755,
0.4735_6272,
-0.378_6505,
] )
assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2
lowerCAmelCase_ : Any = False
lowerCAmelCase_ : int = """stabilityai/stable-diffusion-2-base"""
lowerCAmelCase_ : Optional[Any] = DDIMScheduler.from_pretrained(_snake_case , subfolder="""scheduler""" )
lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case )
lowerCAmelCase_ : str = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
pipe.enable_attention_slicing()
lowerCAmelCase_ : Tuple = self.get_inputs()
pipe(**_snake_case , callback=_snake_case , callback_steps=1 )
assert callback_fn.has_been_called
assert number_of_steps == 3
def A ( self : Dict ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
lowerCAmelCase_ : int = """stabilityai/stable-diffusion-2-base"""
lowerCAmelCase_ : Dict = DDIMScheduler.from_pretrained(_snake_case , subfolder="""scheduler""" )
lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case )
lowerCAmelCase_ : Union[str, Any] = pipe.to(_snake_case )
pipe.set_progress_bar_config(disable=_snake_case )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
lowerCAmelCase_ : str = self.get_inputs()
lowerCAmelCase_ : int = pipe(**_snake_case )
lowerCAmelCase_ : int = torch.cuda.max_memory_allocated()
# make sure that less than 5.2 GB is allocated
assert mem_bytes < 5.5 * 10**9
| 357 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class __a ( lowercase__ ):
__snake_case : torch.FloatTensor
class __a ( lowercase__ ,lowercase__ ):
@register_to_config
def __init__( self : str , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase : Tuple[int] = (64,) , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "silu" , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 2_56 , UpperCAmelCase : int = 32 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : float = 0.1_8215 , UpperCAmelCase : str = "group" , ):
super().__init__()
# pass init params to Encoder
lowerCAmelCase_ : Optional[Any] = Encoder(
in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , )
lowerCAmelCase_ : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels
lowerCAmelCase_ : str = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 )
lowerCAmelCase_ : int = VectorQuantizer(_UpperCamelCase , _UpperCamelCase , beta=0.25 , remap=_UpperCamelCase , sane_index_shape=_UpperCamelCase )
lowerCAmelCase_ : List[str] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 )
# pass init params to Decoder
lowerCAmelCase_ : str = Decoder(
in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , norm_type=_UpperCamelCase , )
@apply_forward_hook
def A ( self : Dict , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ):
lowerCAmelCase_ : str = self.encoder(_UpperCamelCase )
lowerCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=_UpperCamelCase )
@apply_forward_hook
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ):
# also go through quantization layer
if not force_not_quantize:
lowerCAmelCase_ : List[str] = self.quantize(_UpperCamelCase )
else:
lowerCAmelCase_ : List[str] = h
lowerCAmelCase_ : List[str] = self.post_quant_conv(_UpperCamelCase )
lowerCAmelCase_ : str = self.decoder(_UpperCamelCase , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=_UpperCamelCase )
def A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ):
lowerCAmelCase_ : Any = sample
lowerCAmelCase_ : Any = self.encode(_UpperCamelCase ).latents
lowerCAmelCase_ : Tuple = self.decode(_UpperCamelCase ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=_UpperCamelCase )
| 358 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 0 |
import time
from contextlib import contextmanager
from pathlib import Path
import pytest
import requests
from huggingface_hub.hf_api import HfApi, HfFolder
__UpperCAmelCase = """__DUMMY_TRANSFORMERS_USER__"""
__UpperCAmelCase = """Dummy User"""
__UpperCAmelCase = """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"""
__UpperCAmelCase = """https://hub-ci.huggingface.co"""
__UpperCAmelCase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}"""
__UpperCAmelCase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}"""
__UpperCAmelCase = Path('~/.huggingface/hub_ci_token').expanduser()
@pytest.fixture
def __UpperCamelCase ( lowercase__ : Dict ) -> Tuple:
'''simple docstring'''
monkeypatch.setattr(
"""huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowercase__ )
@pytest.fixture
def __UpperCamelCase ( lowercase__ : Dict ) -> Union[str, Any]:
'''simple docstring'''
monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowercase__ )
monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowercase__ )
@pytest.fixture
def __UpperCamelCase ( lowercase__ : Any ) -> List[Any]:
'''simple docstring'''
monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowercase__ )
@pytest.fixture
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Dict:
'''simple docstring'''
HfFolder.save_token(lowercase__ )
yield
HfFolder.delete_token()
@pytest.fixture(scope="""session""" )
def __UpperCamelCase ( ) -> Dict:
'''simple docstring'''
return HfApi(endpoint=lowercase__ )
@pytest.fixture(scope="""session""" )
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : int = HfFolder.get_token()
HfFolder.save_token(lowercase__ )
yield CI_HUB_USER_TOKEN
if previous_token is not None:
HfFolder.save_token(lowercase__ )
@pytest.fixture
def __UpperCamelCase ( lowercase__ : Any ) -> List[str]:
'''simple docstring'''
def _cleanup_repo(lowercase__ : Optional[int] ):
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" )
return _cleanup_repo
@pytest.fixture
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> int:
'''simple docstring'''
@contextmanager
def _temporary_repo(lowercase__ : Tuple ):
try:
yield repo_id
finally:
cleanup_repo(lowercase__ )
return _temporary_repo
@pytest.fixture(scope="""session""" )
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = f'repo_txt_data-{int(time.time() * 10E3 )}'
lowerCAmelCase_ : Union[str, Any] = f'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" , private=lowercase__ )
hf_api.upload_file(
token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo="""data/text_data.txt""" , repo_id=lowercase__ , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any , lowercase__ : Any ) -> Tuple:
'''simple docstring'''
return hf_private_dataset_repo_txt_data_
@pytest.fixture(scope="""session""" )
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Any ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = f'repo_zipped_txt_data-{int(time.time() * 10E3 )}'
lowerCAmelCase_ : Optional[Any] = f'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" , private=lowercase__ )
hf_api.upload_file(
token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo="""data.zip""" , repo_id=lowercase__ , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> Optional[int]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_txt_data_
@pytest.fixture(scope="""session""" )
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = f'repo_zipped_img_data-{int(time.time() * 10E3 )}'
lowerCAmelCase_ : Any = f'{CI_HUB_USER}/{repo_name}'
hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" , private=lowercase__ )
hf_api.upload_file(
token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo="""data.zip""" , repo_id=lowercase__ , repo_type="""dataset""" , )
yield repo_id
try:
hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" )
except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error
pass
@pytest.fixture()
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return hf_private_dataset_repo_zipped_img_data_
| 359 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 0 |
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __a ( A_ ,unittest.TestCase ):
__snake_case : Optional[int] = CLIPTokenizer
__snake_case : List[Any] = CLIPTokenizerFast
__snake_case : Any = True
__snake_case : str = {}
__snake_case : List[Any] = False
def A ( self : Any ):
super().setUp()
# fmt: off
lowerCAmelCase_ : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCAmelCase_ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
lowerCAmelCase_ : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"]
lowerCAmelCase_ : Optional[Any] = {"unk_token": "<unk>"}
lowerCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(snake_case__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(snake_case__ ) )
def A ( self : List[Any] , **UpperCAmelCase : List[str] ):
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def A ( self : Dict , **UpperCAmelCase : int ):
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ )
def A ( self : int , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = "lower newer"
lowerCAmelCase_ : Any = "lower newer"
return input_text, output_text
def A ( self : List[str] ):
lowerCAmelCase_ : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCAmelCase_ : str = "lower newer"
lowerCAmelCase_ : Optional[Any] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
lowerCAmelCase_ : List[str] = tokens + [tokenizer.unk_token]
lowerCAmelCase_ : List[str] = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
@require_ftfy
def A ( self : int ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowerCAmelCase_ : Dict = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
lowerCAmelCase_ : str = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."
lowerCAmelCase_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ )
lowerCAmelCase_ : Any = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
lowerCAmelCase_ : Tuple = "xa\u0303y" + " " + "x\xe3y"
lowerCAmelCase_ : Optional[int] = tokenizer_s.tokenize(snake_case__ )
lowerCAmelCase_ : Optional[int] = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Test that the tokenization is identical on unicode of space type
lowerCAmelCase_ : Union[str, Any] = [
"\u0009", # (horizontal tab, '\t')
"\u000B", # (vertical tab)
"\u000C", # (form feed)
"\u0020", # (space, ' ')
"\u200E", # (left-to-right mark):w
"\u200F", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
lowerCAmelCase_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ )
lowerCAmelCase_ : List[str] = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Test that the tokenization is identical on unicode of line break type
lowerCAmelCase_ : Optional[Any] = [
"\u000A", # (line feed, '\n')
"\r\n", # (carriage return and line feed, '\r\n')
"\u000D", # (carriage return, '\r')
"\r", # (carriage return, '\r')
"\u000D", # (carriage return, '\r')
"\u2028", # (line separator)
"\u2029", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
lowerCAmelCase_ : Any = tokenizer_s.tokenize(snake_case__ )
lowerCAmelCase_ : Optional[int] = tokenizer_r.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def A ( self : Optional[Any] ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
lowerCAmelCase_ : Optional[int] = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowerCAmelCase_ : int = F'{text_of_1_token} {text_of_1_token}'
lowerCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(
snake_case__ , use_fast=snake_case__ , )
lowerCAmelCase_ : str = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , )
lowerCAmelCase_ : Optional[Any] = F' {text}'
lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(
snake_case__ , use_fast=snake_case__ , )
lowerCAmelCase_ : Any = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , )
def A ( self : List[Any] ):
with self.assertRaises(snake_case__ ) as context:
self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" )
self.assertTrue(
context.exception.args[0].startswith(
"""The `backend_tokenizer` provided does not match the expected format.""" ) )
@require_ftfy
def A ( self : List[Any] ):
super().test_tokenization_python_rust_equals()
def A ( self : int ):
pass
| 360 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '▁'
__UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__UpperCAmelCase = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__UpperCAmelCase = {'vinai/bartpho-syllable': 10_24}
class __a ( __SCREAMING_SNAKE_CASE ):
__snake_case : Tuple = VOCAB_FILES_NAMES
__snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : Union[str, Any] = ['input_ids', 'attention_mask']
def __init__( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : int="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : Union[str, Any]="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Dict="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : str="<mask>" , UpperCAmelCase : List[str] = None , **UpperCAmelCase : Any , ):
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase_ : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token
lowerCAmelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , )
lowerCAmelCase_ : Optional[int] = vocab_file
lowerCAmelCase_ : List[str] = monolingual_vocab_file
lowerCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_a ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
lowerCAmelCase_ : str = {}
lowerCAmelCase_ : Tuple = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(_a ) not in self.fairseq_tokens_to_ids:
lowerCAmelCase_ : str = cnt
cnt += 1
with open(_a , """r""" , encoding="""utf-8""" ) as f:
for line in f.readlines():
lowerCAmelCase_ : Union[str, Any] = line.strip().split()[0]
lowerCAmelCase_ : Optional[Any] = len(self.fairseq_tokens_to_ids )
if str(_a ) not in self.fairseq_tokens_to_ids:
lowerCAmelCase_ : Union[str, Any] = len(self.fairseq_tokens_to_ids )
lowerCAmelCase_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : List[str] ):
lowerCAmelCase_ : Optional[int] = self.__dict__.copy()
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : Any = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCAmelCase_ : Any = {}
lowerCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase_ : Dict = [self.cls_token_id]
lowerCAmelCase_ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : int = None , UpperCAmelCase : str = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is None:
return [1] + ([0] * len(_a )) + [1]
return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1]
def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] = None ):
lowerCAmelCase_ : Union[str, Any] = [self.sep_token_id]
lowerCAmelCase_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def A ( self : Optional[int] ):
return len(self.fairseq_ids_to_tokens )
def A ( self : str ):
lowerCAmelCase_ : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A ( self : str , UpperCAmelCase : List[Any] ):
return self.sp_model.encode(_a , out_type=_a )
def A ( self : List[str] , UpperCAmelCase : Union[str, Any] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def A ( self : Optional[int] , UpperCAmelCase : Optional[int] ):
return self.fairseq_ids_to_tokens[index]
def A ( self : Any , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Dict = """""".join(_a ).replace(_a , """ """ ).strip()
return out_string
def A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] = None ):
if not os.path.isdir(_a ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCAmelCase_ : List[str] = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCAmelCase_ : Dict = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _a )
elif not os.path.isfile(self.vocab_file ):
with open(_a , """wb""" ) as fi:
lowerCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(_a )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
_a ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , _a )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(_a , """w""" , encoding="""utf-8""" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F'{str(_a )} \n' )
return out_vocab_file, out_monolingual_vocab_file | 361 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 0 |
import numpy as np
from cva import COLOR_BGR2GRAY, cvtColor, imread
from numpy import array, uinta
from PIL import Image
from digital_image_processing import change_contrast as cc
from digital_image_processing import convert_to_negative as cn
from digital_image_processing import sepia as sp
from digital_image_processing.dithering import burkes as bs
from digital_image_processing.edge_detection import canny
from digital_image_processing.filters import convolve as conv
from digital_image_processing.filters import gaussian_filter as gg
from digital_image_processing.filters import local_binary_pattern as lbp
from digital_image_processing.filters import median_filter as med
from digital_image_processing.filters import sobel_filter as sob
from digital_image_processing.resize import resize as rs
__UpperCAmelCase = imread(r'digital_image_processing/image_data/lena_small.jpg')
__UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY)
def __UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : List[str] = cn.convert_to_negative(lowercase__ )
# assert negative_img array for at least one True
assert negative_img.any()
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img:
# Work around assertion for response
assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith(
"""<PIL.Image.Image image mode=RGB size=100x100 at""" )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : int = canny.gen_gaussian_kernel(9 , sigma=1.4 )
# Assert ambiguous array
assert resp.all()
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 )
# assert ambiguous array for all == True
assert canny_img.all()
lowerCAmelCase_ : List[Any] = canny.canny(lowercase__ )
# assert canny array for at least one True
assert canny_array.any()
def __UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all()
def __UpperCamelCase ( ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Any = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] )
lowerCAmelCase_ : int = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ )
assert res.any()
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
assert med.median_filter(lowercase__ , 3 ).any()
def __UpperCamelCase ( ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = sob.sobel_filter(lowercase__ )
assert grad.any() and theta.any()
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = sp.make_sepia(lowercase__ , 20 )
assert sepia.all()
def __UpperCamelCase ( lowercase__ : Any = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = bs.Burkes(imread(lowercase__ , 1 ) , 120 )
burkes.process()
assert burkes.output_img.any()
def __UpperCamelCase ( lowercase__ : int = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 )
nn.process()
assert nn.output.any()
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : str = 'digital_image_processing/image_data/lena.jpg'
# Reading the image and converting it to grayscale.
lowerCAmelCase_ : List[str] = imread(lowercase__ , 0 )
# Test for get_neighbors_pixel function() return not None
lowerCAmelCase_ : Union[str, Any] = 0
lowerCAmelCase_ : int = 0
lowerCAmelCase_ : Union[str, Any] = image[x_coordinate][y_coordinate]
lowerCAmelCase_ : Optional[int] = lbp.get_neighbors_pixel(
lowercase__ , lowercase__ , lowercase__ , lowercase__ )
assert neighbors_pixels is not None
# Test for local_binary_pattern function()
# Create a numpy array as the same height and width of read image
lowerCAmelCase_ : Dict = np.zeros((image.shape[0], image.shape[1]) )
# Iterating through the image and calculating the local binary pattern value
# for each pixel.
for i in range(0 , image.shape[0] ):
for j in range(0 , image.shape[1] ):
lowerCAmelCase_ : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ )
assert lbp_image.any()
| 362 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 0 |
"""simple docstring"""
def __UpperCamelCase ( lowercase__ : List[Any] = 1000000 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : str = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _lowerCamelCase ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution())
| 363 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 0 |
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( a_ ):
__snake_case : List[Any] = ['''input_values''', '''attention_mask''']
def __init__( self : Optional[Any] , UpperCAmelCase : List[Any] = 1 , UpperCAmelCase : Tuple = 1_60_00 , UpperCAmelCase : Dict = 0.0 , UpperCAmelCase : List[str] = False , UpperCAmelCase : Tuple = 80 , UpperCAmelCase : Tuple = 16 , UpperCAmelCase : Union[str, Any] = 64 , UpperCAmelCase : Any = "hann_window" , UpperCAmelCase : Optional[Any] = 1.0 , UpperCAmelCase : Union[str, Any] = 80 , UpperCAmelCase : Dict = 76_00 , UpperCAmelCase : Dict = 1e-1_0 , UpperCAmelCase : Union[str, Any] = 2 , UpperCAmelCase : List[str] = True , **UpperCAmelCase : Optional[int] , ):
super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ )
lowerCAmelCase_ : Dict = do_normalize
lowerCAmelCase_ : Optional[int] = return_attention_mask
lowerCAmelCase_ : Dict = num_mel_bins
lowerCAmelCase_ : Tuple = hop_length
lowerCAmelCase_ : str = win_length
lowerCAmelCase_ : int = win_function
lowerCAmelCase_ : List[str] = frame_signal_scale
lowerCAmelCase_ : List[Any] = fmin
lowerCAmelCase_ : List[str] = fmax
lowerCAmelCase_ : List[Any] = mel_floor
lowerCAmelCase_ : str = reduction_factor
lowerCAmelCase_ : List[Any] = win_length * sampling_rate // 10_00
lowerCAmelCase_ : Any = hop_length * sampling_rate // 10_00
lowerCAmelCase_ : Any = optimal_fft_length(self.sample_size )
lowerCAmelCase_ : Union[str, Any] = (self.n_fft // 2) + 1
lowerCAmelCase_ : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase_ )
lowerCAmelCase_ : List[Any] = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , )
if frame_signal_scale != 1.0:
warnings.warn(
"""The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase_ , )
if reduction_factor != 2.0:
warnings.warn(
"""The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase_ , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def A ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] = 0.0 ):
if attention_mask is not None:
lowerCAmelCase_ : Dict = np.array(lowercase_ , np.intaa )
lowerCAmelCase_ : List[Any] = []
for vector, length in zip(lowercase_ , attention_mask.sum(-1 ) ):
lowerCAmelCase_ : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
lowerCAmelCase_ : Tuple = padding_value
normed_input_values.append(lowercase_ )
else:
lowerCAmelCase_ : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def A ( self : Dict , UpperCAmelCase : Any , ):
lowerCAmelCase_ : str = spectrogram(
lowercase_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , )
return log_mel_spec.T
def __call__( self : Tuple , UpperCAmelCase : str = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : Any = False , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Union[str, Any] = False , UpperCAmelCase : int = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[Any] = None , UpperCAmelCase : List[Any] = None , **UpperCAmelCase : Dict , ):
if audio is None and audio_target is None:
raise ValueError("""You must provide either `audio` or `audio_target` values.""" )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the ``sampling_rate`` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if audio is not None:
lowerCAmelCase_ : int = self._process_audio(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , )
else:
lowerCAmelCase_ : Optional[Any] = None
if audio_target is not None:
lowerCAmelCase_ : Dict = self._process_audio(
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , )
if inputs is None:
return inputs_target
else:
lowerCAmelCase_ : Optional[int] = inputs_target["""input_values"""]
lowerCAmelCase_ : Any = inputs_target.get("""attention_mask""" )
if decoder_attention_mask is not None:
lowerCAmelCase_ : List[str] = decoder_attention_mask
return inputs
def A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict = False , UpperCAmelCase : Union[str, Any] = False , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Optional[Any] = False , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : List[str] = None , **UpperCAmelCase : Dict , ):
lowerCAmelCase_ : Union[str, Any] = isinstance(lowercase_ , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'Only mono-channel audio is supported for input to {self}' )
lowerCAmelCase_ : List[Any] = is_batched_numpy or (
isinstance(lowercase_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase_ : Optional[Any] = [np.asarray(lowercase_ , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(lowercase_ , np.ndarray ):
lowerCAmelCase_ : Optional[int] = np.asarray(lowercase_ , dtype=np.floataa )
elif isinstance(lowercase_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase_ : int = speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase_ : str = [speech]
# needed to make pad() work on spectrogram inputs
lowerCAmelCase_ : Optional[Any] = self.feature_size
# convert into correct format for padding
if is_target:
lowerCAmelCase_ : List[str] = [self._extract_mel_features(lowercase_ ) for waveform in speech]
lowerCAmelCase_ : Any = BatchFeature({"""input_values""": features} )
lowerCAmelCase_ : Optional[int] = self.num_mel_bins
else:
lowerCAmelCase_ : int = BatchFeature({"""input_values""": speech} )
lowerCAmelCase_ : List[Any] = self.pad(
lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , )
lowerCAmelCase_ : List[Any] = feature_size_hack
# convert input values to correct format
lowerCAmelCase_ : Union[str, Any] = padded_inputs["""input_values"""]
if not isinstance(input_values[0] , np.ndarray ):
lowerCAmelCase_ : int = [np.asarray(lowercase_ , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(lowercase_ , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
lowerCAmelCase_ : Optional[int] = [array.astype(np.floataa ) for array in input_values]
elif isinstance(lowercase_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
lowerCAmelCase_ : Union[str, Any] = input_values.astype(np.floataa )
# convert attention_mask to correct format
lowerCAmelCase_ : Optional[int] = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
lowerCAmelCase_ : Optional[int] = [np.asarray(lowercase_ , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
lowerCAmelCase_ : List[Any] = (
attention_mask
if self._get_padding_strategies(lowercase_ , max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowerCAmelCase_ : str = self.zero_mean_unit_var_norm(
padded_inputs["""input_values"""] , attention_mask=lowercase_ , padding_value=self.padding_value )
if return_tensors is not None:
lowerCAmelCase_ : Any = padded_inputs.convert_to_tensors(lowercase_ )
return padded_inputs
def A ( self : List[str] ):
lowerCAmelCase_ : int = super().to_dict()
# Don't serialize these as they are derived from the other properties.
lowerCAmelCase_ : int = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""]
for name in names:
if name in output:
del output[name]
return output
| 364 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 0 |
"""simple docstring"""
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class __a ( __lowercase ):
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Tuple = tempfile.mkdtemp()
lowerCAmelCase_ : List[str] = 5
# Realm tok
lowerCAmelCase_ : Optional[int] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''test''',
'''question''',
'''this''',
'''is''',
'''the''',
'''first''',
'''second''',
'''third''',
'''fourth''',
'''fifth''',
'''record''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , """realm_tokenizer""" )
os.makedirs(_a , exist_ok=_a )
lowerCAmelCase_ : str = os.path.join(_a , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname , """realm_block_records""" )
os.makedirs(_a , exist_ok=_a )
def A ( self : int ):
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) )
def A ( self : Dict ):
shutil.rmtree(self.tmpdirname )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : int = RealmConfig(num_block_records=self.num_block_records )
return config
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[Any] = Dataset.from_dict(
{
"""id""": ["""0""", """1"""],
"""question""": ["""foo""", """bar"""],
"""answers""": [["""Foo""", """Bar"""], ["""Bar"""]],
} )
return dataset
def A ( self : List[Any] ):
lowerCAmelCase_ : Any = np.array(
[
b"""This is the first record""",
b"""This is the second record""",
b"""This is the third record""",
b"""This is the fourth record""",
b"""This is the fifth record""",
b"""This is a longer longer longer record""",
] , dtype=_a , )
return block_records
def A ( self : str ):
lowerCAmelCase_ : List[str] = RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def A ( self : List[str] ):
lowerCAmelCase_ : Dict = self.get_config()
lowerCAmelCase_ : Tuple = self.get_dummy_retriever()
lowerCAmelCase_ : Dict = retriever.tokenizer
lowerCAmelCase_ : Union[str, Any] = np.array([0, 3] , dtype="""long""" )
lowerCAmelCase_ : Any = tokenizer(["""Test question"""] ).input_ids
lowerCAmelCase_ : int = tokenizer(
["""the fourth"""] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids
lowerCAmelCase_ : str = config.reader_seq_len
lowerCAmelCase_ : Any = retriever(
_a , _a , answer_ids=_a , max_length=_a , return_tensors="""np""" )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , )
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = self.get_config()
lowerCAmelCase_ : Union[str, Any] = self.get_dummy_retriever()
lowerCAmelCase_ : Tuple = retriever.tokenizer
lowerCAmelCase_ : List[str] = np.array([0, 3, 5] , dtype="""long""" )
lowerCAmelCase_ : int = tokenizer(["""Test question"""] ).input_ids
lowerCAmelCase_ : List[str] = tokenizer(
["""the fourth""", """longer longer"""] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids
lowerCAmelCase_ : Union[str, Any] = config.reader_seq_len
lowerCAmelCase_ : List[Any] = retriever(
_a , _a , answer_ids=_a , max_length=_a , return_tensors="""np""" )
self.assertEqual([False, True, True] , _a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a )
def A ( self : str ):
lowerCAmelCase_ : Any = self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) )
# Test local path
lowerCAmelCase_ : str = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) )
self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
# Test mocked remote path
with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download:
lowerCAmelCase_ : Tuple = os.path.join(
os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME )
lowerCAmelCase_ : str = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" )
self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
| 365 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json',
}
class __a ( __SCREAMING_SNAKE_CASE ):
__snake_case : Tuple = "roc_bert"
def __init__( self : str , UpperCAmelCase : List[str]=3_05_22 , UpperCAmelCase : List[str]=7_68 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : str=30_72 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : List[str]=1e-1_2 , UpperCAmelCase : Any=True , UpperCAmelCase : Dict=0 , UpperCAmelCase : List[str]="absolute" , UpperCAmelCase : int=None , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : int=9_10 , UpperCAmelCase : str=5_12 , UpperCAmelCase : Optional[int]=2_48_58 , UpperCAmelCase : Any=True , **UpperCAmelCase : Optional[int] , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = max_position_embeddings
lowerCAmelCase_ : Optional[int] = hidden_size
lowerCAmelCase_ : Optional[int] = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : str = intermediate_size
lowerCAmelCase_ : Optional[Any] = hidden_act
lowerCAmelCase_ : List[str] = hidden_dropout_prob
lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : Optional[Any] = type_vocab_size
lowerCAmelCase_ : List[str] = layer_norm_eps
lowerCAmelCase_ : Tuple = use_cache
lowerCAmelCase_ : Optional[int] = enable_pronunciation
lowerCAmelCase_ : str = enable_shape
lowerCAmelCase_ : List[Any] = pronunciation_embed_dim
lowerCAmelCase_ : Union[str, Any] = pronunciation_vocab_size
lowerCAmelCase_ : Any = shape_embed_dim
lowerCAmelCase_ : Dict = shape_vocab_size
lowerCAmelCase_ : Optional[int] = concat_input
lowerCAmelCase_ : Any = position_embedding_type
lowerCAmelCase_ : Optional[int] = classifier_dropout
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 366 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 0 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = ['''pixel_values''']
def __init__( self : Tuple , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Dict[str, int]] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : str , ):
super().__init__(**lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = size if size is not None else {"shortest_edge": 2_56}
lowerCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24}
lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" )
lowerCAmelCase_ : Tuple = do_resize
lowerCAmelCase_ : Optional[int] = size
lowerCAmelCase_ : List[Any] = resample
lowerCAmelCase_ : str = do_center_crop
lowerCAmelCase_ : List[Any] = crop_size
lowerCAmelCase_ : Dict = do_rescale
lowerCAmelCase_ : Union[str, Any] = rescale_factor
lowerCAmelCase_ : Any = do_normalize
lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ):
lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
lowerCAmelCase_ : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ):
lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' )
return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : float , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] ):
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ):
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def A ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : List[Any] , ):
lowerCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize
lowerCAmelCase_ : Any = size if size is not None else self.size
lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
lowerCAmelCase_ : Dict = resample if resample is not None else self.resample
lowerCAmelCase_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size
lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" )
lowerCAmelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
lowerCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean
lowerCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std
lowerCAmelCase_ : int = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
lowerCAmelCase_ : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
lowerCAmelCase_ : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
lowerCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
lowerCAmelCase_ : str = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
lowerCAmelCase_ : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
lowerCAmelCase_ : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
lowerCAmelCase_ : List[str] = {"pixel_values": images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Tuple] = None ):
lowerCAmelCase_ : Any = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
"""Make sure that you pass in as many target sizes as the batch dimension of the logits""" )
if is_torch_tensor(lowerCAmelCase__ ):
lowerCAmelCase_ : List[str] = target_sizes.numpy()
lowerCAmelCase_ : Any = []
for idx in range(len(lowerCAmelCase__ ) ):
lowerCAmelCase_ : Tuple = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
lowerCAmelCase_ : Dict = logits.argmax(dim=1 )
lowerCAmelCase_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 367 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 0 |
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
__UpperCAmelCase = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
__UpperCAmelCase = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
__UpperCAmelCase = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__UpperCAmelCase = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
__UpperCAmelCase = [
('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'),
('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'),
('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'),
('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'),
('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'),
('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'),
('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'),
('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'),
('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'),
(
'zero-shot-object-detection',
'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES',
'AutoModelForZeroShotObjectDetection',
),
('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'),
('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'),
('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'),
('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'),
(
'table-question-answering',
'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForTableQuestionAnswering',
),
('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'),
('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'),
(
'next-sentence-prediction',
'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES',
'AutoModelForNextSentencePrediction',
),
(
'audio-frame-classification',
'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForAudioFrameClassification',
),
('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'),
(
'document-question-answering',
'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForDocumentQuestionAnswering',
),
(
'visual-question-answering',
'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES',
'AutoModelForVisualQuestionAnswering',
),
('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'),
(
'zero-shot-image-classification',
'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES',
'AutoModelForZeroShotImageClassification',
),
('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'),
('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'),
('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'),
]
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : int = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _UpperCamelCase )
return [m.group(0 ) for m in matches]
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
lowerCAmelCase_ : List[str] = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
lowerCAmelCase_ : List[Any] = collections.defaultdict(_UpperCamelCase )
lowerCAmelCase_ : List[Any] = collections.defaultdict(_UpperCamelCase )
lowerCAmelCase_ : Union[str, Any] = collections.defaultdict(_UpperCamelCase )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(_UpperCamelCase ):
lowerCAmelCase_ : Optional[Any] = None
if _re_tf_models.match(_UpperCamelCase ) is not None:
lowerCAmelCase_ : Dict = tf_models
lowerCAmelCase_ : str = _re_tf_models.match(_UpperCamelCase ).groups()[0]
elif _re_flax_models.match(_UpperCamelCase ) is not None:
lowerCAmelCase_ : int = flax_models
lowerCAmelCase_ : Union[str, Any] = _re_flax_models.match(_UpperCamelCase ).groups()[0]
elif _re_pt_models.match(_UpperCamelCase ) is not None:
lowerCAmelCase_ : List[str] = pt_models
lowerCAmelCase_ : Optional[Any] = _re_pt_models.match(_UpperCamelCase ).groups()[0]
if lookup_dict is not None:
while len(_UpperCamelCase ) > 0:
if attr_name in model_prefix_to_model_type:
lowerCAmelCase_ : Union[str, Any] = True
break
# Try again after removing the last word in the name
lowerCAmelCase_ : Optional[Any] = """""".join(camel_case_split(_UpperCamelCase )[:-1] )
lowerCAmelCase_ : Any = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
lowerCAmelCase_ : Union[str, Any] = list(_UpperCamelCase )
all_models.sort()
lowerCAmelCase_ : Optional[int] = {"""model_type""": all_models}
lowerCAmelCase_ : str = [pt_models[t] for t in all_models]
lowerCAmelCase_ : Optional[Any] = [tf_models[t] for t in all_models]
lowerCAmelCase_ : List[Any] = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
lowerCAmelCase_ : Union[str, Any] = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
lowerCAmelCase_ : Optional[int] = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
lowerCAmelCase_ : Any = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
lowerCAmelCase_ : Optional[int] = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
lowerCAmelCase_ : Optional[int] = """AutoTokenizer"""
lowerCAmelCase_ : str = [processors[t] for t in all_models]
return pd.DataFrame(_UpperCamelCase )
def __UpperCamelCase ( lowercase__ : int ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
lowerCAmelCase_ : Union[str, Any] = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}']
lowerCAmelCase_ : Optional[Any] = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}']
# Loop through all three frameworks
for module, cls, mapping in zip(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
# The type of pipeline may not exist in this framework
if not hasattr(_UpperCamelCase , _UpperCamelCase ):
continue
# First extract all model_names
lowerCAmelCase_ : Optional[Any] = []
for name in getattr(_UpperCamelCase , _UpperCamelCase ).values():
if isinstance(_UpperCamelCase , _UpperCamelCase ):
model_names.append(_UpperCamelCase )
else:
model_names.extend(list(_UpperCamelCase ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = get_frameworks_table()
lowerCAmelCase_ : List[Any] = Dataset.from_pandas(_UpperCamelCase )
lowerCAmelCase_ : str = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_UpperCamelCase )
lowerCAmelCase_ : str = Dataset.from_json(_UpperCamelCase )
lowerCAmelCase_ : Dict = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(_UpperCamelCase ) )
}
lowerCAmelCase_ : Dict = update_pipeline_and_auto_class_table(_UpperCamelCase )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
lowerCAmelCase_ : Dict = sorted(table.keys() )
lowerCAmelCase_ : str = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
lowerCAmelCase_ : List[Any] = Dataset.from_pandas(_UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(_UpperCamelCase , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(_UpperCamelCase , """pipeline_tags.json""" ) )
if commit_sha is not None:
lowerCAmelCase_ : List[Any] = (
f'Update with commit {commit_sha}\n\nSee: '
f'https://github.com/huggingface/transformers/commit/{commit_sha}'
)
else:
lowerCAmelCase_ : Optional[int] = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=_UpperCamelCase , repo_type="""dataset""" , token=_UpperCamelCase , commit_message=_UpperCamelCase , )
def __UpperCamelCase ( ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : int = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
lowerCAmelCase_ : Optional[Any] = transformers_module.pipelines.SUPPORTED_TASKS
lowerCAmelCase_ : Optional[int] = []
for key in pipeline_tasks:
if key not in in_table:
lowerCAmelCase_ : List[Any] = pipeline_tasks[key]["""pt"""]
if isinstance(_UpperCamelCase , (list, tuple) ):
lowerCAmelCase_ : Optional[int] = model[0]
lowerCAmelCase_ : Optional[int] = model.__name__
if model not in in_table.values():
missing.append(_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
lowerCAmelCase_ : int = """, """.join(_UpperCamelCase )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
f'`utils/update_metadata.py`: {msg}. Please add them!' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.')
parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.')
parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.')
__UpperCAmelCase = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 368 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 0 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__UpperCAmelCase = logging.getLogger(__name__)
class __a ( a__ ):
__snake_case : int = 'token-classification'
def __init__( self : int , UpperCAmelCase : Optional[Any] ):
if type(_lowerCamelCase ) == dict:
lowerCAmelCase_ : Union[str, Any] = Namespace(**_lowerCamelCase )
lowerCAmelCase_ : Tuple = import_module("""tasks""" )
try:
lowerCAmelCase_ : List[str] = getattr(_lowerCamelCase , hparams.task_type )
lowerCAmelCase_ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '
F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' )
lowerCAmelCase_ : str = self.token_classification_task.get_labels(hparams.labels )
lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss().ignore_index
super().__init__(_lowerCamelCase , len(self.labels ) , self.mode )
def A ( self : Union[str, Any] , **UpperCAmelCase : Tuple ):
return self.model(**_lowerCamelCase )
def A ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ):
lowerCAmelCase_ : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type != "distilbert":
lowerCAmelCase_ : Union[str, Any] = (
batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None
) # XLM and RoBERTa don"t use token_type_ids
lowerCAmelCase_ : int = self(**_lowerCamelCase )
lowerCAmelCase_ : Union[str, Any] = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def A ( self : int ):
lowerCAmelCase_ : List[str] = self.hparams
for mode in ["train", "dev", "test"]:
lowerCAmelCase_ : Any = self._feature_file(_lowerCamelCase )
if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , _lowerCamelCase )
lowerCAmelCase_ : Union[str, Any] = torch.load(_lowerCamelCase )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
lowerCAmelCase_ : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , _lowerCamelCase )
lowerCAmelCase_ : List[Any] = self.token_classification_task.convert_examples_to_features(
_lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("""Saving features into cached file %s""" , _lowerCamelCase )
torch.save(_lowerCamelCase , _lowerCamelCase )
def A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : str = False ):
lowerCAmelCase_ : Optional[Any] = self._feature_file(_lowerCamelCase )
logger.info("""Loading features from cached file %s""" , _lowerCamelCase )
lowerCAmelCase_ : Tuple = torch.load(_lowerCamelCase )
lowerCAmelCase_ : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
lowerCAmelCase_ : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
lowerCAmelCase_ : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
lowerCAmelCase_ : Dict = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
lowerCAmelCase_ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , batch_size=_lowerCamelCase )
def A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Any ):
"""Compute validation""" ""
lowerCAmelCase_ : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type != "distilbert":
lowerCAmelCase_ : Optional[Any] = (
batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None
) # XLM and RoBERTa don"t use token_type_ids
lowerCAmelCase_ : Optional[int] = self(**_lowerCamelCase )
lowerCAmelCase_ : str = outputs[:2]
lowerCAmelCase_ : Optional[Any] = logits.detach().cpu().numpy()
lowerCAmelCase_ : Optional[int] = inputs['''labels'''].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def A ( self : List[Any] , UpperCAmelCase : str ):
lowerCAmelCase_ : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean()
lowerCAmelCase_ : Union[str, Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
lowerCAmelCase_ : str = np.argmax(_lowerCamelCase , axis=2 )
lowerCAmelCase_ : Tuple = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
lowerCAmelCase_ : Any = dict(enumerate(self.labels ) )
lowerCAmelCase_ : int = [[] for _ in range(out_label_ids.shape[0] )]
lowerCAmelCase_ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
lowerCAmelCase_ : List[Any] = {
'''val_loss''': val_loss_mean,
'''accuracy_score''': accuracy_score(_lowerCamelCase , _lowerCamelCase ),
'''precision''': precision_score(_lowerCamelCase , _lowerCamelCase ),
'''recall''': recall_score(_lowerCamelCase , _lowerCamelCase ),
'''f1''': fa_score(_lowerCamelCase , _lowerCamelCase ),
}
lowerCAmelCase_ : Optional[int] = dict(results.items() )
lowerCAmelCase_ : Optional[int] = results
return ret, preds_list, out_label_list
def A ( self : Dict , UpperCAmelCase : List[str] ):
# when stable
lowerCAmelCase_ : List[Any] = self._eval_end(_lowerCamelCase )
lowerCAmelCase_ : List[Any] = ret['''log''']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def A ( self : List[Any] , UpperCAmelCase : List[Any] ):
# updating to test_epoch_end instead of deprecated test_end
lowerCAmelCase_ : Union[str, Any] = self._eval_end(_lowerCamelCase )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
lowerCAmelCase_ : Any = ret['''log''']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def A ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ):
# Add NER specific options
BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase )
parser.add_argument(
"""--task_type""" , default="""NER""" , type=_lowerCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" )
parser.add_argument(
"""--max_seq_length""" , default=1_28 , type=_lowerCamelCase , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--labels""" , default="""""" , type=_lowerCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=_lowerCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__UpperCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd())
__UpperCAmelCase = parser.parse_args()
__UpperCAmelCase = NERTransformer(args)
__UpperCAmelCase = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True))
__UpperCAmelCase = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 369 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
Pipeline,
ZeroShotClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__UpperCAmelCase = {'LayoutLMv2Config', 'LayoutLMv3Config'}
@is_pipeline_test
class __a ( unittest.TestCase ):
__snake_case : int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__snake_case : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__snake_case : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__snake_case : Dict = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
def A ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : List[str] = ZeroShotClassificationPipeline(
model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , candidate_labels=["""polics""", """health"""] )
return classifier, ["Who are you voting for in 2020?", "My stomach hurts."]
def A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ):
lowerCAmelCase_ : Any = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" )
self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} )
# No kwarg
lowerCAmelCase_ : Union[str, Any] = classifier("""Who are you voting for in 2020?""" , ["""politics"""] )
self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} )
lowerCAmelCase_ : Optional[int] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] )
self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} )
lowerCAmelCase_ : Optional[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" )
self.assertEqual(
_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 )
lowerCAmelCase_ : List[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] )
self.assertEqual(
_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} )
self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 )
lowerCAmelCase_ : Tuple = classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" )
self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} )
# https://github.com/huggingface/transformers/issues/13846
lowerCAmelCase_ : str = classifier(["""I am happy"""] , ["""positive""", """negative"""] )
self.assertEqual(
_lowerCAmelCase , [
{"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]}
for i in range(1 )
] , )
lowerCAmelCase_ : Optional[int] = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] )
self.assertEqual(
_lowerCAmelCase , [
{"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]}
for i in range(2 )
] , )
with self.assertRaises(_lowerCAmelCase ):
classifier("""""" , candidate_labels="""politics""" )
with self.assertRaises(_lowerCAmelCase ):
classifier(_lowerCAmelCase , candidate_labels="""politics""" )
with self.assertRaises(_lowerCAmelCase ):
classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" )
with self.assertRaises(_lowerCAmelCase ):
classifier("""Who are you voting for in 2020?""" , candidate_labels=_lowerCAmelCase )
with self.assertRaises(_lowerCAmelCase ):
classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , )
with self.assertRaises(_lowerCAmelCase ):
classifier(
"""Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=_lowerCAmelCase , )
self.run_entailment_id(_lowerCAmelCase )
def A ( self : Tuple , UpperCAmelCase : Pipeline ):
lowerCAmelCase_ : Tuple = zero_shot_classifier.model.config
lowerCAmelCase_ : int = config.labelaid
lowerCAmelCase_ : Any = zero_shot_classifier.entailment_id
lowerCAmelCase_ : List[Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2}
self.assertEqual(zero_shot_classifier.entailment_id , -1 )
lowerCAmelCase_ : Tuple = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
lowerCAmelCase_ : Optional[int] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1}
self.assertEqual(zero_shot_classifier.entailment_id , 0 )
lowerCAmelCase_ : int = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0}
self.assertEqual(zero_shot_classifier.entailment_id , 2 )
lowerCAmelCase_ : List[Any] = original_labelaid
self.assertEqual(_lowerCAmelCase , zero_shot_classifier.entailment_id )
@require_torch
def A ( self : int ):
lowerCAmelCase_ : Dict = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , )
# There was a regression in 4.10 for this
# Adding a test so we don't make the mistake again.
# https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499
zero_shot_classifier(
"""Who are you voting for in 2020?""" * 1_00 , candidate_labels=["""politics""", """public health""", """science"""] )
@require_torch
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , )
lowerCAmelCase_ : int = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.333, 0.333, 0.333],
} , )
@require_tf
def A ( self : Optional[int] ):
lowerCAmelCase_ : Tuple = pipeline(
"""zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , )
lowerCAmelCase_ : List[str] = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""science""", """public health""", """politics"""],
"""scores""": [0.333, 0.333, 0.333],
} , )
@slow
@require_torch
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" )
lowerCAmelCase_ : Any = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.976, 0.015, 0.009],
} , )
lowerCAmelCase_ : List[Any] = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowerCAmelCase , )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.817, 0.713, 0.018, 0.018],
} , )
@slow
@require_tf
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : List[str] = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" )
lowerCAmelCase_ : Tuple = zero_shot_classifier(
"""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
"""sequence""": """Who are you voting for in 2020?""",
"""labels""": ["""politics""", """public health""", """science"""],
"""scores""": [0.976, 0.015, 0.009],
} , )
lowerCAmelCase_ : int = zero_shot_classifier(
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural networks"""
""" in an encoder-decoder configuration. The best performing models also connect the encoder and decoder"""
""" through an attention mechanism. We propose a new simple network architecture, the Transformer, based"""
""" solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two"""
""" machine translation tasks show these models to be superior in quality while being more parallelizable"""
""" and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014"""
""" English-to-German translation task, improving over the existing best results, including ensembles by"""
""" over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new"""
""" single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small"""
""" fraction of the training costs of the best models from the literature. We show that the Transformer"""
""" generalizes well to other tasks by applying it successfully to English constituency parsing both with"""
""" large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowerCAmelCase , )
self.assertEqual(
nested_simplify(_lowerCAmelCase ) , {
"""sequence""": (
"""The dominant sequence transduction models are based on complex recurrent or convolutional neural"""
""" networks in an encoder-decoder configuration. The best performing models also connect the"""
""" encoder and decoder through an attention mechanism. We propose a new simple network"""
""" architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence"""
""" and convolutions entirely. Experiments on two machine translation tasks show these models to be"""
""" superior in quality while being more parallelizable and requiring significantly less time to"""
""" train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,"""
""" improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014"""
""" English-to-French translation task, our model establishes a new single-model state-of-the-art"""
""" BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training"""
""" costs of the best models from the literature. We show that the Transformer generalizes well to"""
""" other tasks by applying it successfully to English constituency parsing both with large and"""
""" limited training data."""
),
"""labels""": ["""translation""", """machine learning""", """vision""", """statistics"""],
"""scores""": [0.817, 0.713, 0.018, 0.018],
} , )
| 370 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["XLNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["XLNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 371 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 0 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class __a ( __lowercase ,unittest.TestCase ):
__snake_case : List[str] = PegasusTokenizer
__snake_case : Any = PegasusTokenizerFast
__snake_case : int = True
__snake_case : Union[str, Any] = True
def A ( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ : Optional[int] = PegasusTokenizer(_a )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Union[str, Any] ):
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def A ( self : Optional[int] , **UpperCAmelCase : List[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a )
def A ( self : Optional[int] , UpperCAmelCase : Tuple ):
return ("This is a test", "This is a test")
def A ( self : List[Any] ):
lowerCAmelCase_ : List[str] = """</s>"""
lowerCAmelCase_ : int = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(_a ) , 11_03 )
def A ( self : Any ):
self.assertEqual(self.get_tokenizer().vocab_size , 11_03 )
def A ( self : Tuple ):
lowerCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ : Any = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ : Optional[Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
lowerCAmelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
lowerCAmelCase_ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
self.assertListEqual(_a , _a )
def A ( self : int ):
lowerCAmelCase_ : Dict = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowerCAmelCase_ : List[str] = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
lowerCAmelCase_ : int = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
lowerCAmelCase_ : Any = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0]
self.assertListEqual(_a , _a )
def A ( self : List[str] ):
lowerCAmelCase_ : Union[str, Any] = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_61_03
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_03
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 10_24
lowerCAmelCase_ : Tuple = """To ensure a smooth flow of bank resolutions."""
lowerCAmelCase_ : int = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
lowerCAmelCase_ : Optional[int] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0]
self.assertListEqual(_a , _a )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def A ( self : Dict ):
lowerCAmelCase_ : Tuple = ["""This is going to be way too long.""" * 1_50, """short example"""]
lowerCAmelCase_ : str = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase_ : Any = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = self._large_tokenizer(
text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 10_24)
assert batch.attention_mask.shape == (2, 10_24)
assert targets["input_ids"].shape == (2, 5)
assert len(_a ) == 2 # input_ids, attention_mask.
@slow
def A ( self : Optional[Any] ):
# fmt: off
lowerCAmelCase_ : Optional[Any] = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class __a ( __lowercase ,unittest.TestCase ):
__snake_case : List[str] = PegasusTokenizer
__snake_case : Union[str, Any] = PegasusTokenizerFast
__snake_case : Union[str, Any] = True
__snake_case : List[Any] = True
def A ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
lowerCAmelCase_ : Union[str, Any] = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[int] ):
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def A ( self : Optional[Any] , **UpperCAmelCase : str ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a )
def A ( self : Optional[int] , UpperCAmelCase : List[str] ):
return ("This is a test", "This is a test")
def A ( self : Optional[Any] ):
lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowerCAmelCase_ : Tuple = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
lowerCAmelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
lowerCAmelCase_ : Tuple = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0]
self.assertListEqual(_a , _a )
@require_torch
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = ["""This is going to be way too long.""" * 10_00, """short example"""]
lowerCAmelCase_ : Tuple = ["""not super long but more than 5 tokens""", """tiny"""]
lowerCAmelCase_ : Optional[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = self._large_tokenizer(
text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 40_96)
assert batch.attention_mask.shape == (2, 40_96)
assert targets["input_ids"].shape == (2, 5)
assert len(_a ) == 2 # input_ids, attention_mask.
def A ( self : Dict ):
lowerCAmelCase_ : List[str] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
lowerCAmelCase_ : List[Any] = self._large_tokenizer(_a ).input_ids
self.assertListEqual(
_a , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
| 350 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 0 |
import warnings
from ...utils import logging
from .image_processing_poolformer import PoolFormerImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( lowercase__ ):
def __init__( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ):
warnings.warn(
"""The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use PoolFormerImageProcessor instead.""" , lowercase_ , )
super().__init__(*lowercase_ , **lowercase_ )
| 351 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
"""sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""",
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
}
class __a ( __snake_case ):
__snake_case : List[str] = """poolformer"""
def __init__( self : Any , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=4.0 , UpperCAmelCase : List[str]=[2, 2, 6, 2] , UpperCAmelCase : str=[64, 1_28, 3_20, 5_12] , UpperCAmelCase : List[Any]=[7, 3, 3, 3] , UpperCAmelCase : int=[4, 2, 2, 2] , UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=True , UpperCAmelCase : Dict=1e-5 , UpperCAmelCase : List[str]=0.02 , **UpperCAmelCase : str , ):
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : str = patch_size
lowerCAmelCase_ : int = stride
lowerCAmelCase_ : Optional[int] = padding
lowerCAmelCase_ : Any = pool_size
lowerCAmelCase_ : int = hidden_sizes
lowerCAmelCase_ : Optional[Any] = mlp_ratio
lowerCAmelCase_ : Any = depths
lowerCAmelCase_ : Optional[int] = patch_sizes
lowerCAmelCase_ : Optional[Any] = strides
lowerCAmelCase_ : Optional[int] = num_encoder_blocks
lowerCAmelCase_ : List[str] = drop_path_rate
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = use_layer_scale
lowerCAmelCase_ : int = layer_scale_init_value
lowerCAmelCase_ : int = initializer_range
super().__init__(**a_ )
class __a ( __snake_case ):
__snake_case : int = version.parse("""1.11""" )
@property
def A ( self : Optional[int] ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def A ( self : Optional[Any] ):
return 2e-3
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : int ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = [1]
lowerCAmelCase_ : int = 0, 0, 0
lowerCAmelCase_ : Optional[Any] = ugly_nums[ia] * 2
lowerCAmelCase_ : Optional[int] = ugly_nums[ia] * 3
lowerCAmelCase_ : Optional[int] = ugly_nums[ia] * 5
for _ in range(1 , _A ):
lowerCAmelCase_ : Any = min(_A , _A , _A )
ugly_nums.append(_A )
if next_num == next_a:
ia += 1
lowerCAmelCase_ : List[Any] = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
lowerCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
lowerCAmelCase_ : Any = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f"""{ugly_numbers(2_00) = }""")
| 353 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 0 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
__UpperCAmelCase = 16
__UpperCAmelCase = 32
def __UpperCamelCase ( lowercase__ : Dict ) -> Dict:
'''simple docstring'''
return int(x / 2**20 )
class __a :
def __enter__( self : List[str] ):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
lowerCAmelCase_ : Union[str, Any] = torch.cuda.memory_allocated()
return self
def __exit__( self : Optional[Any] , *UpperCAmelCase : str ):
gc.collect()
torch.cuda.empty_cache()
lowerCAmelCase_ : List[Any] = torch.cuda.memory_allocated()
lowerCAmelCase_ : Dict = torch.cuda.max_memory_allocated()
lowerCAmelCase_ : Optional[int] = bamb(self.end - self.begin )
lowerCAmelCase_ : Any = bamb(self.peak - self.begin )
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def __UpperCamelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" , lowercase__ : int = 320 , lowercase__ : int = 160 , ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase__ )
lowerCAmelCase_ : Dict = load_dataset(
"""glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} )
def tokenize_function(lowercase__ : int ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase_ : int = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase_ : Any = datasets.map(
lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase_ : Dict = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(lowercase__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" )
return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" )
# Instantiate dataloaders.
lowerCAmelCase_ : List[Any] = DataLoader(
tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ )
lowerCAmelCase_ : int = DataLoader(
tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ )
return train_dataloader, eval_dataloader
def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str ) -> int:
'''simple docstring'''
lowerCAmelCase_ : int = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase_ : Any = config["""lr"""]
lowerCAmelCase_ : Dict = int(config["""num_epochs"""] )
lowerCAmelCase_ : int = int(config["""seed"""] )
lowerCAmelCase_ : Optional[Any] = int(config["""batch_size"""] )
lowerCAmelCase_ : Union[str, Any] = args.model_name_or_path
set_seed(lowercase__ )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ , args.n_train , args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ )
# Instantiate optimizer
lowerCAmelCase_ : Tuple = (
AdamW
if accelerator.state.deepspeed_plugin is None
or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowerCAmelCase_ : List[Any] = optimizer_cls(params=model.parameters() , lr=lowercase__ )
if accelerator.state.deepspeed_plugin is not None:
lowerCAmelCase_ : Any = accelerator.state.deepspeed_plugin.deepspeed_config[
"""gradient_accumulation_steps"""
]
else:
lowerCAmelCase_ : int = 1
lowerCAmelCase_ : Dict = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowerCAmelCase_ : List[Any] = get_linear_schedule_with_warmup(
optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , )
else:
lowerCAmelCase_ : Tuple = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = accelerator.prepare(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# We need to keep track of how many total steps we have iterated over
lowerCAmelCase_ : int = 0
# We also need to keep track of the stating epoch so files are named properly
lowerCAmelCase_ : List[str] = 0
# Now we train the model
lowerCAmelCase_ : int = {}
for epoch in range(lowercase__ , lowercase__ ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(lowercase__ ):
lowerCAmelCase_ : Union[str, Any] = model(**lowercase__ )
lowerCAmelCase_ : Union[str, Any] = outputs.loss
lowerCAmelCase_ : int = loss / gradient_accumulation_steps
accelerator.backward(lowercase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) )
accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) )
accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) )
accelerator.print(
"""Total Peak Memory consumed during the train (max): {}""".format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
lowerCAmelCase_ : Any = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f:
json.dump(lowercase__ , lowercase__ )
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" )
parser.add_argument(
"""--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , )
parser.add_argument(
"""--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , )
parser.add_argument(
"""--peak_memory_upper_bound""" , type=lowercase__ , default=lowercase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , )
parser.add_argument(
"""--n_train""" , type=lowercase__ , default=320 , help="""Number of training examples to use.""" , )
parser.add_argument(
"""--n_val""" , type=lowercase__ , default=160 , help="""Number of validation examples to use.""" , )
parser.add_argument(
"""--num_epochs""" , type=lowercase__ , default=1 , help="""Number of train epochs.""" , )
lowerCAmelCase_ : List[str] = parser.parse_args()
lowerCAmelCase_ : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16}
training_function(lowercase__ , lowercase__ )
if __name__ == "__main__":
main()
| 354 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class __a :
__snake_case : int
__snake_case : int
class __a :
def __init__( self : Any , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : list[list[Edge]] = [[] for _ in range(SCREAMING_SNAKE_CASE_ )]
lowerCAmelCase_ : str = size
def __getitem__( self : str , UpperCAmelCase : str ):
return iter(self._graph[vertex] )
@property
def A ( self : Union[str, Any] ):
return self._size
def A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ):
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ):
lowerCAmelCase_ : Dict = deque([start_vertex] )
lowerCAmelCase_ : list[int | None] = [None] * self.size
lowerCAmelCase_ : str = 0
while queue:
lowerCAmelCase_ : str = queue.popleft()
lowerCAmelCase_ : Optional[Any] = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCAmelCase_ : Dict = current_distance + edge.weight
lowerCAmelCase_ : Dict = distances[edge.destination_vertex]
if (
isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
and new_distance >= dest_vertex_distance
):
continue
lowerCAmelCase_ : int = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 355 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 0 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class __a ( __lowerCamelCase ,unittest.TestCase ):
__snake_case : Optional[Any] = VideoToVideoSDPipeline
__snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {'image', 'width', 'height'}
__snake_case : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {'image'}
__snake_case : Dict = PipelineTesterMixin.required_optional_params - {'latents'}
__snake_case : Optional[int] = False
# No `output_type`.
__snake_case : Union[str, Any] = frozenset(
[
"""num_inference_steps""",
"""generator""",
"""latents""",
"""return_dict""",
"""callback""",
"""callback_steps""",
] )
def A ( self : str ):
torch.manual_seed(0 )
lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , )
lowerCAmelCase_ : List[Any] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , )
torch.manual_seed(0 )
lowerCAmelCase_ : Any = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
lowerCAmelCase_ : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
lowerCAmelCase_ : Optional[int] = CLIPTextModel(UpperCamelCase_ )
lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCAmelCase_ : Tuple = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
}
return components
def A ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=0 ):
# 3 frames
lowerCAmelCase_ : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
if str(UpperCamelCase_ ).startswith("""mps""" ):
lowerCAmelCase_ : Optional[Any] = torch.manual_seed(UpperCamelCase_ )
else:
lowerCAmelCase_ : Optional[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
lowerCAmelCase_ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""video""": video,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """pt""",
}
return inputs
def A ( self : Any ):
lowerCAmelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ : Tuple = self.get_dummy_components()
lowerCAmelCase_ : Optional[int] = VideoToVideoSDPipeline(**UpperCamelCase_ )
lowerCAmelCase_ : List[str] = sd_pipe.to(UpperCamelCase_ )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
lowerCAmelCase_ : str = self.get_dummy_inputs(UpperCamelCase_ )
lowerCAmelCase_ : Union[str, Any] = """np"""
lowerCAmelCase_ : Optional[Any] = sd_pipe(**UpperCamelCase_ ).frames
lowerCAmelCase_ : Any = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
lowerCAmelCase_ : Optional[Any] = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def A ( self : str ):
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ , expected_max_diff=5e-3 )
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def A ( self : Tuple ):
pass
@unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" )
def A ( self : Tuple ):
pass
@unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" )
def A ( self : Tuple ):
pass
def A ( self : str ):
return super().test_progress_bar()
@slow
@skip_mps
class __a ( unittest.TestCase ):
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[int] = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
lowerCAmelCase_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
lowerCAmelCase_ : List[str] = torch.randn((1, 10, 3, 10_24, 5_76) , generator=UpperCamelCase_ )
lowerCAmelCase_ : str = video.to("""cuda""" )
lowerCAmelCase_ : Optional[Any] = """Spiderman is surfing"""
lowerCAmelCase_ : Optional[int] = pipe(UpperCamelCase_ , video=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=3 , output_type="""pt""" ).frames
lowerCAmelCase_ : Tuple = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 356 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 0 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __a :
@staticmethod
def A ( *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ):
pass
@is_pipeline_test
@require_vision
class __a ( unittest.TestCase ):
@require_torch
def A ( self : Dict ):
lowerCAmelCase_ : List[str] = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , )
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase_ : Tuple = image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCAmelCase ) , [
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}],
[{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}],
] , )
lowerCAmelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
] , )
@require_tf
def A ( self : int ):
lowerCAmelCase_ : Any = pipeline(
model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" )
lowerCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase_ : int = image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , )
lowerCAmelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
[
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
{"""score""": 0.333, """label""": ANY(__lowerCAmelCase )},
],
] , )
@slow
@require_torch
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : List[str] = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , )
# This is an image of 2 cats with remotes and no planes
lowerCAmelCase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase_ : int = image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
lowerCAmelCase_ : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
@slow
@require_tf
def A ( self : Dict ):
lowerCAmelCase_ : List[str] = pipeline(
task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" )
# This is an image of 2 cats with remotes and no planes
lowerCAmelCase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase_ : Dict = image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
] , )
lowerCAmelCase_ : Dict = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCAmelCase ) , [
[
{"""score""": 0.511, """label""": """remote"""},
{"""score""": 0.485, """label""": """cat"""},
{"""score""": 0.004, """label""": """plane"""},
],
]
* 5 , )
| 357 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 0 |
import importlib
import inspect
import json
import os
import re
import shutil
import sys
from pathlib import Path
from typing import Dict, Optional, Union
from urllib import request
from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info
from packaging import version
from .. import __version__
from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging
__UpperCAmelCase = (
"https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py"
)
__UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
def __UpperCamelCase ( ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = """https://pypi.org/pypi/diffusers/json"""
lowerCAmelCase_ : List[str] = json.loads(request.urlopen(_UpperCamelCase ).read() )["""releases"""].keys()
return sorted(_UpperCamelCase , key=lambda lowercase__ : version.Version(_UpperCamelCase ) )
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(_UpperCamelCase )
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
lowerCAmelCase_ : Optional[Any] = Path(_UpperCamelCase ) / """__init__.py"""
if not init_path.exists():
init_path.touch()
def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] ) -> int:
'''simple docstring'''
init_hf_modules()
lowerCAmelCase_ : Dict = Path(_UpperCamelCase ) / name
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent )
os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase )
lowerCAmelCase_ : Optional[Any] = dynamic_module_path / """__init__.py"""
if not init_path.exists():
init_path.touch()
def __UpperCamelCase ( lowercase__ : Dict ) -> List[Any]:
'''simple docstring'''
with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f:
lowerCAmelCase_ : Optional[int] = f.read()
# Imports of the form `import .xxx`
lowerCAmelCase_ : Union[str, Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , _UpperCamelCase , flags=re.MULTILINE )
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , _UpperCamelCase , flags=re.MULTILINE )
# Unique-ify
return list(set(_UpperCamelCase ) )
def __UpperCamelCase ( lowercase__ : Any ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = False
lowerCAmelCase_ : int = [module_file]
lowerCAmelCase_ : List[Any] = []
# Let's recurse through all relative imports
while not no_change:
lowerCAmelCase_ : Dict = []
for f in files_to_check:
new_imports.extend(get_relative_imports(_UpperCamelCase ) )
lowerCAmelCase_ : Optional[int] = Path(_UpperCamelCase ).parent
lowerCAmelCase_ : List[Any] = [str(module_path / m ) for m in new_imports]
lowerCAmelCase_ : Optional[int] = [f for f in new_import_files if f not in all_relative_imports]
lowerCAmelCase_ : Optional[Any] = [f'{f}.py' for f in new_import_files]
lowerCAmelCase_ : Tuple = len(_UpperCamelCase ) == 0
all_relative_imports.extend(_UpperCamelCase )
return all_relative_imports
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f:
lowerCAmelCase_ : Optional[int] = f.read()
# Imports of the form `import xxx`
lowerCAmelCase_ : Optional[Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , _UpperCamelCase , flags=re.MULTILINE )
# Imports of the form `from xxx import yyy`
imports += re.findall("""^\s*from\s+(\S+)\s+import""" , _UpperCamelCase , flags=re.MULTILINE )
# Only keep the top-level module
lowerCAmelCase_ : Optional[int] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )]
# Unique-ify and test we got them all
lowerCAmelCase_ : Union[str, Any] = list(set(_UpperCamelCase ) )
lowerCAmelCase_ : List[Any] = []
for imp in imports:
try:
importlib.import_module(_UpperCamelCase )
except ImportError:
missing_packages.append(_UpperCamelCase )
if len(_UpperCamelCase ) > 0:
raise ImportError(
"""This modeling file requires the following packages that were not found in your environment: """
f'{", ".join(_UpperCamelCase )}. Run `pip install {" ".join(_UpperCamelCase )}`' )
return get_relative_imports(_UpperCamelCase )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : int = module_path.replace(os.path.sep , """.""" )
lowerCAmelCase_ : Union[str, Any] = importlib.import_module(_UpperCamelCase )
if class_name is None:
return find_pipeline_class(_UpperCamelCase )
return getattr(_UpperCamelCase , _UpperCamelCase )
def __UpperCamelCase ( lowercase__ : Tuple ) -> Dict:
'''simple docstring'''
from ..pipelines import DiffusionPipeline
lowerCAmelCase_ : Dict = dict(inspect.getmembers(_UpperCamelCase , inspect.isclass ) )
lowerCAmelCase_ : str = None
for cls_name, cls in cls_members.items():
if (
cls_name != DiffusionPipeline.__name__
and issubclass(cls , _UpperCamelCase )
and cls.__module__.split(""".""" )[0] != "diffusers"
):
if pipeline_class is not None:
raise ValueError(
f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:'
f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in'
f' {loaded_module}.' )
lowerCAmelCase_ : Tuple = cls
return pipeline_class
def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] , lowercase__ : str , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = str(_UpperCamelCase )
lowerCAmelCase_ : List[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase )
if os.path.isfile(_UpperCamelCase ):
lowerCAmelCase_ : Any = module_file_or_url
lowerCAmelCase_ : Dict = """local"""
elif pretrained_model_name_or_path.count("""/""" ) == 0:
lowerCAmelCase_ : int = get_diffusers_versions()
# cut ".dev0"
lowerCAmelCase_ : List[str] = """v""" + """.""".join(__version__.split(""".""" )[:3] )
# retrieve github version that matches
if revision is None:
lowerCAmelCase_ : List[Any] = latest_version if latest_version[1:] in available_versions else """main"""
logger.info(f'Defaulting to latest_version: {revision}.' )
elif revision in available_versions:
lowerCAmelCase_ : List[str] = f'v{revision}'
elif revision == "main":
lowerCAmelCase_ : str = revision
else:
raise ValueError(
f'`custom_revision`: {revision} does not exist. Please make sure to choose one of'
f' {", ".join(available_versions + ["main"] )}.' )
# community pipeline on GitHub
lowerCAmelCase_ : List[Any] = COMMUNITY_PIPELINES_URL.format(revision=_UpperCamelCase , pipeline=_UpperCamelCase )
try:
lowerCAmelCase_ : Union[str, Any] = cached_download(
_UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , )
lowerCAmelCase_ : Dict = """git"""
lowerCAmelCase_ : Any = pretrained_model_name_or_path + """.py"""
except EnvironmentError:
logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' )
raise
else:
try:
# Load from URL or cache if already cached
lowerCAmelCase_ : Any = hf_hub_download(
_UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , )
lowerCAmelCase_ : Union[str, Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) )
except EnvironmentError:
logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' )
raise
# Check we have all the requirements in our environment
lowerCAmelCase_ : Dict = check_imports(_UpperCamelCase )
# Now we move the module inside our cached dynamic modules.
lowerCAmelCase_ : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(_UpperCamelCase )
lowerCAmelCase_ : Dict = Path(_UpperCamelCase ) / full_submodule
if submodule == "local" or submodule == "git":
# We always copy local files (we could hash the file to see if there was a change, and give them the name of
# that hash, to only copy when there is a modification but it seems overkill for now).
# The only reason we do the copy is to avoid putting too many folders in sys.path.
shutil.copy(_UpperCamelCase , submodule_path / module_file )
for module_needed in modules_needed:
lowerCAmelCase_ : Tuple = f'{module_needed}.py'
shutil.copy(os.path.join(_UpperCamelCase , _UpperCamelCase ) , submodule_path / module_needed )
else:
# Get the commit hash
# TODO: we will get this info in the etag soon, so retrieve it from there and not here.
if isinstance(_UpperCamelCase , _UpperCamelCase ):
lowerCAmelCase_ : List[Any] = use_auth_token
elif use_auth_token is True:
lowerCAmelCase_ : List[Any] = HfFolder.get_token()
else:
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : Any = model_info(_UpperCamelCase , revision=_UpperCamelCase , token=_UpperCamelCase ).sha
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
lowerCAmelCase_ : Tuple = submodule_path / commit_hash
lowerCAmelCase_ : Union[str, Any] = full_submodule + os.path.sep + commit_hash
create_dynamic_module(_UpperCamelCase )
if not (submodule_path / module_file).exists():
shutil.copy(_UpperCamelCase , submodule_path / module_file )
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / module_needed).exists():
get_cached_module_file(
_UpperCamelCase , f'{module_needed}.py' , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , )
return os.path.join(_UpperCamelCase , _UpperCamelCase )
def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] , lowercase__ : str , lowercase__ : Optional[str] = None , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , **lowercase__ : Optional[int] , ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = get_cached_module_file(
_UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , )
return get_class_in_module(_UpperCamelCase , final_module.replace(""".py""" , """""" ) )
| 358 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 0 |
from ...configuration_utils import PretrainedConfig
__UpperCAmelCase = {
"""google/tapas-base-finetuned-sqa""": (
"""https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wtq""": (
"""https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-wikisql-supervised""": (
"""https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json"""
),
"""google/tapas-base-finetuned-tabfact""": (
"""https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json"""
),
}
class __a ( __UpperCamelCase ):
__snake_case : List[str] = 'tapas'
def __init__( self : Optional[int] , UpperCAmelCase : Tuple=3_05_22 , UpperCAmelCase : Tuple=7_68 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]=10_24 , UpperCAmelCase : Any=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : str=1e-1_2 , UpperCAmelCase : Any=0 , UpperCAmelCase : List[str]=10.0 , UpperCAmelCase : str=0 , UpperCAmelCase : str=1.0 , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : Optional[int]=1.0 , UpperCAmelCase : Dict=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[int]="ratio" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=64 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : str=False , UpperCAmelCase : int=True , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[int] , ):
super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
lowerCAmelCase_ : List[str] = vocab_size
lowerCAmelCase_ : Optional[int] = hidden_size
lowerCAmelCase_ : Dict = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Union[str, Any] = hidden_act
lowerCAmelCase_ : int = intermediate_size
lowerCAmelCase_ : str = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Union[str, Any] = max_position_embeddings
lowerCAmelCase_ : Tuple = type_vocab_sizes
lowerCAmelCase_ : Optional[Any] = initializer_range
lowerCAmelCase_ : int = layer_norm_eps
# Fine-tuning task hyperparameters
lowerCAmelCase_ : Union[str, Any] = positive_label_weight
lowerCAmelCase_ : List[str] = num_aggregation_labels
lowerCAmelCase_ : Optional[int] = aggregation_loss_weight
lowerCAmelCase_ : List[str] = use_answer_as_supervision
lowerCAmelCase_ : Any = answer_loss_importance
lowerCAmelCase_ : List[Any] = use_normalized_answer_loss
lowerCAmelCase_ : Optional[int] = huber_loss_delta
lowerCAmelCase_ : Dict = temperature
lowerCAmelCase_ : str = aggregation_temperature
lowerCAmelCase_ : List[str] = use_gumbel_for_cells
lowerCAmelCase_ : Tuple = use_gumbel_for_aggregation
lowerCAmelCase_ : Optional[int] = average_approximation_function
lowerCAmelCase_ : Dict = cell_selection_preference
lowerCAmelCase_ : int = answer_loss_cutoff
lowerCAmelCase_ : Union[str, Any] = max_num_rows
lowerCAmelCase_ : Any = max_num_columns
lowerCAmelCase_ : int = average_logits_per_cell
lowerCAmelCase_ : List[Any] = select_one_column
lowerCAmelCase_ : Tuple = allow_empty_column_selection
lowerCAmelCase_ : List[Any] = init_cell_selection_weights_to_zero
lowerCAmelCase_ : Union[str, Any] = reset_position_index_per_cell
lowerCAmelCase_ : List[str] = disable_per_token_loss
# Aggregation hyperparameters
lowerCAmelCase_ : Any = aggregation_labels
lowerCAmelCase_ : Optional[Any] = no_aggregation_label_index
if isinstance(self.aggregation_labels , __lowerCAmelCase ):
lowerCAmelCase_ : Union[str, Any] = {int(__lowerCAmelCase ): v for k, v in aggregation_labels.items()}
| 359 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 0 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a :
def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=3 , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , UpperCAmelCase : Dict=[1, 1, 2, 1] , UpperCAmelCase : Any=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple="relu" , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : List[str]=None , ):
lowerCAmelCase_ : Optional[Any] = parent
lowerCAmelCase_ : Any = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : int = num_channels
lowerCAmelCase_ : str = embeddings_size
lowerCAmelCase_ : Optional[int] = hidden_sizes
lowerCAmelCase_ : List[Any] = depths
lowerCAmelCase_ : Union[str, Any] = is_training
lowerCAmelCase_ : Tuple = use_labels
lowerCAmelCase_ : Any = hidden_act
lowerCAmelCase_ : str = num_labels
lowerCAmelCase_ : Dict = scope
lowerCAmelCase_ : Optional[int] = len(_snake_case )
def A ( self : Any ):
lowerCAmelCase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : List[Any] = None
if self.use_labels:
lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase_ : str = self.get_config()
return config, pixel_values, labels
def A ( self : str ):
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def A ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ):
lowerCAmelCase_ : Optional[Any] = TFResNetModel(config=_snake_case )
lowerCAmelCase_ : Optional[int] = model(_snake_case )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def A ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : List[str] = self.num_labels
lowerCAmelCase_ : Optional[int] = TFResNetForImageClassification(_snake_case )
lowerCAmelCase_ : Optional[int] = model(_snake_case , labels=_snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A ( self : str ):
lowerCAmelCase_ : str = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = config_and_inputs
lowerCAmelCase_ : str = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
__snake_case : Union[str, Any] = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
__snake_case : Union[str, Any] = False
__snake_case : List[Any] = False
__snake_case : Any = False
__snake_case : str = False
__snake_case : Dict = False
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Optional[Any] = TFResNetModelTester(self )
lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case )
def A ( self : int ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : Dict ):
return
@unittest.skip(reason="""ResNet does not use inputs_embeds""" )
def A ( self : Optional[Any] ):
pass
@unittest.skip(reason="""ResNet does not support input and output embeddings""" )
def A ( self : str ):
pass
def A ( self : Union[str, Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Tuple = model_class(_snake_case )
lowerCAmelCase_ : int = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : Dict = [*signature.parameters.keys()]
lowerCAmelCase_ : List[Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _snake_case )
def A ( self : List[Any] ):
lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_snake_case )
def A ( self : Optional[int] ):
def check_hidden_states_output(UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ):
lowerCAmelCase_ : str = model_class(_snake_case )
lowerCAmelCase_ : List[Any] = model(**self._prepare_for_class(_snake_case , _snake_case ) )
lowerCAmelCase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCAmelCase_ : Any = self.model_tester.num_stages
self.assertEqual(len(_snake_case ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : List[str] = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
lowerCAmelCase_ : Tuple = layer_type
lowerCAmelCase_ : Union[str, Any] = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ : int = True
check_hidden_states_output(_snake_case , _snake_case , _snake_case )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_snake_case )
@slow
def A ( self : str ):
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : List[str] = TFResNetModel.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
def __UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : Dict ):
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
lowerCAmelCase_ : List[Any] = self.default_image_processor
lowerCAmelCase_ : Tuple = prepare_img()
lowerCAmelCase_ : List[Any] = image_processor(images=_snake_case , return_tensors="""tf""" )
# forward pass
lowerCAmelCase_ : Dict = model(**_snake_case )
# verify the logits
lowerCAmelCase_ : Union[str, Any] = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _snake_case )
lowerCAmelCase_ : int = tf.constant([-11.1069, -9.7877, -8.3777] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1e-4 ) )
| 360 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {
'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'],
'feature_extraction_whisper': ['WhisperFeatureExtractor'],
'processing_whisper': ['WhisperProcessor'],
'tokenization_whisper': ['WhisperTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['WhisperTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'WhisperForConditionalGeneration',
'WhisperModel',
'WhisperPreTrainedModel',
'WhisperForAudioClassification',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFWhisperForConditionalGeneration',
'TFWhisperModel',
'TFWhisperPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'FlaxWhisperForConditionalGeneration',
'FlaxWhisperModel',
'FlaxWhisperPreTrainedModel',
'FlaxWhisperForAudioClassification',
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 361 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Tuple ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = (boundary[1] - boundary[0]) / steps
lowerCAmelCase_ : int = boundary[0]
lowerCAmelCase_ : str = boundary[1]
lowerCAmelCase_ : List[Any] = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCAmelCase_ : Union[str, Any] = 0.0
y += (h / 2.0) * f(UpperCamelCase__ )
for i in x_i:
# print(i)
y += h * f(UpperCamelCase__ )
y += (h / 2.0) * f(UpperCamelCase__ )
return y
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = a + h
while x < (b - h):
yield x
lowerCAmelCase_ : Union[str, Any] = x + h
def __UpperCamelCase ( lowercase__ : int ) -> Tuple: # enter your function here
'''simple docstring'''
lowerCAmelCase_ : List[str] = (x - 0) * (x - 0)
return y
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Dict = 0.0 # Lower bound of integration
lowerCAmelCase_ : Optional[Any] = 1.0 # Upper bound of integration
lowerCAmelCase_ : Tuple = 10.0 # define number of steps or resolution
lowerCAmelCase_ : int = [a, b] # define boundary of integration
lowerCAmelCase_ : Any = method_a(UpperCamelCase__ , UpperCamelCase__ )
print(f'y = {y}' )
if __name__ == "__main__":
main()
| 362 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 0 |
"""simple docstring"""
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def __UpperCamelCase ( lowercase__ : str , lowercase__ : float | Decimal , lowercase__ : float = 10**-10 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = a
while True:
lowerCAmelCase_ : Tuple = Decimal(_a ) - (
Decimal(eval(_a ) ) / Decimal(eval(str(diff(_a ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(_a ) ) < precision: # noqa: S307
return float(_a )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""")
# Find root of polynomial
print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""")
# Find Square Root of 5
print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""")
# Exponential Roots
print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
| 363 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 0 |
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
# TODO Update this
__UpperCAmelCase = {
"facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json",
# See all ESM models at https://huggingface.co/models?filter=esm
}
class __a ( snake_case__ ):
__snake_case : List[str] = """esm"""
def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[Any]=30_72 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Optional[Any]=10_26 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : str=1e-1_2 , UpperCAmelCase : Optional[Any]="absolute" , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : Dict , ):
super().__init__(pad_token_id=UpperCAmelCase_ , mask_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCAmelCase_ : Optional[Any] = vocab_size
lowerCAmelCase_ : Union[str, Any] = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Optional[Any] = num_attention_heads
lowerCAmelCase_ : Dict = intermediate_size
lowerCAmelCase_ : List[str] = hidden_dropout_prob
lowerCAmelCase_ : Tuple = attention_probs_dropout_prob
lowerCAmelCase_ : List[str] = max_position_embeddings
lowerCAmelCase_ : int = initializer_range
lowerCAmelCase_ : Optional[Any] = layer_norm_eps
lowerCAmelCase_ : Optional[Any] = position_embedding_type
lowerCAmelCase_ : Dict = use_cache
lowerCAmelCase_ : Union[str, Any] = emb_layer_norm_before
lowerCAmelCase_ : str = token_dropout
lowerCAmelCase_ : str = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("""No esmfold_config supplied for folding model, using default values.""" )
lowerCAmelCase_ : Optional[Any] = EsmFoldConfig()
elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
lowerCAmelCase_ : Optional[int] = EsmFoldConfig(**UpperCAmelCase_ )
lowerCAmelCase_ : Dict = esmfold_config
if vocab_list is None:
logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" )
lowerCAmelCase_ : Dict = get_default_vocab_list()
else:
lowerCAmelCase_ : str = vocab_list
else:
lowerCAmelCase_ : Any = None
lowerCAmelCase_ : int = None
if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCAmelCase_ ):
raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" )
def A ( self : Dict ):
lowerCAmelCase_ : Optional[int] = super().to_dict()
if isinstance(self.esmfold_config , UpperCAmelCase_ ):
lowerCAmelCase_ : List[Any] = self.esmfold_config.to_dict()
return output
@dataclass
class __a :
__snake_case : List[Any] = None
__snake_case : Union[str, Any] = True
__snake_case : Dict = False
__snake_case : Dict = False
__snake_case : Union[str, Any] = False
__snake_case : List[Any] = 0
__snake_case : Tuple = True
__snake_case : Optional[int] = False
__snake_case : Dict = 128
__snake_case : Union[str, Any] = None
def A ( self : int ):
if self.trunk is None:
lowerCAmelCase_ : Optional[Any] = TrunkConfig()
elif isinstance(self.trunk , UpperCAmelCase_ ):
lowerCAmelCase_ : str = TrunkConfig(**self.trunk )
def A ( self : Tuple ):
lowerCAmelCase_ : Tuple = asdict(self )
lowerCAmelCase_ : Tuple = self.trunk.to_dict()
return output
@dataclass
class __a :
__snake_case : Union[str, Any] = 48
__snake_case : Dict = 1024
__snake_case : int = 128
__snake_case : Union[str, Any] = 32
__snake_case : List[str] = 32
__snake_case : Union[str, Any] = 32
__snake_case : str = 0
__snake_case : str = 0
__snake_case : Optional[Any] = False
__snake_case : Optional[int] = 4
__snake_case : str = 128
__snake_case : Union[str, Any] = None
def A ( self : Union[str, Any] ):
if self.structure_module is None:
lowerCAmelCase_ : int = StructureModuleConfig()
elif isinstance(self.structure_module , UpperCAmelCase_ ):
lowerCAmelCase_ : Dict = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"""`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"""
F' {self.sequence_state_dim} and {self.sequence_state_dim}.' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"""`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"""
F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' )
lowerCAmelCase_ : Optional[int] = self.sequence_state_dim // self.sequence_head_width
lowerCAmelCase_ : str = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"""`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"""
F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"""`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"""
F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' )
if self.dropout >= 0.4:
raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' )
def A ( self : List[Any] ):
lowerCAmelCase_ : List[str] = asdict(self )
lowerCAmelCase_ : Optional[Any] = self.structure_module.to_dict()
return output
@dataclass
class __a :
__snake_case : Optional[int] = 384
__snake_case : Dict = 128
__snake_case : Any = 16
__snake_case : Dict = 128
__snake_case : List[Any] = 12
__snake_case : Optional[Any] = 4
__snake_case : int = 8
__snake_case : Tuple = 0.1
__snake_case : Optional[int] = 8
__snake_case : int = 1
__snake_case : Dict = 2
__snake_case : str = 7
__snake_case : Tuple = 10
__snake_case : str = 1e-8
__snake_case : str = 1e5
def A ( self : Optional[Any] ):
return asdict(self )
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 364 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 0 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=lowerCamelCase_ )
class __a ( lowerCamelCase_ ):
__snake_case : str = field(default="""audio-classification""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
__snake_case : ClassVar[Features] = Features({"""audio""": Audio()} )
__snake_case : ClassVar[Features] = Features({"""labels""": ClassLabel} )
__snake_case : str = "audio"
__snake_case : str = "labels"
def A ( self : Optional[Any] , UpperCAmelCase : List[str] ):
if self.label_column not in features:
raise ValueError(F'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , lowerCAmelCase__ ):
raise ValueError(F'Column {self.label_column} is not a ClassLabel.' )
lowerCAmelCase_ : List[str] = copy.deepcopy(self )
lowerCAmelCase_ : str = self.label_schema.copy()
lowerCAmelCase_ : Any = features[self.label_column]
lowerCAmelCase_ : List[str] = label_schema
return task_template
@property
def A ( self : Dict ):
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 365 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
import inspect
import os
import re
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_config_docstrings.py
__UpperCAmelCase = 'src/transformers'
# This is to make sure the transformers module imported is the one in the repo.
__UpperCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS)
__UpperCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING
__UpperCAmelCase = {
# used to compute the property `self.chunk_length`
'EncodecConfig': ['overlap'],
# used as `self.bert_model = BertModel(config, ...)`
'DPRConfig': True,
# not used in modeling files, but it's an important information
'FSMTConfig': ['langs'],
# used internally in the configuration class file
'GPTNeoConfig': ['attention_types'],
# used internally in the configuration class file
'EsmConfig': ['is_folding_model'],
# used during training (despite we don't have training script for these models yet)
'Mask2FormerConfig': ['ignore_value'],
# `ignore_value` used during training (despite we don't have training script for these models yet)
# `norm` used in conversion script (despite not using in the modeling file)
'OneFormerConfig': ['ignore_value', 'norm'],
# used during preprocessing and collation, see `collating_graphormer.py`
'GraphormerConfig': ['spatial_pos_max'],
# used internally in the configuration class file
'T5Config': ['feed_forward_proj'],
# used internally in the configuration class file
# `tokenizer_class` get default value `T5Tokenizer` intentionally
'MT5Config': ['feed_forward_proj', 'tokenizer_class'],
'UMT5Config': ['feed_forward_proj', 'tokenizer_class'],
# used internally in the configuration class file
'LongT5Config': ['feed_forward_proj'],
# used internally in the configuration class file
'SwitchTransformersConfig': ['feed_forward_proj'],
# having default values other than `1e-5` - we can't fix them without breaking
'BioGptConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'GLPNConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'SegformerConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'CvtConfig': ['layer_norm_eps'],
# having default values other than `1e-5` - we can't fix them without breaking
'PerceiverConfig': ['layer_norm_eps'],
# used internally to calculate the feature size
'InformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate the feature size
'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate the feature size
'AutoformerConfig': ['num_static_real_features', 'num_time_features'],
# used internally to calculate `mlp_dim`
'SamVisionConfig': ['mlp_ratio'],
# For (head) training, but so far not implemented
'ClapAudioConfig': ['num_classes'],
# Not used, but providing useful information to users
'SpeechT5HifiGanConfig': ['sampling_rate'],
}
# TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure
SPECIAL_CASES_TO_ALLOW.update(
{
'CLIPSegConfig': True,
'DeformableDetrConfig': True,
'DetaConfig': True,
'DinatConfig': True,
'DonutSwinConfig': True,
'EfficientFormerConfig': True,
'FSMTConfig': True,
'JukeboxConfig': True,
'LayoutLMv2Config': True,
'MaskFormerSwinConfig': True,
'MT5Config': True,
'NatConfig': True,
'OneFormerConfig': True,
'PerceiverConfig': True,
'RagConfig': True,
'SpeechT5Config': True,
'SwinConfig': True,
'Swin2SRConfig': True,
'Swinv2Config': True,
'SwitchTransformersConfig': True,
'TableTransformerConfig': True,
'TapasConfig': True,
'TransfoXLConfig': True,
'UniSpeechConfig': True,
'UniSpeechSatConfig': True,
'WavLMConfig': True,
'WhisperConfig': True,
# TODO: @Arthur (for `alignment_head` and `alignment_layer`)
'JukeboxPriorConfig': True,
# TODO: @Younes (for `is_decoder`)
'Pix2StructTextConfig': True,
}
)
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Dict ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Dict = False
for attribute in attributes:
for modeling_source in source_strings:
# check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)`
if (
f'config.{attribute}' in modeling_source
or f'getattr(config, \"{attribute}\"' in modeling_source
or f'getattr(self.config, \"{attribute}\"' in modeling_source
):
lowerCAmelCase_ : int = True
# Deal with multi-line cases
elif (
re.search(
Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"' , UpperCamelCase__ , )
is not None
):
lowerCAmelCase_ : Optional[Any] = True
# `SequenceSummary` is called with `SequenceSummary(config)`
elif attribute in [
"summary_type",
"summary_use_proj",
"summary_activation",
"summary_last_dropout",
"summary_proj_to_labels",
"summary_first_dropout",
]:
if "SequenceSummary" in modeling_source:
lowerCAmelCase_ : Union[str, Any] = True
if attribute_used:
break
if attribute_used:
break
# common and important attributes, even if they do not always appear in the modeling files
lowerCAmelCase_ : Optional[int] = [
"""bos_index""",
"""eos_index""",
"""pad_index""",
"""unk_index""",
"""mask_index""",
"""image_size""",
"""use_cache""",
"""out_features""",
"""out_indices""",
]
lowerCAmelCase_ : Optional[Any] = ["""encoder_no_repeat_ngram_size"""]
# Special cases to be allowed
lowerCAmelCase_ : Optional[int] = True
if not attribute_used:
lowerCAmelCase_ : Union[str, Any] = False
for attribute in attributes:
# Allow if the default value in the configuration class is different from the one in `PretrainedConfig`
if attribute in ["is_encoder_decoder"] and default_value is True:
lowerCAmelCase_ : Tuple = True
elif attribute in ["tie_word_embeddings"] and default_value is False:
lowerCAmelCase_ : List[Any] = True
# Allow cases without checking the default value in the configuration class
elif attribute in attributes_to_allow + attributes_used_in_generation:
lowerCAmelCase_ : Dict = True
elif attribute.endswith("""_token_id""" ):
lowerCAmelCase_ : Optional[Any] = True
# configuration class specific cases
if not case_allowed:
lowerCAmelCase_ : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] )
lowerCAmelCase_ : int = allowed_cases is True or attribute in allowed_cases
return attribute_used or case_allowed
def __UpperCamelCase ( lowercase__ : Any ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : int = dict(inspect.signature(config_class.__init__ ).parameters )
lowerCAmelCase_ : List[Any] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]]
lowerCAmelCase_ : Dict = [signature[param].default for param in parameter_names]
# If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long
# as one variant is used, the test should pass
lowerCAmelCase_ : int = {}
if len(config_class.attribute_map ) > 0:
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in config_class.attribute_map.items()}
# Get the path to modeling source files
lowerCAmelCase_ : List[str] = inspect.getsourcefile(UpperCamelCase__ )
lowerCAmelCase_ : List[Any] = os.path.dirname(UpperCamelCase__ )
# Let's check against all frameworks: as long as one framework uses an attribute, we are good.
lowerCAmelCase_ : Any = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for fn in os.listdir(UpperCamelCase__ ) if fn.startswith("""modeling_""" )]
# Get the source code strings
lowerCAmelCase_ : Optional[int] = []
for path in modeling_paths:
if os.path.isfile(UpperCamelCase__ ):
with open(UpperCamelCase__ ) as fp:
modeling_sources.append(fp.read() )
lowerCAmelCase_ : Any = []
for config_param, default_value in zip(UpperCamelCase__ , UpperCamelCase__ ):
# `attributes` here is all the variant names for `config_param`
lowerCAmelCase_ : Any = [config_param]
# some configuration classes have non-empty `attribute_map`, and both names could be used in the
# corresponding modeling files. As long as one of them appears, it is fine.
if config_param in reversed_attribute_map:
attributes.append(reversed_attribute_map[config_param] )
if not check_attribute_being_used(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
unused_attributes.append(attributes[0] )
return sorted(UpperCamelCase__ )
def __UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = {}
for _config_class in list(CONFIG_MAPPING.values() ):
# Skip deprecated models
if "models.deprecated" in _config_class.__module__:
continue
# Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.)
lowerCAmelCase_ : str = [
cls
for name, cls in inspect.getmembers(
inspect.getmodule(_config_class ) , lambda lowercase__ : inspect.isclass(UpperCamelCase__ )
and issubclass(UpperCamelCase__ , UpperCamelCase__ )
and inspect.getmodule(UpperCamelCase__ ) == inspect.getmodule(_config_class ) , )
]
for config_class in config_classes_in_module:
lowerCAmelCase_ : int = check_config_attributes_being_used(UpperCamelCase__ )
if len(UpperCamelCase__ ) > 0:
lowerCAmelCase_ : Optional[Any] = unused_attributes
if len(UpperCamelCase__ ) > 0:
lowerCAmelCase_ : Optional[Any] = """The following configuration classes contain unused attributes in the corresponding modeling files:\n"""
for name, attributes in configs_with_unused_attributes.items():
error += f'{name}: {attributes}\n'
raise ValueError(UpperCamelCase__ )
if __name__ == "__main__":
check_config_attributes()
| 366 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Union[str, Any] = int(__lowerCamelCase )
if decimal in (0, 1): # Exit cases for the recursion
return str(__lowerCamelCase )
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = divmod(__lowerCamelCase , 2 )
return binary_recursive(__lowerCamelCase ) + str(__lowerCamelCase )
def __UpperCamelCase ( lowercase__ : str ) -> str:
'''simple docstring'''
lowerCAmelCase_ : Tuple = str(__lowerCamelCase ).strip()
if not number:
raise ValueError("""No input value was provided""" )
lowerCAmelCase_ : Dict = """-""" if number.startswith("""-""" ) else """"""
lowerCAmelCase_ : Optional[int] = number.lstrip("""-""" )
if not number.isnumeric():
raise ValueError("""Input value is not an integer""" )
return f'{negative}0b{binary_recursive(int(__lowerCamelCase ) )}'
if __name__ == "__main__":
from doctest import testmod
testmod()
| 367 |
from datetime import datetime as dt
import os
from github import Github
__UpperCAmelCase = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] )
lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" )
lowerCAmelCase_ : Any = repo.get_issues(state="""open""" )
for issue in open_issues:
lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ )
lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="""closed""" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"""This issue has been automatically marked as stale because it has not had """
"""recent activity. If you think this still needs to be addressed """
"""please comment on this thread.\n\nPlease note that issues that do not follow the """
"""[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """
"""are likely to be ignored.""" )
if __name__ == "__main__":
main()
| 28 | 0 |
import numpy as np
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
__snake_case : List[str] = CLIPConfig
__snake_case : Dict = ["""CLIPEncoderLayer"""]
def __init__( self : List[Any] , UpperCAmelCase : List[str] ):
super().__init__(_a )
lowerCAmelCase_ : List[str] = CLIPVisionModelWithProjection(config.vision_config )
lowerCAmelCase_ : Dict = nn.Linear(config.vision_config.projection_dim , 1 )
lowerCAmelCase_ : Any = nn.Linear(config.vision_config.projection_dim , 1 )
@torch.no_grad()
def A ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=0.5 , UpperCAmelCase : Union[str, Any]=0.5 ):
lowerCAmelCase_ : Any = self.vision_model(_a )[0]
lowerCAmelCase_ : int = self.p_head(_a )
lowerCAmelCase_ : List[Any] = nsfw_detected.flatten()
lowerCAmelCase_ : List[str] = nsfw_detected > p_threshold
lowerCAmelCase_ : Dict = nsfw_detected.tolist()
if any(_a ):
logger.warning(
"""Potential NSFW content was detected in one or more images. A black image will be returned instead."""
""" Try again with a different prompt and/or seed.""" )
for idx, nsfw_detected_ in enumerate(_a ):
if nsfw_detected_:
lowerCAmelCase_ : Tuple = np.zeros(images[idx].shape )
lowerCAmelCase_ : List[str] = self.w_head(_a )
lowerCAmelCase_ : int = watermark_detected.flatten()
lowerCAmelCase_ : int = watermark_detected > w_threshold
lowerCAmelCase_ : List[Any] = watermark_detected.tolist()
if any(_a ):
logger.warning(
"""Potential watermarked content was detected in one or more images. A black image will be returned instead."""
""" Try again with a different prompt and/or seed.""" )
for idx, watermark_detected_ in enumerate(_a ):
if watermark_detected_:
lowerCAmelCase_ : Dict = np.zeros(images[idx].shape )
return images, nsfw_detected, watermark_detected
| 368 |
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class __a ( unittest.TestCase ):
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
lowerCAmelCase_ : Optional[Any] = Vector()
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" )
def A ( self : Any ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] )
self.assertEqual(len(UpperCAmelCase ) , 4 )
def A ( self : Dict ):
lowerCAmelCase_ : Dict = Vector([1, 2] )
lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] )
lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Dict = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Dict = Vector([1, 2, 3] )
lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product
lowerCAmelCase_ : str = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" )
self.assertEqual((a * b) , 0 )
def A ( self : List[str] ):
self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 )
def A ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] )
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" )
def A ( self : Optional[int] ):
lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] )
lowerCAmelCase_ : int = x.copy()
self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" )
def A ( self : Any ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Tuple ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def A ( self : Optional[int] ):
lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
lowerCAmelCase_ : Any = Vector([1, 2, 3] )
self.assertEqual("""(14,32,50)""" , str(a * x ) )
self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) )
def A ( self : Tuple ):
lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) )
def A ( self : Optional[int] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def A ( self : Dict ):
lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) )
def A ( self : Optional[int] ):
self.assertEqual(
"""|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 28 | 0 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(_a ) ,"""Tatoeba directory does not exist.""" )
class __a ( unittest.TestCase ):
@cached_property
def A ( self : List[Any] ):
lowerCAmelCase_ : List[str] = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_a )
@slow
def A ( self : Optional[Any] ):
self.resolver.convert_models(["""heb-eng"""] )
@slow
def A ( self : Any ):
lowerCAmelCase_ : Tuple = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=_a )
assert mmeta["long_pair"] == "heb-eng"
| 369 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Union[str, Any] = """pixel_values"""
__snake_case : Optional[Any] = False
__snake_case : Dict = TimmBackboneConfig
def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ):
requires_backends(self , """timm""" )
super().__init__(UpperCAmelCase )
lowerCAmelCase_ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" )
lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase )
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" )
# We just take the final layer by default. This matches the default for the transformers models.
lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,)
lowerCAmelCase_ : Optional[int] = timm.create_model(
config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers
lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(UpperCAmelCase )
@classmethod
def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ):
requires_backends(cls , ["""vision""", """timm"""] )
from ...models.timm_backbone import TimmBackboneConfig
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase )
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""" )
lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels )
lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only )
lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone )
lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices )
lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig(
backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , )
return super()._from_config(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
pass
def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ):
lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict
lowerCAmelCase_ : Dict = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""" )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowerCAmelCase_ : Optional[Any] = self._all_layers
lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = self._return_layers
lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices )
else:
lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = None
lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase )
lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
lowerCAmelCase_ : Optional[Any] = (feature_maps,)
if output_hidden_states:
lowerCAmelCase_ : Tuple = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
| 28 | 0 |
def __UpperCamelCase ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
__UpperCAmelCase = generate_large_matrix()
__UpperCAmelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> None:
'''simple docstring'''
assert all(row == sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ) for row in grid )
assert all(list(_lowerCAmelCase ) == sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ) for col in zip(*_lowerCAmelCase ) )
def __UpperCamelCase ( lowercase__ : Any ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 0
lowerCAmelCase_ : str = len(_lowerCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
lowerCAmelCase_ : List[Any] = (left + right) // 2
lowerCAmelCase_ : Tuple = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
lowerCAmelCase_ : Tuple = mid + 1
else:
lowerCAmelCase_ : Tuple = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(_lowerCAmelCase )
def __UpperCamelCase ( lowercase__ : Any ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = 0
lowerCAmelCase_ : Optional[int] = len(grid[0] )
for i in range(len(_lowerCAmelCase ) ):
lowerCAmelCase_ : Any = find_negative_index(grid[i][:bound] )
total += bound
return (len(_lowerCAmelCase ) * len(grid[0] )) - total
def __UpperCamelCase ( lowercase__ : Dict ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def __UpperCamelCase ( lowercase__ : Dict ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = 0
for row in grid:
for i, number in enumerate(_lowerCAmelCase ):
if number < 0:
total += len(_lowerCAmelCase ) - i
break
return total
def __UpperCamelCase ( ) -> None:
'''simple docstring'''
from timeit import timeit
print("""Running benchmarks""" )
lowerCAmelCase_ : int = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
lowerCAmelCase_ : Tuple = timeit(f'{func}(grid=grid)' , setup=_lowerCAmelCase , number=500 )
print(f'{func}() took {time:0.4f} seconds' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 370 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class __a ( __UpperCamelCase ):
__snake_case : Optional[Any] = """mra"""
def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = vocab_size
lowerCAmelCase_ : Optional[int] = max_position_embeddings
lowerCAmelCase_ : Any = hidden_size
lowerCAmelCase_ : List[Any] = num_hidden_layers
lowerCAmelCase_ : Tuple = num_attention_heads
lowerCAmelCase_ : List[Any] = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Any = attention_probs_dropout_prob
lowerCAmelCase_ : str = initializer_range
lowerCAmelCase_ : str = type_vocab_size
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = position_embedding_type
lowerCAmelCase_ : Any = block_per_row
lowerCAmelCase_ : int = approx_mode
lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks
lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
| 28 | 0 |
from __future__ import annotations
class __a :
def __init__( self : List[str] , UpperCAmelCase : Any=None ):
lowerCAmelCase_ : Dict = data
lowerCAmelCase_ : str = None
def __repr__( self : int ):
lowerCAmelCase_ : List[Any] = []
lowerCAmelCase_ : int = self
while temp:
string_rep.append(F'{temp.data}' )
lowerCAmelCase_ : Optional[Any] = temp.next
return "->".join(__lowercase )
def __UpperCamelCase ( lowercase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
if not elements_list:
raise Exception("""The Elements List is empty""" )
lowerCAmelCase_ : Dict = Node(elements_list[0] )
for i in range(1 , len(__lowerCAmelCase ) ):
lowerCAmelCase_ : str = Node(elements_list[i] )
lowerCAmelCase_ : Tuple = current.next
return head
def __UpperCamelCase ( lowercase__ : int ) -> None:
'''simple docstring'''
if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ):
print_reverse(head_node.next )
print(head_node.data )
def __UpperCamelCase ( ) -> int:
'''simple docstring'''
from doctest import testmod
testmod()
lowerCAmelCase_ : Optional[int] = make_linked_list([14, 52, 14, 12, 43] )
print("""Linked List:""" )
print(__lowerCAmelCase )
print("""Elements in Reverse:""" )
print_reverse(__lowerCAmelCase )
if __name__ == "__main__":
main()
| 371 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def __UpperCamelCase ( lowercase__ : int ) -> str:
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise TypeError("""Undefined for non-integers""" )
elif precision < 1:
raise ValueError("""Undefined for non-natural numbers""" )
lowerCAmelCase_ : Any = precision
lowerCAmelCase_ : Any = ceil(precision / 14 )
lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt()
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Optional[int] = 13591409
lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ )
for k in range(1 , lowercase__ ):
lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
__UpperCAmelCase = 50
print(f"""The first {n} digits of pi is: {pi(n)}""")
| 28 | 0 |
from typing import List, Optional, Union
import torch
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
__UpperCAmelCase = """
Examples:
```py
>>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")
>>> pipe_prior.to(\"cuda\")
>>> prompt = \"red cat, 4k photo\"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> zero_image_emb = out.negative_image_embeds
>>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")
>>> pipe.to(\"cuda\")
>>> image = pipe(
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=50,
... ).images
>>> image[0].save(\"cat.png\")
```
"""
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : List[Any]=8 ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowerCAmelCase_ : Optional[Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
class __a ( __UpperCamelCase ):
def __init__( self : List[str] , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : VQModel , ):
super().__init__()
self.register_modules(
unet=UpperCAmelCase , scheduler=UpperCAmelCase , movq=UpperCAmelCase , )
lowerCAmelCase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ):
if latents is None:
lowerCAmelCase_ : Union[str, Any] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase )
else:
if latents.shape != shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' )
lowerCAmelCase_ : Any = latents.to(UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = latents * scheduler.init_noise_sigma
return latents
def A ( self : List[str] , UpperCAmelCase : int=0 ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
lowerCAmelCase_ : Optional[int] = torch.device(F'cuda:{gpu_id}' )
lowerCAmelCase_ : Any = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(UpperCAmelCase , UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : Optional[Any]=0 ):
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
lowerCAmelCase_ : str = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowerCAmelCase_ : Dict = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowerCAmelCase_ : Tuple = cpu_offload_with_hook(UpperCAmelCase , UpperCAmelCase , prev_module_hook=UpperCAmelCase )
# We'll offload the last model manually.
lowerCAmelCase_ : Optional[Any] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A ( self : str ):
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCAmelCase , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(UpperCAmelCase )
def __call__( self : str , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 1_00 , UpperCAmelCase : float = 4.0 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Union[str, Any] = self._execution_device
lowerCAmelCase_ : Union[str, Any] = guidance_scale > 1.0
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : List[Any] = torch.cat(UpperCAmelCase , dim=0 )
lowerCAmelCase_ : Dict = image_embeds.shape[0] * num_images_per_prompt
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : Any = torch.cat(UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
lowerCAmelCase_ : List[Any] = image_embeds.repeat_interleave(UpperCAmelCase , dim=0 )
lowerCAmelCase_ : Optional[int] = negative_image_embeds.repeat_interleave(UpperCAmelCase , dim=0 )
lowerCAmelCase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase )
self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase )
lowerCAmelCase_ : int = self.scheduler.timesteps
lowerCAmelCase_ : str = self.unet.config.in_channels
lowerCAmelCase_ : Dict = downscale_height_and_width(UpperCAmelCase , UpperCAmelCase , self.movq_scale_factor )
# create initial latent
lowerCAmelCase_ : List[Any] = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , )
for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
lowerCAmelCase_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowerCAmelCase_ : List[str] = {'image_embeds': image_embeds}
lowerCAmelCase_ : Union[str, Any] = self.unet(
sample=UpperCAmelCase , timestep=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , added_cond_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0]
if do_classifier_free_guidance:
lowerCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 )
lowerCAmelCase_ : int = noise_pred.chunk(2 )
lowerCAmelCase_ : int = variance_pred.chunk(2 )
lowerCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowerCAmelCase_ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowerCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowerCAmelCase_ : Optional[Any] = self.scheduler.step(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase , )[0]
# post-processing
lowerCAmelCase_ : List[str] = self.movq.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
lowerCAmelCase_ : Dict = image * 0.5 + 0.5
lowerCAmelCase_ : List[Any] = image.clamp(0 , 1 )
lowerCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCAmelCase_ : Any = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase )
| 350 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __a ( __UpperCamelCase ):
__snake_case : Union[str, Any] = """gptj"""
__snake_case : int = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ):
lowerCAmelCase_ : Tuple = vocab_size
lowerCAmelCase_ : Union[str, Any] = n_positions
lowerCAmelCase_ : Union[str, Any] = n_embd
lowerCAmelCase_ : List[Any] = n_layer
lowerCAmelCase_ : List[Any] = n_head
lowerCAmelCase_ : Tuple = n_inner
lowerCAmelCase_ : Optional[Any] = rotary_dim
lowerCAmelCase_ : str = activation_function
lowerCAmelCase_ : str = resid_pdrop
lowerCAmelCase_ : List[Any] = embd_pdrop
lowerCAmelCase_ : Dict = attn_pdrop
lowerCAmelCase_ : Any = layer_norm_epsilon
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[int] = use_cache
lowerCAmelCase_ : Optional[int] = bos_token_id
lowerCAmelCase_ : Any = eos_token_id
super().__init__(
bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class __a ( __UpperCamelCase ):
def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ):
super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase )
if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ):
# TODO: how to do that better?
lowerCAmelCase_ : List[Any] = 0
@property
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" )
lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""}
else:
lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def A ( self : Union[str, Any] ):
return self._config.n_layer
@property
def A ( self : Optional[Any] ):
return self._config.n_head
def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ):
lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs(
UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCAmelCase_ : Optional[Any] = seqlen + 2
lowerCAmelCase_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
lowerCAmelCase_ : Optional[int] = [
(torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers )
]
lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""]
if self.use_past:
lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype
lowerCAmelCase_ : str = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def A ( self : Optional[int] ):
return 13
| 28 | 0 |
import collections
import inspect
import unittest
from transformers import SwinvaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel
from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __a :
def __init__( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=13 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Dict=[1, 2, 1] , UpperCAmelCase : Dict=[2, 2, 4] , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Dict=2.0 , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : str=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : str=1e-5 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : Tuple=8 , ):
lowerCAmelCase_ : Tuple = parent
lowerCAmelCase_ : int = batch_size
lowerCAmelCase_ : str = image_size
lowerCAmelCase_ : Optional[int] = patch_size
lowerCAmelCase_ : Dict = num_channels
lowerCAmelCase_ : List[Any] = embed_dim
lowerCAmelCase_ : List[str] = depths
lowerCAmelCase_ : Optional[int] = num_heads
lowerCAmelCase_ : str = window_size
lowerCAmelCase_ : Dict = mlp_ratio
lowerCAmelCase_ : int = qkv_bias
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob
lowerCAmelCase_ : List[str] = drop_path_rate
lowerCAmelCase_ : Union[str, Any] = hidden_act
lowerCAmelCase_ : Any = use_absolute_embeddings
lowerCAmelCase_ : Tuple = patch_norm
lowerCAmelCase_ : str = layer_norm_eps
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = encoder_stride
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : List[str] = None
if self.use_labels:
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Tuple = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[int] ):
return SwinvaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def A ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Optional[int] = SwinvaModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
lowerCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
lowerCAmelCase_ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ):
lowerCAmelCase_ : Optional[int] = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Optional[int] = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def A ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : List[str] = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCAmelCase_ : List[Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : int ):
lowerCAmelCase_ : Any = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs
lowerCAmelCase_ : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ):
__snake_case : int = (
(SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else ()
)
__snake_case : int = (
{"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification}
if is_torch_available()
else {}
)
__snake_case : str = False
__snake_case : int = False
__snake_case : Optional[int] = False
__snake_case : Any = False
def A ( self : Optional[int] ):
lowerCAmelCase_ : Optional[Any] = SwinvaModelTester(self )
lowerCAmelCase_ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37 )
def A ( self : Optional[int] ):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A ( self : Tuple ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
@unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" )
def A ( self : str ):
pass
@unittest.skip(reason="""Swinv2 does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : int ):
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : int = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def A ( self : int ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(__SCREAMING_SNAKE_CASE )
lowerCAmelCase_ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()]
lowerCAmelCase_ : Dict = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Optional[Any] = True
for model_class in self.all_model_classes:
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ : Optional[int] = False
lowerCAmelCase_ : Optional[Any] = True
lowerCAmelCase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
lowerCAmelCase_ : List[str] = outputs.attentions
lowerCAmelCase_ : str = len(self.model_tester.depths )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
lowerCAmelCase_ : Tuple = True
lowerCAmelCase_ : Any = config.window_size**2
lowerCAmelCase_ : Dict = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
lowerCAmelCase_ : Any = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
lowerCAmelCase_ : Dict = outputs.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
lowerCAmelCase_ : List[Any] = len(__SCREAMING_SNAKE_CASE )
# Check attention is always last and order is fine
lowerCAmelCase_ : str = True
lowerCAmelCase_ : List[str] = True
lowerCAmelCase_ : str = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
if hasattr(self.model_tester , """num_hidden_states_types""" ):
lowerCAmelCase_ : Any = self.model_tester.num_hidden_states_types
else:
# also another +1 for reshaped_hidden_states
lowerCAmelCase_ : List[str] = 2
self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE ) )
lowerCAmelCase_ : Dict = outputs.attentions
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , )
def A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
lowerCAmelCase_ : int = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
lowerCAmelCase_ : Dict = outputs.hidden_states
lowerCAmelCase_ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# Swinv2 has a different seq_length
lowerCAmelCase_ : Tuple = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCAmelCase_ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
lowerCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape
lowerCAmelCase_ : str = (
reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : List[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
lowerCAmelCase_ : Union[str, Any] = True
self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ : Any = True
self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def A ( self : Tuple ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : int = 3
lowerCAmelCase_ : str = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
lowerCAmelCase_ : Union[str, Any] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
lowerCAmelCase_ : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
lowerCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = True
self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ : int = True
self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) )
def A ( self : Optional[Any] ):
lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def A ( self : int ):
for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Optional[Any] = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : int = _config_zero_init(__SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
lowerCAmelCase_ : int = model_class(config=__SCREAMING_SNAKE_CASE )
for name, param in model.named_parameters():
if "embeddings" not in name and "logit_scale" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class __a ( unittest.TestCase ):
@cached_property
def A ( self : Union[str, Any] ):
return (
AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to(
__SCREAMING_SNAKE_CASE )
lowerCAmelCase_ : Any = self.default_image_processor
lowerCAmelCase_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
lowerCAmelCase_ : List[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Optional[int] = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
lowerCAmelCase_ : List[Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
lowerCAmelCase_ : Optional[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 351 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
__UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['BartphoTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 28 | 0 |
import numpy as np
from PIL import Image
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Any ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = np.array(lowerCamelCase__ )
if arr.shape[0] != arr.shape[1]:
raise ValueError("""The input array is not a square matrix""" )
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : str = 0
lowerCAmelCase_ : List[str] = 0
lowerCAmelCase_ : int = 0
# compute the shape of the output matrix
lowerCAmelCase_ : str = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
lowerCAmelCase_ : List[str] = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
lowerCAmelCase_ : Dict = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 0
return updated_arr
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Dict ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : int = np.array(lowerCamelCase__ )
if arr.shape[0] != arr.shape[1]:
raise ValueError("""The input array is not a square matrix""" )
lowerCAmelCase_ : str = 0
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : List[str] = 0
lowerCAmelCase_ : List[Any] = 0
# compute the shape of the output matrix
lowerCAmelCase_ : Optional[int] = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
lowerCAmelCase_ : Dict = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
lowerCAmelCase_ : int = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
lowerCAmelCase_ : Optional[int] = 0
lowerCAmelCase_ : str = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
__UpperCAmelCase = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 352 |
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __a :
def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ):
lowerCAmelCase_ : List[Any] = parent
lowerCAmelCase_ : Union[str, Any] = batch_size
lowerCAmelCase_ : Dict = seq_length
lowerCAmelCase_ : Optional[Any] = is_training
lowerCAmelCase_ : Optional[int] = use_input_mask
lowerCAmelCase_ : Optional[Any] = use_token_type_ids
lowerCAmelCase_ : Optional[Any] = use_labels
lowerCAmelCase_ : Any = vocab_size
lowerCAmelCase_ : Tuple = hidden_size
lowerCAmelCase_ : Any = rotary_dim
lowerCAmelCase_ : str = num_hidden_layers
lowerCAmelCase_ : int = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = max_position_embeddings
lowerCAmelCase_ : Union[str, Any] = initializer_range
lowerCAmelCase_ : int = None
lowerCAmelCase_ : Union[str, Any] = vocab_size - 1
lowerCAmelCase_ : str = vocab_size - 1
lowerCAmelCase_ : Optional[int] = vocab_size - 1
def A ( self : List[Any] ):
lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase_ : Optional[int] = None
if self.use_input_mask:
lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase_ : Optional[int] = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs
lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ):
lowerCAmelCase_ : str = 20
lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
lowerCAmelCase_ : Tuple = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Dict = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : List[str] = model(
input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Any = model(UpperCAmelCase )
lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ):
lowerCAmelCase_ : int = 20
lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase )
lowerCAmelCase_ : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase )
lowerCAmelCase_ : Dict = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
lowerCAmelCase_ : Tuple = model(
input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" )
lowerCAmelCase_ : Tuple = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , )
lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
@require_flax
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
__snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def A ( self : Any ):
lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self )
def A ( self : Union[str, Any] ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def A ( self : Tuple ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@tooslow
def A ( self : int ):
lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" )
lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id
lowerCAmelCase_ : List[Any] = jax.jit(model.generate )
lowerCAmelCase_ : Any = jit_generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences
lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = [
"""Hello this is a long string of text.\n\nI'm trying to get the text of the""",
"""Hey, I'm a little late to the party. I'm going to""",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = 0
lowerCAmelCase_ : Any = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : List[Any] = 1
lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase )
lowerCAmelCase_ : List[str] = fx_state
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@is_pt_flax_cross_test
def A ( self : Optional[Any] ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning
lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval()
lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params )
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape
lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(UpperCAmelCase ):
lowerCAmelCase_ : Any = 0
lowerCAmelCase_ : Optional[int] = 1
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : str = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple()
lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase )
with torch.no_grad():
lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple()
self.assertEqual(
len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" )
for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 )
@tooslow
def A ( self : str ):
for model_class_name in self.all_model_classes:
lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" )
lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCAmelCase )
| 28 | 0 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class __a :
def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]=1_00 , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Optional[int]=30 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : List[str]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Any=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=[0, 1, 2, 3] , ):
lowerCAmelCase_ : Optional[int] = parent
lowerCAmelCase_ : List[str] = 1_00
lowerCAmelCase_ : List[str] = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Any = patch_size
lowerCAmelCase_ : int = num_channels
lowerCAmelCase_ : int = is_training
lowerCAmelCase_ : Dict = use_labels
lowerCAmelCase_ : Optional[Any] = hidden_size
lowerCAmelCase_ : int = num_hidden_layers
lowerCAmelCase_ : str = num_attention_heads
lowerCAmelCase_ : Optional[int] = intermediate_size
lowerCAmelCase_ : Tuple = hidden_act
lowerCAmelCase_ : List[str] = hidden_dropout_prob
lowerCAmelCase_ : Tuple = attention_probs_dropout_prob
lowerCAmelCase_ : List[Any] = type_sequence_label_size
lowerCAmelCase_ : Any = initializer_range
lowerCAmelCase_ : List[Any] = scope
lowerCAmelCase_ : int = out_indices
lowerCAmelCase_ : Tuple = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCAmelCase_ : int = (image_size // patch_size) ** 2
lowerCAmelCase_ : str = num_patches + 1
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Tuple = None
lowerCAmelCase_ : List[Any] = None
if self.use_labels:
lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCAmelCase_ : Any = self.get_config()
return config, pixel_values, labels, pixel_labels
def A ( self : Union[str, Any] ):
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ):
lowerCAmelCase_ : List[Any] = BeitModel(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCAmelCase_ : str = model(_lowerCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : Optional[int] = BeitForMaskedImageModeling(config=_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCAmelCase_ : Any = model(_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : int = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = BeitForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCAmelCase_ : Tuple = 1
lowerCAmelCase_ : List[Any] = BeitForImageClassification(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCAmelCase_ : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int ):
lowerCAmelCase_ : List[str] = self.num_labels
lowerCAmelCase_ : List[str] = BeitForSemanticSegmentation(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
lowerCAmelCase_ : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def A ( self : List[str] ):
lowerCAmelCase_ : Any = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = config_and_inputs
lowerCAmelCase_ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : Optional[Any] = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__snake_case : List[str] = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__snake_case : List[str] = False
__snake_case : Any = False
__snake_case : str = False
def A ( self : int ):
lowerCAmelCase_ : int = BeitModelTester(self )
lowerCAmelCase_ : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 )
def A ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""BEiT does not use inputs_embeds""" )
def A ( self : str ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="""BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" )
def A ( self : Any ):
pass
def A ( self : Tuple ):
lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Union[str, Any] = model_class(_lowerCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) )
def A ( self : Tuple ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Union[str, Any] = model_class(_lowerCAmelCase )
lowerCAmelCase_ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : int = [*signature.parameters.keys()]
lowerCAmelCase_ : Dict = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase )
def A ( self : List[str] ):
lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase )
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase )
def A ( self : str ):
if not self.model_tester.is_training:
return
lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : int = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling]:
continue
lowerCAmelCase_ : Tuple = model_class(_lowerCAmelCase )
model.to(_lowerCAmelCase )
model.train()
lowerCAmelCase_ : Optional[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
lowerCAmelCase_ : Dict = model(**_lowerCAmelCase ).loss
loss.backward()
def A ( self : int ):
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
lowerCAmelCase_ : List[str] = False
lowerCAmelCase_ : Optional[int] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
lowerCAmelCase_ : int = model_class(_lowerCAmelCase )
model.gradient_checkpointing_enable()
model.to(_lowerCAmelCase )
model.train()
lowerCAmelCase_ : Dict = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase )
lowerCAmelCase_ : Optional[int] = model(**_lowerCAmelCase ).loss
loss.backward()
def A ( self : str ):
lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(_lowerCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : int = model_class(config=_lowerCAmelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Tuple = BeitModel.from_pretrained(_lowerCAmelCase )
self.assertIsNotNone(_lowerCAmelCase )
def __UpperCamelCase ( ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : str ):
return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None
@slow
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : List[str] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_lowerCAmelCase )
lowerCAmelCase_ : Optional[int] = self.default_image_processor
lowerCAmelCase_ : str = prepare_img()
lowerCAmelCase_ : List[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCAmelCase )
# prepare bool_masked_pos
lowerCAmelCase_ : List[str] = torch.ones((1, 1_96) , dtype=torch.bool ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Dict = model(pixel_values=_lowerCAmelCase , bool_masked_pos=_lowerCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# verify the logits
lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_96, 81_92) )
self.assertEqual(logits.shape , _lowerCAmelCase )
lowerCAmelCase_ : str = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCAmelCase , atol=1e-2 ) )
@slow
def A ( self : List[Any] ):
lowerCAmelCase_ : List[Any] = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_lowerCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Tuple = prepare_img()
lowerCAmelCase_ : int = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Optional[Any] = model(**_lowerCAmelCase )
lowerCAmelCase_ : Union[str, Any] = outputs.logits
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(logits.shape , _lowerCAmelCase )
lowerCAmelCase_ : Dict = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
lowerCAmelCase_ : List[Any] = 2_81
self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase )
@slow
def A ( self : List[Any] ):
lowerCAmelCase_ : str = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to(
_lowerCAmelCase )
lowerCAmelCase_ : Dict = self.default_image_processor
lowerCAmelCase_ : Any = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : str = model(**_lowerCAmelCase )
lowerCAmelCase_ : List[Any] = outputs.logits
# verify the logits
lowerCAmelCase_ : List[Any] = torch.Size((1, 2_18_41) )
self.assertEqual(logits.shape , _lowerCAmelCase )
lowerCAmelCase_ : Dict = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_lowerCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
lowerCAmelCase_ : Any = 23_96
self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase )
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Any = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
lowerCAmelCase_ : str = model.to(_lowerCAmelCase )
lowerCAmelCase_ : List[str] = BeitImageProcessor(do_resize=_lowerCAmelCase , size=6_40 , do_center_crop=_lowerCAmelCase )
lowerCAmelCase_ : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
lowerCAmelCase_ : Tuple = Image.open(ds[0]["""file"""] )
lowerCAmelCase_ : Dict = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : List[str] = model(**_lowerCAmelCase )
lowerCAmelCase_ : Optional[Any] = outputs.logits
# verify the logits
lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_50, 1_60, 1_60) )
self.assertEqual(logits.shape , _lowerCAmelCase )
lowerCAmelCase_ : Optional[Any] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" )
if is_pillow_less_than_a:
lowerCAmelCase_ : Any = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=_lowerCAmelCase , )
else:
lowerCAmelCase_ : Optional[int] = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=_lowerCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
@slow
def A ( self : List[str] ):
lowerCAmelCase_ : Dict = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" )
lowerCAmelCase_ : Tuple = model.to(_lowerCAmelCase )
lowerCAmelCase_ : Optional[Any] = BeitImageProcessor(do_resize=_lowerCAmelCase , size=6_40 , do_center_crop=_lowerCAmelCase )
lowerCAmelCase_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" )
lowerCAmelCase_ : str = Image.open(ds[0]["""file"""] )
lowerCAmelCase_ : Tuple = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**_lowerCAmelCase )
lowerCAmelCase_ : Optional[int] = outputs.logits.detach().cpu()
lowerCAmelCase_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(5_00, 3_00)] )
lowerCAmelCase_ : Union[str, Any] = torch.Size((5_00, 3_00) )
self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
lowerCAmelCase_ : Dict = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase )
lowerCAmelCase_ : str = torch.Size((1_60, 1_60) )
self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
| 353 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __a ( __UpperCamelCase ):
__snake_case : torch.FloatTensor
__snake_case : torch.FloatTensor
__snake_case : Optional[torch.FloatTensor] = None
class __a ( __UpperCamelCase ,__UpperCamelCase ):
__snake_case : Optional[Any] = 2
@register_to_config
def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ):
# standard deviation of the initial noise distribution
lowerCAmelCase_ : List[Any] = sigma_max
# setable values
lowerCAmelCase_ : int = None
lowerCAmelCase_ : np.IntTensor = None
lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i)
def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
lowerCAmelCase_ : Dict = num_inference_steps
lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
lowerCAmelCase_ : List[str] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase )
def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ):
if self.config.s_min <= sigma <= self.config.s_max:
lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCAmelCase_ : List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device )
lowerCAmelCase_ : int = sigma + gamma * sigma
lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output
lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ):
lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output
lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev
lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ):
raise NotImplementedError()
| 28 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __a ( unittest.TestCase ):
@slow
def A ( self : Dict ):
lowerCAmelCase_ : int = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" )
lowerCAmelCase_ : int = tf.convert_to_tensor(
[[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""]
lowerCAmelCase_ : Optional[Any] = tf.TensorShape((1, 10, 7_68) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
lowerCAmelCase_ : str = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 354 |
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : Dict , UpperCAmelCase : int = 6 ):
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
self.create_linked_list(UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : int = current_node
lowerCAmelCase_ : str = current_node
lowerCAmelCase_ : Union[str, Any] = current_node
for _ in range(1 , UpperCAmelCase ):
lowerCAmelCase_ : Any = Node()
lowerCAmelCase_ : Dict = current_node
lowerCAmelCase_ : Optional[int] = previous_node
lowerCAmelCase_ : Optional[Any] = current_node
lowerCAmelCase_ : List[str] = self.front
lowerCAmelCase_ : Optional[int] = previous_node
def A ( self : Any ):
return (
self.front == self.rear
and self.front is not None
and self.front.data is None
)
def A ( self : List[str] ):
self.check_can_perform_operation()
return self.front.data if self.front else None
def A ( self : Optional[int] , UpperCAmelCase : Any ):
if self.rear is None:
return
self.check_is_full()
if not self.is_empty():
lowerCAmelCase_ : int = self.rear.next
if self.rear:
lowerCAmelCase_ : Union[str, Any] = data
def A ( self : List[Any] ):
self.check_can_perform_operation()
if self.rear is None or self.front is None:
return None
if self.front == self.rear:
lowerCAmelCase_ : int = self.front.data
lowerCAmelCase_ : Optional[Any] = None
return data
lowerCAmelCase_ : Optional[int] = self.front
lowerCAmelCase_ : Any = old_front.next
lowerCAmelCase_ : Tuple = old_front.data
lowerCAmelCase_ : str = None
return data
def A ( self : Tuple ):
if self.is_empty():
raise Exception("""Empty Queue""" )
def A ( self : List[str] ):
if self.rear and self.rear.next == self.front:
raise Exception("""Full Queue""" )
class __a :
def __init__( self : Any ):
lowerCAmelCase_ : Any | None = None
lowerCAmelCase_ : Node | None = None
lowerCAmelCase_ : Node | None = None
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__UpperCAmelCase = logging.get_logger(__name__)
@add_end_docstrings(snake_case_ )
class __a ( snake_case_ ):
def __init__( self : Any , **UpperCAmelCase : List[str] ):
super().__init__(**UpperCAmelCase )
if self.framework != "pt":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
# No specific FOR_XXX available yet
def __call__( self : str , UpperCAmelCase : Union[np.ndarray, bytes, str] , **UpperCAmelCase : Optional[Any] ):
return super().__call__(UpperCAmelCase , **UpperCAmelCase )
def A ( self : Any , **UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : Dict = {}
if "candidate_labels" in kwargs:
lowerCAmelCase_ : Dict = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
lowerCAmelCase_ : Any = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def A ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None , UpperCAmelCase : Union[str, Any]="This is a sound of {}." ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if audio.startswith("""http://""" ) or audio.startswith("""https://""" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
lowerCAmelCase_ : Optional[Any] = requests.get(UpperCAmelCase ).content
else:
with open(UpperCAmelCase , """rb""" ) as f:
lowerCAmelCase_ : Optional[Any] = f.read()
if isinstance(UpperCAmelCase , UpperCAmelCase ):
lowerCAmelCase_ : str = ffmpeg_read(UpperCAmelCase , self.feature_extractor.sampling_rate )
if not isinstance(UpperCAmelCase , np.ndarray ):
raise ValueError("""We expect a numpy ndarray as input""" )
if len(audio.shape ) != 1:
raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" )
lowerCAmelCase_ : str = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = candidate_labels
lowerCAmelCase_ : Optional[Any] = [hypothesis_template.format(UpperCAmelCase ) for x in candidate_labels]
lowerCAmelCase_ : Optional[int] = self.tokenizer(UpperCAmelCase , return_tensors=self.framework , padding=UpperCAmelCase )
lowerCAmelCase_ : Any = [text_inputs]
return inputs
def A ( self : str , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : List[Any] = model_inputs.pop("""candidate_labels""" )
lowerCAmelCase_ : Tuple = model_inputs.pop("""text_inputs""" )
if isinstance(text_inputs[0] , UpperCAmelCase ):
lowerCAmelCase_ : Optional[Any] = text_inputs[0]
else:
# Batching case.
lowerCAmelCase_ : str = text_inputs[0][0]
lowerCAmelCase_ : Any = self.model(**UpperCAmelCase , **UpperCAmelCase )
lowerCAmelCase_ : str = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_audio,
}
return model_outputs
def A ( self : Optional[Any] , UpperCAmelCase : Dict ):
lowerCAmelCase_ : List[Any] = model_outputs.pop("""candidate_labels""" )
lowerCAmelCase_ : Tuple = model_outputs['logits'][0]
if self.framework == "pt":
lowerCAmelCase_ : Optional[Any] = logits.softmax(dim=0 )
lowerCAmelCase_ : Dict = probs.tolist()
else:
raise ValueError("""`tf` framework not supported.""" )
lowerCAmelCase_ : Tuple = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCAmelCase , UpperCAmelCase ) , key=lambda UpperCAmelCase : -x[0] )
]
return result
| 355 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel']
lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel']
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel']
lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel']
return k, o, q, v
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int:
'''simple docstring'''
if split_mlp_wi:
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel']
lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel']
lowerCAmelCase_ : int = (wi_a, wi_a)
else:
lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel']
lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel']
return wi, wo
def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int:
'''simple docstring'''
return params[f'{prefix}/layers_{i}/{layer_name}/scale']
def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] )
lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old
print("""Split MLP:""" , lowercase__ )
lowerCAmelCase_ : Optional[Any] = collections.OrderedDict()
# Shared embeddings.
lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""]
# Encoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Optional[int] = k.T
lowerCAmelCase_ : List[Any] = o.T
lowerCAmelCase_ : Union[str, Any] = q.T
lowerCAmelCase_ : Any = v.T
# Block i, layer 1 (MLP).
lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ )
lowerCAmelCase_ : str = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : Optional[int] = wi[0].T
lowerCAmelCase_ : Optional[Any] = wi[1].T
else:
lowerCAmelCase_ : int = wi.T
lowerCAmelCase_ : Optional[Any] = wo.T
lowerCAmelCase_ : Tuple = old[
"""encoder/relpos_bias/rel_embedding"""
].T
lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""]
if not is_encoder_only:
# Decoder.
for i in range(lowercase__ ):
# Block i, layer 0 (Self Attention).
lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" )
lowerCAmelCase_ : Dict = layer_norm
lowerCAmelCase_ : Union[str, Any] = k.T
lowerCAmelCase_ : Union[str, Any] = o.T
lowerCAmelCase_ : Any = q.T
lowerCAmelCase_ : Tuple = v.T
# Block i, layer 1 (Cross Attention).
lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" )
lowerCAmelCase_ : Optional[int] = layer_norm
lowerCAmelCase_ : Any = k.T
lowerCAmelCase_ : Any = o.T
lowerCAmelCase_ : Optional[int] = q.T
lowerCAmelCase_ : Dict = v.T
# Block i, layer 2 (MLP).
lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" )
lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ )
lowerCAmelCase_ : Any = layer_norm
if split_mlp_wi:
lowerCAmelCase_ : List[str] = wi[0].T
lowerCAmelCase_ : List[Any] = wi[1].T
else:
lowerCAmelCase_ : Optional[Any] = wi.T
lowerCAmelCase_ : str = wo.T
lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""]
lowerCAmelCase_ : Union[str, Any] = old[
"""decoder/relpos_bias/rel_embedding"""
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T
return new
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("""Using shared word embeddings as lm_head.""" )
lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""]
return state_dict
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ )
lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ )
lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ )
model.load_state_dict(lowercase__ , strict=lowercase__ )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int:
'''simple docstring'''
lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ )
print(f'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ )
else:
lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(lowercase__ )
# Verify that we can load the checkpoint.
model.from_pretrained(lowercase__ )
print("""Done""" )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
__UpperCAmelCase = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 28 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["MBartTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ["MBartTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"MBART_PRETRAINED_MODEL_ARCHIVE_LIST",
"MBartForCausalLM",
"MBartForConditionalGeneration",
"MBartForQuestionAnswering",
"MBartForSequenceClassification",
"MBartModel",
"MBartPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"TFMBartForConditionalGeneration",
"TFMBartModel",
"TFMBartPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
"FlaxMBartForConditionalGeneration",
"FlaxMBartForQuestionAnswering",
"FlaxMBartForSequenceClassification",
"FlaxMBartModel",
"FlaxMBartPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart import MBartTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mbart_fast import MBartTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mbart import (
MBART_PRETRAINED_MODEL_ARCHIVE_LIST,
MBartForCausalLM,
MBartForConditionalGeneration,
MBartForQuestionAnswering,
MBartForSequenceClassification,
MBartModel,
MBartPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mbart import (
FlaxMBartForConditionalGeneration,
FlaxMBartForQuestionAnswering,
FlaxMBartForSequenceClassification,
FlaxMBartModel,
FlaxMBartPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 356 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : int = """"""
else:
lowerCAmelCase_ : Union[str, Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Dict = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[Any] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : List[Any] = val
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = ViTConfig()
# patch_size
if model_name[-1] == "8":
lowerCAmelCase_ : Dict = 8
# set labels if required
if not base_model:
lowerCAmelCase_ : str = 1000
lowerCAmelCase_ : List[Any] = """huggingface/label-files"""
lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Any = idalabel
lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()}
# size of the architecture
if model_name in ["dino_vits8", "dino_vits16"]:
lowerCAmelCase_ : Union[str, Any] = 384
lowerCAmelCase_ : Any = 1536
lowerCAmelCase_ : Union[str, Any] = 12
lowerCAmelCase_ : str = 6
# load original model from torch hub
lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ )
original_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Any = original_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if base_model:
lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval()
else:
lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor
lowerCAmelCase_ : List[str] = ViTImageProcessor()
lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : List[str] = encoding["""pixel_values"""]
lowerCAmelCase_ : Optional[int] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ )
assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 )
else:
lowerCAmelCase_ : int = original_model(lowercase__ )
assert logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='dino_vitb16',
type=str,
help='Name of the model trained with DINO you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--base_model',
action='store_true',
help='Whether to only convert the base model (no projection head weights).',
)
parser.set_defaults(base_model=True)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
| 28 | 0 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( lowerCamelCase__ ):
__snake_case : Tuple = ['pixel_values']
def __init__( self : str , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : int = 8 , **UpperCAmelCase : Union[str, Any] , ):
super().__init__(**lowercase__ )
lowerCAmelCase_ : str = do_rescale
lowerCAmelCase_ : Union[str, Any] = rescale_factor
lowerCAmelCase_ : List[str] = do_pad
lowerCAmelCase_ : List[str] = pad_size
def A ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : float , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple ):
return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ )
def A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : int , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ):
lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_image_size(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = (old_height // size + 1) * size - old_height
lowerCAmelCase_ : Union[str, Any] = (old_width // size + 1) * size - old_width
return pad(lowercase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowercase__ )
def A ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : Union[str, Any] , ):
lowerCAmelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale
lowerCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCAmelCase_ : str = do_pad if do_pad is not None else self.do_pad
lowerCAmelCase_ : int = pad_size if pad_size is not None else self.pad_size
lowerCAmelCase_ : Optional[int] = make_list_of_images(lowercase__ )
if not valid_images(lowercase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
lowerCAmelCase_ : List[Any] = [to_numpy_array(lowercase__ ) for image in images]
if do_rescale:
lowerCAmelCase_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images]
if do_pad:
lowerCAmelCase_ : Dict = [self.pad(lowercase__ , size=lowercase__ ) for image in images]
lowerCAmelCase_ : Tuple = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images]
lowerCAmelCase_ : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
| 357 |
from math import factorial, pi
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowerCAmelCase_ : Optional[int] = float(lowercase__ )
lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) )
def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float:
'''simple docstring'''
if not isinstance(lowercase__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowerCAmelCase_ : int = float(lowercase__ )
lowerCAmelCase_ : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 28 | 0 |
def __UpperCamelCase ( lowercase__ : int = 10 ) -> str:
'''simple docstring'''
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0:
raise ValueError("""Invalid input""" )
lowerCAmelCase_ : List[Any] = 10**n
lowerCAmelCase_ : int = 28433 * (pow(2 , 7830457 , _UpperCAmelCase )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(f"""{solution(10) = }""")
| 358 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__UpperCAmelCase = {
'Acehnese Arabic': 'ace_Arab',
'Acehnese Latin': 'ace_Latn',
'Mesopotamian Arabic': 'acm_Arab',
'Ta\'izzi-Adeni Arabic': 'acq_Arab',
'Tunisian Arabic': 'aeb_Arab',
'Afrikaans': 'afr_Latn',
'South Levantine Arabic': 'ajp_Arab',
'Akan': 'aka_Latn',
'Amharic': 'amh_Ethi',
'North Levantine Arabic': 'apc_Arab',
'Modern Standard Arabic': 'arb_Arab',
'Modern Standard Arabic Romanized': 'arb_Latn',
'Najdi Arabic': 'ars_Arab',
'Moroccan Arabic': 'ary_Arab',
'Egyptian Arabic': 'arz_Arab',
'Assamese': 'asm_Beng',
'Asturian': 'ast_Latn',
'Awadhi': 'awa_Deva',
'Central Aymara': 'ayr_Latn',
'South Azerbaijani': 'azb_Arab',
'North Azerbaijani': 'azj_Latn',
'Bashkir': 'bak_Cyrl',
'Bambara': 'bam_Latn',
'Balinese': 'ban_Latn',
'Belarusian': 'bel_Cyrl',
'Bemba': 'bem_Latn',
'Bengali': 'ben_Beng',
'Bhojpuri': 'bho_Deva',
'Banjar Arabic': 'bjn_Arab',
'Banjar Latin': 'bjn_Latn',
'Standard Tibetan': 'bod_Tibt',
'Bosnian': 'bos_Latn',
'Buginese': 'bug_Latn',
'Bulgarian': 'bul_Cyrl',
'Catalan': 'cat_Latn',
'Cebuano': 'ceb_Latn',
'Czech': 'ces_Latn',
'Chokwe': 'cjk_Latn',
'Central Kurdish': 'ckb_Arab',
'Crimean Tatar': 'crh_Latn',
'Welsh': 'cym_Latn',
'Danish': 'dan_Latn',
'German': 'deu_Latn',
'Southwestern Dinka': 'dik_Latn',
'Dyula': 'dyu_Latn',
'Dzongkha': 'dzo_Tibt',
'Greek': 'ell_Grek',
'English': 'eng_Latn',
'Esperanto': 'epo_Latn',
'Estonian': 'est_Latn',
'Basque': 'eus_Latn',
'Ewe': 'ewe_Latn',
'Faroese': 'fao_Latn',
'Fijian': 'fij_Latn',
'Finnish': 'fin_Latn',
'Fon': 'fon_Latn',
'French': 'fra_Latn',
'Friulian': 'fur_Latn',
'Nigerian Fulfulde': 'fuv_Latn',
'Scottish Gaelic': 'gla_Latn',
'Irish': 'gle_Latn',
'Galician': 'glg_Latn',
'Guarani': 'grn_Latn',
'Gujarati': 'guj_Gujr',
'Haitian Creole': 'hat_Latn',
'Hausa': 'hau_Latn',
'Hebrew': 'heb_Hebr',
'Hindi': 'hin_Deva',
'Chhattisgarhi': 'hne_Deva',
'Croatian': 'hrv_Latn',
'Hungarian': 'hun_Latn',
'Armenian': 'hye_Armn',
'Igbo': 'ibo_Latn',
'Ilocano': 'ilo_Latn',
'Indonesian': 'ind_Latn',
'Icelandic': 'isl_Latn',
'Italian': 'ita_Latn',
'Javanese': 'jav_Latn',
'Japanese': 'jpn_Jpan',
'Kabyle': 'kab_Latn',
'Jingpho': 'kac_Latn',
'Kamba': 'kam_Latn',
'Kannada': 'kan_Knda',
'Kashmiri Arabic': 'kas_Arab',
'Kashmiri Devanagari': 'kas_Deva',
'Georgian': 'kat_Geor',
'Central Kanuri Arabic': 'knc_Arab',
'Central Kanuri Latin': 'knc_Latn',
'Kazakh': 'kaz_Cyrl',
'Kabiyè': 'kbp_Latn',
'Kabuverdianu': 'kea_Latn',
'Khmer': 'khm_Khmr',
'Kikuyu': 'kik_Latn',
'Kinyarwanda': 'kin_Latn',
'Kyrgyz': 'kir_Cyrl',
'Kimbundu': 'kmb_Latn',
'Northern Kurdish': 'kmr_Latn',
'Kikongo': 'kon_Latn',
'Korean': 'kor_Hang',
'Lao': 'lao_Laoo',
'Ligurian': 'lij_Latn',
'Limburgish': 'lim_Latn',
'Lingala': 'lin_Latn',
'Lithuanian': 'lit_Latn',
'Lombard': 'lmo_Latn',
'Latgalian': 'ltg_Latn',
'Luxembourgish': 'ltz_Latn',
'Luba-Kasai': 'lua_Latn',
'Ganda': 'lug_Latn',
'Luo': 'luo_Latn',
'Mizo': 'lus_Latn',
'Standard Latvian': 'lvs_Latn',
'Magahi': 'mag_Deva',
'Maithili': 'mai_Deva',
'Malayalam': 'mal_Mlym',
'Marathi': 'mar_Deva',
'Minangkabau Arabic ': 'min_Arab',
'Minangkabau Latin': 'min_Latn',
'Macedonian': 'mkd_Cyrl',
'Plateau Malagasy': 'plt_Latn',
'Maltese': 'mlt_Latn',
'Meitei Bengali': 'mni_Beng',
'Halh Mongolian': 'khk_Cyrl',
'Mossi': 'mos_Latn',
'Maori': 'mri_Latn',
'Burmese': 'mya_Mymr',
'Dutch': 'nld_Latn',
'Norwegian Nynorsk': 'nno_Latn',
'Norwegian Bokmål': 'nob_Latn',
'Nepali': 'npi_Deva',
'Northern Sotho': 'nso_Latn',
'Nuer': 'nus_Latn',
'Nyanja': 'nya_Latn',
'Occitan': 'oci_Latn',
'West Central Oromo': 'gaz_Latn',
'Odia': 'ory_Orya',
'Pangasinan': 'pag_Latn',
'Eastern Panjabi': 'pan_Guru',
'Papiamento': 'pap_Latn',
'Western Persian': 'pes_Arab',
'Polish': 'pol_Latn',
'Portuguese': 'por_Latn',
'Dari': 'prs_Arab',
'Southern Pashto': 'pbt_Arab',
'Ayacucho Quechua': 'quy_Latn',
'Romanian': 'ron_Latn',
'Rundi': 'run_Latn',
'Russian': 'rus_Cyrl',
'Sango': 'sag_Latn',
'Sanskrit': 'san_Deva',
'Santali': 'sat_Olck',
'Sicilian': 'scn_Latn',
'Shan': 'shn_Mymr',
'Sinhala': 'sin_Sinh',
'Slovak': 'slk_Latn',
'Slovenian': 'slv_Latn',
'Samoan': 'smo_Latn',
'Shona': 'sna_Latn',
'Sindhi': 'snd_Arab',
'Somali': 'som_Latn',
'Southern Sotho': 'sot_Latn',
'Spanish': 'spa_Latn',
'Tosk Albanian': 'als_Latn',
'Sardinian': 'srd_Latn',
'Serbian': 'srp_Cyrl',
'Swati': 'ssw_Latn',
'Sundanese': 'sun_Latn',
'Swedish': 'swe_Latn',
'Swahili': 'swh_Latn',
'Silesian': 'szl_Latn',
'Tamil': 'tam_Taml',
'Tatar': 'tat_Cyrl',
'Telugu': 'tel_Telu',
'Tajik': 'tgk_Cyrl',
'Tagalog': 'tgl_Latn',
'Thai': 'tha_Thai',
'Tigrinya': 'tir_Ethi',
'Tamasheq Latin': 'taq_Latn',
'Tamasheq Tifinagh': 'taq_Tfng',
'Tok Pisin': 'tpi_Latn',
'Tswana': 'tsn_Latn',
'Tsonga': 'tso_Latn',
'Turkmen': 'tuk_Latn',
'Tumbuka': 'tum_Latn',
'Turkish': 'tur_Latn',
'Twi': 'twi_Latn',
'Central Atlas Tamazight': 'tzm_Tfng',
'Uyghur': 'uig_Arab',
'Ukrainian': 'ukr_Cyrl',
'Umbundu': 'umb_Latn',
'Urdu': 'urd_Arab',
'Northern Uzbek': 'uzn_Latn',
'Venetian': 'vec_Latn',
'Vietnamese': 'vie_Latn',
'Waray': 'war_Latn',
'Wolof': 'wol_Latn',
'Xhosa': 'xho_Latn',
'Eastern Yiddish': 'ydd_Hebr',
'Yoruba': 'yor_Latn',
'Yue Chinese': 'yue_Hant',
'Chinese Simplified': 'zho_Hans',
'Chinese Traditional': 'zho_Hant',
'Standard Malay': 'zsm_Latn',
'Zulu': 'zul_Latn',
}
class __a ( __UpperCamelCase ):
__snake_case : int = """facebook/nllb-200-distilled-600M"""
__snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
__snake_case : str = """translator"""
__snake_case : Any = AutoTokenizer
__snake_case : Union[str, Any] = AutoModelForSeqaSeqLM
__snake_case : Optional[int] = LANGUAGE_CODES
__snake_case : int = ["""text""", """text""", """text"""]
__snake_case : str = ["""text"""]
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang]
lowerCAmelCase_ : int = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
def A ( self : Optional[Any] , UpperCAmelCase : str ):
return self.model.generate(**UpperCAmelCase )
def A ( self : Union[str, Any] , UpperCAmelCase : int ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
| 28 | 0 |
from __future__ import annotations
import math
def __UpperCamelCase ( lowercase__ : int ) -> list[int]:
'''simple docstring'''
if num <= 0:
lowerCAmelCase_ : Optional[Any] = f'{num}: Invalid input, please enter a positive integer.'
raise ValueError(a__ )
lowerCAmelCase_ : Any = [True] * (num + 1)
lowerCAmelCase_ : Optional[Any] = []
lowerCAmelCase_ : Dict = 2
lowerCAmelCase_ : List[str] = int(math.sqrt(a__ ) )
while start <= end:
# If start is a prime
if sieve[start] is True:
prime.append(a__ )
# Set multiples of start be False
for i in range(start * start , num + 1 , a__ ):
if sieve[i] is True:
lowerCAmelCase_ : List[str] = False
start += 1
for j in range(end + 1 , num + 1 ):
if sieve[j] is True:
prime.append(a__ )
return prime
if __name__ == "__main__":
print(prime_sieve(int(input('Enter a positive integer: ').strip())))
| 359 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
lowerCAmelCase_ : Tuple = BitConfig(
conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , )
return config
def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]:
'''simple docstring'''
if "stem.conv" in name:
lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
lowerCAmelCase_ : List[str] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
lowerCAmelCase_ : Any = """bit.encoder.""" + name
return name
def __UpperCamelCase ( ) -> str:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ )
# load original model from timm
lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model
lowerCAmelCase_ : Any = timm_model.state_dict()
for key in state_dict.copy().keys():
lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ )
lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val
# load HuggingFace model
lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ )
model.eval()
model.load_state_dict(lowercase__ )
# create image processor
lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) )
lowerCAmelCase_ : Union[str, Any] = transform.transforms
lowerCAmelCase_ : str = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
lowerCAmelCase_ : List[str] = BitImageProcessor(
do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
lowerCAmelCase_ : int = prepare_img()
lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 )
lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(lowercase__ , lowercase__ )
# verify logits
with torch.no_grad():
lowerCAmelCase_ : Tuple = model(lowercase__ )
lowerCAmelCase_ : List[str] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
processor.save_pretrained(lowercase__ )
if push_to_hub:
print(f'Pushing model {model_name} and processor to the hub' )
model.push_to_hub(f'ybelkada/{model_name}' )
processor.push_to_hub(f'ybelkada/{model_name}' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='resnetv2_50x1_bitm',
type=str,
help='Name of the BiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model to the hub.',
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 | 0 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : int=False ) -> Dict:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') )
rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') )
rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') )
rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') )
rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') )
rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') )
rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') )
rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """vit.embeddings.cls_token"""),
("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """vit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
lowerCAmelCase_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=False ) -> str:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
lowerCAmelCase_ : Dict = """"""
else:
lowerCAmelCase_ : Optional[Any] = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase_ : Optional[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' )
lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase_ : Any = in_proj_weight[
: config.hidden_size, :
]
lowerCAmelCase_ : Optional[Any] = in_proj_bias[: config.hidden_size]
lowerCAmelCase_ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase_ : List[str] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase_ : Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase_ : Union[str, Any] = in_proj_bias[-config.hidden_size :]
def __UpperCamelCase ( lowercase__ : Any ) -> Tuple:
'''simple docstring'''
lowerCAmelCase_ : Tuple = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Dict = dct.pop(lowercase__ )
lowerCAmelCase_ : Optional[int] = val
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg"""
lowerCAmelCase_ : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : List[Any] ) -> List[str]:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = ViTConfig()
lowerCAmelCase_ : str = False
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
if vit_name[-5:] == "in21k":
lowerCAmelCase_ : Tuple = True
lowerCAmelCase_ : Optional[int] = int(vit_name[-12:-10] )
lowerCAmelCase_ : List[Any] = int(vit_name[-9:-6] )
else:
lowerCAmelCase_ : Optional[int] = 1000
lowerCAmelCase_ : str = """huggingface/label-files"""
lowerCAmelCase_ : int = """imagenet-1k-id2label.json"""
lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) )
lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = idalabel
lowerCAmelCase_ : Dict = {v: k for k, v in idalabel.items()}
lowerCAmelCase_ : Optional[int] = int(vit_name[-6:-4] )
lowerCAmelCase_ : List[Any] = int(vit_name[-3:] )
# size of the architecture
if "deit" in vit_name:
if vit_name[9:].startswith("""tiny""" ):
lowerCAmelCase_ : Tuple = 192
lowerCAmelCase_ : Optional[int] = 768
lowerCAmelCase_ : Any = 12
lowerCAmelCase_ : Any = 3
elif vit_name[9:].startswith("""small""" ):
lowerCAmelCase_ : str = 384
lowerCAmelCase_ : str = 1536
lowerCAmelCase_ : Optional[int] = 12
lowerCAmelCase_ : int = 6
else:
pass
else:
if vit_name[4:].startswith("""small""" ):
lowerCAmelCase_ : Tuple = 768
lowerCAmelCase_ : str = 2304
lowerCAmelCase_ : Optional[Any] = 8
lowerCAmelCase_ : Any = 8
elif vit_name[4:].startswith("""base""" ):
pass
elif vit_name[4:].startswith("""large""" ):
lowerCAmelCase_ : Tuple = 1024
lowerCAmelCase_ : Optional[int] = 4096
lowerCAmelCase_ : Optional[Any] = 24
lowerCAmelCase_ : Optional[int] = 16
elif vit_name[4:].startswith("""huge""" ):
lowerCAmelCase_ : Any = 1280
lowerCAmelCase_ : str = 5120
lowerCAmelCase_ : Any = 32
lowerCAmelCase_ : Any = 16
# load original model from timm
lowerCAmelCase_ : Any = timm.create_model(lowercase__ , pretrained=lowercase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
lowerCAmelCase_ : Tuple = timm_model.state_dict()
if base_model:
remove_classification_head_(lowercase__ )
lowerCAmelCase_ : Any = create_rename_keys(lowercase__ , lowercase__ )
for src, dest in rename_keys:
rename_key(lowercase__ , lowercase__ , lowercase__ )
read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ )
# load HuggingFace model
if vit_name[-5:] == "in21k":
lowerCAmelCase_ : Optional[Any] = ViTModel(lowercase__ ).eval()
else:
lowerCAmelCase_ : List[str] = ViTForImageClassification(lowercase__ ).eval()
model.load_state_dict(lowercase__ )
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
if "deit" in vit_name:
lowerCAmelCase_ : List[str] = DeiTImageProcessor(size=config.image_size )
else:
lowerCAmelCase_ : Union[str, Any] = ViTImageProcessor(size=config.image_size )
lowerCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[int] = encoding["""pixel_values"""]
lowerCAmelCase_ : List[Any] = model(lowercase__ )
if base_model:
lowerCAmelCase_ : List[str] = timm_model.forward_features(lowercase__ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(lowercase__ , outputs.pooler_output , atol=1E-3 )
else:
lowerCAmelCase_ : Optional[int] = timm_model(lowercase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 )
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(lowercase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--vit_name',
default='vit_base_patch16_224',
type=str,
help='Name of the ViT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__UpperCAmelCase = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
| 360 |
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class __a :
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ):
lowerCAmelCase_ : Any = parent
lowerCAmelCase_ : str = batch_size
lowerCAmelCase_ : int = image_size
lowerCAmelCase_ : Tuple = patch_size
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : List[str] = is_training
lowerCAmelCase_ : List[str] = use_labels
lowerCAmelCase_ : str = hidden_size
lowerCAmelCase_ : Union[str, Any] = num_hidden_layers
lowerCAmelCase_ : Union[str, Any] = num_attention_heads
lowerCAmelCase_ : Any = intermediate_size
lowerCAmelCase_ : Dict = hidden_act
lowerCAmelCase_ : Dict = hidden_dropout_prob
lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob
lowerCAmelCase_ : Optional[Any] = type_sequence_label_size
lowerCAmelCase_ : Optional[int] = initializer_range
lowerCAmelCase_ : int = scope
lowerCAmelCase_ : Tuple = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
lowerCAmelCase_ : int = (self.image_size // 32) ** 2
lowerCAmelCase_ : Dict = num_patches + 1
def A ( self : Any ):
lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ : Optional[int] = None
if self.use_labels:
lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase_ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def A ( self : Optional[Any] ):
lowerCAmelCase_ : List[Any] = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , )
def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ):
lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : List[str] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
lowerCAmelCase_ : Tuple = self.type_sequence_label_size
lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs
lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ):
__snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
__snake_case : Dict = (
{"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
__snake_case : int = False
__snake_case : Tuple = False
__snake_case : Tuple = False
def A ( self : int ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self )
lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def A ( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def A ( self : Dict ):
pass
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def A ( self : List[str] ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ : str = model_class(UpperCAmelCase )
lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ : List[str] = [*signature.parameters.keys()]
lowerCAmelCase_ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def A ( self : str ):
lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def A ( self : Dict ):
lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def A ( self : int ):
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __UpperCamelCase ( ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class __a ( unittest.TestCase ):
@cached_property
def A ( self : int ):
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A ( self : Tuple ):
lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.default_image_processor
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
lowerCAmelCase_ : Any = model(**UpperCAmelCase )
# verify the logits
lowerCAmelCase_ : Any = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
def A ( self : Optional[Any] ):
lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
lowerCAmelCase_ : Optional[Any] = prepare_img()
lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" )
lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase )
lowerCAmelCase_ : List[str] = outputs.logits
# model predicts one of the 1000 ImageNet classes
lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
| 28 | 0 |
import logging
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import librosa
import torch
from datasets import DatasetDict, load_dataset
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForPreTraining,
is_apex_available,
trainer_utils,
)
from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'):
__UpperCAmelCase = True
from torch.cuda.amp import autocast
__UpperCAmelCase = logging.getLogger(__name__)
@dataclass
class __a :
__snake_case : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
__snake_case : Optional[str] = field(
default=UpperCamelCase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,)
__snake_case : Optional[bool] = field(
default=UpperCamelCase_ ,metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} )
__snake_case : Optional[bool] = field(
default=UpperCamelCase_ ,metadata={"""help""": """Whether to log verbose messages or not."""} ,)
__snake_case : Optional[float] = field(
default=2.0 ,metadata={"""help""": """Maximum temperature for gumbel softmax."""} )
__snake_case : Optional[float] = field(
default=0.5 ,metadata={"""help""": """Minimum temperature for gumbel softmax."""} )
__snake_case : Optional[float] = field(
default=0.99_9995 ,metadata={"""help""": """Decay of gumbel temperature during training."""} )
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
lowerCAmelCase_ : Optional[int] = logging.WARNING
if model_args.verbose_logging:
lowerCAmelCase_ : int = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank ):
lowerCAmelCase_ : int = logging.INFO
logger.setLevel(__lowerCAmelCase )
@dataclass
class __a :
__snake_case : str = field(
default=UpperCamelCase_ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
__snake_case : Optional[str] = field(
default=UpperCamelCase_ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
__snake_case : Optional[str] = field(
default="""train""" ,metadata={
"""help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'"""
} ,)
__snake_case : Optional[str] = field(
default="""validation""" ,metadata={
"""help""": (
"""The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"""
)
} ,)
__snake_case : Optional[str] = field(
default="""file""" ,metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} ,)
__snake_case : bool = field(
default=UpperCamelCase_ ,metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} )
__snake_case : Optional[int] = field(
default=1 ,metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} ,)
__snake_case : Optional[int] = field(
default=UpperCamelCase_ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,)
__snake_case : Optional[float] = field(
default=20.0 ,metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} )
@dataclass
class __a :
__snake_case : WavaVecaForPreTraining
__snake_case : WavaVecaFeatureExtractor
__snake_case : Union[bool, str] = "longest"
__snake_case : Optional[int] = None
__snake_case : Optional[int] = None
def __call__( self : Dict , UpperCAmelCase : Optional[Any] ):
lowerCAmelCase_ : str = self.feature_extractor.pad(
_a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , )
lowerCAmelCase_ : Optional[Any] = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] )
lowerCAmelCase_ : Any = batch["""input_values"""].shape[0]
# make sure that no loss is computed on padded inputs
if batch["attention_mask"] is not None:
# compute real output lengths according to convolution formula
lowerCAmelCase_ : List[Any] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to(
torch.long )
lowerCAmelCase_ : List[str] = torch.zeros(
(batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device )
# these two operations makes sure that all values
# before the output lengths indices are attended to
lowerCAmelCase_ : Union[str, Any] = 1
lowerCAmelCase_ : List[str] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool()
# sample randomly masked indices
lowerCAmelCase_ : str = _compute_mask_indices(
(batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_a , min_masks=2 , )
return batch
class __a ( UpperCamelCase_ ):
def __init__( self : int , *UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Any=0 , UpperCAmelCase : Tuple=1.0 , **UpperCAmelCase : Union[str, Any] ):
super().__init__(*_a , **_a )
lowerCAmelCase_ : int = 0
lowerCAmelCase_ : Dict = max_gumbel_temp
lowerCAmelCase_ : str = min_gumbel_temp
lowerCAmelCase_ : Optional[Any] = gumbel_temp_decay
def A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : str ):
model.train()
lowerCAmelCase_ : List[Any] = self._prepare_inputs(_a )
if self.use_amp:
with autocast():
lowerCAmelCase_ : Optional[Any] = self.compute_loss(_a , _a )
else:
lowerCAmelCase_ : str = self.compute_loss(_a , _a )
if self.args.n_gpu > 1 or self.deepspeed:
if model.module.config.ctc_loss_reduction == "mean":
lowerCAmelCase_ : str = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
lowerCAmelCase_ : Dict = loss.sum() / (inputs["""mask_time_indices"""]).sum()
else:
raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' )
if self.args.gradient_accumulation_steps > 1:
lowerCAmelCase_ : str = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(_a ).backward()
elif self.use_apex:
with amp.scale_loss(_a , self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(_a )
else:
loss.backward()
self.num_update_step += 1
# make sure gumbel softmax temperature is decayed
if self.args.n_gpu > 1 or self.deepspeed:
model.module.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) )
else:
model.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) )
return loss.detach()
def __UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
lowerCAmelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCAmelCase_ : str = parser.parse_args_into_dataclasses()
configure_logger(__lowerCAmelCase , __lowerCAmelCase )
# Downloading and loading a dataset from the hub.
lowerCAmelCase_ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
lowerCAmelCase_ : Any = DatasetDict()
lowerCAmelCase_ : int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , )
lowerCAmelCase_ : List[str] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , )
else:
# make sure only "validation" and "train" keys remain"
lowerCAmelCase_ : str = DatasetDict()
lowerCAmelCase_ : List[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , )
lowerCAmelCase_ : int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , )
# only normalized-inputs-training is supported
lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCAmelCase )
def prepare_dataset(lowercase__ : str ):
# check that all files have the correct sampling rate
lowerCAmelCase_ : Dict = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate )
return batch
# load audio files into numpy arrays
lowerCAmelCase_ : Union[str, Any] = datasets.map(
__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names )
# filter audio files that are too long
lowerCAmelCase_ : List[str] = vectorized_datasets.filter(
lambda lowercase__ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) )
def normalize(lowercase__ : str ):
return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate )
# normalize and transform to `BatchFeatures`
lowerCAmelCase_ : str = vectorized_datasets.map(
__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , )
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
lowerCAmelCase_ : Optional[int] = WavaVecaConfig.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , )
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
"""PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"""
""" ``config.feat_extract_norm='layer'""" )
lowerCAmelCase_ : Tuple = WavaVecaForPreTraining(__lowerCAmelCase )
lowerCAmelCase_ : int = DataCollatorForWavaVecaPretraining(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase )
lowerCAmelCase_ : str = WavaVecaPreTrainer(
model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=__lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , )
trainer.train()
if __name__ == "__main__":
main() | 361 |
import warnings
from ...utils import logging
from .image_processing_glpn import GLPNImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class __a ( __UpperCamelCase ):
def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ):
warnings.warn(
"""The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use GLPNImageProcessor instead.""" , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 28 | 0 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = {
'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json',
'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json',
}
class __a ( _A ):
__snake_case : Tuple = """xlnet"""
__snake_case : Any = ["""mems"""]
__snake_case : Any = {
"""n_token""": """vocab_size""", # Backward compatibility
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=3_20_00 , UpperCAmelCase : Dict=10_24 , UpperCAmelCase : str=24 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Dict=40_96 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]="bi" , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : List[Any]=1e-1_2 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Union[str, Any]=5_12 , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=-1 , UpperCAmelCase : Dict=False , UpperCAmelCase : Any="last" , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple="tanh" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : str=5 , UpperCAmelCase : Dict=1 , UpperCAmelCase : str=2 , **UpperCAmelCase : Optional[Any] , ):
lowerCAmelCase_ : List[str] = vocab_size
lowerCAmelCase_ : Optional[int] = d_model
lowerCAmelCase_ : int = n_layer
lowerCAmelCase_ : Optional[Any] = n_head
if d_model % n_head != 0:
raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' )
lowerCAmelCase_ : Tuple = d_model // n_head
lowerCAmelCase_ : List[Any] = ff_activation
lowerCAmelCase_ : List[Any] = d_inner
lowerCAmelCase_ : Dict = untie_r
lowerCAmelCase_ : Optional[Any] = attn_type
lowerCAmelCase_ : Any = initializer_range
lowerCAmelCase_ : Dict = layer_norm_eps
lowerCAmelCase_ : Optional[int] = dropout
lowerCAmelCase_ : List[Any] = mem_len
lowerCAmelCase_ : Union[str, Any] = reuse_len
lowerCAmelCase_ : Optional[int] = bi_data
lowerCAmelCase_ : Tuple = clamp_len
lowerCAmelCase_ : Optional[int] = same_length
lowerCAmelCase_ : int = summary_type
lowerCAmelCase_ : List[Any] = summary_use_proj
lowerCAmelCase_ : Optional[int] = summary_activation
lowerCAmelCase_ : Dict = summary_last_dropout
lowerCAmelCase_ : Optional[int] = start_n_top
lowerCAmelCase_ : str = end_n_top
lowerCAmelCase_ : Optional[Any] = bos_token_id
lowerCAmelCase_ : Any = pad_token_id
lowerCAmelCase_ : str = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
"""The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`"""
""" instead.""" , __SCREAMING_SNAKE_CASE , )
lowerCAmelCase_ : int = kwargs["""use_cache"""]
lowerCAmelCase_ : List[Any] = use_mems_eval
lowerCAmelCase_ : Any = use_mems_train
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def A ( self : Any ):
logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def A ( self : Any , UpperCAmelCase : List[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 362 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __a ( __UpperCamelCase ):
__snake_case : Any = ["""image_processor""", """tokenizer"""]
__snake_case : Tuple = """BlipImageProcessor"""
__snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
lowerCAmelCase_ : str = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.image_processor
def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ):
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase_ : str = self.tokenizer
lowerCAmelCase_ : List[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
lowerCAmelCase_ : Optional[Any] = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
lowerCAmelCase_ : int = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def A ( self : int ):
lowerCAmelCase_ : int = self.tokenizer.model_input_names
lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 28 | 0 |
"""simple docstring"""
def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : int ) -> float:
'''simple docstring'''
if density <= 0:
raise ValueError("""Impossible fluid density""" )
if bulk_modulus <= 0:
raise ValueError("""Impossible bulk modulus""" )
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
from math import ceil
def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int:
'''simple docstring'''
lowerCAmelCase_ : List[str] = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase_ : Optional[Any] = 2 * i + 1
lowerCAmelCase_ : Union[str, Any] = 2 * i
lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__UpperCAmelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 28 | 0 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __a ( __snake_case ):
__snake_case : jnp.ndarray
@flax_register_to_config
class __a ( nn.Module ,__snake_case ,__snake_case ):
__snake_case : int = 32
__snake_case : int = 4
__snake_case : int = 4
__snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
__snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
__snake_case : Union[bool, Tuple[bool]] = False
__snake_case : Tuple[int] = (320, 640, 1280, 1280)
__snake_case : int = 2
__snake_case : Union[int, Tuple[int]] = 8
__snake_case : Optional[Union[int, Tuple[int]]] = None
__snake_case : int = 1280
__snake_case : float = 0.0
__snake_case : bool = False
__snake_case : jnp.dtype = jnp.floataa
__snake_case : bool = True
__snake_case : int = 0
__snake_case : bool = False
def A ( self : Any , UpperCAmelCase : jax.random.KeyArray ):
# init input tensors
lowerCAmelCase_ : Any = (1, self.in_channels, self.sample_size, self.sample_size)
lowerCAmelCase_ : Union[str, Any] = jnp.zeros(lowerCamelCase_ , dtype=jnp.floataa )
lowerCAmelCase_ : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa )
lowerCAmelCase_ : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
lowerCAmelCase_ : Optional[Any] = jax.random.split(lowerCamelCase_ )
lowerCAmelCase_ : List[Any] = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["params"]
def A ( self : Union[str, Any] ):
lowerCAmelCase_ : Any = self.block_out_channels
lowerCAmelCase_ : int = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"""At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
lowerCAmelCase_ : Optional[Any] = self.num_attention_heads or self.attention_head_dim
# input
lowerCAmelCase_ : Dict = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
lowerCAmelCase_ : Tuple = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
lowerCAmelCase_ : Union[str, Any] = FlaxTimestepEmbedding(lowerCamelCase_ , dtype=self.dtype )
lowerCAmelCase_ : List[str] = self.only_cross_attention
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
lowerCAmelCase_ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
lowerCAmelCase_ : List[str] = (num_attention_heads,) * len(self.down_block_types )
# down
lowerCAmelCase_ : Union[str, Any] = []
lowerCAmelCase_ : Any = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
lowerCAmelCase_ : Optional[Any] = output_channel
lowerCAmelCase_ : Any = block_out_channels[i]
lowerCAmelCase_ : Tuple = i == len(lowerCamelCase_ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
lowerCAmelCase_ : Dict = FlaxCrossAttnDownBlockaD(
in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
lowerCAmelCase_ : int = FlaxDownBlockaD(
in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCamelCase_ )
lowerCAmelCase_ : str = down_blocks
# mid
lowerCAmelCase_ : Optional[Any] = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
lowerCAmelCase_ : int = []
lowerCAmelCase_ : Optional[int] = list(reversed(lowerCamelCase_ ) )
lowerCAmelCase_ : str = list(reversed(lowerCamelCase_ ) )
lowerCAmelCase_ : Union[str, Any] = list(reversed(lowerCamelCase_ ) )
lowerCAmelCase_ : List[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
lowerCAmelCase_ : int = output_channel
lowerCAmelCase_ : List[Any] = reversed_block_out_channels[i]
lowerCAmelCase_ : Any = reversed_block_out_channels[min(i + 1 , len(lowerCamelCase_ ) - 1 )]
lowerCAmelCase_ : Optional[Any] = i == len(lowerCamelCase_ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
lowerCAmelCase_ : Union[str, Any] = FlaxCrossAttnUpBlockaD(
in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
lowerCAmelCase_ : Tuple = FlaxUpBlockaD(
in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCamelCase_ )
lowerCAmelCase_ : Any = output_channel
lowerCAmelCase_ : Dict = up_blocks
# out
lowerCAmelCase_ : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
lowerCAmelCase_ : Any = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , ):
# 1. time
if not isinstance(lowerCamelCase_ , jnp.ndarray ):
lowerCAmelCase_ : Optional[Any] = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCamelCase_ , jnp.ndarray ) and len(timesteps.shape ) == 0:
lowerCAmelCase_ : Any = timesteps.astype(dtype=jnp.floataa )
lowerCAmelCase_ : Optional[Any] = jnp.expand_dims(lowerCamelCase_ , 0 )
lowerCAmelCase_ : Tuple = self.time_proj(lowerCamelCase_ )
lowerCAmelCase_ : List[str] = self.time_embedding(lowerCamelCase_ )
# 2. pre-process
lowerCAmelCase_ : Any = jnp.transpose(lowerCamelCase_ , (0, 2, 3, 1) )
lowerCAmelCase_ : Tuple = self.conv_in(lowerCamelCase_ )
# 3. down
lowerCAmelCase_ : Union[str, Any] = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
lowerCAmelCase_ : int = down_block(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , deterministic=not train )
else:
lowerCAmelCase_ : List[Any] = down_block(lowerCamelCase_ , lowerCamelCase_ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
lowerCAmelCase_ : int = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCamelCase_ , lowerCamelCase_ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
lowerCAmelCase_ : List[Any] = new_down_block_res_samples
# 4. mid
lowerCAmelCase_ : int = self.mid_block(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
lowerCAmelCase_ : List[Any] = down_block_res_samples[-(self.layers_per_block + 1) :]
lowerCAmelCase_ : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCamelCase_ , lowerCamelCase_ ):
lowerCAmelCase_ : Dict = up_block(
lowerCamelCase_ , temb=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , deterministic=not train , )
else:
lowerCAmelCase_ : Tuple = up_block(lowerCamelCase_ , temb=lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , deterministic=not train )
# 6. post-process
lowerCAmelCase_ : int = self.conv_norm_out(lowerCamelCase_ )
lowerCAmelCase_ : Union[str, Any] = nn.silu(lowerCamelCase_ )
lowerCAmelCase_ : List[str] = self.conv_out(lowerCamelCase_ )
lowerCAmelCase_ : Optional[Any] = jnp.transpose(lowerCamelCase_ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCamelCase_ )
| 364 |
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger('transformers.models.speecht5')
def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]:
'''simple docstring'''
hf_model.apply_weight_norm()
lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""]
lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g']
lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v']
lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias']
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g']
lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v']
lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g']
lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v']
lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias']
lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""]
lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""]
lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]:
'''simple docstring'''
if config_path is not None:
lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ )
else:
lowerCAmelCase_ : Any = SpeechTaHifiGanConfig()
lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ )
lowerCAmelCase_ : Tuple = torch.load(lowercase__ )
load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ )
lowerCAmelCase_ : Optional[int] = np.load(lowercase__ )
lowerCAmelCase_ : Any = stats[0].reshape(-1 )
lowerCAmelCase_ : List[str] = stats[1].reshape(-1 )
lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float()
lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float()
model.save_pretrained(lowercase__ )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(lowercase__ )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
__UpperCAmelCase = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 28 | 0 |
"""simple docstring"""
from math import factorial
def __UpperCamelCase ( lowercase__ : List[Any] = 100 ) -> int:
'''simple docstring'''
return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
print(solution(int(input('Enter the Number: ').strip())))
| 365 |
def __UpperCamelCase ( lowercase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for ch in input_str:
lowerCAmelCase_ : Any = ord(lowercase__ )
lowerCAmelCase_ : Dict = pow(2 , lowercase__ )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 28 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class __a ( lowerCamelCase_ ):
__snake_case : Optional[int] = (DDIMParallelScheduler,)
__snake_case : List[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50))
def A ( self : Tuple , **UpperCAmelCase : Tuple ):
lowerCAmelCase_ : Any = {
"""num_train_timesteps""": 10_00,
"""beta_start""": 0.0001,
"""beta_end""": 0.02,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**_UpperCAmelCase )
return config
def A ( self : str , **UpperCAmelCase : Tuple ):
lowerCAmelCase_ : Union[str, Any] = self.scheduler_classes[0]
lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**_UpperCAmelCase )
lowerCAmelCase_ : List[Any] = scheduler_class(**_UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = 10, 0.0
lowerCAmelCase_ : List[str] = self.dummy_model()
lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter
scheduler.set_timesteps(_UpperCAmelCase )
for t in scheduler.timesteps:
lowerCAmelCase_ : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase )
lowerCAmelCase_ : Optional[int] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
return sample
def A ( self : int ):
for timesteps in [1_00, 5_00, 10_00]:
self.check_over_configs(num_train_timesteps=_UpperCAmelCase )
def A ( self : Optional[int] ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=_UpperCAmelCase )
lowerCAmelCase_ : List[str] = self.scheduler_classes[0]
lowerCAmelCase_ : Optional[int] = self.get_scheduler_config(steps_offset=1 )
lowerCAmelCase_ : Optional[Any] = scheduler_class(**_UpperCAmelCase )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) )
def A ( self : List[Any] ):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase )
def A ( self : int ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=_UpperCAmelCase )
def A ( self : Optional[int] ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=_UpperCAmelCase )
def A ( self : List[str] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=_UpperCAmelCase )
def A ( self : Any ):
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=_UpperCAmelCase )
def A ( self : str ):
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=_UpperCAmelCase )
def A ( self : Optional[int] ):
self.check_over_configs(thresholding=_UpperCAmelCase )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , )
def A ( self : str ):
for t in [1, 10, 49]:
self.check_over_forward(time_step=_UpperCAmelCase )
def A ( self : Union[str, Any] ):
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ):
self.check_over_forward(time_step=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase )
def A ( self : Dict ):
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=_UpperCAmelCase , eta=_UpperCAmelCase )
def A ( self : List[Any] ):
lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0]
lowerCAmelCase_ : List[Any] = self.get_scheduler_config()
lowerCAmelCase_ : List[Any] = scheduler_class(**_UpperCAmelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4771 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2460 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0979 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5
def A ( self : Dict ):
lowerCAmelCase_ : List[Any] = self.scheduler_classes[0]
lowerCAmelCase_ : str = self.get_scheduler_config()
lowerCAmelCase_ : Dict = scheduler_class(**_UpperCAmelCase )
lowerCAmelCase_ , lowerCAmelCase_ : str = 10, 0.0
scheduler.set_timesteps(_UpperCAmelCase )
lowerCAmelCase_ : Tuple = self.dummy_model()
lowerCAmelCase_ : List[str] = self.dummy_sample_deter
lowerCAmelCase_ : List[str] = self.dummy_sample_deter + 0.1
lowerCAmelCase_ : Tuple = self.dummy_sample_deter - 0.1
lowerCAmelCase_ : Optional[Any] = samplea.shape[0]
lowerCAmelCase_ : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 )
lowerCAmelCase_ : Dict = torch.arange(_UpperCAmelCase )[0:3, None].repeat(1 , _UpperCAmelCase )
lowerCAmelCase_ : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
lowerCAmelCase_ : List[str] = scheduler.batch_step_no_noise(_UpperCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _UpperCAmelCase )
lowerCAmelCase_ : Tuple = torch.sum(torch.abs(_UpperCAmelCase ) )
lowerCAmelCase_ : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 1147.7904 ) < 1e-2
assert abs(result_mean.item() - 0.4982 ) < 1e-3
def A ( self : List[Any] ):
lowerCAmelCase_ : Dict = self.full_loop()
lowerCAmelCase_ : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) )
lowerCAmelCase_ : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 172.0067 ) < 1e-2
assert abs(result_mean.item() - 0.22_3967 ) < 1e-3
def A ( self : List[str] ):
lowerCAmelCase_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" )
lowerCAmelCase_ : Tuple = torch.sum(torch.abs(_UpperCAmelCase ) )
lowerCAmelCase_ : Dict = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 52.5302 ) < 1e-2
assert abs(result_mean.item() - 0.0684 ) < 1e-3
def A ( self : Tuple ):
lowerCAmelCase_ : str = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
lowerCAmelCase_ : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) )
lowerCAmelCase_ : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 149.8295 ) < 1e-2
assert abs(result_mean.item() - 0.1951 ) < 1e-3
def A ( self : str ):
lowerCAmelCase_ : int = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 )
lowerCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) )
lowerCAmelCase_ : str = torch.mean(torch.abs(_UpperCAmelCase ) )
assert abs(result_sum.item() - 149.0784 ) < 1e-2
assert abs(result_mean.item() - 0.1941 ) < 1e-3
| 366 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
__UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
__UpperCAmelCase = {
'vocab_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'
),
'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt',
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'google/electra-small-generator': (
'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'
),
'google/electra-base-generator': (
'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'
),
'google/electra-large-generator': (
'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'
),
'google/electra-small-discriminator': (
'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'
),
'google/electra-base-discriminator': (
'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'
),
'google/electra-large-discriminator': (
'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'
),
},
}
__UpperCAmelCase = {
'google/electra-small-generator': 5_12,
'google/electra-base-generator': 5_12,
'google/electra-large-generator': 5_12,
'google/electra-small-discriminator': 5_12,
'google/electra-base-discriminator': 5_12,
'google/electra-large-discriminator': 5_12,
}
__UpperCAmelCase = {
'google/electra-small-generator': {'do_lower_case': True},
'google/electra-base-generator': {'do_lower_case': True},
'google/electra-large-generator': {'do_lower_case': True},
'google/electra-small-discriminator': {'do_lower_case': True},
'google/electra-base-discriminator': {'do_lower_case': True},
'google/electra-large-discriminator': {'do_lower_case': True},
}
class __a ( __UpperCamelCase ):
__snake_case : List[Any] = VOCAB_FILES_NAMES
__snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP
__snake_case : Dict = PRETRAINED_INIT_CONFIGURATION
__snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__snake_case : str = ElectraTokenizer
def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) )
lowerCAmelCase_ : List[Any] = do_lower_case
lowerCAmelCase_ : Tuple = strip_accents
lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars
lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase )
lowerCAmelCase_ : str = do_lower_case
def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ):
lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
lowerCAmelCase_ : str = [self.sep_token_id]
lowerCAmelCase_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 28 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.