code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
__UpperCAmelCase = 9.8_0665 def __UpperCamelCase ( lowercase__ : float , lowercase__ : float , lowercase__ : float = g ) -> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
28
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
1
from math import factorial def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : float ) -> float: '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(lowercase__ , lowercase__ ) or not isinstance(lowercase__ , lowercase__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCAmelCase_ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCAmelCase_ : List[Any] = float(factorial(lowercase__ ) ) coefficient /= factorial(lowercase__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.75))
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
1
# Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : int , lowercase__ : int ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase_ : Optional[int] = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } lowerCAmelCase_ : Optional[int] = f'{src_lang}-{tgt_lang}' lowerCAmelCase_ : Optional[Any] = f'\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "allenai/{model_name}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don\'t use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n' model_card_dir.mkdir(parents=lowercase__ , exist_ok=lowercase__ ) lowerCAmelCase_ : List[str] = os.path.join(lowercase__ , """README.md""" ) print(f'Generating {path}' ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase__ ) # make sure we are under the root of the project __UpperCAmelCase = Path(__file__).resolve().parent.parent.parent __UpperCAmelCase = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __UpperCAmelCase = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello world! cécé herlolip' def __UpperCamelCase ( lowercase__ : str , lowercase__ : str , lowercase__ : bool ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowercase__ ) roberta.eval() # disable dropout lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.sentence_encoder lowerCAmelCase_ : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowerCAmelCase_ : Optional[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowercase__ ) lowerCAmelCase_ : Any = XLMRobertaXLForSequenceClassification(lowercase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowercase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowerCAmelCase_ : List[str] = roberta_sent_encoder.embed_tokens.weight lowerCAmelCase_ : Dict = roberta_sent_encoder.embed_positions.weight lowerCAmelCase_ : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowerCAmelCase_ : Optional[int] = roberta_sent_encoder.layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowerCAmelCase_ : BertLayer = model.roberta.encoder.layer[i] lowerCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowerCAmelCase_ : RobertaAttention = layer.attention lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.weight lowerCAmelCase_ : List[Any] = roberta_layer.self_attn_layer_norm.bias # self attention lowerCAmelCase_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.weight lowerCAmelCase_ : Optional[int] = roberta_layer.self_attn.q_proj.bias lowerCAmelCase_ : Tuple = roberta_layer.self_attn.k_proj.weight lowerCAmelCase_ : Dict = roberta_layer.self_attn.k_proj.bias lowerCAmelCase_ : List[str] = roberta_layer.self_attn.v_proj.weight lowerCAmelCase_ : int = roberta_layer.self_attn.v_proj.bias # self-attention output lowerCAmelCase_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowerCAmelCase_ : List[str] = roberta_layer.self_attn.out_proj.weight lowerCAmelCase_ : Any = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowerCAmelCase_ : Tuple = roberta_layer.final_layer_norm.weight lowerCAmelCase_ : Dict = roberta_layer.final_layer_norm.bias # intermediate lowerCAmelCase_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : List[str] = roberta_layer.fca.weight lowerCAmelCase_ : Optional[int] = roberta_layer.fca.bias # output lowerCAmelCase_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowerCAmelCase_ : Dict = roberta_layer.fca.weight lowerCAmelCase_ : Any = roberta_layer.fca.bias # end of layer if classification_head: lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.weight lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].dense.bias lowerCAmelCase_ : List[Any] = roberta.model.classification_heads["""mnli"""].out_proj.weight lowerCAmelCase_ : Any = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowerCAmelCase_ : List[str] = roberta.model.encoder.lm_head.dense.weight lowerCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight lowerCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.bias lowerCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.weight lowerCAmelCase_ : int = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowerCAmelCase_ : torch.Tensor = roberta.encode(lowercase__ ).unsqueeze(0 ) # batch of size 1 lowerCAmelCase_ : str = model(lowercase__ )[0] if classification_head: lowerCAmelCase_ : str = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowercase__ ) ) else: lowerCAmelCase_ : Any = roberta.model(lowercase__ )[0] print(our_output.shape , their_output.shape ) lowerCAmelCase_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 lowerCAmelCase_ : Optional[int] = torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowercase__ ).mkdir(parents=lowercase__ , exist_ok=lowercase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
28
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off __UpperCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __a ( __UpperCamelCase ): __snake_case : Any = VOCAB_FILES_NAMES __snake_case : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP __snake_case : Any = ["""input_ids""", """attention_mask"""] __snake_case : Dict = MBartTokenizer __snake_case : List[int] = [] __snake_case : List[int] = [] def __init__( self : List[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]="<s>" , UpperCAmelCase : int="</s>" , UpperCAmelCase : str="</s>" , UpperCAmelCase : Union[str, Any]="<s>" , UpperCAmelCase : int="<unk>" , UpperCAmelCase : str="<pad>" , UpperCAmelCase : List[Any]="<mask>" , UpperCAmelCase : Tuple=None , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Union[str, Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : str = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token super().__init__( vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = vocab_file lowerCAmelCase_ : Union[str, Any] = False if not self.vocab_file else True lowerCAmelCase_ : Optional[int] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) lowerCAmelCase_ : List[str] = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCAmelCase_ : List[str] = src_lang if src_lang is not None else """en_XX""" lowerCAmelCase_ : Union[str, Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCAmelCase_ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : Optional[int] ): return self._src_lang @src_lang.setter def A ( self : List[str] , UpperCAmelCase : str ): lowerCAmelCase_ : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A ( self : Tuple , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Optional[int] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : List[str] = [self.sep_token_id] lowerCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowerCAmelCase_ : str = src_lang lowerCAmelCase_ : Optional[Any] = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : int = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = tgt_lang_id return inputs def A ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str = "en_XX" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "ro_RO" , **UpperCAmelCase : Any , ): lowerCAmelCase_ : str = src_lang lowerCAmelCase_ : Any = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Dict = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCAmelCase_ : str = [] lowerCAmelCase_ : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase_ : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Tuple , UpperCAmelCase : str ): lowerCAmelCase_ : List[Any] = self.convert_tokens_to_ids(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [] lowerCAmelCase_ : Tuple = [self.eos_token_id, self.cur_lang_code] lowerCAmelCase_ : Tuple = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCAmelCase_ : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCAmelCase_ : List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return lowerCAmelCase_ : Any = os.path.join( UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ): copyfile(self.vocab_file , UpperCAmelCase ) return (out_vocab_file,)
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
1
def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> list: '''simple docstring''' lowerCAmelCase_ : str = len(lowercase__ ) lowerCAmelCase_ : Dict = [] for i in range(len(lowercase__ ) - pat_len + 1 ): lowerCAmelCase_ : str = True for j in range(lowercase__ ): if s[i + j] != pattern[j]: lowerCAmelCase_ : str = False break if match_found: position.append(lowercase__ ) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
28
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __UpperCAmelCase = get_logger(__name__) class __a ( enum.Enum ): __snake_case : Union[str, Any] = """all_checks""" __snake_case : List[Any] = """basic_checks""" __snake_case : Any = """no_checks""" class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass def __UpperCamelCase ( lowercase__ : Optional[dict] , lowercase__ : dict , lowercase__ : str=None ) -> Any: '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowercase__ ) - set(lowercase__ ) ) ) lowerCAmelCase_ : Optional[Any] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCAmelCase_ : Dict = """ for """ + verification_name if verification_name is not None else """""" if len(lowercase__ ) > 0: raise NonMatchingChecksumError( f'Checksums didn\'t match{for_verification_name}:\n' f'{bad_urls}\n' """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass class __a ( __UpperCamelCase ): pass def __UpperCamelCase ( lowercase__ : Optional[dict] , lowercase__ : dict ) -> List[Any]: '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise ExpectedMoreSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) if len(set(lowercase__ ) - set(lowercase__ ) ) > 0: raise UnexpectedSplits(str(set(lowercase__ ) - set(lowercase__ ) ) ) lowerCAmelCase_ : Any = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowercase__ ) > 0: raise NonMatchingSplitsSizesError(str(lowercase__ ) ) logger.info("""All the splits matched successfully.""" ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : bool = True ) -> dict: '''simple docstring''' if record_checksum: lowerCAmelCase_ : Optional[int] = shaaaa() with open(lowercase__ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b"""""" ): m.update(lowercase__ ) lowerCAmelCase_ : Any = m.hexdigest() else: lowerCAmelCase_ : int = None return {"num_bytes": os.path.getsize(lowercase__ ), "checksum": checksum} def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> int: '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
28
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
1
from typing import List import numpy as np def __UpperCamelCase ( lowercase__ : dict ) -> int: '''simple docstring''' lowerCAmelCase_ : int = {key: len(lowercase__ ) for key, value in gen_kwargs.items() if isinstance(lowercase__ , lowercase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowerCAmelCase_ : int = max(lists_lengths.values() , default=0 ) return max(1 , lowercase__ ) def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> List[range]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] for group_idx in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCAmelCase_ : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCAmelCase_ : List[str] = range(lowercase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowercase__ ) return shards_indices_per_group def __UpperCamelCase ( lowercase__ : dict , lowercase__ : int ) -> List[dict]: '''simple docstring''' lowerCAmelCase_ : str = _number_of_shards_in_gen_kwargs(lowercase__ ) if num_shards == 1: return [dict(lowercase__ )] else: lowerCAmelCase_ : Tuple = _distribute_shards(num_shards=lowercase__ , max_num_jobs=lowercase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase__ , lowercase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase__ ) ) ] def __UpperCamelCase ( lowercase__ : List[dict] ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __UpperCamelCase ( lowercase__ : np.random.Generator , lowercase__ : dict ) -> dict: '''simple docstring''' lowerCAmelCase_ : str = {len(lowercase__ ) for value in gen_kwargs.values() if isinstance(lowercase__ , lowercase__ )} lowerCAmelCase_ : Tuple = {} for size in list_sizes: lowerCAmelCase_ : List[Any] = list(range(lowercase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCAmelCase_ : Optional[Any] = dict(lowercase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ : str = [value[i] for i in indices_per_size[len(lowercase__ )]] return shuffled_kwargs
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
from __future__ import annotations def __UpperCamelCase ( lowercase__ : list[int] , lowercase__ : int ) -> bool: '''simple docstring''' if len(lowercase__ ) == 0: return False lowerCAmelCase_ : Optional[Any] = len(lowercase__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , lowercase__ ) else: return binary_search(a_list[midpoint + 1 :] , lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = input('Enter numbers separated by comma:\n').strip() __UpperCAmelCase = [int(item.strip()) for item in user_input.split(',')] __UpperCAmelCase = int(input('Enter the number to be found in the list:\n').strip()) __UpperCAmelCase = '' if binary_search(sequence, target) else 'not ' print(f"""{target} was {not_str}found in {sequence}""")
28
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = {'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class __a ( __UpperCamelCase ): @staticmethod @abstractmethod def A ( UpperCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def A ( self : List[str] ): raise NotImplementedError()
28
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
1
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } __UpperCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : str ) -> Optional[Any]: '''simple docstring''' for attribute in key.split(""".""" ): lowerCAmelCase_ : Dict = getattr(lowercase__ , lowercase__ ) if weight_type is not None: lowerCAmelCase_ : Union[str, Any] = getattr(lowercase__ , lowercase__ ).shape else: lowerCAmelCase_ : Union[str, Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowerCAmelCase_ : Any = value elif weight_type == "weight_g": lowerCAmelCase_ : Union[str, Any] = value elif weight_type == "weight_v": lowerCAmelCase_ : int = value elif weight_type == "bias": lowerCAmelCase_ : List[str] = value else: lowerCAmelCase_ : Any = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Tuple ) -> Any: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : str = fairseq_model.state_dict() lowerCAmelCase_ : Tuple = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase_ : Tuple = False if "conv_layers" in name: load_conv_layer( lowercase__ , lowercase__ , lowercase__ , lowercase__ , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase_ : int = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase_ : Union[str, Any] = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue lowerCAmelCase_ : Dict = True if "*" in mapped_key: lowerCAmelCase_ : Union[str, Any] = name.split(lowercase__ )[0].split(""".""" )[-2] lowerCAmelCase_ : Union[str, Any] = mapped_key.replace("""*""" , lowercase__ ) if "weight_g" in name: lowerCAmelCase_ : Tuple = """weight_g""" elif "weight_v" in name: lowerCAmelCase_ : Optional[Any] = """weight_v""" elif "bias" in name: lowerCAmelCase_ : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase_ : Union[str, Any] = """weight""" else: lowerCAmelCase_ : Any = None set_recursively(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) continue if not is_used: unused_weights.append(lowercase__ ) logger.warning(f'Unused weights: {unused_weights}' ) def __UpperCamelCase ( lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : int , lowercase__ : Any ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase_ : Union[str, Any] = name.split(""".""" ) lowerCAmelCase_ : List[Any] = int(items[0] ) lowerCAmelCase_ : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowerCAmelCase_ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowerCAmelCase_ : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' ) lowerCAmelCase_ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowerCAmelCase_ : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowercase__ ) @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=None , lowercase__ : List[Any]=None , lowercase__ : Tuple=True ) -> Dict: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Dict = UniSpeechSatConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = UniSpeechSatConfig() lowerCAmelCase_ : List[str] = """""" if is_finetuned: lowerCAmelCase_ : List[str] = UniSpeechSatForCTC(lowercase__ ) else: lowerCAmelCase_ : Optional[Any] = UniSpeechSatForPreTraining(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) lowerCAmelCase_ : Dict = model[0].eval() recursively_load_weights(lowercase__ , lowercase__ ) hf_wavavec.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
28
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[int] = 1 @register_to_config def __init__( self : str , UpperCAmelCase : int = 10_00 , UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None ): # set `betas`, `alphas`, `timesteps` self.set_timesteps(UpperCAmelCase ) # standard deviation of the initial noise distribution lowerCAmelCase_ : Tuple = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. lowerCAmelCase_ : int = 4 # running values lowerCAmelCase_ : List[Any] = [] def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Tuple = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] lowerCAmelCase_ : Dict = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: lowerCAmelCase_ : Any = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: lowerCAmelCase_ : List[Any] = torch.sin(steps * math.pi / 2 ) ** 2 lowerCAmelCase_ : Optional[Any] = (1.0 - self.betas**2) ** 0.5 lowerCAmelCase_ : List[str] = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] lowerCAmelCase_ : Tuple = timesteps.to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = [] def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) lowerCAmelCase_ : Dict = (self.timesteps == timestep).nonzero().item() lowerCAmelCase_ : Optional[Any] = timestep_index + 1 lowerCAmelCase_ : Optional[int] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(UpperCAmelCase ) if len(self.ets ) == 1: lowerCAmelCase_ : Optional[Any] = self.ets[-1] elif len(self.ets ) == 2: lowerCAmelCase_ : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: lowerCAmelCase_ : List[str] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: lowerCAmelCase_ : Optional[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) lowerCAmelCase_ : Union[str, Any] = self._get_prev_sample(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase ) def A ( self : int , UpperCAmelCase : torch.FloatTensor , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Dict ): return sample def A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Any ): lowerCAmelCase_ : Dict = self.alphas[timestep_index] lowerCAmelCase_ : int = self.betas[timestep_index] lowerCAmelCase_ : Tuple = self.alphas[prev_timestep_index] lowerCAmelCase_ : int = self.betas[prev_timestep_index] lowerCAmelCase_ : Optional[int] = (sample - sigma * ets) / max(UpperCAmelCase , 1e-8 ) lowerCAmelCase_ : Optional[int] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ): return self.config.num_train_timesteps
28
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
1
import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> str: '''simple docstring''' print("""Loading config file...""" ) def flatten_yaml_as_dict(lowercase__ : Optional[int] , lowercase__ : Any="" , lowercase__ : str="." ): lowerCAmelCase_ : List[Any] = [] for k, v in d.items(): lowerCAmelCase_ : Optional[Any] = parent_key + sep + k if parent_key else k if isinstance(lowercase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowercase__ , lowercase__ , sep=lowercase__ ).items() ) else: items.append((new_key, v) ) return dict(lowercase__ ) lowerCAmelCase_ : List[Any] = argparse.Namespace() with open(lowercase__ , """r""" ) as yaml_file: try: lowerCAmelCase_ : str = yaml.load(lowercase__ , Loader=yaml.FullLoader ) lowerCAmelCase_ : str = flatten_yaml_as_dict(lowercase__ ) for k, v in flat_cfg.items(): setattr(lowercase__ , lowercase__ , lowercase__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(lowercase__ , str(lowercase__ ) ) ) return config def __UpperCamelCase ( lowercase__ : int , lowercase__ : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : List[str] = MobileViTVaConfig() lowerCAmelCase_ : str = False # dataset if task_name.startswith("""imagenet1k_""" ): lowerCAmelCase_ : List[Any] = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: lowerCAmelCase_ : Tuple = 384 else: lowerCAmelCase_ : str = 256 lowerCAmelCase_ : Optional[Any] = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): lowerCAmelCase_ : Dict = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: lowerCAmelCase_ : Tuple = 384 else: lowerCAmelCase_ : List[Any] = 256 lowerCAmelCase_ : str = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): lowerCAmelCase_ : Optional[int] = 151 lowerCAmelCase_ : int = 512 lowerCAmelCase_ : Tuple = """ade20k-id2label.json""" lowerCAmelCase_ : Tuple = True elif task_name.startswith("""voc_""" ): lowerCAmelCase_ : Dict = 21 lowerCAmelCase_ : Tuple = 512 lowerCAmelCase_ : Any = """pascal-voc-id2label.json""" lowerCAmelCase_ : int = True # orig_config lowerCAmelCase_ : Optional[Any] = load_orig_config_file(lowercase__ ) assert getattr(lowercase__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(lowercase__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowerCAmelCase_ : Any = getattr(lowercase__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowerCAmelCase_ : Union[str, Any] = getattr(lowercase__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: lowerCAmelCase_ : Optional[Any] = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) lowerCAmelCase_ : List[Any] = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) lowerCAmelCase_ : Any = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label lowerCAmelCase_ : List[str] = """huggingface/label-files""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Optional[int] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Optional[int] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = dct.pop(lowercase__ ) lowerCAmelCase_ : Dict = val def __UpperCamelCase ( lowercase__ : Any , lowercase__ : List[Any]=False ) -> Tuple: '''simple docstring''' if base_model: lowerCAmelCase_ : Optional[int] = """""" else: lowerCAmelCase_ : List[Any] = """mobilevitv2.""" lowerCAmelCase_ : Any = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowerCAmelCase_ : int = k[8:] else: lowerCAmelCase_ : Optional[int] = k if ".block." in k: lowerCAmelCase_ : List[str] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: lowerCAmelCase_ : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: lowerCAmelCase_ : List[Any] = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: lowerCAmelCase_ : Tuple = k_new.replace("""conv_1.""" , f'{model_prefix}conv_stem.' ) for i in [1, 2]: if f'layer_{i}.' in k: lowerCAmelCase_ : List[str] = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' ) if ".exp_1x1." in k: lowerCAmelCase_ : Union[str, Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: lowerCAmelCase_ : Union[str, Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f'layer_{i}.0.' in k: lowerCAmelCase_ : Union[str, Any] = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' ) if f'layer_{i}.1.local_rep.0.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' ) if f'layer_{i}.1.local_rep.1.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' ) for i in [3, 4, 5]: if i == 3: lowerCAmelCase_ : int = [0, 1] elif i == 4: lowerCAmelCase_ : Tuple = [0, 1, 2, 3] elif i == 5: lowerCAmelCase_ : str = [0, 1, 2] for j in j_in: if f'layer_{i}.1.global_rep.{j}.' in k: lowerCAmelCase_ : Optional[int] = k_new.replace( f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' ) if f'layer_{i}.1.global_rep.{j+1}.' in k: lowerCAmelCase_ : List[str] = k_new.replace( f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' ) if f'layer_{i}.1.conv_proj.' in k: lowerCAmelCase_ : Union[str, Any] = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' ) if "pre_norm_attn.0." in k: lowerCAmelCase_ : List[str] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: lowerCAmelCase_ : List[str] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: lowerCAmelCase_ : List[Any] = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: lowerCAmelCase_ : Optional[Any] = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: lowerCAmelCase_ : Optional[Any] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: lowerCAmelCase_ : Dict = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: lowerCAmelCase_ : Any = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: lowerCAmelCase_ : Dict = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def __UpperCamelCase ( lowercase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(lowercase__ ) for k in keys_to_ignore: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowerCAmelCase_ : int = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : int , lowercase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = get_mobilevitva_config(lowercase__ , lowercase__ ) # load original state_dict lowerCAmelCase_ : Optional[Any] = torch.load(lowercase__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): lowerCAmelCase_ : str = MobileViTVaForSemanticSegmentation(lowercase__ ).eval() lowerCAmelCase_ : Dict = False else: lowerCAmelCase_ : str = MobileViTVaForImageClassification(lowercase__ ).eval() lowerCAmelCase_ : Union[str, Any] = False # remove and rename some keys of load the original model lowerCAmelCase_ : Optional[int] = checkpoint remove_unused_keys(lowercase__ ) lowerCAmelCase_ : Optional[int] = create_rename_keys(lowercase__ , base_model=lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load modified state_dict model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCAmelCase_ : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCAmelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : str = model(**lowercase__ ) # verify classification model if task_name.startswith("""imagenet""" ): lowerCAmelCase_ : Union[str, Any] = outputs.logits lowerCAmelCase_ : Dict = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowerCAmelCase_ : Optional[int] = torch.tensor([-1.6_336E00, -7.3_204E-02, -5.1_883E-01] ) assert torch.allclose(logits[0, :3] , lowercase__ , atol=1E-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {task_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """big_bird""" def __init__( self : Any , UpperCAmelCase : List[str]=5_03_58 , UpperCAmelCase : List[str]=7_68 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : str=12 , UpperCAmelCase : Any=30_72 , UpperCAmelCase : str="gelu_new" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[Any]=40_96 , UpperCAmelCase : str=2 , UpperCAmelCase : int=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=0 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : List[str]=66 , UpperCAmelCase : Optional[int]="block_sparse" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Union[str, Any]=64 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[int] , ): super().__init__( pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , sep_token_id=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : int = vocab_size lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : List[Any] = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Any = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = use_cache lowerCAmelCase_ : Any = rescale_embeddings lowerCAmelCase_ : Optional[Any] = attention_type lowerCAmelCase_ : Tuple = use_bias lowerCAmelCase_ : Any = block_size lowerCAmelCase_ : Dict = num_random_blocks lowerCAmelCase_ : str = classifier_dropout class __a ( __UpperCamelCase ): @property def A ( self : List[Any] ): if self.task == "multiple-choice": lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
28
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) __UpperCAmelCase = logging.getLogger(__name__) def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = argparse.ArgumentParser( description="""Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).""" ) parser.add_argument("""--file_path""" , type=lowercase__ , default="""data/dump.txt""" , help="""The path to the data.""" ) parser.add_argument("""--tokenizer_type""" , type=lowercase__ , default="""bert""" , choices=["""bert""", """roberta""", """gpt2"""] ) parser.add_argument("""--tokenizer_name""" , type=lowercase__ , default="""bert-base-uncased""" , help="""The tokenizer to use.""" ) parser.add_argument("""--dump_file""" , type=lowercase__ , default="""data/dump""" , help="""The dump file prefix.""" ) lowerCAmelCase_ : int = parser.parse_args() logger.info(f'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase_ : Optional[Any] = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map["""cls_token"""] # `[CLS]` lowerCAmelCase_ : Any = tokenizer.special_tokens_map["""sep_token"""] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase_ : Tuple = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : List[Any] = tokenizer.special_tokens_map["""cls_token"""] # `<s>` lowerCAmelCase_ : List[Any] = tokenizer.special_tokens_map["""sep_token"""] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase_ : str = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase_ : str = tokenizer.special_tokens_map["""bos_token"""] # `<|endoftext|>` lowerCAmelCase_ : List[str] = tokenizer.special_tokens_map["""eos_token"""] # `<|endoftext|>` logger.info(f'Loading text from {args.file_path}' ) with open(args.file_path , """r""" , encoding="""utf8""" ) as fp: lowerCAmelCase_ : List[Any] = fp.readlines() logger.info("""Start encoding""" ) logger.info(f'{len(lowercase__ )} examples to process.' ) lowerCAmelCase_ : str = [] lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Union[str, Any] = 10000 lowerCAmelCase_ : Optional[int] = time.time() for text in data: lowerCAmelCase_ : Dict = f'{bos} {text.strip()} {sep}' lowerCAmelCase_ : Optional[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) rslt.append(lowercase__ ) iter += 1 if iter % interval == 0: lowerCAmelCase_ : str = time.time() logger.info(f'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase_ : List[Any] = time.time() logger.info("""Finished binarization""" ) logger.info(f'{len(lowercase__ )} examples processed.' ) lowerCAmelCase_ : Union[str, Any] = f'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase_ : int = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase_ : Optional[Any] = [np.uintaa(lowercase__ ) for d in rslt] else: lowerCAmelCase_ : List[str] = [np.intaa(lowercase__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f'Dump to {dp_file}' ) with open(lowercase__ , """wb""" ) as handle: pickle.dump(rslt_ , lowercase__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
28
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def A ( self : List[Any] , UpperCAmelCase : List[Any] ): if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : int = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] ): if len(UpperCAmelCase ) == 0 or len(UpperCAmelCase ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(UpperCAmelCase ) ) if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : str = [sequences] lowerCAmelCase_ : Union[str, Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(UpperCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : Any=ZeroShotClassificationArgumentHandler() , *UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] = args_parser super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def A ( self : Optional[Any] ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[Any]=TruncationStrategy.ONLY_FIRST , **UpperCAmelCase : Tuple ): lowerCAmelCase_ : List[str] = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowerCAmelCase_ : List[Any] = self.tokenizer.eos_token try: lowerCAmelCase_ : List[str] = self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , ) except Exception as e: if "too short" in str(UpperCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCAmelCase_ : Union[str, Any] = self.tokenizer( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A ( self : str , **UpperCAmelCase : int ): if kwargs.get("""multi_class""" , UpperCAmelCase ) is not None: lowerCAmelCase_ : Tuple = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowerCAmelCase_ : str = {} if "candidate_labels" in kwargs: lowerCAmelCase_ : Optional[int] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowerCAmelCase_ : Optional[int] = kwargs["""hypothesis_template"""] lowerCAmelCase_ : Dict = {} if "multi_label" in kwargs: lowerCAmelCase_ : Dict = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self : str , UpperCAmelCase : Union[str, List[str]] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[int] , ): if len(UpperCAmelCase ) == 0: pass elif len(UpperCAmelCase ) == 1 and "candidate_labels" not in kwargs: lowerCAmelCase_ : int = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any="This example is {}." ): lowerCAmelCase_ , lowerCAmelCase_ : Dict = self._args_parser(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(UpperCAmelCase , UpperCAmelCase ) ): lowerCAmelCase_ : Optional[Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(UpperCAmelCase ) - 1, **model_input, } def A ( self : Dict , UpperCAmelCase : Optional[int] ): lowerCAmelCase_ : List[str] = inputs["""candidate_label"""] lowerCAmelCase_ : str = inputs["""sequence"""] lowerCAmelCase_ : Any = {k: inputs[k] for k in self.tokenizer.model_input_names} lowerCAmelCase_ : Optional[int] = self.model(**UpperCAmelCase ) lowerCAmelCase_ : List[Any] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=False ): lowerCAmelCase_ : Any = [outputs["""candidate_label"""] for outputs in model_outputs] lowerCAmelCase_ : str = [outputs["""sequence"""] for outputs in model_outputs] lowerCAmelCase_ : Dict = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowerCAmelCase_ : Tuple = logits.shape[0] lowerCAmelCase_ : List[str] = len(UpperCAmelCase ) lowerCAmelCase_ : int = N // n lowerCAmelCase_ : Any = logits.reshape((num_sequences, n, -1) ) if multi_label or len(UpperCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCAmelCase_ : Optional[Any] = self.entailment_id lowerCAmelCase_ : Optional[Any] = -1 if entailment_id == 0 else 0 lowerCAmelCase_ : Tuple = reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCAmelCase_ : Dict = np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase ) lowerCAmelCase_ : Any = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCAmelCase_ : Any = reshaped_outputs[..., self.entailment_id] lowerCAmelCase_ : Optional[int] = np.exp(UpperCAmelCase ) / np.exp(UpperCAmelCase ).sum(-1 , keepdims=UpperCAmelCase ) lowerCAmelCase_ : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
28
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __a ( __UpperCamelCase ): __snake_case : str = """roberta-prelayernorm""" def __init__( self : Any , UpperCAmelCase : Any=5_02_65 , UpperCAmelCase : int=7_68 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[Any]=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : str=2 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : Optional[int]=1e-1_2 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : List[Any]="absolute" , UpperCAmelCase : str=True , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : str , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Optional[Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = hidden_act lowerCAmelCase_ : Tuple = intermediate_size lowerCAmelCase_ : List[Any] = hidden_dropout_prob lowerCAmelCase_ : List[str] = attention_probs_dropout_prob lowerCAmelCase_ : Dict = max_position_embeddings lowerCAmelCase_ : List[str] = type_vocab_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Any = classifier_dropout class __a ( __UpperCamelCase ): @property def A ( self : Optional[int] ): if self.task == "multiple-choice": lowerCAmelCase_ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
28
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__UpperCamelCase ) class __a ( __UpperCamelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization __snake_case : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) __snake_case : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) __snake_case : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) __snake_case : str = "question" __snake_case : str = "context" __snake_case : str = "answers" @property def A ( self : str ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
1
import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMInverseScheduler, DDIMScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, StableDiffusionDiffEditPipeline, UNetaDConditionModel, ) from diffusers.utils import load_image, slow from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = StableDiffusionDiffEditPipeline __snake_case : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""height""", """width""", """image"""} | {"""image_latents"""} __snake_case : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"""image"""} | {"""image_latents"""} __snake_case : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case : Tuple = frozenset([] ) def A ( self : str ): torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase , ) lowerCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = DDIMInverseScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase , set_alpha_to_zero=UpperCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCAmelCase_ : int = CLIPTextModel(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Dict = { """unet""": unet, """scheduler""": scheduler, """inverse_scheduler""": inverse_scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[str]=0 ): lowerCAmelCase_ : Optional[Any] = floats_tensor((1, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : List[Any] = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : int = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = { """prompt""": """a dog and a newt""", """mask_image""": mask, """image_latents""": latents, """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=0 ): lowerCAmelCase_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : str = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : int = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : Any = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = { """image""": image, """source_prompt""": """a cat and a frog""", """target_prompt""": """a dog and a newt""", """generator""": generator, """num_inference_steps""": 2, """num_maps_per_mask""": 2, """mask_encode_strength""": 1.0, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any]=0 ): lowerCAmelCase_ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase_ : Tuple = Image.fromarray(np.uinta(UpperCAmelCase ) ).convert("""RGB""" ) if str(UpperCAmelCase ).startswith("""mps""" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(UpperCAmelCase ) else: lowerCAmelCase_ : str = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) lowerCAmelCase_ : Tuple = { """image""": image, """prompt""": """a cat and a frog""", """generator""": generator, """num_inference_steps""": 2, """inpaint_strength""": 1.0, """guidance_scale""": 6.0, """decode_latents""": True, """output_type""": """numpy""", } return inputs def A ( self : Any ): if not hasattr(self.pipeline_class , """_optional_components""" ): return lowerCAmelCase_ : List[str] = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) # set all optional components to None and update pipeline config accordingly for optional_component in pipe._optional_components: setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} ) lowerCAmelCase_ : str = self.get_dummy_inputs(UpperCAmelCase ) lowerCAmelCase_ : Any = pipe(**UpperCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : List[str] = self.pipeline_class.from_pretrained(UpperCAmelCase ) pipe_loaded.to(UpperCAmelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase ) for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase , UpperCAmelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) lowerCAmelCase_ : Any = self.get_dummy_inputs(UpperCAmelCase ) lowerCAmelCase_ : Tuple = pipe_loaded(**UpperCAmelCase )[0] lowerCAmelCase_ : Any = np.abs(output - output_loaded ).max() self.assertLess(UpperCAmelCase , 1e-4 ) def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = """cpu""" lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : Tuple = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_mask_inputs(UpperCAmelCase ) lowerCAmelCase_ : List[str] = pipe.generate_mask(**UpperCAmelCase ) lowerCAmelCase_ : Dict = mask[0, -3:, -3:] self.assertEqual(mask.shape , (1, 16, 16) ) lowerCAmelCase_ : Any = np.array([0] * 9 ) lowerCAmelCase_ : Dict = np.abs(mask_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) self.assertEqual(mask[0, -3, -4] , 0 ) def A ( self : int ): lowerCAmelCase_ : Optional[Any] = """cpu""" lowerCAmelCase_ : Optional[int] = self.get_dummy_components() lowerCAmelCase_ : int = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Dict = self.get_dummy_inversion_inputs(UpperCAmelCase ) lowerCAmelCase_ : Tuple = pipe.invert(**UpperCAmelCase ).images lowerCAmelCase_ : Any = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : List[Any] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : List[str] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) def A ( self : str ): super().test_inference_batch_single_identical(expected_max_diff=5e-3 ) def A ( self : Tuple ): lowerCAmelCase_ : str = """cpu""" lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : Optional[Any] = {"""beta_start""": 0.0_0085, """beta_end""": 0.012, """beta_schedule""": """scaled_linear"""} lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler(**UpperCAmelCase ) lowerCAmelCase_ : Any = DPMSolverMultistepInverseScheduler(**UpperCAmelCase ) lowerCAmelCase_ : List[Any] = self.pipeline_class(**UpperCAmelCase ) pipe.to(UpperCAmelCase ) pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.get_dummy_inversion_inputs(UpperCAmelCase ) lowerCAmelCase_ : int = pipe.invert(**UpperCAmelCase ).images lowerCAmelCase_ : str = image[0, -1, -3:, -3:] self.assertEqual(image.shape , (2, 32, 32, 3) ) lowerCAmelCase_ : List[str] = np.array( [0.5150, 0.5134, 0.5043, 0.5376, 0.4694, 0.5_1050, 0.5015, 0.4407, 0.4799] , ) lowerCAmelCase_ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(UpperCAmelCase , 1e-3 ) @require_torch_gpu @slow class __a ( unittest.TestCase ): def A ( self : int ): super().tearDown() gc.collect() torch.cuda.empty_cache() @classmethod def A ( cls : Optional[Any] ): lowerCAmelCase_ : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png""" ) lowerCAmelCase_ : Any = raw_image.convert("""RGB""" ).resize((7_68, 7_68) ) lowerCAmelCase_ : Union[str, Any] = raw_image def A ( self : int ): lowerCAmelCase_ : Any = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase_ : Union[str, Any] = DDIMScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : Tuple = DDIMInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : Tuple = """a bowl of fruit""" lowerCAmelCase_ : Any = """a bowl of pears""" lowerCAmelCase_ : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) lowerCAmelCase_ : int = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase ).latents lowerCAmelCase_ : str = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Optional[Any] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1 def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = torch.manual_seed(0 ) lowerCAmelCase_ : List[Any] = StableDiffusionDiffEditPipeline.from_pretrained( """stabilityai/stable-diffusion-2-1""" , safety_checker=UpperCAmelCase , torch_dtype=torch.floataa ) lowerCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) lowerCAmelCase_ : int = DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCAmelCase ) lowerCAmelCase_ : int = """a bowl of fruit""" lowerCAmelCase_ : Dict = """a bowl of pears""" lowerCAmelCase_ : Dict = pipe.generate_mask( image=self.raw_image , source_prompt=UpperCAmelCase , target_prompt=UpperCAmelCase , generator=UpperCAmelCase , ) lowerCAmelCase_ : List[Any] = pipe.invert( prompt=UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=UpperCAmelCase , num_inference_steps=25 , ).latents lowerCAmelCase_ : Optional[Any] = pipe( prompt=UpperCAmelCase , mask_image=UpperCAmelCase , image_latents=UpperCAmelCase , generator=UpperCAmelCase , negative_prompt=UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type="""numpy""" , ).images[0] lowerCAmelCase_ : Optional[int] = ( np.array( load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/diffedit/pears.png""" ).resize((7_68, 7_68) ) ) / 2_55 ) assert np.abs((expected_image - image).max() ) < 5e-1
28
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
1
def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(lowercase__ , lowercase__ ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) lowerCAmelCase_ : str = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowercase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
28
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
1
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
1
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = SwinConfig() lowerCAmelCase_ : List[str] = swin_name.split("""_""" ) lowerCAmelCase_ : List[Any] = name_split[1] lowerCAmelCase_ : int = int(name_split[4] ) lowerCAmelCase_ : Any = int(name_split[3][-1] ) if model_size == "tiny": lowerCAmelCase_ : List[str] = 96 lowerCAmelCase_ : Optional[int] = (2, 2, 6, 2) lowerCAmelCase_ : Any = (3, 6, 12, 24) elif model_size == "small": lowerCAmelCase_ : Union[str, Any] = 96 lowerCAmelCase_ : Dict = (2, 2, 18, 2) lowerCAmelCase_ : str = (3, 6, 12, 24) elif model_size == "base": lowerCAmelCase_ : Dict = 128 lowerCAmelCase_ : Any = (2, 2, 18, 2) lowerCAmelCase_ : Optional[int] = (4, 8, 16, 32) else: lowerCAmelCase_ : Dict = 192 lowerCAmelCase_ : Dict = (2, 2, 18, 2) lowerCAmelCase_ : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: lowerCAmelCase_ : List[Any] = 21841 else: lowerCAmelCase_ : Dict = 1000 lowerCAmelCase_ : Any = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : Tuple = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : List[Any] = idalabel lowerCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : List[str] = img_size lowerCAmelCase_ : Any = num_classes lowerCAmelCase_ : Tuple = embed_dim lowerCAmelCase_ : str = depths lowerCAmelCase_ : Any = num_heads lowerCAmelCase_ : Tuple = window_size return config def __UpperCamelCase ( lowercase__ : List[str] ) -> List[str]: '''simple docstring''' if "patch_embed.proj" in name: lowerCAmelCase_ : str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: lowerCAmelCase_ : Union[str, Any] = """encoder.""" + name if "attn.proj" in name: lowerCAmelCase_ : List[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase_ : int = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase_ : Optional[int] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase_ : int = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase_ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if name == "norm.weight": lowerCAmelCase_ : Optional[int] = """layernorm.weight""" if name == "norm.bias": lowerCAmelCase_ : Optional[Any] = """layernorm.bias""" if "head" in name: lowerCAmelCase_ : Any = name.replace("""head""" , """classifier""" ) else: lowerCAmelCase_ : Union[str, Any] = """swin.""" + name return name def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any ) -> Optional[int]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : Any = orig_state_dict.pop(lowercase__ ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase_ : int = key.split(""".""" ) lowerCAmelCase_ : int = int(key_split[1] ) lowerCAmelCase_ : Union[str, Any] = int(key_split[3] ) lowerCAmelCase_ : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase_ : Optional[int] = val[:dim, :] lowerCAmelCase_ : str = val[ dim : dim * 2, : ] lowerCAmelCase_ : Optional[Any] = val[-dim:, :] else: lowerCAmelCase_ : Optional[Any] = val[ :dim ] lowerCAmelCase_ : Tuple = val[ dim : dim * 2 ] lowerCAmelCase_ : Optional[Any] = val[ -dim: ] else: lowerCAmelCase_ : Tuple = val return orig_state_dict def __UpperCamelCase ( lowercase__ : str , lowercase__ : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() lowerCAmelCase_ : Optional[int] = get_swin_config(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = SwinForImageClassification(lowercase__ ) model.eval() lowerCAmelCase_ : Dict = convert_state_dict(timm_model.state_dict() , lowercase__ ) model.load_state_dict(lowercase__ ) lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swin_name.replace("""_""" , """-""" ) ) ) lowerCAmelCase_ : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) lowerCAmelCase_ : Union[str, Any] = image_processor(images=lowercase__ , return_tensors="""pt""" ) lowerCAmelCase_ : int = timm_model(inputs["""pixel_values"""] ) lowerCAmelCase_ : Union[str, Any] = model(**lowercase__ ).logits assert torch.allclose(lowercase__ , lowercase__ , atol=1E-3 ) print(f'Saving model {swin_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swin_name', default='swin_tiny_patch4_window7_224', type=str, help='Name of the Swin timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
28
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
1
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
import requests from bsa import BeautifulSoup def __UpperCamelCase ( lowercase__ : str = "AAPL" ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' lowerCAmelCase_ : Tuple = BeautifulSoup(requests.get(lowercase__ ).text , """html.parser""" ) lowerCAmelCase_ : int = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
28
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
from __future__ import annotations from typing import Any def __UpperCamelCase ( lowercase__ : list[Any] ) -> None: '''simple docstring''' create_state_space_tree(lowercase__ , [] , 0 ) def __UpperCamelCase ( lowercase__ : list[Any] , lowercase__ : list[Any] , lowercase__ : int ) -> None: '''simple docstring''' if index == len(lowercase__ ): print(lowercase__ ) return create_state_space_tree(lowercase__ , lowercase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowercase__ , lowercase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": __UpperCAmelCase = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
28
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
1
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __UpperCamelCase ( lowercase__ : BertModel , lowercase__ : str , lowercase__ : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowerCAmelCase_ : Optional[Any] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(lowercase__ ): os.makedirs(lowercase__ ) lowerCAmelCase_ : List[str] = model.state_dict() def to_tf_var_name(lowercase__ : str ): for patt, repl in iter(lowercase__ ): lowerCAmelCase_ : Dict = name.replace(lowercase__ , lowercase__ ) return f'bert/{name}' def create_tf_var(lowercase__ : np.ndarray , lowercase__ : str , lowercase__ : tf.Session ): lowerCAmelCase_ : int = tf.dtypes.as_dtype(tensor.dtype ) lowerCAmelCase_ : int = tf.get_variable(dtype=lowercase__ , shape=tensor.shape , name=lowercase__ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase__ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowerCAmelCase_ : List[Any] = to_tf_var_name(lowercase__ ) lowerCAmelCase_ : List[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowerCAmelCase_ : List[Any] = torch_tensor.T lowerCAmelCase_ : Any = create_tf_var(tensor=lowercase__ , name=lowercase__ , session=lowercase__ ) tf.keras.backend.set_value(lowercase__ , lowercase__ ) lowerCAmelCase_ : Dict = session.run(lowercase__ ) print(f'Successfully created {tf_name}: {np.allclose(lowercase__ , lowercase__ )}' ) lowerCAmelCase_ : Optional[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase__ , os.path.join(lowercase__ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def __UpperCamelCase ( lowercase__ : List[str]=None ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowercase__ , required=lowercase__ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=lowercase__ , default=lowercase__ , required=lowercase__ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=lowercase__ , required=lowercase__ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=lowercase__ , required=lowercase__ , help="""Directory in which to save tensorflow model""" ) lowerCAmelCase_ : Optional[Any] = parser.parse_args(lowercase__ ) lowerCAmelCase_ : List[str] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase__ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
28
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
1
from __future__ import annotations __UpperCAmelCase = 10 def __UpperCamelCase ( lowercase__ : list[int] ) -> list[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : Tuple = max(lowercase__ ) while placement <= max_digit: # declare and initialize empty buckets lowerCAmelCase_ : list[list] = [[] for _ in range(lowercase__ )] # split list_of_ints between the buckets for i in list_of_ints: lowerCAmelCase_ : Dict = int((i / placement) % RADIX ) buckets[tmp].append(lowercase__ ) # put each buckets' contents into list_of_ints lowerCAmelCase_ : List[Any] = 0 for b in range(lowercase__ ): for i in buckets[b]: lowerCAmelCase_ : int = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
28
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
1
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a ( __UpperCamelCase ): def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase , """num_heads""" ) ) class __a : def __init__( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : str=64 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Any=[16, 48, 96] , UpperCAmelCase : List[Any]=[1, 3, 6] , UpperCAmelCase : List[Any]=[1, 2, 10] , UpperCAmelCase : Union[str, Any]=[7, 3, 3] , UpperCAmelCase : Union[str, Any]=[4, 2, 2] , UpperCAmelCase : Tuple=[2, 1, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 2] , UpperCAmelCase : Tuple=[False, False, True] , UpperCAmelCase : int=[0.0, 0.0, 0.0] , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Any=1e-1_2 , UpperCAmelCase : int=True , UpperCAmelCase : Any=True , UpperCAmelCase : int=2 , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Dict = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Any = patch_sizes lowerCAmelCase_ : Tuple = patch_stride lowerCAmelCase_ : Tuple = patch_padding lowerCAmelCase_ : int = is_training lowerCAmelCase_ : int = use_labels lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : int = embed_dim lowerCAmelCase_ : List[Any] = num_heads lowerCAmelCase_ : Dict = stride_kv lowerCAmelCase_ : Union[str, Any] = depth lowerCAmelCase_ : List[Any] = cls_token lowerCAmelCase_ : List[Any] = attention_drop_rate lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : str = layer_norm_eps def A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[str] = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : Optional[Any] = self.get_config() return config, pixel_values, labels def A ( self : Union[str, Any] ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : List[Any] = CvtModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : Dict = model(UpperCAmelCase ) lowerCAmelCase_ : int = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ : int = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : Optional[int] = self.num_labels lowerCAmelCase_ : Dict = CvtForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : List[Any] ): lowerCAmelCase_ : int = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = config_and_inputs lowerCAmelCase_ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __snake_case : Optional[Any] = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) __snake_case : Optional[int] = False __snake_case : List[str] = False __snake_case : Dict = False __snake_case : List[str] = False __snake_case : Any = False def A ( self : str ): lowerCAmelCase_ : Optional[Any] = CvtModelTester(self ) lowerCAmelCase_ : List[Any] = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : Optional[int] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Optional[Any] ): return @unittest.skip(reason="""Cvt does not output attentions""" ) def A ( self : Optional[Any] ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def A ( self : int ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def A ( self : Optional[Any] ): pass def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Optional[int] = model_class(UpperCAmelCase ) lowerCAmelCase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Dict = [*signature.parameters.keys()] lowerCAmelCase_ : Optional[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): def check_hidden_states_output(UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Any ): lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCAmelCase_ : str = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) lowerCAmelCase_ : int = outputs.hidden_states lowerCAmelCase_ : int = len(self.model_tester.depth ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase_ , lowerCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Optional[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def A ( self : Optional[Any] ): pass @slow def A ( self : Dict ): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Any = CvtModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self : str ): lowerCAmelCase_ : str = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCAmelCase ) lowerCAmelCase_ : int = self.default_image_processor lowerCAmelCase_ : Any = prepare_img() lowerCAmelCase_ : Any = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Dict = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Optional[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : List[str] = torch.tensor([0.9285, 0.9015, -0.3150] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) )
28
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __a ( unittest.TestCase ,__UpperCamelCase ): def A ( self : Tuple ): lowerCAmelCase_ : Tuple = load_tool("""text-to-speech""" ) self.tool.setup() def A ( self : Dict ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase_ : Any = self.tool("""hey""" ) lowerCAmelCase_ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) ) def A ( self : List[str] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = self.tool("""hey""" ) lowerCAmelCase_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
28
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Union[str, Any]=0.999 , lowercase__ : Any="cosine" , ) -> Optional[Any]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ : Optional[int] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(f'Unsupported alpha_tranform_type: {alpha_transform_type}' ) lowerCAmelCase_ : Any = [] for i in range(lowercase__ ): lowerCAmelCase_ : int = i / num_diffusion_timesteps lowerCAmelCase_ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class __a ( __UpperCamelCase ,__UpperCamelCase ): @register_to_config def __init__( self : int , UpperCAmelCase : int = 10_00 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) lowerCAmelCase_ : Optional[Any] = betas_for_alpha_bar(UpperCAmelCase ) lowerCAmelCase_ : int = 1.0 - self.betas lowerCAmelCase_ : Optional[Any] = torch.cumprod(self.alphas , dim=0 ) lowerCAmelCase_ : Any = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowerCAmelCase_ : Optional[int] = 1.0 # setable values lowerCAmelCase_ : List[Any] = None lowerCAmelCase_ : Any = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) lowerCAmelCase_ : Tuple = variance_type def A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowerCAmelCase_ : List[Any] = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: lowerCAmelCase_ : Any = t - 1 lowerCAmelCase_ : int = self.alphas_cumprod[t] lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase_ : Tuple = 1 - alpha_prod_t lowerCAmelCase_ : Tuple = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase_ : Tuple = self.betas[t] else: lowerCAmelCase_ : str = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase_ : Any = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowerCAmelCase_ : Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowerCAmelCase_ : Dict = torch.log(torch.clamp(UpperCAmelCase , min=1e-2_0 ) ) lowerCAmelCase_ : str = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowerCAmelCase_ : Optional[int] = variance.log() lowerCAmelCase_ : int = beta.log() lowerCAmelCase_ : Optional[int] = (predicted_variance + 1) / 2 lowerCAmelCase_ : Tuple = frac * max_log + (1 - frac) * min_log return variance def A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str=None , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : int = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: lowerCAmelCase_ : Tuple = None # 1. compute alphas, betas if prev_timestep is None: lowerCAmelCase_ : Optional[Any] = t - 1 lowerCAmelCase_ : str = self.alphas_cumprod[t] lowerCAmelCase_ : Dict = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowerCAmelCase_ : Optional[Any] = 1 - alpha_prod_t lowerCAmelCase_ : List[str] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowerCAmelCase_ : Any = self.betas[t] lowerCAmelCase_ : Optional[int] = self.alphas[t] else: lowerCAmelCase_ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowerCAmelCase_ : Tuple = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase_ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase_ : Dict = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`' """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase_ : Optional[Any] = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : int = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowerCAmelCase_ : str = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase_ : Tuple = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCAmelCase_ : str = 0 if t > 0: lowerCAmelCase_ : str = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) lowerCAmelCase_ : Any = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": lowerCAmelCase_ : int = variance elif self.variance_type == "learned_range": lowerCAmelCase_ : Optional[int] = (0.5 * variance).exp() else: raise ValueError( F'variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`' """ for the UnCLIPScheduler.""" ) lowerCAmelCase_ : Optional[int] = variance * variance_noise lowerCAmelCase_ : List[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Tuple , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowerCAmelCase_ : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowerCAmelCase_ : Tuple = timesteps.to(original_samples.device ) lowerCAmelCase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowerCAmelCase_ : Any = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase_ : Tuple = sqrt_alpha_prod.unsqueeze(-1 ) lowerCAmelCase_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowerCAmelCase_ : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowerCAmelCase_ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowerCAmelCase_ : List[Any] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
28
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
1
import math class __a : def __init__( self : Optional[int] , UpperCAmelCase : Any=0 ): # a graph with Node 0,1,...,N-1 lowerCAmelCase_ : List[str] = n lowerCAmelCase_ : Any = [ [math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase ) ] # adjacency matrix for weight lowerCAmelCase_ : int = [ [math.inf for j in range(0 , UpperCAmelCase )] for i in range(0 , UpperCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : Union[str, Any] = w def A ( self : Optional[Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): return self.dp[u][v] if __name__ == "__main__": __UpperCAmelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
28
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __a ( SCREAMING_SNAKE_CASE_ ): __snake_case : Tuple = """canine""" def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=7_68 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : List[str]=30_72 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : List[str]=1_63_84 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : List[Any]=1e-1_2 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Dict=0xe_0_0_0 , UpperCAmelCase : List[str]=0xe_0_0_1 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : Tuple=1_63_84 , UpperCAmelCase : Optional[int]=1_28 , **UpperCAmelCase : int , ): super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a ) lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : str = hidden_act lowerCAmelCase_ : Union[str, Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : Any = layer_norm_eps # Character config: lowerCAmelCase_ : Optional[int] = downsampling_rate lowerCAmelCase_ : List[str] = upsampling_kernel_size lowerCAmelCase_ : List[Any] = num_hash_functions lowerCAmelCase_ : List[Any] = num_hash_buckets lowerCAmelCase_ : Any = local_transformer_stride
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
def __UpperCamelCase ( lowercase__ : list , lowercase__ : int , lowercase__ : int = 0 , lowercase__ : int = 0 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = right or len(lowercase__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowercase__ , lowercase__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> bool: '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') __UpperCAmelCase = int(input('Enter number: ').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCAmelCase = logging.getLogger(__name__) def __UpperCamelCase ( lowercase__ : torch.nn.Module , lowercase__ : BnbQuantizationConfig , lowercase__ : Union[str, os.PathLike] = None , lowercase__ : Optional[Dict[str, Union[int, str, torch.device]]] = None , lowercase__ : Optional[List[str]] = None , lowercase__ : Optional[Dict[Union[int, str], Union[int, str]]] = None , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = bnb_quantization_config.load_in_abit lowerCAmelCase_ : int = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) lowerCAmelCase_ : Optional[int] = [] # custom device map if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(device_map.keys() ) > 1: lowerCAmelCase_ : Tuple = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase_ : Optional[Any] = get_keys_to_not_convert(__lowerCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCAmelCase ) lowerCAmelCase_ : Tuple = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCAmelCase ) # compatibility with peft lowerCAmelCase_ : Optional[int] = load_in_abit lowerCAmelCase_ : Dict = load_in_abit lowerCAmelCase_ : Tuple = get_parameter_device(__lowerCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) lowerCAmelCase_ : Union[str, Any] = replace_with_bnb_layers(__lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) # convert param to the right dtype lowerCAmelCase_ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCAmelCase_ : Optional[Any] = name.replace(""".weight""" , """""" ).replace(""".bias""" , """""" ) lowerCAmelCase_ : Any = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCAmelCase ): param.to(__lowerCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): lowerCAmelCase_ : Tuple = replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) lowerCAmelCase_ : Tuple = get_quantized_model_device_map( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_memory=__lowerCAmelCase , no_split_module_classes=__lowerCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase_ : str = True lowerCAmelCase_ : List[str] = any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCAmelCase , offload_state_dict=__lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCAmelCase , device_map=__lowerCAmelCase , offload_dir=__lowerCAmelCase ) def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : Tuple , lowercase__ : int=None , lowercase__ : Any=None , lowercase__ : str=None ) -> Tuple: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowerCAmelCase_ : List[str] = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) lowerCAmelCase_ : Union[str, Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCAmelCase_ : Union[str, Any] = {} lowerCAmelCase_ : Optional[int] = special_dtypes lowerCAmelCase_ : List[str] = no_split_module_classes lowerCAmelCase_ : List[str] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase_ : Optional[int] = get_balanced_memory( __lowerCAmelCase , low_zero=(device_map == """balanced_low_0""") , max_memory=__lowerCAmelCase , **__lowerCAmelCase , ) lowerCAmelCase_ : Optional[int] = max_memory lowerCAmelCase_ : List[str] = infer_auto_device_map(__lowerCAmelCase , **__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # check if don't have any quantized module on the cpu lowerCAmelCase_ : Dict = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase_ : Optional[Any] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : str , lowercase__ : Optional[int]=None , lowercase__ : Dict=None ) -> Any: '''simple docstring''' if modules_to_not_convert is None: lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ , lowerCAmelCase_ : int = _replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Optional[Any]=None , lowercase__ : Dict=None , ) -> str: '''simple docstring''' lowerCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase_ : List[Any] = [] current_key_name.append(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase_ : Optional[int] = """.""".join(__lowerCAmelCase ) lowerCAmelCase_ : int = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase_ : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase_ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase_ : Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) lowerCAmelCase_ : int = module.weight.data if module.bias is not None: lowerCAmelCase_ : Union[str, Any] = module.bias.data bnb_module.requires_grad_(__lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = True if len(list(module.children() ) ) > 0: lowerCAmelCase_ , lowerCAmelCase_ : Dict = _replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __UpperCamelCase ( lowercase__ : Dict ) -> List[Any]: '''simple docstring''' with init_empty_weights(): lowerCAmelCase_ : Union[str, Any] = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase_ : Optional[int] = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase_ : Optional[Any] = sum(__lowerCAmelCase , [] ) lowerCAmelCase_ : Union[str, Any] = len(__lowerCAmelCase ) > 0 # Check if it is a base model lowerCAmelCase_ : List[Any] = False if hasattr(__lowerCAmelCase , """base_model_prefix""" ): lowerCAmelCase_ : Dict = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase_ : Tuple = list(model.named_children() ) lowerCAmelCase_ : Union[str, Any] = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase_ : Dict = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) lowerCAmelCase_ : Tuple = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys lowerCAmelCase_ : str = [""".weight""", """.bias"""] lowerCAmelCase_ : str = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase_ : int = name.replace(__lowerCAmelCase , """""" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names def __UpperCamelCase ( lowercase__ : Dict ) -> str: '''simple docstring''' for m in model.modules(): if isinstance(__lowerCAmelCase , bnb.nn.Linearabit ): return True return False def __UpperCamelCase ( lowercase__ : nn.Module ) -> int: '''simple docstring''' return next(parameter.parameters() ).device def __UpperCamelCase ( lowercase__ : int , lowercase__ : str , lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , 0 , dtype=__lowerCAmelCase , value=__lowerCAmelCase ) lowerCAmelCase_ : int = param_name lowerCAmelCase_ : Dict = model if "." in tensor_name: lowerCAmelCase_ : Optional[int] = tensor_name.split(""".""" ) for split in splits[:-1]: lowerCAmelCase_ : str = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) lowerCAmelCase_ : Optional[Any] = new_module lowerCAmelCase_ : Tuple = splits[-1] # offload weights lowerCAmelCase_ : Optional[Any] = False offload_weight(module._parameters[tensor_name] , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) if hasattr(module._parameters[tensor_name] , """SCB""" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""" ) , __lowerCAmelCase , index=__lowerCAmelCase , ) else: offload_weight(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) offload_weight(__lowerCAmelCase , param_name.replace("""weight""" , """SCB""" ) , __lowerCAmelCase , index=__lowerCAmelCase ) set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , """meta""" , dtype=__lowerCAmelCase , value=torch.empty(*param.size() ) )
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( a__ ): def __init__( self : str , *UpperCAmelCase : Dict , **UpperCAmelCase : Optional[int] ): warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , _lowerCamelCase , ) super().__init__(*_lowerCamelCase , **_lowerCamelCase )
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
def __UpperCamelCase ( lowercase__ : int = 100 ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Any = (n * (n + 1) // 2) ** 2 lowerCAmelCase_ : Tuple = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"""{solution() = }""")
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __a ( lowerCamelCase__ ): __snake_case : Dict = 'encoder-decoder' __snake_case : int = True def __init__( self : Dict , **UpperCAmelCase : Optional[int] ): super().__init__(**UpperCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowerCAmelCase_ : Tuple = kwargs.pop("""encoder""" ) lowerCAmelCase_ : List[Any] = encoder_config.pop("""model_type""" ) lowerCAmelCase_ : Optional[int] = kwargs.pop("""decoder""" ) lowerCAmelCase_ : Union[str, Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowerCAmelCase_ : List[Any] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : List[str] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : List[str] = True @classmethod def A ( cls : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Tuple = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **UpperCAmelCase ) def A ( self : List[str] ): lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : List[Any] = self.encoder.to_dict() lowerCAmelCase_ : Any = self.decoder.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : int = StableDiffusionPanoramaPipeline __snake_case : Any = TEXT_TO_IMAGE_PARAMS __snake_case : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS __snake_case : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS __snake_case : Any = TEXT_TO_IMAGE_IMAGE_PARAMS def A ( self : Tuple ): torch.manual_seed(0 ) lowerCAmelCase_ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCAmelCase_ : Any = DDIMScheduler() torch.manual_seed(0 ) lowerCAmelCase_ : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowerCAmelCase_ : Tuple = CLIPTextModel(_snake_case ) lowerCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any]=0 ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(_snake_case ) lowerCAmelCase_ : str = { """prompt""": """a photo of the dolomites""", """generator""": generator, # Setting height and width to None to prevent OOMs on CPU. """height""": None, """width""": None, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A ( self : Any ): lowerCAmelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Tuple = self.get_dummy_components() lowerCAmelCase_ : str = StableDiffusionPanoramaPipeline(**_snake_case ) lowerCAmelCase_ : str = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ : Tuple = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ : Tuple = sd_pipe(**_snake_case ).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : List[str] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Tuple ): super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Dict ): super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : str = self.get_dummy_components() lowerCAmelCase_ : List[str] = StableDiffusionPanoramaPipeline(**_snake_case ) lowerCAmelCase_ : Any = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ : str = """french fries""" lowerCAmelCase_ : str = sd_pipe(**_snake_case , negative_prompt=_snake_case ) lowerCAmelCase_ : str = output.images lowerCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Optional[int] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Optional[Any] ): lowerCAmelCase_ : int = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = StableDiffusionPanoramaPipeline(**_snake_case ) lowerCAmelCase_ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ : Union[str, Any] = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ : List[Any] = sd_pipe(**_snake_case , view_batch_size=2 ) lowerCAmelCase_ : List[str] = output.images lowerCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : List[Any] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : int = self.get_dummy_components() lowerCAmelCase_ : List[Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" ) lowerCAmelCase_ : Tuple = StableDiffusionPanoramaPipeline(**_snake_case ) lowerCAmelCase_ : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ : Optional[int] = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ : str = sd_pipe(**_snake_case ).images lowerCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : Union[str, Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[str] ): lowerCAmelCase_ : List[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Optional[Any] = self.get_dummy_components() lowerCAmelCase_ : Union[str, Any] = PNDMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , skip_prk_steps=_snake_case ) lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline(**_snake_case ) lowerCAmelCase_ : List[Any] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase_ : List[Any] = self.get_dummy_inputs(_snake_case ) lowerCAmelCase_ : Dict = sd_pipe(**_snake_case ).images lowerCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ : str = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __a ( unittest.TestCase ): def A ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Any , UpperCAmelCase : int=0 ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(_snake_case ) lowerCAmelCase_ : Tuple = { """prompt""": """a photo of the dolomites""", """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def A ( self : str ): lowerCAmelCase_ : Tuple = """stabilityai/stable-diffusion-2-base""" lowerCAmelCase_ : str = DDIMScheduler.from_pretrained(_snake_case , subfolder="""scheduler""" ) lowerCAmelCase_ : Dict = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() lowerCAmelCase_ : Any = self.get_inputs() lowerCAmelCase_ : List[str] = pipe(**_snake_case ).images lowerCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCAmelCase_ : Tuple = np.array( [ 0.3696_8392, 0.2702_5372, 0.3244_6766, 0.2837_9387, 0.3636_3274, 0.3073_3347, 0.2710_0027, 0.2705_4125, 0.2553_6096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained( """stabilityai/stable-diffusion-2-base""" , safety_checker=_snake_case ) lowerCAmelCase_ : str = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() lowerCAmelCase_ : Tuple = self.get_inputs() lowerCAmelCase_ : Tuple = pipe(**_snake_case ).images lowerCAmelCase_ : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_12, 20_48, 3) lowerCAmelCase_ : Union[str, Any] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def A ( self : Dict ): lowerCAmelCase_ : str = 0 def callback_fn(UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor ) -> None: lowerCAmelCase_ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase_ : str = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCAmelCase_ : int = latents[0, -3:, -3:, -1] lowerCAmelCase_ : int = np.array( [ 0.1868_1869, 0.3390_7816, 0.536_1276, 0.1443_2865, -0.0285_6611, -0.7394_1123, 0.2339_7987, 0.4732_2682, -0.3782_3164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase_ : List[Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 2_56) lowerCAmelCase_ : List[Any] = latents[0, -3:, -3:, -1] lowerCAmelCase_ : Union[str, Any] = np.array( [ 0.1853_9645, 0.3398_7248, 0.537_8559, 0.1443_7142, -0.0245_5261, -0.733_8317, 0.2399_0755, 0.4735_6272, -0.378_6505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase_ : Any = False lowerCAmelCase_ : int = """stabilityai/stable-diffusion-2-base""" lowerCAmelCase_ : Optional[Any] = DDIMScheduler.from_pretrained(_snake_case , subfolder="""scheduler""" ) lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case ) lowerCAmelCase_ : str = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() lowerCAmelCase_ : Tuple = self.get_inputs() pipe(**_snake_case , callback=_snake_case , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def A ( self : Dict ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ : int = """stabilityai/stable-diffusion-2-base""" lowerCAmelCase_ : Dict = DDIMScheduler.from_pretrained(_snake_case , subfolder="""scheduler""" ) lowerCAmelCase_ : Optional[Any] = StableDiffusionPanoramaPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case ) lowerCAmelCase_ : Union[str, Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase_ : str = self.get_inputs() lowerCAmelCase_ : int = pipe(**_snake_case ) lowerCAmelCase_ : int = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __a ( lowercase__ ): __snake_case : torch.FloatTensor class __a ( lowercase__ ,lowercase__ ): @register_to_config def __init__( self : str , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : Tuple[str] = ("DownEncoderBlock2D",) , UpperCAmelCase : Tuple[str] = ("UpDecoderBlock2D",) , UpperCAmelCase : Tuple[int] = (64,) , UpperCAmelCase : int = 1 , UpperCAmelCase : str = "silu" , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 2_56 , UpperCAmelCase : int = 32 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : float = 0.1_8215 , UpperCAmelCase : str = "group" , ): super().__init__() # pass init params to Encoder lowerCAmelCase_ : Optional[Any] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) lowerCAmelCase_ : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase_ : str = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) lowerCAmelCase_ : int = VectorQuantizer(_UpperCamelCase , _UpperCamelCase , beta=0.25 , remap=_UpperCamelCase , sane_index_shape=_UpperCamelCase ) lowerCAmelCase_ : List[str] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) # pass init params to Decoder lowerCAmelCase_ : str = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , norm_type=_UpperCamelCase , ) @apply_forward_hook def A ( self : Dict , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ): lowerCAmelCase_ : str = self.encoder(_UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=_UpperCamelCase ) @apply_forward_hook def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True ): # also go through quantization layer if not force_not_quantize: lowerCAmelCase_ : List[str] = self.quantize(_UpperCamelCase ) else: lowerCAmelCase_ : List[str] = h lowerCAmelCase_ : List[str] = self.post_quant_conv(_UpperCamelCase ) lowerCAmelCase_ : str = self.decoder(_UpperCamelCase , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True ): lowerCAmelCase_ : Any = sample lowerCAmelCase_ : Any = self.encode(_UpperCamelCase ).latents lowerCAmelCase_ : Tuple = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder __UpperCAmelCase = """__DUMMY_TRANSFORMERS_USER__""" __UpperCAmelCase = """Dummy User""" __UpperCAmelCase = """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""" __UpperCAmelCase = """https://hub-ci.huggingface.co""" __UpperCAmelCase = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" __UpperCAmelCase = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" __UpperCAmelCase = Path('~/.huggingface/hub_ci_token').expanduser() @pytest.fixture def __UpperCamelCase ( lowercase__ : Dict ) -> Tuple: '''simple docstring''' monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , lowercase__ ) @pytest.fixture def __UpperCamelCase ( lowercase__ : Dict ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , lowercase__ ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , lowercase__ ) @pytest.fixture def __UpperCamelCase ( lowercase__ : Any ) -> List[Any]: '''simple docstring''' monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , lowercase__ ) @pytest.fixture def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] ) -> Dict: '''simple docstring''' HfFolder.save_token(lowercase__ ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __UpperCamelCase ( ) -> Dict: '''simple docstring''' return HfApi(endpoint=lowercase__ ) @pytest.fixture(scope="""session""" ) def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : int = HfFolder.get_token() HfFolder.save_token(lowercase__ ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(lowercase__ ) @pytest.fixture def __UpperCamelCase ( lowercase__ : Any ) -> List[str]: '''simple docstring''' def _cleanup_repo(lowercase__ : Optional[int] ): hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' @contextmanager def _temporary_repo(lowercase__ : Tuple ): try: yield repo_id finally: cleanup_repo(lowercase__ ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = f'repo_txt_data-{int(time.time() * 10E3 )}' lowerCAmelCase_ : Union[str, Any] = f'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" , private=lowercase__ ) hf_api.upload_file( token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo="""data/text_data.txt""" , repo_id=lowercase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __UpperCamelCase ( lowercase__ : Any , lowercase__ : Any , lowercase__ : Any ) -> Tuple: '''simple docstring''' return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = f'repo_zipped_txt_data-{int(time.time() * 10E3 )}' lowerCAmelCase_ : Optional[Any] = f'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" , private=lowercase__ ) hf_api.upload_file( token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo="""data.zip""" , repo_id=lowercase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> Optional[int]: '''simple docstring''' return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = f'repo_zipped_img_data-{int(time.time() * 10E3 )}' lowerCAmelCase_ : Any = f'{CI_HUB_USER}/{repo_name}' hf_api.create_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" , private=lowercase__ ) hf_api.upload_file( token=lowercase__ , path_or_fileobj=str(lowercase__ ) , path_in_repo="""data.zip""" , repo_id=lowercase__ , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(lowercase__ , token=lowercase__ , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : str , lowercase__ : List[Any] ) -> List[Any]: '''simple docstring''' return hf_private_dataset_repo_zipped_img_data_
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __a ( A_ ,unittest.TestCase ): __snake_case : Optional[int] = CLIPTokenizer __snake_case : List[Any] = CLIPTokenizerFast __snake_case : Any = True __snake_case : str = {} __snake_case : List[Any] = False def A ( self : Any ): super().setUp() # fmt: off lowerCAmelCase_ : List[Any] = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCAmelCase_ : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase_ : Any = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] lowerCAmelCase_ : Optional[Any] = {"unk_token": "<unk>"} lowerCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(snake_case__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(snake_case__ ) ) def A ( self : List[Any] , **UpperCAmelCase : List[str] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def A ( self : Dict , **UpperCAmelCase : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def A ( self : int , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : Any = "lower newer" return input_text, output_text def A ( self : List[str] ): lowerCAmelCase_ : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase_ : str = "lower newer" lowerCAmelCase_ : Optional[Any] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] lowerCAmelCase_ : Optional[Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase_ : List[str] = tokens + [tokenizer.unk_token] lowerCAmelCase_ : List[str] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) @require_ftfy def A ( self : int ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : Dict = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) lowerCAmelCase_ : str = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." lowerCAmelCase_ : Union[str, Any] = tokenizer_s.tokenize(snake_case__ ) lowerCAmelCase_ : Any = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase_ : Tuple = "xa\u0303y" + " " + "x\xe3y" lowerCAmelCase_ : Optional[int] = tokenizer_s.tokenize(snake_case__ ) lowerCAmelCase_ : Optional[int] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase_ : Union[str, Any] = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase_ : Optional[Any] = tokenizer_s.tokenize(snake_case__ ) lowerCAmelCase_ : List[str] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase_ : Optional[Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase_ : Any = tokenizer_s.tokenize(snake_case__ ) lowerCAmelCase_ : Optional[int] = tokenizer_r.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def A ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCAmelCase_ : Optional[int] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase_ : int = F'{text_of_1_token} {text_of_1_token}' lowerCAmelCase_ : List[Any] = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , ) lowerCAmelCase_ : str = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(snake_case__ ) + 1, len(snake_case__ ) + 1 + len(snake_case__ )) , ) lowerCAmelCase_ : Optional[Any] = F' {text}' lowerCAmelCase_ : Any = self.rust_tokenizer_class.from_pretrained( snake_case__ , use_fast=snake_case__ , ) lowerCAmelCase_ : Any = tokenizer_r(snake_case__ , return_offsets_mapping=snake_case__ , add_special_tokens=snake_case__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(snake_case__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(snake_case__ ) + 1, 1 + len(snake_case__ ) + 1 + len(snake_case__ )) , ) def A ( self : List[Any] ): with self.assertRaises(snake_case__ ) as context: self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" ) self.assertTrue( context.exception.args[0].startswith( """The `backend_tokenizer` provided does not match the expected format.""" ) ) @require_ftfy def A ( self : List[Any] ): super().test_tokenization_python_rust_equals() def A ( self : int ): pass
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '▁' __UpperCAmelCase = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} __UpperCAmelCase = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } __UpperCAmelCase = {'vinai/bartpho-syllable': 10_24} class __a ( __SCREAMING_SNAKE_CASE ): __snake_case : Tuple = VOCAB_FILES_NAMES __snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : Union[str, Any] = ['input_ids', 'attention_mask'] def __init__( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : int="<s>" , UpperCAmelCase : Any="</s>" , UpperCAmelCase : Union[str, Any]="</s>" , UpperCAmelCase : Tuple="<s>" , UpperCAmelCase : Dict="<unk>" , UpperCAmelCase : Dict="<pad>" , UpperCAmelCase : str="<mask>" , UpperCAmelCase : List[str] = None , **UpperCAmelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token lowerCAmelCase_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) lowerCAmelCase_ : Optional[int] = vocab_file lowerCAmelCase_ : List[str] = monolingual_vocab_file lowerCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility lowerCAmelCase_ : str = {} lowerCAmelCase_ : Tuple = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(_a ) not in self.fairseq_tokens_to_ids: lowerCAmelCase_ : str = cnt cnt += 1 with open(_a , """r""" , encoding="""utf-8""" ) as f: for line in f.readlines(): lowerCAmelCase_ : Union[str, Any] = line.strip().split()[0] lowerCAmelCase_ : Optional[Any] = len(self.fairseq_tokens_to_ids ) if str(_a ) not in self.fairseq_tokens_to_ids: lowerCAmelCase_ : Union[str, Any] = len(self.fairseq_tokens_to_ids ) lowerCAmelCase_ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : List[str] ): lowerCAmelCase_ : Optional[int] = self.__dict__.copy() lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCAmelCase_ : Any = {} lowerCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ : Dict = [self.cls_token_id] lowerCAmelCase_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : int = None , UpperCAmelCase : str = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1, 1] + ([0] * len(_a )) + [1] def A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] = None ): lowerCAmelCase_ : Union[str, Any] = [self.sep_token_id] lowerCAmelCase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Optional[int] ): return len(self.fairseq_ids_to_tokens ) def A ( self : str ): lowerCAmelCase_ : List[str] = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : str , UpperCAmelCase : List[Any] ): return self.sp_model.encode(_a , out_type=_a ) def A ( self : List[str] , UpperCAmelCase : Union[str, Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def A ( self : Optional[int] , UpperCAmelCase : Optional[int] ): return self.fairseq_ids_to_tokens[index] def A ( self : Any , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Dict = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] = None ): if not os.path.isdir(_a ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase_ : List[str] = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ : Dict = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""monolingual_vocab_file"""] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: lowerCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(_a ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( _a ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , _a ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(_a , """w""" , encoding="""utf-8""" ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'{str(_a )} \n' ) return out_vocab_file, out_monolingual_vocab_file
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs __UpperCAmelCase = imread(r'digital_image_processing/image_data/lena_small.jpg') __UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : List[str] = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCAmelCase_ : List[Any] = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def __UpperCamelCase ( ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Any = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCAmelCase_ : int = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' assert med.median_filter(lowercase__ , 3 ).any() def __UpperCamelCase ( ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def __UpperCamelCase ( lowercase__ : Any = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def __UpperCamelCase ( lowercase__ : int = "digital_image_processing/image_data/lena_small.jpg" , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : str = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. lowerCAmelCase_ : List[str] = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Union[str, Any] = image[x_coordinate][y_coordinate] lowerCAmelCase_ : Optional[int] = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCAmelCase_ : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCAmelCase_ : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" def __UpperCamelCase ( lowercase__ : List[Any] = 1000000 ) -> int: '''simple docstring''' lowerCAmelCase_ : str = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , _lowerCamelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class __a ( a_ ): __snake_case : List[Any] = ['''input_values''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCAmelCase : List[Any] = 1 , UpperCAmelCase : Tuple = 1_60_00 , UpperCAmelCase : Dict = 0.0 , UpperCAmelCase : List[str] = False , UpperCAmelCase : Tuple = 80 , UpperCAmelCase : Tuple = 16 , UpperCAmelCase : Union[str, Any] = 64 , UpperCAmelCase : Any = "hann_window" , UpperCAmelCase : Optional[Any] = 1.0 , UpperCAmelCase : Union[str, Any] = 80 , UpperCAmelCase : Dict = 76_00 , UpperCAmelCase : Dict = 1e-1_0 , UpperCAmelCase : Union[str, Any] = 2 , UpperCAmelCase : List[str] = True , **UpperCAmelCase : Optional[int] , ): super().__init__(feature_size=lowercase_ , sampling_rate=lowercase_ , padding_value=lowercase_ , **lowercase_ ) lowerCAmelCase_ : Dict = do_normalize lowerCAmelCase_ : Optional[int] = return_attention_mask lowerCAmelCase_ : Dict = num_mel_bins lowerCAmelCase_ : Tuple = hop_length lowerCAmelCase_ : str = win_length lowerCAmelCase_ : int = win_function lowerCAmelCase_ : List[str] = frame_signal_scale lowerCAmelCase_ : List[Any] = fmin lowerCAmelCase_ : List[str] = fmax lowerCAmelCase_ : List[Any] = mel_floor lowerCAmelCase_ : str = reduction_factor lowerCAmelCase_ : List[Any] = win_length * sampling_rate // 10_00 lowerCAmelCase_ : Any = hop_length * sampling_rate // 10_00 lowerCAmelCase_ : Any = optimal_fft_length(self.sample_size ) lowerCAmelCase_ : Union[str, Any] = (self.n_fft // 2) + 1 lowerCAmelCase_ : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase_ ) lowerCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase_ , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , lowercase_ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A ( UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] = 0.0 ): if attention_mask is not None: lowerCAmelCase_ : Dict = np.array(lowercase_ , np.intaa ) lowerCAmelCase_ : List[Any] = [] for vector, length in zip(lowercase_ , attention_mask.sum(-1 ) ): lowerCAmelCase_ : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ : Tuple = padding_value normed_input_values.append(lowercase_ ) else: lowerCAmelCase_ : List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def A ( self : Dict , UpperCAmelCase : Any , ): lowerCAmelCase_ : str = spectrogram( lowercase_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self : Tuple , UpperCAmelCase : str = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : Any = False , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Union[str, Any] = False , UpperCAmelCase : int = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : List[Any] = None , UpperCAmelCase : List[Any] = None , **UpperCAmelCase : Dict , ): if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: lowerCAmelCase_ : int = self._process_audio( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , ) else: lowerCAmelCase_ : Optional[Any] = None if audio_target is not None: lowerCAmelCase_ : Dict = self._process_audio( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , **lowercase_ , ) if inputs is None: return inputs_target else: lowerCAmelCase_ : Optional[int] = inputs_target["""input_values"""] lowerCAmelCase_ : Any = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: lowerCAmelCase_ : List[str] = decoder_attention_mask return inputs def A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Dict = False , UpperCAmelCase : Union[str, Any] = False , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : Optional[Any] = False , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = None , UpperCAmelCase : List[str] = None , **UpperCAmelCase : Dict , ): lowerCAmelCase_ : Union[str, Any] = isinstance(lowercase_ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase_ : List[Any] = is_batched_numpy or ( isinstance(lowercase_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Optional[Any] = [np.asarray(lowercase_ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(lowercase_ , np.ndarray ): lowerCAmelCase_ : Optional[int] = np.asarray(lowercase_ , dtype=np.floataa ) elif isinstance(lowercase_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : int = speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : str = [speech] # needed to make pad() work on spectrogram inputs lowerCAmelCase_ : Optional[Any] = self.feature_size # convert into correct format for padding if is_target: lowerCAmelCase_ : List[str] = [self._extract_mel_features(lowercase_ ) for waveform in speech] lowerCAmelCase_ : Any = BatchFeature({"""input_values""": features} ) lowerCAmelCase_ : Optional[int] = self.num_mel_bins else: lowerCAmelCase_ : int = BatchFeature({"""input_values""": speech} ) lowerCAmelCase_ : List[Any] = self.pad( lowercase_ , padding=lowercase_ , max_length=lowercase_ , truncation=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , **lowercase_ , ) lowerCAmelCase_ : List[Any] = feature_size_hack # convert input values to correct format lowerCAmelCase_ : Union[str, Any] = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): lowerCAmelCase_ : int = [np.asarray(lowercase_ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(lowercase_ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): lowerCAmelCase_ : Optional[int] = [array.astype(np.floataa ) for array in input_values] elif isinstance(lowercase_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Union[str, Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format lowerCAmelCase_ : Optional[int] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: lowerCAmelCase_ : Optional[int] = [np.asarray(lowercase_ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: lowerCAmelCase_ : List[Any] = ( attention_mask if self._get_padding_strategies(lowercase_ , max_length=lowercase_ ) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase_ : str = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=lowercase_ , padding_value=self.padding_value ) if return_tensors is not None: lowerCAmelCase_ : Any = padded_inputs.convert_to_tensors(lowercase_ ) return padded_inputs def A ( self : List[str] ): lowerCAmelCase_ : int = super().to_dict() # Don't serialize these as they are derived from the other properties. lowerCAmelCase_ : int = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __a ( __lowercase ): def A ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = 5 # Realm tok lowerCAmelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) lowerCAmelCase_ : str = os.path.join(_a , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(_a , exist_ok=_a ) def A ( self : int ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def A ( self : Dict ): shutil.rmtree(self.tmpdirname ) def A ( self : Optional[Any] ): lowerCAmelCase_ : int = RealmConfig(num_block_records=self.num_block_records ) return config def A ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def A ( self : List[Any] ): lowerCAmelCase_ : Any = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=_a , ) return block_records def A ( self : str ): lowerCAmelCase_ : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A ( self : List[str] ): lowerCAmelCase_ : Dict = self.get_config() lowerCAmelCase_ : Tuple = self.get_dummy_retriever() lowerCAmelCase_ : Dict = retriever.tokenizer lowerCAmelCase_ : Union[str, Any] = np.array([0, 3] , dtype="""long""" ) lowerCAmelCase_ : Any = tokenizer(["""Test question"""] ).input_ids lowerCAmelCase_ : int = tokenizer( ["""the fourth"""] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids lowerCAmelCase_ : str = config.reader_seq_len lowerCAmelCase_ : Any = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors="""np""" ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = self.get_config() lowerCAmelCase_ : Union[str, Any] = self.get_dummy_retriever() lowerCAmelCase_ : Tuple = retriever.tokenizer lowerCAmelCase_ : List[str] = np.array([0, 3, 5] , dtype="""long""" ) lowerCAmelCase_ : int = tokenizer(["""Test question"""] ).input_ids lowerCAmelCase_ : List[str] = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids lowerCAmelCase_ : Union[str, Any] = config.reader_seq_len lowerCAmelCase_ : List[Any] = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors="""np""" ) self.assertEqual([False, True, True] , _a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a ) def A ( self : str ): lowerCAmelCase_ : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path lowerCAmelCase_ : str = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: lowerCAmelCase_ : Tuple = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) lowerCAmelCase_ : str = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'weiweishi/roc-bert-base-zh': 'https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json', } class __a ( __SCREAMING_SNAKE_CASE ): __snake_case : Tuple = "roc_bert" def __init__( self : str , UpperCAmelCase : List[str]=3_05_22 , UpperCAmelCase : List[str]=7_68 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : str=30_72 , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[int]=5_12 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : List[str]=1e-1_2 , UpperCAmelCase : Any=True , UpperCAmelCase : Dict=0 , UpperCAmelCase : List[str]="absolute" , UpperCAmelCase : int=None , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=7_68 , UpperCAmelCase : int=9_10 , UpperCAmelCase : str=5_12 , UpperCAmelCase : Optional[int]=2_48_58 , UpperCAmelCase : Any=True , **UpperCAmelCase : Optional[int] , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Optional[int] = hidden_size lowerCAmelCase_ : Optional[int] = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Optional[Any] = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : Optional[Any] = type_vocab_size lowerCAmelCase_ : List[str] = layer_norm_eps lowerCAmelCase_ : Tuple = use_cache lowerCAmelCase_ : Optional[int] = enable_pronunciation lowerCAmelCase_ : str = enable_shape lowerCAmelCase_ : List[Any] = pronunciation_embed_dim lowerCAmelCase_ : Union[str, Any] = pronunciation_vocab_size lowerCAmelCase_ : Any = shape_embed_dim lowerCAmelCase_ : Dict = shape_vocab_size lowerCAmelCase_ : Optional[int] = concat_input lowerCAmelCase_ : Any = position_embedding_type lowerCAmelCase_ : Optional[int] = classifier_dropout super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __snake_case : List[Any] = ['''pixel_values'''] def __init__( self : Tuple , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Dict[str, int]] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , **UpperCAmelCase : str , ): super().__init__(**lowerCAmelCase__ ) lowerCAmelCase_ : Tuple = size if size is not None else {"shortest_edge": 2_56} lowerCAmelCase_ : List[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = crop_size if crop_size is not None else {"height": 2_24, "width": 2_24} lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) lowerCAmelCase_ : Tuple = do_resize lowerCAmelCase_ : Optional[int] = size lowerCAmelCase_ : List[Any] = resample lowerCAmelCase_ : str = do_center_crop lowerCAmelCase_ : List[Any] = crop_size lowerCAmelCase_ : Dict = do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor lowerCAmelCase_ : Any = do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ): lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) lowerCAmelCase_ : Union[str, Any] = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : int , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : float , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Union[str, Any] ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : Optional[int] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Union[float, List[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def A ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[float, List[float]]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : List[Any] , ): lowerCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ : Any = size if size is not None else self.size lowerCAmelCase_ : Dict = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) lowerCAmelCase_ : Dict = resample if resample is not None else self.resample lowerCAmelCase_ : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ : Dict = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) lowerCAmelCase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ : str = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ : List[Any] = image_std if image_std is not None else self.image_std lowerCAmelCase_ : int = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: lowerCAmelCase_ : int = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: lowerCAmelCase_ : Optional[int] = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: lowerCAmelCase_ : str = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: lowerCAmelCase_ : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] lowerCAmelCase_ : Optional[int] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] lowerCAmelCase_ : List[str] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Tuple] = None ): lowerCAmelCase_ : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase__ ): lowerCAmelCase_ : List[str] = target_sizes.numpy() lowerCAmelCase_ : Any = [] for idx in range(len(lowerCAmelCase__ ) ): lowerCAmelCase_ : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase__ ) lowerCAmelCase_ : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: lowerCAmelCase_ : Dict = logits.argmax(dim=1 ) lowerCAmelCase_ : Dict = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py __UpperCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. __UpperCAmelCase = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') __UpperCAmelCase = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. __UpperCAmelCase = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) __UpperCAmelCase = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _UpperCamelCase ) return [m.group(0 ) for m in matches] def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowerCAmelCase_ : List[str] = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. lowerCAmelCase_ : List[Any] = collections.defaultdict(_UpperCamelCase ) lowerCAmelCase_ : List[Any] = collections.defaultdict(_UpperCamelCase ) lowerCAmelCase_ : Union[str, Any] = collections.defaultdict(_UpperCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_UpperCamelCase ): lowerCAmelCase_ : Optional[Any] = None if _re_tf_models.match(_UpperCamelCase ) is not None: lowerCAmelCase_ : Dict = tf_models lowerCAmelCase_ : str = _re_tf_models.match(_UpperCamelCase ).groups()[0] elif _re_flax_models.match(_UpperCamelCase ) is not None: lowerCAmelCase_ : int = flax_models lowerCAmelCase_ : Union[str, Any] = _re_flax_models.match(_UpperCamelCase ).groups()[0] elif _re_pt_models.match(_UpperCamelCase ) is not None: lowerCAmelCase_ : List[str] = pt_models lowerCAmelCase_ : Optional[Any] = _re_pt_models.match(_UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(_UpperCamelCase ) > 0: if attr_name in model_prefix_to_model_type: lowerCAmelCase_ : Union[str, Any] = True break # Try again after removing the last word in the name lowerCAmelCase_ : Optional[Any] = """""".join(camel_case_split(_UpperCamelCase )[:-1] ) lowerCAmelCase_ : Any = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) lowerCAmelCase_ : Union[str, Any] = list(_UpperCamelCase ) all_models.sort() lowerCAmelCase_ : Optional[int] = {"""model_type""": all_models} lowerCAmelCase_ : str = [pt_models[t] for t in all_models] lowerCAmelCase_ : Optional[Any] = [tf_models[t] for t in all_models] lowerCAmelCase_ : List[Any] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure lowerCAmelCase_ : Union[str, Any] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: lowerCAmelCase_ : Optional[int] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: lowerCAmelCase_ : Any = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: lowerCAmelCase_ : Optional[int] = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. lowerCAmelCase_ : Optional[int] = """AutoTokenizer""" lowerCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(_UpperCamelCase ) def __UpperCamelCase ( lowercase__ : int ) -> Any: '''simple docstring''' lowerCAmelCase_ : Optional[int] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: lowerCAmelCase_ : Union[str, Any] = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] lowerCAmelCase_ : Optional[Any] = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(_UpperCamelCase , _UpperCamelCase ): continue # First extract all model_names lowerCAmelCase_ : Optional[Any] = [] for name in getattr(_UpperCamelCase , _UpperCamelCase ).values(): if isinstance(_UpperCamelCase , _UpperCamelCase ): model_names.append(_UpperCamelCase ) else: model_names.extend(list(_UpperCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Any = get_frameworks_table() lowerCAmelCase_ : List[Any] = Dataset.from_pandas(_UpperCamelCase ) lowerCAmelCase_ : str = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_UpperCamelCase ) lowerCAmelCase_ : str = Dataset.from_json(_UpperCamelCase ) lowerCAmelCase_ : Dict = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_UpperCamelCase ) ) } lowerCAmelCase_ : Dict = update_pipeline_and_auto_class_table(_UpperCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. lowerCAmelCase_ : Dict = sorted(table.keys() ) lowerCAmelCase_ : str = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) lowerCAmelCase_ : List[Any] = Dataset.from_pandas(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_UpperCamelCase , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_UpperCamelCase , """pipeline_tags.json""" ) ) if commit_sha is not None: lowerCAmelCase_ : List[Any] = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: lowerCAmelCase_ : Optional[int] = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=_UpperCamelCase , repo_type="""dataset""" , token=_UpperCamelCase , commit_message=_UpperCamelCase , ) def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} lowerCAmelCase_ : Optional[Any] = transformers_module.pipelines.SUPPORTED_TASKS lowerCAmelCase_ : Optional[int] = [] for key in pipeline_tasks: if key not in in_table: lowerCAmelCase_ : List[Any] = pipeline_tasks[key]["""pt"""] if isinstance(_UpperCamelCase , (list, tuple) ): lowerCAmelCase_ : Optional[int] = model[0] lowerCAmelCase_ : Optional[int] = model.__name__ if model not in in_table.values(): missing.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: lowerCAmelCase_ : int = """, """.join(_UpperCamelCase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') __UpperCAmelCase = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCAmelCase = logging.getLogger(__name__) class __a ( a__ ): __snake_case : int = 'token-classification' def __init__( self : int , UpperCAmelCase : Optional[Any] ): if type(_lowerCamelCase ) == dict: lowerCAmelCase_ : Union[str, Any] = Namespace(**_lowerCamelCase ) lowerCAmelCase_ : Tuple = import_module("""tasks""" ) try: lowerCAmelCase_ : List[str] = getattr(_lowerCamelCase , hparams.task_type ) lowerCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) lowerCAmelCase_ : str = self.token_classification_task.get_labels(hparams.labels ) lowerCAmelCase_ : Optional[Any] = CrossEntropyLoss().ignore_index super().__init__(_lowerCamelCase , len(self.labels ) , self.mode ) def A ( self : Union[str, Any] , **UpperCAmelCase : Tuple ): return self.model(**_lowerCamelCase ) def A ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : str ): lowerCAmelCase_ : Union[str, Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase_ : int = self(**_lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def A ( self : int ): lowerCAmelCase_ : List[str] = self.hparams for mode in ["train", "dev", "test"]: lowerCAmelCase_ : Any = self._feature_file(_lowerCamelCase ) if os.path.exists(_lowerCamelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , _lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = torch.load(_lowerCamelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) lowerCAmelCase_ : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , _lowerCamelCase ) lowerCAmelCase_ : List[Any] = self.token_classification_task.convert_examples_to_features( _lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=_lowerCamelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , _lowerCamelCase ) torch.save(_lowerCamelCase , _lowerCamelCase ) def A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : str = False ): lowerCAmelCase_ : Optional[Any] = self._feature_file(_lowerCamelCase ) logger.info("""Loading features from cached file %s""" , _lowerCamelCase ) lowerCAmelCase_ : Tuple = torch.load(_lowerCamelCase ) lowerCAmelCase_ : int = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCAmelCase_ : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCAmelCase_ : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCAmelCase_ : Dict = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCAmelCase_ : List[str] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , batch_size=_lowerCamelCase ) def A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Any ): """Compute validation""" "" lowerCAmelCase_ : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCAmelCase_ : Optional[Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCAmelCase_ : Optional[int] = self(**_lowerCamelCase ) lowerCAmelCase_ : str = outputs[:2] lowerCAmelCase_ : Optional[Any] = logits.detach().cpu().numpy() lowerCAmelCase_ : Optional[int] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : List[Any] , UpperCAmelCase : str ): lowerCAmelCase_ : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean() lowerCAmelCase_ : Union[str, Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) lowerCAmelCase_ : str = np.argmax(_lowerCamelCase , axis=2 ) lowerCAmelCase_ : Tuple = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) lowerCAmelCase_ : Any = dict(enumerate(self.labels ) ) lowerCAmelCase_ : int = [[] for _ in range(out_label_ids.shape[0] )] lowerCAmelCase_ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCAmelCase_ : List[Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(_lowerCamelCase , _lowerCamelCase ), '''precision''': precision_score(_lowerCamelCase , _lowerCamelCase ), '''recall''': recall_score(_lowerCamelCase , _lowerCamelCase ), '''f1''': fa_score(_lowerCamelCase , _lowerCamelCase ), } lowerCAmelCase_ : Optional[int] = dict(results.items() ) lowerCAmelCase_ : Optional[int] = results return ret, preds_list, out_label_list def A ( self : Dict , UpperCAmelCase : List[str] ): # when stable lowerCAmelCase_ : List[Any] = self._eval_end(_lowerCamelCase ) lowerCAmelCase_ : List[Any] = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : List[Any] , UpperCAmelCase : List[Any] ): # updating to test_epoch_end instead of deprecated test_end lowerCAmelCase_ : Union[str, Any] = self._eval_end(_lowerCamelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCAmelCase_ : Any = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict ): # Add NER specific options BaseTransformer.add_model_specific_args(_lowerCamelCase , _lowerCamelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=_lowerCamelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=1_28 , type=_lowerCamelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=_lowerCamelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=_lowerCamelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCAmelCase = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = NERTransformer(args) __UpperCAmelCase = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCAmelCase = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCAmelCase = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __UpperCAmelCase = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class __a ( unittest.TestCase ): __snake_case : int = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __snake_case : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __snake_case : str = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __snake_case : Dict = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def A ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : List[str] = ZeroShotClassificationPipeline( model=_lowerCAmelCase , tokenizer=_lowerCAmelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : Any = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} ) # No kwarg lowerCAmelCase_ : Union[str, Any] = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} ) lowerCAmelCase_ : Optional[int] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} ) lowerCAmelCase_ : Optional[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( _lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) lowerCAmelCase_ : List[Any] = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( _lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) lowerCAmelCase_ : Tuple = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(_lowerCAmelCase , {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 lowerCAmelCase_ : str = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( _lowerCAmelCase , [ {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} for i in range(1 ) ] , ) lowerCAmelCase_ : Optional[int] = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( _lowerCAmelCase , [ {"""sequence""": ANY(_lowerCAmelCase ), """labels""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )], """scores""": [ANY(_lowerCAmelCase ), ANY(_lowerCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(_lowerCAmelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(_lowerCAmelCase ): classifier(_lowerCAmelCase , candidate_labels="""politics""" ) with self.assertRaises(_lowerCAmelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(_lowerCAmelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=_lowerCAmelCase ) with self.assertRaises(_lowerCAmelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(_lowerCAmelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=_lowerCAmelCase , ) self.run_entailment_id(_lowerCAmelCase ) def A ( self : Tuple , UpperCAmelCase : Pipeline ): lowerCAmelCase_ : Tuple = zero_shot_classifier.model.config lowerCAmelCase_ : int = config.labelaid lowerCAmelCase_ : Any = zero_shot_classifier.entailment_id lowerCAmelCase_ : List[Any] = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) lowerCAmelCase_ : Tuple = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCAmelCase_ : Optional[int] = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) lowerCAmelCase_ : int = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) lowerCAmelCase_ : List[Any] = original_labelaid self.assertEqual(_lowerCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def A ( self : int ): lowerCAmelCase_ : Dict = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_00 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def A ( self : Optional[int] ): lowerCAmelCase_ : str = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) lowerCAmelCase_ : int = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @require_tf def A ( self : Optional[int] ): lowerCAmelCase_ : Tuple = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) lowerCAmelCase_ : List[str] = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.333, 0.333, 0.333], } , ) @slow @require_torch def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) lowerCAmelCase_ : Any = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) lowerCAmelCase_ : List[Any] = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowerCAmelCase , ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def A ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) lowerCAmelCase_ : Tuple = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.976, 0.015, 0.009], } , ) lowerCAmelCase_ : int = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=_lowerCAmelCase , ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.817, 0.713, 0.018, 0.018], } , )
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class __a ( __lowercase ,unittest.TestCase ): __snake_case : List[str] = PegasusTokenizer __snake_case : Any = PegasusTokenizerFast __snake_case : int = True __snake_case : Union[str, Any] = True def A ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Optional[int] = PegasusTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Union[str, Any] ): return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def A ( self : Optional[int] , **UpperCAmelCase : List[Any] ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def A ( self : Optional[int] , UpperCAmelCase : Tuple ): return ("This is a test", "This is a test") def A ( self : List[Any] ): lowerCAmelCase_ : List[str] = """</s>""" lowerCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """</s>""" ) self.assertEqual(vocab_keys[-1] , """v""" ) self.assertEqual(len(_a ) , 11_03 ) def A ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : Optional[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) lowerCAmelCase_ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] lowerCAmelCase_ : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) def A ( self : int ): lowerCAmelCase_ : Dict = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowerCAmelCase_ : List[str] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" lowerCAmelCase_ : int = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] lowerCAmelCase_ : Any = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) def A ( self : List[str] ): lowerCAmelCase_ : Union[str, Any] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 lowerCAmelCase_ : Tuple = """To ensure a smooth flow of bank resolutions.""" lowerCAmelCase_ : int = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] lowerCAmelCase_ : Optional[int] = tokenizer([raw_input_str] , return_tensors=_a ).input_ids[0] self.assertListEqual(_a , _a ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def A ( self : Dict ): lowerCAmelCase_ : Tuple = ["""This is going to be way too long.""" * 1_50, """short example"""] lowerCAmelCase_ : str = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase_ : Any = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. @slow def A ( self : Optional[Any] ): # fmt: off lowerCAmelCase_ : Optional[Any] = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class __a ( __lowercase ,unittest.TestCase ): __snake_case : List[str] = PegasusTokenizer __snake_case : Union[str, Any] = PegasusTokenizerFast __snake_case : Union[str, Any] = True __snake_case : List[Any] = True def A ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase_ : Union[str, Any] = PegasusTokenizer(_a , offset=0 , mask_token_sent=_a , mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def A ( self : Optional[int] ): return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def A ( self : Optional[Any] , **UpperCAmelCase : str ): return PegasusTokenizer.from_pretrained(self.tmpdirname , **_a ) def A ( self : Optional[int] , UpperCAmelCase : List[str] ): return ("This is a test", "This is a test") def A ( self : Optional[Any] ): lowerCAmelCase_ : str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : int = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowerCAmelCase_ : Tuple = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) lowerCAmelCase_ : Any = rust_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] lowerCAmelCase_ : Tuple = py_tokenizer([raw_input_str] , return_tensors=_a , add_special_tokens=_a ).input_ids[0] self.assertListEqual(_a , _a ) @require_torch def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = ["""This is going to be way too long.""" * 10_00, """short example"""] lowerCAmelCase_ : Tuple = ["""not super long but more than 5 tokens""", """tiny"""] lowerCAmelCase_ : Optional[Any] = self._large_tokenizer(_a , padding=_a , truncation=_a , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = self._large_tokenizer( text_target=_a , max_length=5 , padding=_a , truncation=_a , return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_a ) == 2 # input_ids, attention_mask. def A ( self : Dict ): lowerCAmelCase_ : List[str] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) lowerCAmelCase_ : List[Any] = self._large_tokenizer(_a ).input_ids self.assertListEqual( _a , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( lowercase__ ): def __init__( self : Tuple , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ): warnings.warn( """The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PoolFormerImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class __a ( __snake_case ): __snake_case : List[str] = """poolformer""" def __init__( self : Any , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Optional[Any]=16 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=4.0 , UpperCAmelCase : List[str]=[2, 2, 6, 2] , UpperCAmelCase : str=[64, 1_28, 3_20, 5_12] , UpperCAmelCase : List[Any]=[7, 3, 3, 3] , UpperCAmelCase : int=[4, 2, 2, 2] , UpperCAmelCase : Union[str, Any]=[2, 1, 1, 1] , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=True , UpperCAmelCase : Dict=1e-5 , UpperCAmelCase : List[str]=0.02 , **UpperCAmelCase : str , ): lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : str = patch_size lowerCAmelCase_ : int = stride lowerCAmelCase_ : Optional[int] = padding lowerCAmelCase_ : Any = pool_size lowerCAmelCase_ : int = hidden_sizes lowerCAmelCase_ : Optional[Any] = mlp_ratio lowerCAmelCase_ : Any = depths lowerCAmelCase_ : Optional[int] = patch_sizes lowerCAmelCase_ : Optional[Any] = strides lowerCAmelCase_ : Optional[int] = num_encoder_blocks lowerCAmelCase_ : List[str] = drop_path_rate lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = use_layer_scale lowerCAmelCase_ : int = layer_scale_init_value lowerCAmelCase_ : int = initializer_range super().__init__(**a_ ) class __a ( __snake_case ): __snake_case : int = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A ( self : Optional[Any] ): return 2e-3
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
def __UpperCamelCase ( lowercase__ : int ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Tuple = [1] lowerCAmelCase_ : int = 0, 0, 0 lowerCAmelCase_ : Optional[Any] = ugly_nums[ia] * 2 lowerCAmelCase_ : Optional[int] = ugly_nums[ia] * 3 lowerCAmelCase_ : Optional[int] = ugly_nums[ia] * 5 for _ in range(1 , _A ): lowerCAmelCase_ : Any = min(_A , _A , _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 lowerCAmelCase_ : List[Any] = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCAmelCase_ : Union[str, Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCAmelCase_ : Any = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f"""{ugly_numbers(2_00) = }""")
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCAmelCase = 16 __UpperCAmelCase = 32 def __UpperCamelCase ( lowercase__ : Dict ) -> Dict: '''simple docstring''' return int(x / 2**20 ) class __a : def __enter__( self : List[str] ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero lowerCAmelCase_ : Union[str, Any] = torch.cuda.memory_allocated() return self def __exit__( self : Optional[Any] , *UpperCAmelCase : str ): gc.collect() torch.cuda.empty_cache() lowerCAmelCase_ : List[Any] = torch.cuda.memory_allocated() lowerCAmelCase_ : Dict = torch.cuda.max_memory_allocated() lowerCAmelCase_ : Optional[int] = bamb(self.end - self.begin ) lowerCAmelCase_ : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __UpperCamelCase ( lowercase__ : Accelerator , lowercase__ : int = 16 , lowercase__ : str = "bert-base-cased" , lowercase__ : int = 320 , lowercase__ : int = 160 , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase__ ) lowerCAmelCase_ : Dict = load_dataset( """glue""" , """mrpc""" , split={"""train""": f'train[:{n_train}]', """validation""": f'validation[:{n_val}]'} ) def tokenize_function(lowercase__ : int ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase_ : int = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase_ : Any = datasets.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowercase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase_ : Dict = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowercase__ : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase_ : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) lowerCAmelCase_ : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=lowercase__ ) return train_dataloader, eval_dataloader def __UpperCamelCase ( lowercase__ : Any , lowercase__ : str ) -> int: '''simple docstring''' lowerCAmelCase_ : int = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase_ : Any = config["""lr"""] lowerCAmelCase_ : Dict = int(config["""num_epochs"""] ) lowerCAmelCase_ : int = int(config["""seed"""] ) lowerCAmelCase_ : Optional[Any] = int(config["""batch_size"""] ) lowerCAmelCase_ : Union[str, Any] = args.model_name_or_path set_seed(lowercase__ ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = get_dataloaders(lowercase__ , lowercase__ , lowercase__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase_ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowercase__ , return_dict=lowercase__ ) # Instantiate optimizer lowerCAmelCase_ : Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase_ : List[Any] = optimizer_cls(params=model.parameters() , lr=lowercase__ ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase_ : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: lowerCAmelCase_ : int = 1 lowerCAmelCase_ : Dict = (len(lowercase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase_ : List[Any] = get_linear_schedule_with_warmup( optimizer=lowercase__ , num_warmup_steps=0 , num_training_steps=lowercase__ , ) else: lowerCAmelCase_ : Tuple = DummyScheduler(lowercase__ , total_num_steps=lowercase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase_ : int = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase_ : List[str] = 0 # Now we train the model lowerCAmelCase_ : int = {} for epoch in range(lowercase__ , lowercase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowercase__ ): lowerCAmelCase_ : Union[str, Any] = model(**lowercase__ ) lowerCAmelCase_ : Union[str, Any] = outputs.loss lowerCAmelCase_ : int = loss / gradient_accumulation_steps accelerator.backward(lowercase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) lowerCAmelCase_ : Any = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowercase__ , lowercase__ ) def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : List[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowercase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowercase__ , ) parser.add_argument( """--output_dir""" , type=lowercase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowercase__ , default=lowercase__ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowercase__ , default=320 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowercase__ , default=160 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowercase__ , default=1 , help="""Number of train epochs.""" , ) lowerCAmelCase_ : List[str] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowercase__ , lowercase__ ) if __name__ == "__main__": main()
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class __a : __snake_case : int __snake_case : int class __a : def __init__( self : Any , UpperCAmelCase : Tuple ): lowerCAmelCase_ : list[list[Edge]] = [[] for _ in range(SCREAMING_SNAKE_CASE_ )] lowerCAmelCase_ : str = size def __getitem__( self : str , UpperCAmelCase : str ): return iter(self._graph[vertex] ) @property def A ( self : Union[str, Any] ): return self._size def A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): lowerCAmelCase_ : Dict = deque([start_vertex] ) lowerCAmelCase_ : list[int | None] = [None] * self.size lowerCAmelCase_ : str = 0 while queue: lowerCAmelCase_ : str = queue.popleft() lowerCAmelCase_ : Optional[Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCAmelCase_ : Dict = current_distance + edge.weight lowerCAmelCase_ : Dict = distances[edge.destination_vertex] if ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and new_distance >= dest_vertex_distance ): continue lowerCAmelCase_ : int = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __a ( __lowerCamelCase ,unittest.TestCase ): __snake_case : Optional[Any] = VideoToVideoSDPipeline __snake_case : Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {'image', 'width', 'height'} __snake_case : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {'image'} __snake_case : Dict = PipelineTesterMixin.required_optional_params - {'latents'} __snake_case : Optional[int] = False # No `output_type`. __snake_case : Union[str, Any] = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def A ( self : str ): torch.manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCAmelCase_ : List[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowerCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) lowerCAmelCase_ : Optional[int] = CLIPTextModel(UpperCamelCase_ ) lowerCAmelCase_ : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCAmelCase_ : Tuple = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def A ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any]=0 ): # 3 frames lowerCAmelCase_ : List[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): lowerCAmelCase_ : Optional[Any] = torch.manual_seed(UpperCamelCase_ ) else: lowerCAmelCase_ : Optional[Any] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowerCAmelCase_ : int = { """prompt""": """A painting of a squirrel eating a burger""", """video""": video, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def A ( self : Any ): lowerCAmelCase_ : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ : Tuple = self.get_dummy_components() lowerCAmelCase_ : Optional[int] = VideoToVideoSDPipeline(**UpperCamelCase_ ) lowerCAmelCase_ : List[str] = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowerCAmelCase_ : str = self.get_dummy_inputs(UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = """np""" lowerCAmelCase_ : Optional[Any] = sd_pipe(**UpperCamelCase_ ).frames lowerCAmelCase_ : Any = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCAmelCase_ : Optional[Any] = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def A ( self : str ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCamelCase_ , expected_max_diff=5e-3 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A ( self : Tuple ): pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def A ( self : Tuple ): pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def A ( self : Tuple ): pass def A ( self : str ): return super().test_progress_bar() @slow @skip_mps class __a ( unittest.TestCase ): def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[int] = VideoToVideoSDPipeline.from_pretrained("""cerspense/zeroscope_v2_XL""" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCAmelCase_ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowerCAmelCase_ : List[str] = torch.randn((1, 10, 3, 10_24, 5_76) , generator=UpperCamelCase_ ) lowerCAmelCase_ : str = video.to("""cuda""" ) lowerCAmelCase_ : Optional[Any] = """Spiderman is surfing""" lowerCAmelCase_ : Optional[int] = pipe(UpperCamelCase_ , video=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=3 , output_type="""pt""" ).frames lowerCAmelCase_ : Tuple = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __a : @staticmethod def A ( *UpperCAmelCase : List[Any] , **UpperCAmelCase : Any ): pass @is_pipeline_test @require_vision class __a ( unittest.TestCase ): @require_torch def A ( self : Dict ): lowerCAmelCase_ : List[str] = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , ) lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase_ : Tuple = image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__lowerCAmelCase ) , [ [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}], [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """c"""}, {"""score""": 0.333, """label""": """b"""}], ] , ) lowerCAmelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], ] , ) @require_tf def A ( self : int ): lowerCAmelCase_ : Any = pipeline( model="""hf-internal-testing/tiny-random-clip-zero-shot-image-classification""" , framework="""tf""" ) lowerCAmelCase_ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase_ : int = image_classifier(__lowerCAmelCase , candidate_labels=["""a""", """b""", """c"""] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{"""score""": 0.333, """label""": """a"""}, {"""score""": 0.333, """label""": """b"""}, {"""score""": 0.333, """label""": """c"""}] , ) lowerCAmelCase_ : List[str] = image_classifier([image] * 5 , candidate_labels=["""A""", """B""", """C"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], [ {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, {"""score""": 0.333, """label""": ANY(__lowerCAmelCase )}, ], ] , ) @slow @require_torch def A ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase_ : int = image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) lowerCAmelCase_ : Optional[int] = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , ) @slow @require_tf def A ( self : Dict ): lowerCAmelCase_ : List[str] = pipeline( task="""zero-shot-image-classification""" , model="""openai/clip-vit-base-patch32""" , framework="""tf""" ) # This is an image of 2 cats with remotes and no planes lowerCAmelCase_ : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase_ : Dict = image_classifier(__lowerCAmelCase , candidate_labels=["""cat""", """plane""", """remote"""] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ] , ) lowerCAmelCase_ : Dict = image_classifier([image] * 5 , candidate_labels=["""cat""", """plane""", """remote"""] , batch_size=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [ {"""score""": 0.511, """label""": """remote"""}, {"""score""": 0.485, """label""": """cat"""}, {"""score""": 0.004, """label""": """plane"""}, ], ] * 5 , )
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __UpperCAmelCase = ( "https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py" ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """https://pypi.org/pypi/diffusers/json""" lowerCAmelCase_ : List[str] = json.loads(request.urlopen(_UpperCamelCase ).read() )["""releases"""].keys() return sorted(_UpperCamelCase , key=lambda lowercase__ : version.Version(_UpperCamelCase ) ) def __UpperCamelCase ( ) -> str: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(_UpperCamelCase ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = Path(_UpperCamelCase ) / """__init__.py""" if not init_path.exists(): init_path.touch() def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] ) -> int: '''simple docstring''' init_hf_modules() lowerCAmelCase_ : Dict = Path(_UpperCamelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = dynamic_module_path / """__init__.py""" if not init_path.exists(): init_path.touch() def __UpperCamelCase ( lowercase__ : Dict ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : Optional[int] = f.read() # Imports of the form `import .xxx` lowerCAmelCase_ : Union[str, Any] = re.findall("""^\s*import\s+\.(\S+)\s*$""" , _UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall("""^\s*from\s+\.(\S+)\s+import""" , _UpperCamelCase , flags=re.MULTILINE ) # Unique-ify return list(set(_UpperCamelCase ) ) def __UpperCamelCase ( lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = False lowerCAmelCase_ : int = [module_file] lowerCAmelCase_ : List[Any] = [] # Let's recurse through all relative imports while not no_change: lowerCAmelCase_ : Dict = [] for f in files_to_check: new_imports.extend(get_relative_imports(_UpperCamelCase ) ) lowerCAmelCase_ : Optional[int] = Path(_UpperCamelCase ).parent lowerCAmelCase_ : List[Any] = [str(module_path / m ) for m in new_imports] lowerCAmelCase_ : Optional[int] = [f for f in new_import_files if f not in all_relative_imports] lowerCAmelCase_ : Optional[Any] = [f'{f}.py' for f in new_import_files] lowerCAmelCase_ : Tuple = len(_UpperCamelCase ) == 0 all_relative_imports.extend(_UpperCamelCase ) return all_relative_imports def __UpperCamelCase ( lowercase__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase_ : Optional[int] = f.read() # Imports of the form `import xxx` lowerCAmelCase_ : Optional[Any] = re.findall("""^\s*import\s+(\S+)\s*$""" , _UpperCamelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall("""^\s*from\s+(\S+)\s+import""" , _UpperCamelCase , flags=re.MULTILINE ) # Only keep the top-level module lowerCAmelCase_ : Optional[int] = [imp.split(""".""" )[0] for imp in imports if not imp.startswith(""".""" )] # Unique-ify and test we got them all lowerCAmelCase_ : Union[str, Any] = list(set(_UpperCamelCase ) ) lowerCAmelCase_ : List[Any] = [] for imp in imports: try: importlib.import_module(_UpperCamelCase ) except ImportError: missing_packages.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: raise ImportError( """This modeling file requires the following packages that were not found in your environment: """ f'{", ".join(_UpperCamelCase )}. Run `pip install {" ".join(_UpperCamelCase )}`' ) return get_relative_imports(_UpperCamelCase ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : str ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : int = module_path.replace(os.path.sep , """.""" ) lowerCAmelCase_ : Union[str, Any] = importlib.import_module(_UpperCamelCase ) if class_name is None: return find_pipeline_class(_UpperCamelCase ) return getattr(_UpperCamelCase , _UpperCamelCase ) def __UpperCamelCase ( lowercase__ : Tuple ) -> Dict: '''simple docstring''' from ..pipelines import DiffusionPipeline lowerCAmelCase_ : Dict = dict(inspect.getmembers(_UpperCamelCase , inspect.isclass ) ) lowerCAmelCase_ : str = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , _UpperCamelCase ) and cls.__module__.split(""".""" )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' f' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' f' {loaded_module}.' ) lowerCAmelCase_ : Tuple = cls return pipeline_class def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] , lowercase__ : str , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = str(_UpperCamelCase ) lowerCAmelCase_ : List[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) if os.path.isfile(_UpperCamelCase ): lowerCAmelCase_ : Any = module_file_or_url lowerCAmelCase_ : Dict = """local""" elif pretrained_model_name_or_path.count("""/""" ) == 0: lowerCAmelCase_ : int = get_diffusers_versions() # cut ".dev0" lowerCAmelCase_ : List[str] = """v""" + """.""".join(__version__.split(""".""" )[:3] ) # retrieve github version that matches if revision is None: lowerCAmelCase_ : List[Any] = latest_version if latest_version[1:] in available_versions else """main""" logger.info(f'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: lowerCAmelCase_ : List[str] = f'v{revision}' elif revision == "main": lowerCAmelCase_ : str = revision else: raise ValueError( f'`custom_revision`: {revision} does not exist. Please make sure to choose one of' f' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub lowerCAmelCase_ : List[Any] = COMMUNITY_PIPELINES_URL.format(revision=_UpperCamelCase , pipeline=_UpperCamelCase ) try: lowerCAmelCase_ : Union[str, Any] = cached_download( _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , ) lowerCAmelCase_ : Dict = """git""" lowerCAmelCase_ : Any = pretrained_model_name_or_path + """.py""" except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached lowerCAmelCase_ : Any = hf_hub_download( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , proxies=_UpperCamelCase , resume_download=_UpperCamelCase , local_files_only=_UpperCamelCase , use_auth_token=_UpperCamelCase , ) lowerCAmelCase_ : Union[str, Any] = os.path.join("""local""" , """--""".join(pretrained_model_name_or_path.split("""/""" ) ) ) except EnvironmentError: logger.error(f'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment lowerCAmelCase_ : Dict = check_imports(_UpperCamelCase ) # Now we move the module inside our cached dynamic modules. lowerCAmelCase_ : Optional[Any] = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(_UpperCamelCase ) lowerCAmelCase_ : Dict = Path(_UpperCamelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(_UpperCamelCase , submodule_path / module_file ) for module_needed in modules_needed: lowerCAmelCase_ : Tuple = f'{module_needed}.py' shutil.copy(os.path.join(_UpperCamelCase , _UpperCamelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(_UpperCamelCase , _UpperCamelCase ): lowerCAmelCase_ : List[Any] = use_auth_token elif use_auth_token is True: lowerCAmelCase_ : List[Any] = HfFolder.get_token() else: lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : Any = model_info(_UpperCamelCase , revision=_UpperCamelCase , token=_UpperCamelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. lowerCAmelCase_ : Tuple = submodule_path / commit_hash lowerCAmelCase_ : Union[str, Any] = full_submodule + os.path.sep + commit_hash create_dynamic_module(_UpperCamelCase ) if not (submodule_path / module_file).exists(): shutil.copy(_UpperCamelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( _UpperCamelCase , f'{module_needed}.py' , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) return os.path.join(_UpperCamelCase , _UpperCamelCase ) def __UpperCamelCase ( lowercase__ : Union[str, os.PathLike] , lowercase__ : str , lowercase__ : Optional[str] = None , lowercase__ : Optional[Union[str, os.PathLike]] = None , lowercase__ : bool = False , lowercase__ : bool = False , lowercase__ : Optional[Dict[str, str]] = None , lowercase__ : Optional[Union[bool, str]] = None , lowercase__ : Optional[str] = None , lowercase__ : bool = False , **lowercase__ : Optional[int] , ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = get_cached_module_file( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) return get_class_in_module(_UpperCamelCase , final_module.replace(""".py""" , """""" ) )
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
from ...configuration_utils import PretrainedConfig __UpperCAmelCase = { """google/tapas-base-finetuned-sqa""": ( """https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json""" ), """google/tapas-base-finetuned-wtq""": ( """https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json""" ), """google/tapas-base-finetuned-wikisql-supervised""": ( """https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json""" ), """google/tapas-base-finetuned-tabfact""": ( """https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json""" ), } class __a ( __UpperCamelCase ): __snake_case : List[str] = 'tapas' def __init__( self : Optional[int] , UpperCAmelCase : Tuple=3_05_22 , UpperCAmelCase : Tuple=7_68 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]=10_24 , UpperCAmelCase : Any=[3, 2_56, 2_56, 2, 2_56, 2_56, 10] , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : str=1e-1_2 , UpperCAmelCase : Any=0 , UpperCAmelCase : List[str]=10.0 , UpperCAmelCase : str=0 , UpperCAmelCase : str=1.0 , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=1.0 , UpperCAmelCase : Optional[int]=1.0 , UpperCAmelCase : Dict=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[int]="ratio" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=64 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : str=False , UpperCAmelCase : int=True , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None , **UpperCAmelCase : Optional[int] , ): super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Optional[int] = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : int = intermediate_size lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Union[str, Any] = max_position_embeddings lowerCAmelCase_ : Tuple = type_vocab_sizes lowerCAmelCase_ : Optional[Any] = initializer_range lowerCAmelCase_ : int = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase_ : Union[str, Any] = positive_label_weight lowerCAmelCase_ : List[str] = num_aggregation_labels lowerCAmelCase_ : Optional[int] = aggregation_loss_weight lowerCAmelCase_ : List[str] = use_answer_as_supervision lowerCAmelCase_ : Any = answer_loss_importance lowerCAmelCase_ : List[Any] = use_normalized_answer_loss lowerCAmelCase_ : Optional[int] = huber_loss_delta lowerCAmelCase_ : Dict = temperature lowerCAmelCase_ : str = aggregation_temperature lowerCAmelCase_ : List[str] = use_gumbel_for_cells lowerCAmelCase_ : Tuple = use_gumbel_for_aggregation lowerCAmelCase_ : Optional[int] = average_approximation_function lowerCAmelCase_ : Dict = cell_selection_preference lowerCAmelCase_ : int = answer_loss_cutoff lowerCAmelCase_ : Union[str, Any] = max_num_rows lowerCAmelCase_ : Any = max_num_columns lowerCAmelCase_ : int = average_logits_per_cell lowerCAmelCase_ : List[Any] = select_one_column lowerCAmelCase_ : Tuple = allow_empty_column_selection lowerCAmelCase_ : List[Any] = init_cell_selection_weights_to_zero lowerCAmelCase_ : Union[str, Any] = reset_position_index_per_cell lowerCAmelCase_ : List[str] = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase_ : Any = aggregation_labels lowerCAmelCase_ : Optional[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , __lowerCAmelCase ): lowerCAmelCase_ : Union[str, Any] = {int(__lowerCAmelCase ): v for k, v in aggregation_labels.items()}
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=3 , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , UpperCAmelCase : Dict=[1, 1, 2, 1] , UpperCAmelCase : Any=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple="relu" , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : List[str]=None , ): lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : str = embeddings_size lowerCAmelCase_ : Optional[int] = hidden_sizes lowerCAmelCase_ : List[Any] = depths lowerCAmelCase_ : Union[str, Any] = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Any = hidden_act lowerCAmelCase_ : str = num_labels lowerCAmelCase_ : Dict = scope lowerCAmelCase_ : Optional[int] = len(_snake_case ) def A ( self : Any ): lowerCAmelCase_ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : str = self.get_config() return config, pixel_values, labels def A ( self : str ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict ): lowerCAmelCase_ : Optional[Any] = TFResNetModel(config=_snake_case ) lowerCAmelCase_ : Optional[int] = model(_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : Optional[int] = TFResNetForImageClassification(_snake_case ) lowerCAmelCase_ : Optional[int] = model(_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : str ): lowerCAmelCase_ : str = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = config_and_inputs lowerCAmelCase_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Any = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __snake_case : Union[str, Any] = ( {"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification} if is_tf_available() else {} ) __snake_case : Union[str, Any] = False __snake_case : List[Any] = False __snake_case : Any = False __snake_case : str = False __snake_case : Dict = False def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case ) def A ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Dict ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def A ( self : Optional[Any] ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def A ( self : str ): pass def A ( self : Union[str, Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Tuple = model_class(_snake_case ) lowerCAmelCase_ : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Dict = [*signature.parameters.keys()] lowerCAmelCase_ : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def A ( self : List[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def A ( self : Optional[int] ): def check_hidden_states_output(UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : str = model_class(_snake_case ) lowerCAmelCase_ : List[Any] = model(**self._prepare_for_class(_snake_case , _snake_case ) ) lowerCAmelCase_ : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase_ : Any = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : List[str] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase_ : Tuple = layer_type lowerCAmelCase_ : Union[str, Any] = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : int = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def A ( self : Optional[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def A ( self : str ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : List[str] = TFResNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def __UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : Dict ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Tuple = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ : List[Any] = self.default_image_processor lowerCAmelCase_ : Tuple = prepare_img() lowerCAmelCase_ : List[Any] = image_processor(images=_snake_case , return_tensors="""tf""" ) # forward pass lowerCAmelCase_ : Dict = model(**_snake_case ) # verify the logits lowerCAmelCase_ : Union[str, Any] = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , _snake_case ) lowerCAmelCase_ : int = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1e-4 ) )
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
def __UpperCamelCase ( lowercase__ : int , lowercase__ : Tuple ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = (boundary[1] - boundary[0]) / steps lowerCAmelCase_ : int = boundary[0] lowerCAmelCase_ : str = boundary[1] lowerCAmelCase_ : List[Any] = make_points(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase_ : Union[str, Any] = 0.0 y += (h / 2.0) * f(UpperCamelCase__ ) for i in x_i: # print(i) y += h * f(UpperCamelCase__ ) y += (h / 2.0) * f(UpperCamelCase__ ) return y def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = a + h while x < (b - h): yield x lowerCAmelCase_ : Union[str, Any] = x + h def __UpperCamelCase ( lowercase__ : int ) -> Tuple: # enter your function here '''simple docstring''' lowerCAmelCase_ : List[str] = (x - 0) * (x - 0) return y def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Dict = 0.0 # Lower bound of integration lowerCAmelCase_ : Optional[Any] = 1.0 # Upper bound of integration lowerCAmelCase_ : Tuple = 10.0 # define number of steps or resolution lowerCAmelCase_ : int = [a, b] # define boundary of integration lowerCAmelCase_ : Any = method_a(UpperCamelCase__ , UpperCamelCase__ ) print(f'y = {y}' ) if __name__ == "__main__": main()
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __UpperCamelCase ( lowercase__ : str , lowercase__ : float | Decimal , lowercase__ : float = 10**-10 ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = a while True: lowerCAmelCase_ : Tuple = Decimal(_a ) - ( Decimal(eval(_a ) ) / Decimal(eval(str(diff(_a ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_a ) ) < precision: # noqa: S307 return float(_a ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial print(f"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}""") # Find Square Root of 5 print(f"""The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}""") # Exponential Roots print(f"""The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}""")
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) # TODO Update this __UpperCAmelCase = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __a ( snake_case__ ): __snake_case : List[str] = """esm""" def __init__( self : Dict , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : List[Any]=30_72 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Optional[Any]=10_26 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : str=1e-1_2 , UpperCAmelCase : Optional[Any]="absolute" , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : Dict , ): super().__init__(pad_token_id=UpperCAmelCase_ , mask_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase_ : Optional[Any] = vocab_size lowerCAmelCase_ : Union[str, Any] = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Optional[Any] = num_attention_heads lowerCAmelCase_ : Dict = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : int = initializer_range lowerCAmelCase_ : Optional[Any] = layer_norm_eps lowerCAmelCase_ : Optional[Any] = position_embedding_type lowerCAmelCase_ : Dict = use_cache lowerCAmelCase_ : Union[str, Any] = emb_layer_norm_before lowerCAmelCase_ : str = token_dropout lowerCAmelCase_ : str = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowerCAmelCase_ : Optional[Any] = EsmFoldConfig() elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase_ : Optional[int] = EsmFoldConfig(**UpperCAmelCase_ ) lowerCAmelCase_ : Dict = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowerCAmelCase_ : Dict = get_default_vocab_list() else: lowerCAmelCase_ : str = vocab_list else: lowerCAmelCase_ : Any = None lowerCAmelCase_ : int = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , UpperCAmelCase_ ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def A ( self : Dict ): lowerCAmelCase_ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase_ ): lowerCAmelCase_ : List[Any] = self.esmfold_config.to_dict() return output @dataclass class __a : __snake_case : List[Any] = None __snake_case : Union[str, Any] = True __snake_case : Dict = False __snake_case : Dict = False __snake_case : Union[str, Any] = False __snake_case : List[Any] = 0 __snake_case : Tuple = True __snake_case : Optional[int] = False __snake_case : Dict = 128 __snake_case : Union[str, Any] = None def A ( self : int ): if self.trunk is None: lowerCAmelCase_ : Optional[Any] = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase_ ): lowerCAmelCase_ : str = TrunkConfig(**self.trunk ) def A ( self : Tuple ): lowerCAmelCase_ : Tuple = asdict(self ) lowerCAmelCase_ : Tuple = self.trunk.to_dict() return output @dataclass class __a : __snake_case : Union[str, Any] = 48 __snake_case : Dict = 1024 __snake_case : int = 128 __snake_case : Union[str, Any] = 32 __snake_case : List[str] = 32 __snake_case : Union[str, Any] = 32 __snake_case : str = 0 __snake_case : str = 0 __snake_case : Optional[Any] = False __snake_case : Optional[int] = 4 __snake_case : str = 128 __snake_case : Union[str, Any] = None def A ( self : Union[str, Any] ): if self.structure_module is None: lowerCAmelCase_ : int = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase_ ): lowerCAmelCase_ : Dict = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) lowerCAmelCase_ : Optional[int] = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase_ : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def A ( self : List[Any] ): lowerCAmelCase_ : List[str] = asdict(self ) lowerCAmelCase_ : Optional[Any] = self.structure_module.to_dict() return output @dataclass class __a : __snake_case : Optional[int] = 384 __snake_case : Dict = 128 __snake_case : Any = 16 __snake_case : Dict = 128 __snake_case : List[Any] = 12 __snake_case : Optional[Any] = 4 __snake_case : int = 8 __snake_case : Tuple = 0.1 __snake_case : Optional[int] = 8 __snake_case : int = 1 __snake_case : Dict = 2 __snake_case : str = 7 __snake_case : Tuple = 10 __snake_case : str = 1e-8 __snake_case : str = 1e5 def A ( self : Optional[Any] ): return asdict(self ) def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class __a ( lowerCamelCase_ ): __snake_case : str = field(default="""audio-classification""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) __snake_case : ClassVar[Features] = Features({"""audio""": Audio()} ) __snake_case : ClassVar[Features] = Features({"""labels""": ClassLabel} ) __snake_case : str = "audio" __snake_case : str = "labels" def A ( self : Optional[Any] , UpperCAmelCase : List[str] ): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , lowerCAmelCase__ ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) lowerCAmelCase_ : List[str] = copy.deepcopy(self ) lowerCAmelCase_ : str = self.label_schema.copy() lowerCAmelCase_ : Any = features[self.label_column] lowerCAmelCase_ : List[str] = label_schema return task_template @property def A ( self : Dict ): return { self.audio_column: "audio", self.label_column: "labels", }
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCAmelCase = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING __UpperCAmelCase = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : Dict = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'config.{attribute}' in modeling_source or f'getattr(config, \"{attribute}\"' in modeling_source or f'getattr(self.config, \"{attribute}\"' in modeling_source ): lowerCAmelCase_ : int = True # Deal with multi-line cases elif ( re.search( Rf'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"' , UpperCamelCase__ , ) is not None ): lowerCAmelCase_ : Optional[Any] = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: lowerCAmelCase_ : Union[str, Any] = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files lowerCAmelCase_ : Optional[int] = [ """bos_index""", """eos_index""", """pad_index""", """unk_index""", """mask_index""", """image_size""", """use_cache""", """out_features""", """out_indices""", ] lowerCAmelCase_ : Optional[Any] = ["""encoder_no_repeat_ngram_size"""] # Special cases to be allowed lowerCAmelCase_ : Optional[int] = True if not attribute_used: lowerCAmelCase_ : Union[str, Any] = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: lowerCAmelCase_ : Tuple = True elif attribute in ["tie_word_embeddings"] and default_value is False: lowerCAmelCase_ : List[Any] = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: lowerCAmelCase_ : Dict = True elif attribute.endswith("""_token_id""" ): lowerCAmelCase_ : Optional[Any] = True # configuration class specific cases if not case_allowed: lowerCAmelCase_ : Union[str, Any] = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) lowerCAmelCase_ : int = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __UpperCamelCase ( lowercase__ : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : int = dict(inspect.signature(config_class.__init__ ).parameters ) lowerCAmelCase_ : List[Any] = [x for x in list(signature.keys() ) if x not in ["""self""", """kwargs"""]] lowerCAmelCase_ : Dict = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass lowerCAmelCase_ : int = {} if len(config_class.attribute_map ) > 0: lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files lowerCAmelCase_ : List[str] = inspect.getsourcefile(UpperCamelCase__ ) lowerCAmelCase_ : List[Any] = os.path.dirname(UpperCamelCase__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. lowerCAmelCase_ : Any = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for fn in os.listdir(UpperCamelCase__ ) if fn.startswith("""modeling_""" )] # Get the source code strings lowerCAmelCase_ : Optional[int] = [] for path in modeling_paths: if os.path.isfile(UpperCamelCase__ ): with open(UpperCamelCase__ ) as fp: modeling_sources.append(fp.read() ) lowerCAmelCase_ : Any = [] for config_param, default_value in zip(UpperCamelCase__ , UpperCamelCase__ ): # `attributes` here is all the variant names for `config_param` lowerCAmelCase_ : Any = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): unused_attributes.append(attributes[0] ) return sorted(UpperCamelCase__ ) def __UpperCamelCase ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) lowerCAmelCase_ : str = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowercase__ : inspect.isclass(UpperCamelCase__ ) and issubclass(UpperCamelCase__ , UpperCamelCase__ ) and inspect.getmodule(UpperCamelCase__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: lowerCAmelCase_ : int = check_config_attributes_being_used(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowerCAmelCase_ : Optional[Any] = unused_attributes if len(UpperCamelCase__ ) > 0: lowerCAmelCase_ : Optional[Any] = """The following configuration classes contain unused attributes in the corresponding modeling files:\n""" for name, attributes in configs_with_unused_attributes.items(): error += f'{name}: {attributes}\n' raise ValueError(UpperCamelCase__ ) if __name__ == "__main__": check_config_attributes()
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0
def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = int(__lowerCamelCase ) if decimal in (0, 1): # Exit cases for the recursion return str(__lowerCamelCase ) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = divmod(__lowerCamelCase , 2 ) return binary_recursive(__lowerCamelCase ) + str(__lowerCamelCase ) def __UpperCamelCase ( lowercase__ : str ) -> str: '''simple docstring''' lowerCAmelCase_ : Tuple = str(__lowerCamelCase ).strip() if not number: raise ValueError("""No input value was provided""" ) lowerCAmelCase_ : Dict = """-""" if number.startswith("""-""" ) else """""" lowerCAmelCase_ : Optional[int] = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f'{negative}0b{binary_recursive(int(__lowerCamelCase ) )}' if __name__ == "__main__": from doctest import testmod testmod()
367
from datetime import datetime as dt import os from github import Github __UpperCAmelCase = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Dict = Github(os.environ["""GITHUB_TOKEN"""] ) lowerCAmelCase_ : Tuple = g.get_repo("""huggingface/transformers""" ) lowerCAmelCase_ : Any = repo.get_issues(state="""open""" ) for issue in open_issues: lowerCAmelCase_ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) lowerCAmelCase_ : str = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="""closed""" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) if __name__ == "__main__": main()
28
0
import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): __snake_case : List[str] = CLIPConfig __snake_case : Dict = ["""CLIPEncoderLayer"""] def __init__( self : List[Any] , UpperCAmelCase : List[str] ): super().__init__(_a ) lowerCAmelCase_ : List[str] = CLIPVisionModelWithProjection(config.vision_config ) lowerCAmelCase_ : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) lowerCAmelCase_ : Any = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def A ( self : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=0.5 , UpperCAmelCase : Union[str, Any]=0.5 ): lowerCAmelCase_ : Any = self.vision_model(_a )[0] lowerCAmelCase_ : int = self.p_head(_a ) lowerCAmelCase_ : List[Any] = nsfw_detected.flatten() lowerCAmelCase_ : List[str] = nsfw_detected > p_threshold lowerCAmelCase_ : Dict = nsfw_detected.tolist() if any(_a ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(_a ): if nsfw_detected_: lowerCAmelCase_ : Tuple = np.zeros(images[idx].shape ) lowerCAmelCase_ : List[str] = self.w_head(_a ) lowerCAmelCase_ : int = watermark_detected.flatten() lowerCAmelCase_ : int = watermark_detected > w_threshold lowerCAmelCase_ : List[Any] = watermark_detected.tolist() if any(_a ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(_a ): if watermark_detected_: lowerCAmelCase_ : Dict = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
368
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __a ( unittest.TestCase ): def A ( self : List[Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) lowerCAmelCase_ : Optional[Any] = Vector() def A ( self : List[str] ): lowerCAmelCase_ : Tuple = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(UpperCAmelCase ) , """(0,0,0,0,0,1)""" ) def A ( self : Any ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 2, 3, 4] ) self.assertEqual(len(UpperCAmelCase ) , 4 ) def A ( self : Dict ): lowerCAmelCase_ : Dict = Vector([1, 2] ) lowerCAmelCase_ : str = Vector([1, 2, 3, 4, 5] ) lowerCAmelCase_ : Optional[int] = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : Dict = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[int] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Dict = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict = Vector([1, 2, 3] ) lowerCAmelCase_ : Optional[int] = Vector([2, -1, 4] ) # for test of dot product lowerCAmelCase_ : str = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , """(3.0,6.0,9.0)""" ) self.assertEqual((a * b) , 0 ) def A ( self : List[str] ): self.assertEqual(str(zero_vector(10 ) ).count("""0""" ) , 10 ) def A ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , """(0,1,0)""" ) def A ( self : Optional[Any] ): lowerCAmelCase_ : Optional[Any] = Vector([1, 2, 3] ) lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , UpperCAmelCase , UpperCAmelCase ) ) , """(3,4,7)""" ) def A ( self : Optional[int] ): lowerCAmelCase_ : List[Any] = Vector([1, 0, 0, 0, 0, 0] ) lowerCAmelCase_ : int = x.copy() self.assertEqual(str(UpperCAmelCase ) , str(UpperCAmelCase ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(UpperCAmelCase ) , """(0,1,0)""" ) def A ( self : Any ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual("""|1,2,3|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : List[str] = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Tuple ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Union[str, Any] = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(UpperCAmelCase , UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def A ( self : Optional[int] ): lowerCAmelCase_ : Dict = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) lowerCAmelCase_ : Any = Vector([1, 2, 3] ) self.assertEqual("""(14,32,50)""" , str(a * x ) ) self.assertEqual("""|2,4,6|\n|8,10,12|\n|14,16,18|\n""" , str(a * 2 ) ) def A ( self : Tuple ): lowerCAmelCase_ : int = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual("""|1,2,5|\n|2,4,5|\n|6,7,8|\n""" , str(UpperCAmelCase ) ) def A ( self : Optional[int] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def A ( self : Dict ): lowerCAmelCase_ : Any = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|2,4,10|\n|4,8,10|\n|12,14,18|\n""" , str(a + b ) ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : str = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) lowerCAmelCase_ : Optional[int] = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual("""|0,0,-4|\n|0,0,0|\n|0,0,-2|\n""" , str(a - b ) ) def A ( self : Optional[int] ): self.assertEqual( """|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n""" , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
28
0
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(_a ) ,"""Tatoeba directory does not exist.""" ) class __a ( unittest.TestCase ): @cached_property def A ( self : List[Any] ): lowerCAmelCase_ : List[str] = tempfile.mkdtemp() return TatoebaConverter(save_dir=_a ) @slow def A ( self : Optional[Any] ): self.resolver.convert_models(["""heb-eng"""] ) @slow def A ( self : Any ): lowerCAmelCase_ : Tuple = self.resolver.write_model_card("""opus-mt-he-en""" , dry_run=_a ) assert mmeta["long_pair"] == "heb-eng"
369
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Union[str, Any] = """pixel_values""" __snake_case : Optional[Any] = False __snake_case : Dict = TimmBackboneConfig def __init__( self : List[str] , UpperCAmelCase : int , **UpperCAmelCase : List[str] ): requires_backends(self , """timm""" ) super().__init__(UpperCAmelCase ) lowerCAmelCase_ : List[Any] = config if config.backbone is None: raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""" ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(UpperCAmelCase , """out_features""" ) and config.out_features is not None: raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""" ) lowerCAmelCase_ : List[str] = getattr(UpperCAmelCase , """use_pretrained_backbone""" , UpperCAmelCase ) if pretrained is None: raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""" ) # We just take the final layer by default. This matches the default for the transformers models. lowerCAmelCase_ : str = config.out_indices if getattr(UpperCAmelCase , """out_indices""" , UpperCAmelCase ) is not None else (-1,) lowerCAmelCase_ : Optional[int] = timm.create_model( config.backbone , pretrained=UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=UpperCAmelCase , **UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. lowerCAmelCase_ : Union[str, Any] = self._backbone.return_layers lowerCAmelCase_ : Dict = {layer["""module"""]: str(UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(UpperCAmelCase ) @classmethod def A ( cls : Dict , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Dict ): requires_backends(cls , ["""vision""", """timm"""] ) from ...models.timm_backbone import TimmBackboneConfig lowerCAmelCase_ : Optional[Any] = kwargs.pop("""config""" , TimmBackboneConfig() ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""use_timm_backbone""" , UpperCAmelCase ) if not use_timm: raise ValueError("""use_timm_backbone must be True for timm backbones""" ) lowerCAmelCase_ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels ) lowerCAmelCase_ : Tuple = kwargs.pop("""features_only""" , config.features_only ) lowerCAmelCase_ : List[str] = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone ) lowerCAmelCase_ : Optional[Any] = kwargs.pop("""out_indices""" , config.out_indices ) lowerCAmelCase_ : Optional[Any] = TimmBackboneConfig( backbone=UpperCAmelCase , num_channels=UpperCAmelCase , features_only=UpperCAmelCase , use_pretrained_backbone=UpperCAmelCase , out_indices=UpperCAmelCase , ) return super()._from_config(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): pass def A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=None , **UpperCAmelCase : Any ): lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Any = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError("""Cannot output attentions for timm backbones at the moment""" ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone lowerCAmelCase_ : Optional[Any] = self._all_layers lowerCAmelCase_ : List[Any] = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = self._return_layers lowerCAmelCase_ : Any = tuple(hidden_states[i] for i in self.out_indices ) else: lowerCAmelCase_ : Tuple = self._backbone(UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = None lowerCAmelCase_ : List[str] = tuple(UpperCAmelCase ) lowerCAmelCase_ : int = tuple(UpperCAmelCase ) if hidden_states is not None else None if not return_dict: lowerCAmelCase_ : Optional[Any] = (feature_maps,) if output_hidden_states: lowerCAmelCase_ : Tuple = output + (hidden_states,) return output return BackboneOutput(feature_maps=UpperCAmelCase , hidden_states=UpperCAmelCase , attentions=UpperCAmelCase )
28
0
def __UpperCamelCase ( ) -> list[list[int]]: '''simple docstring''' return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __UpperCAmelCase = generate_large_matrix() __UpperCAmelCase = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> None: '''simple docstring''' assert all(row == sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ) for row in grid ) assert all(list(_lowerCAmelCase ) == sorted(_lowerCAmelCase , reverse=_lowerCAmelCase ) for col in zip(*_lowerCAmelCase ) ) def __UpperCamelCase ( lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : str = len(_lowerCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCAmelCase_ : List[Any] = (left + right) // 2 lowerCAmelCase_ : Tuple = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCAmelCase_ : Tuple = mid + 1 else: lowerCAmelCase_ : Tuple = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_lowerCAmelCase ) def __UpperCamelCase ( lowercase__ : Any ) -> int: '''simple docstring''' lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Optional[int] = len(grid[0] ) for i in range(len(_lowerCAmelCase ) ): lowerCAmelCase_ : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(_lowerCAmelCase ) * len(grid[0] )) - total def __UpperCamelCase ( lowercase__ : Dict ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def __UpperCamelCase ( lowercase__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase_ : List[Any] = 0 for row in grid: for i, number in enumerate(_lowerCAmelCase ): if number < 0: total += len(_lowerCAmelCase ) - i break return total def __UpperCamelCase ( ) -> None: '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) lowerCAmelCase_ : int = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCAmelCase_ : Tuple = timeit(f'{func}(grid=grid)' , setup=_lowerCAmelCase , number=500 ) print(f'{func}() took {time:0.4f} seconds' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
370
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __a ( __UpperCamelCase ): __snake_case : Optional[Any] = """mra""" def __init__( self : List[str] , UpperCAmelCase : Tuple=5_02_65 , UpperCAmelCase : str=7_68 , UpperCAmelCase : int=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Tuple=30_72 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : List[str]=5_12 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : int=1e-5 , UpperCAmelCase : Optional[int]="absolute" , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Any="full" , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : List[str]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=0 , UpperCAmelCase : int=2 , **UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = vocab_size lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : Any = hidden_size lowerCAmelCase_ : List[Any] = num_hidden_layers lowerCAmelCase_ : Tuple = num_attention_heads lowerCAmelCase_ : List[Any] = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Any = attention_probs_dropout_prob lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = type_vocab_size lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = position_embedding_type lowerCAmelCase_ : Any = block_per_row lowerCAmelCase_ : int = approx_mode lowerCAmelCase_ : Union[str, Any] = initial_prior_first_n_blocks lowerCAmelCase_ : Dict = initial_prior_diagonal_n_blocks
28
0
from __future__ import annotations class __a : def __init__( self : List[str] , UpperCAmelCase : Any=None ): lowerCAmelCase_ : Dict = data lowerCAmelCase_ : str = None def __repr__( self : int ): lowerCAmelCase_ : List[Any] = [] lowerCAmelCase_ : int = self while temp: string_rep.append(F'{temp.data}' ) lowerCAmelCase_ : Optional[Any] = temp.next return "->".join(__lowercase ) def __UpperCamelCase ( lowercase__ : List[Any] ) -> List[Any]: '''simple docstring''' if not elements_list: raise Exception("""The Elements List is empty""" ) lowerCAmelCase_ : Dict = Node(elements_list[0] ) for i in range(1 , len(__lowerCAmelCase ) ): lowerCAmelCase_ : str = Node(elements_list[i] ) lowerCAmelCase_ : Tuple = current.next return head def __UpperCamelCase ( lowercase__ : int ) -> None: '''simple docstring''' if head_node is not None and isinstance(__lowerCAmelCase , __lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def __UpperCamelCase ( ) -> int: '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase_ : Optional[int] = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(__lowerCAmelCase ) print("""Elements in Reverse:""" ) print_reverse(__lowerCAmelCase ) if __name__ == "__main__": main()
371
from decimal import Decimal, getcontext from math import ceil, factorial def __UpperCamelCase ( lowercase__ : int ) -> str: '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) lowerCAmelCase_ : Any = precision lowerCAmelCase_ : Any = ceil(precision / 14 ) lowerCAmelCase_ : Optional[Any] = 426880 * Decimal(10005 ).sqrt() lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Optional[int] = 13591409 lowerCAmelCase_ : Union[str, Any] = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): lowerCAmelCase_ : Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __UpperCAmelCase = 50 print(f"""The first {n} digits of pi is: {pi(n)}""")
28
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : List[Any]=8 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase_ : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __a ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=UpperCAmelCase , scheduler=UpperCAmelCase , movq=UpperCAmelCase , ) lowerCAmelCase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): if latents is None: lowerCAmelCase_ : Union[str, Any] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase_ : Any = latents.to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A ( self : List[str] , UpperCAmelCase : int=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase_ : Optional[int] = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase_ : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase , UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : Optional[Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase_ : str = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase_ : Tuple = cpu_offload_with_hook(UpperCAmelCase , UpperCAmelCase , prev_module_hook=UpperCAmelCase ) # We'll offload the last model manually. lowerCAmelCase_ : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self : str ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase ) def __call__( self : str , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 1_00 , UpperCAmelCase : float = 4.0 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Union[str, Any] = self._execution_device lowerCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : List[Any] = torch.cat(UpperCAmelCase , dim=0 ) lowerCAmelCase_ : Dict = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Any = torch.cat(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase_ : List[Any] = image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowerCAmelCase_ : Optional[int] = negative_image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowerCAmelCase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase ) self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase ) lowerCAmelCase_ : int = self.scheduler.timesteps lowerCAmelCase_ : str = self.unet.config.in_channels lowerCAmelCase_ : Dict = downscale_height_and_width(UpperCAmelCase , UpperCAmelCase , self.movq_scale_factor ) # create initial latent lowerCAmelCase_ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : List[str] = {'image_embeds': image_embeds} lowerCAmelCase_ : Union[str, Any] = self.unet( sample=UpperCAmelCase , timestep=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , added_cond_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] if do_classifier_free_guidance: lowerCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase_ : int = noise_pred.chunk(2 ) lowerCAmelCase_ : int = variance_pred.chunk(2 ) lowerCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase_ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : Optional[Any] = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase , )[0] # post-processing lowerCAmelCase_ : List[str] = self.movq.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase_ : Dict = image * 0.5 + 0.5 lowerCAmelCase_ : List[Any] = image.clamp(0 , 1 ) lowerCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase_ : Any = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a : def __init__( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=13 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Dict=[1, 2, 1] , UpperCAmelCase : Dict=[2, 2, 4] , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Dict=2.0 , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : str=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : str=1e-5 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=None , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=10 , UpperCAmelCase : Tuple=8 , ): lowerCAmelCase_ : Tuple = parent lowerCAmelCase_ : int = batch_size lowerCAmelCase_ : str = image_size lowerCAmelCase_ : Optional[int] = patch_size lowerCAmelCase_ : Dict = num_channels lowerCAmelCase_ : List[Any] = embed_dim lowerCAmelCase_ : List[str] = depths lowerCAmelCase_ : Optional[int] = num_heads lowerCAmelCase_ : str = window_size lowerCAmelCase_ : Dict = mlp_ratio lowerCAmelCase_ : int = qkv_bias lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : List[Any] = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = drop_path_rate lowerCAmelCase_ : Union[str, Any] = hidden_act lowerCAmelCase_ : Any = use_absolute_embeddings lowerCAmelCase_ : Tuple = patch_norm lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : int = scope lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = type_sequence_label_size lowerCAmelCase_ : Optional[int] = encoder_stride def A ( self : Union[str, Any] ): lowerCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : List[str] = None if self.use_labels: lowerCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Tuple = self.get_config() return config, pixel_values, labels def A ( self : Optional[int] ): return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Optional[int] = SwinvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCAmelCase_ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : int ): lowerCAmelCase_ : Optional[int] = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Optional[int] = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def A ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : List[str] = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase_ : List[Any] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : int ): lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = config_and_inputs lowerCAmelCase_ : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( lowerCAmelCase_ ,lowerCAmelCase_ ,unittest.TestCase ): __snake_case : int = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __snake_case : int = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) __snake_case : str = False __snake_case : int = False __snake_case : Optional[int] = False __snake_case : Any = False def A ( self : Optional[int] ): lowerCAmelCase_ : Optional[Any] = SwinvaModelTester(self ) lowerCAmelCase_ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37 ) def A ( self : Optional[int] ): self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""Got `CUDA error: misaligned address` with PyTorch 2.0.0.""" ) def A ( self : str ): pass @unittest.skip(reason="""Swinv2 does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : int ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def A ( self : int ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(__SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Optional[Any] = True for model_class in self.all_model_classes: lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) lowerCAmelCase_ : List[str] = outputs.attentions lowerCAmelCase_ : str = len(self.model_tester.depths ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Any = config.window_size**2 lowerCAmelCase_ : Dict = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Any = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) lowerCAmelCase_ : Dict = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCAmelCase_ : List[Any] = len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowerCAmelCase_ : str = True lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : str = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase_ : Tuple = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , """num_hidden_states_types""" ): lowerCAmelCase_ : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCAmelCase_ : List[str] = 2 self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase_ : Dict = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ): lowerCAmelCase_ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowerCAmelCase_ : int = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) lowerCAmelCase_ : Dict = outputs.hidden_states lowerCAmelCase_ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length lowerCAmelCase_ : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCAmelCase_ : Union[str, Any] = outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = reshaped_hidden_states[0].shape lowerCAmelCase_ : str = ( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def A ( self : Union[str, Any] ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : Any = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def A ( self : Tuple ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : int = 3 lowerCAmelCase_ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCAmelCase_ : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCAmelCase_ : str = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCAmelCase_ : Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : int = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def A ( self : Optional[Any] ): lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def A ( self : int ): for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Optional[Any] = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : int = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: lowerCAmelCase_ : int = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class __a ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Tuple = SwinvaForImageClassification.from_pretrained("""microsoft/swinv2-tiny-patch4-window8-256""" ).to( __SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Any = self.default_image_processor lowerCAmelCase_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) lowerCAmelCase_ : List[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits lowerCAmelCase_ : List[Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) lowerCAmelCase_ : Optional[Any] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
351
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
28
0
import numpy as np from PIL import Image def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : str , lowercase__ : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : str = 0 lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : int = 0 # compute the shape of the output matrix lowerCAmelCase_ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape lowerCAmelCase_ : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix lowerCAmelCase_ : Dict = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 0 return updated_arr def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : Tuple , lowercase__ : Dict ) -> Any: '''simple docstring''' lowerCAmelCase_ : int = np.array(lowerCamelCase__ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : List[Any] = 0 # compute the shape of the output matrix lowerCAmelCase_ : Optional[int] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape lowerCAmelCase_ : Dict = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix lowerCAmelCase_ : int = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : str = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image __UpperCAmelCase = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
352
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __a : def __init__( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any]=14 , UpperCAmelCase : str=7 , UpperCAmelCase : str=True , UpperCAmelCase : int=True , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Any=True , UpperCAmelCase : Any=99 , UpperCAmelCase : Any=32 , UpperCAmelCase : Any=4 , UpperCAmelCase : int=4 , UpperCAmelCase : str=4 , UpperCAmelCase : Tuple=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=5_12 , UpperCAmelCase : List[str]=0.02 , ): lowerCAmelCase_ : List[Any] = parent lowerCAmelCase_ : Union[str, Any] = batch_size lowerCAmelCase_ : Dict = seq_length lowerCAmelCase_ : Optional[Any] = is_training lowerCAmelCase_ : Optional[int] = use_input_mask lowerCAmelCase_ : Optional[Any] = use_token_type_ids lowerCAmelCase_ : Optional[Any] = use_labels lowerCAmelCase_ : Any = vocab_size lowerCAmelCase_ : Tuple = hidden_size lowerCAmelCase_ : Any = rotary_dim lowerCAmelCase_ : str = num_hidden_layers lowerCAmelCase_ : int = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Optional[Any] = hidden_dropout_prob lowerCAmelCase_ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = initializer_range lowerCAmelCase_ : int = None lowerCAmelCase_ : Union[str, Any] = vocab_size - 1 lowerCAmelCase_ : str = vocab_size - 1 lowerCAmelCase_ : Optional[int] = vocab_size - 1 def A ( self : List[Any] ): lowerCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ : Optional[int] = None if self.use_input_mask: lowerCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : int = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Tuple ): lowerCAmelCase_ : str = 20 lowerCAmelCase_ : Dict = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) lowerCAmelCase_ : Tuple = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Dict = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : List[str] = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Any = model(UpperCAmelCase ) lowerCAmelCase_ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): lowerCAmelCase_ : int = 20 lowerCAmelCase_ : List[Any] = model_class_name(UpperCAmelCase ) lowerCAmelCase_ : Tuple = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase_ : Optional[int] = model.init_cache(input_ids.shape[0] , UpperCAmelCase ) lowerCAmelCase_ : Dict = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase_ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) lowerCAmelCase_ : Tuple = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase , position_ids=UpperCAmelCase , ) lowerCAmelCase_ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) lowerCAmelCase_ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) @require_flax class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __snake_case : Any = (FlaxGPTJForCausalLM,) if is_flax_available() else () def A ( self : Any ): lowerCAmelCase_ : List[str] = FlaxGPTJModelTester(self ) def A ( self : Union[str, Any] ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def A ( self : Tuple ): for model_class_name in self.all_model_classes: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @tooslow def A ( self : int ): lowerCAmelCase_ : Optional[int] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) lowerCAmelCase_ : Tuple = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase , truncation=UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = model.config.eos_token_id lowerCAmelCase_ : List[Any] = jax.jit(model.generate ) lowerCAmelCase_ : Any = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase_ : str = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : int = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Dict = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Any = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Tuple = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : List[str] = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : List[str] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase ) lowerCAmelCase_ : List[str] = fx_state with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : int = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = model_class.from_pretrained(UpperCAmelCase , from_pt=UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = fx_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def A ( self : Optional[Any] ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase_ : str = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase_ : Optional[int] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase_ : Any = getattr(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : str = pt_model_class(UpperCAmelCase ).eval() lowerCAmelCase_ : Any = model_class(UpperCAmelCase , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(UpperCAmelCase , fx_model.params ) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = pt_inputs["""input_ids"""].shape lowerCAmelCase_ : str = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase ): lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase_ : List[str] = pt_model(**UpperCAmelCase ).to_tuple() lowerCAmelCase_ : Tuple = fx_model(**UpperCAmelCase ).to_tuple() self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = pt_model_class.from_pretrained(UpperCAmelCase , from_flax=UpperCAmelCase ) with torch.no_grad(): lowerCAmelCase_ : Dict = pt_model_loaded(**UpperCAmelCase ).to_tuple() self.assertEqual( len(UpperCAmelCase ) , len(UpperCAmelCase ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase , UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def A ( self : str ): for model_class_name in self.all_model_classes: lowerCAmelCase_ : Optional[Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) lowerCAmelCase_ : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase )
28
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __a : def __init__( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]=1_00 , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Optional[int]=30 , UpperCAmelCase : str=2 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : List[str]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Any=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : int=[0, 1, 2, 3] , ): lowerCAmelCase_ : Optional[int] = parent lowerCAmelCase_ : List[str] = 1_00 lowerCAmelCase_ : List[str] = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Any = patch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : int = is_training lowerCAmelCase_ : Dict = use_labels lowerCAmelCase_ : Optional[Any] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : str = num_attention_heads lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : Tuple = hidden_act lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : List[Any] = type_sequence_label_size lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : List[Any] = scope lowerCAmelCase_ : int = out_indices lowerCAmelCase_ : Tuple = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCAmelCase_ : int = (image_size // patch_size) ** 2 lowerCAmelCase_ : str = num_patches + 1 def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Tuple = None lowerCAmelCase_ : List[Any] = None if self.use_labels: lowerCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCAmelCase_ : Any = self.get_config() return config, pixel_values, labels, pixel_labels def A ( self : Union[str, Any] ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): lowerCAmelCase_ : List[Any] = BeitModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase_ : str = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : Optional[int] = BeitForMaskedImageModeling(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase_ : Any = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : int = self.type_sequence_label_size lowerCAmelCase_ : Tuple = BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase_ : int = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : List[Any] = BeitForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase_ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase_ : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[str] = BeitForSemanticSegmentation(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowerCAmelCase_ : int = model(_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowerCAmelCase_ : Optional[int] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def A ( self : List[str] ): lowerCAmelCase_ : Any = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Any = config_and_inputs lowerCAmelCase_ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __snake_case : List[str] = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __snake_case : List[str] = False __snake_case : Any = False __snake_case : str = False def A ( self : int ): lowerCAmelCase_ : int = BeitModelTester(self ) lowerCAmelCase_ : Tuple = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 ) def A ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="""BEiT does not use inputs_embeds""" ) def A ( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="""BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`""" ) def A ( self : Any ): pass def A ( self : Tuple ): lowerCAmelCase_ , lowerCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(_lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def A ( self : Tuple ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Union[str, Any] = model_class(_lowerCAmelCase ) lowerCAmelCase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : int = [*signature.parameters.keys()] lowerCAmelCase_ : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def A ( self : List[str] ): lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def A ( self : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_lowerCAmelCase ) def A ( self : str ): if not self.model_tester.is_training: return lowerCAmelCase_ , lowerCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : int = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling]: continue lowerCAmelCase_ : Tuple = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowerCAmelCase_ : Optional[Any] = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowerCAmelCase_ : Dict = model(**_lowerCAmelCase ).loss loss.backward() def A ( self : int ): lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[int] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(_lowerCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowerCAmelCase_ : int = model_class(_lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(_lowerCAmelCase ) model.train() lowerCAmelCase_ : Dict = self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = model(**_lowerCAmelCase ).loss loss.backward() def A ( self : str ): lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : int = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Tuple = BeitModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def __UpperCamelCase ( ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : str ): return BeitImageProcessor.from_pretrained("""microsoft/beit-base-patch16-224""" ) if is_vision_available() else None @slow def A ( self : Union[str, Any] ): lowerCAmelCase_ : List[str] = BeitForMaskedImageModeling.from_pretrained("""microsoft/beit-base-patch16-224-pt22k""" ).to(_lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = self.default_image_processor lowerCAmelCase_ : str = prepare_img() lowerCAmelCase_ : List[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).pixel_values.to(_lowerCAmelCase ) # prepare bool_masked_pos lowerCAmelCase_ : List[str] = torch.ones((1, 1_96) , dtype=torch.bool ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Dict = model(pixel_values=_lowerCAmelCase , bool_masked_pos=_lowerCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # verify the logits lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_96, 81_92) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowerCAmelCase_ : str = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , _lowerCAmelCase , atol=1e-2 ) ) @slow def A ( self : List[Any] ): lowerCAmelCase_ : List[Any] = BeitForImageClassification.from_pretrained("""microsoft/beit-base-patch16-224""" ).to(_lowerCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Tuple = prepare_img() lowerCAmelCase_ : int = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Optional[Any] = model(**_lowerCAmelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.logits # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowerCAmelCase_ : Dict = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) lowerCAmelCase_ : List[Any] = 2_81 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def A ( self : List[Any] ): lowerCAmelCase_ : str = BeitForImageClassification.from_pretrained("""microsoft/beit-large-patch16-224-pt22k-ft22k""" ).to( _lowerCAmelCase ) lowerCAmelCase_ : Dict = self.default_image_processor lowerCAmelCase_ : Any = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : str = model(**_lowerCAmelCase ) lowerCAmelCase_ : List[Any] = outputs.logits # verify the logits lowerCAmelCase_ : List[Any] = torch.Size((1, 2_18_41) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowerCAmelCase_ : Dict = torch.tensor([1.6881, -0.2787, 0.5901] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) ) lowerCAmelCase_ : Any = 23_96 self.assertEqual(logits.argmax(-1 ).item() , _lowerCAmelCase ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Any = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) lowerCAmelCase_ : str = model.to(_lowerCAmelCase ) lowerCAmelCase_ : List[str] = BeitImageProcessor(do_resize=_lowerCAmelCase , size=6_40 , do_center_crop=_lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowerCAmelCase_ : Tuple = Image.open(ds[0]["""file"""] ) lowerCAmelCase_ : Dict = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : List[str] = model(**_lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = outputs.logits # verify the logits lowerCAmelCase_ : Optional[Any] = torch.Size((1, 1_50, 1_60, 1_60) ) self.assertEqual(logits.shape , _lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = version.parse(PIL.__version__ ) < version.parse("""9.0.0""" ) if is_pillow_less_than_a: lowerCAmelCase_ : Any = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=_lowerCAmelCase , ) else: lowerCAmelCase_ : Optional[int] = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=_lowerCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def A ( self : List[str] ): lowerCAmelCase_ : Dict = BeitForSemanticSegmentation.from_pretrained("""microsoft/beit-base-finetuned-ade-640-640""" ) lowerCAmelCase_ : Tuple = model.to(_lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = BeitImageProcessor(do_resize=_lowerCAmelCase , size=6_40 , do_center_crop=_lowerCAmelCase ) lowerCAmelCase_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) lowerCAmelCase_ : str = Image.open(ds[0]["""file"""] ) lowerCAmelCase_ : Tuple = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**_lowerCAmelCase ) lowerCAmelCase_ : Optional[int] = outputs.logits.detach().cpu() lowerCAmelCase_ : List[str] = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase , target_sizes=[(5_00, 3_00)] ) lowerCAmelCase_ : Union[str, Any] = torch.Size((5_00, 3_00) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase ) lowerCAmelCase_ : Dict = image_processor.post_process_semantic_segmentation(outputs=_lowerCAmelCase ) lowerCAmelCase_ : str = torch.Size((1_60, 1_60) ) self.assertEqual(segmentation[0].shape , _lowerCAmelCase )
353
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __a ( __UpperCamelCase ): __snake_case : torch.FloatTensor __snake_case : torch.FloatTensor __snake_case : Optional[torch.FloatTensor] = None class __a ( __UpperCamelCase ,__UpperCamelCase ): __snake_case : Optional[Any] = 2 @register_to_config def __init__( self : str , UpperCAmelCase : float = 0.02 , UpperCAmelCase : float = 1_00 , UpperCAmelCase : float = 1.007 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 0.05 , UpperCAmelCase : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : List[Any] = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def A ( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): lowerCAmelCase_ : Dict = num_inference_steps lowerCAmelCase_ : Dict = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : str = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Dict = torch.tensor(UpperCAmelCase , dtype=torch.floataa , device=UpperCAmelCase ) def A ( self : str , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[str] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : Any = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCAmelCase ).to(sample.device ) lowerCAmelCase_ : int = sigma + gamma * sigma lowerCAmelCase_ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A ( self : Optional[int] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : List[str] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : float , UpperCAmelCase : float , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Any = sample_prev + sigma_prev * model_output lowerCAmelCase_ : Optional[int] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : str = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCAmelCase , derivative=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] ): raise NotImplementedError()
28
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class __a ( unittest.TestCase ): @slow def A ( self : Dict ): lowerCAmelCase_ : int = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) lowerCAmelCase_ : int = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE )["""last_hidden_state"""] lowerCAmelCase_ : Optional[Any] = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. lowerCAmelCase_ : str = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
354
from __future__ import annotations from typing import Any class __a : def __init__( self : Dict , UpperCAmelCase : int = 6 ): lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None self.create_linked_list(UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : int = current_node lowerCAmelCase_ : str = current_node lowerCAmelCase_ : Union[str, Any] = current_node for _ in range(1 , UpperCAmelCase ): lowerCAmelCase_ : Any = Node() lowerCAmelCase_ : Dict = current_node lowerCAmelCase_ : Optional[int] = previous_node lowerCAmelCase_ : Optional[Any] = current_node lowerCAmelCase_ : List[str] = self.front lowerCAmelCase_ : Optional[int] = previous_node def A ( self : Any ): return ( self.front == self.rear and self.front is not None and self.front.data is None ) def A ( self : List[str] ): self.check_can_perform_operation() return self.front.data if self.front else None def A ( self : Optional[int] , UpperCAmelCase : Any ): if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCAmelCase_ : int = self.rear.next if self.rear: lowerCAmelCase_ : Union[str, Any] = data def A ( self : List[Any] ): self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCAmelCase_ : int = self.front.data lowerCAmelCase_ : Optional[Any] = None return data lowerCAmelCase_ : Optional[int] = self.front lowerCAmelCase_ : Any = old_front.next lowerCAmelCase_ : Tuple = old_front.data lowerCAmelCase_ : str = None return data def A ( self : Tuple ): if self.is_empty(): raise Exception("""Empty Queue""" ) def A ( self : List[str] ): if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""" ) class __a : def __init__( self : Any ): lowerCAmelCase_ : Any | None = None lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
28
0
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class __a ( snake_case_ ): def __init__( self : Any , **UpperCAmelCase : List[str] ): super().__init__(**UpperCAmelCase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : str , UpperCAmelCase : Union[np.ndarray, bytes, str] , **UpperCAmelCase : Optional[Any] ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def A ( self : Any , **UpperCAmelCase : List[Any] ): lowerCAmelCase_ : Dict = {} if "candidate_labels" in kwargs: lowerCAmelCase_ : Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowerCAmelCase_ : Any = kwargs['hypothesis_template'] return preprocess_params, {}, {} def A ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=None , UpperCAmelCase : Union[str, Any]="This is a sound of {}." ): if isinstance(UpperCAmelCase , UpperCAmelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCAmelCase_ : Optional[Any] = requests.get(UpperCAmelCase ).content else: with open(UpperCAmelCase , """rb""" ) as f: lowerCAmelCase_ : Optional[Any] = f.read() if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : str = ffmpeg_read(UpperCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(UpperCAmelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) lowerCAmelCase_ : str = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = candidate_labels lowerCAmelCase_ : Optional[Any] = [hypothesis_template.format(UpperCAmelCase ) for x in candidate_labels] lowerCAmelCase_ : Optional[int] = self.tokenizer(UpperCAmelCase , return_tensors=self.framework , padding=UpperCAmelCase ) lowerCAmelCase_ : Any = [text_inputs] return inputs def A ( self : str , UpperCAmelCase : List[str] ): lowerCAmelCase_ : List[Any] = model_inputs.pop("""candidate_labels""" ) lowerCAmelCase_ : Tuple = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , UpperCAmelCase ): lowerCAmelCase_ : Optional[Any] = text_inputs[0] else: # Batching case. lowerCAmelCase_ : str = text_inputs[0][0] lowerCAmelCase_ : Any = self.model(**UpperCAmelCase , **UpperCAmelCase ) lowerCAmelCase_ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def A ( self : Optional[Any] , UpperCAmelCase : Dict ): lowerCAmelCase_ : List[Any] = model_outputs.pop("""candidate_labels""" ) lowerCAmelCase_ : Tuple = model_outputs['logits'][0] if self.framework == "pt": lowerCAmelCase_ : Optional[Any] = logits.softmax(dim=0 ) lowerCAmelCase_ : Dict = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) lowerCAmelCase_ : Tuple = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase , UpperCAmelCase ) , key=lambda UpperCAmelCase : -x[0] ) ] return result
355
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Tuple="attention" ) -> Dict: '''simple docstring''' lowerCAmelCase_ : Any = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] lowerCAmelCase_ : Optional[Any] = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] lowerCAmelCase_ : Tuple = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : str=False ) -> int: '''simple docstring''' if split_mlp_wi: lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] lowerCAmelCase_ : List[Any] = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] lowerCAmelCase_ : int = (wi_a, wi_a) else: lowerCAmelCase_ : str = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] lowerCAmelCase_ : int = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : Dict , lowercase__ : Optional[Any] , lowercase__ : Tuple ) -> int: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def __UpperCamelCase ( lowercase__ : dict , *, lowercase__ : int , lowercase__ : bool ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[str] = traverse_util.flatten_dict(variables["""target"""] ) lowerCAmelCase_ : List[Any] = {"""/""".join(lowercase__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi lowerCAmelCase_ : Dict = """encoder/layers_0/mlp/wi_0/kernel""" in old print("""Split MLP:""" , lowercase__ ) lowerCAmelCase_ : Optional[Any] = collections.OrderedDict() # Shared embeddings. lowerCAmelCase_ : Tuple = old["""token_embedder/embedding"""] # Encoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """encoder""" , """attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Optional[int] = k.T lowerCAmelCase_ : List[Any] = o.T lowerCAmelCase_ : Union[str, Any] = q.T lowerCAmelCase_ : Any = v.T # Block i, layer 1 (MLP). lowerCAmelCase_ : Any = tax_layer_norm_lookup(lowercase__ , lowercase__ , """encoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = tax_mlp_lookup(lowercase__ , lowercase__ , """encoder""" , lowercase__ ) lowerCAmelCase_ : str = layer_norm if split_mlp_wi: lowerCAmelCase_ : Optional[int] = wi[0].T lowerCAmelCase_ : Optional[Any] = wi[1].T else: lowerCAmelCase_ : int = wi.T lowerCAmelCase_ : Optional[Any] = wo.T lowerCAmelCase_ : Tuple = old[ """encoder/relpos_bias/rel_embedding""" ].T lowerCAmelCase_ : str = old["""encoder/encoder_norm/scale"""] if not is_encoder_only: # Decoder. for i in range(lowercase__ ): # Block i, layer 0 (Self Attention). lowerCAmelCase_ : int = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_self_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """self_attention""" ) lowerCAmelCase_ : Dict = layer_norm lowerCAmelCase_ : Union[str, Any] = k.T lowerCAmelCase_ : Union[str, Any] = o.T lowerCAmelCase_ : Any = q.T lowerCAmelCase_ : Tuple = v.T # Block i, layer 1 (Cross Attention). lowerCAmelCase_ : Optional[Any] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_cross_attention_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = tax_attention_lookup(lowercase__ , lowercase__ , """decoder""" , """encoder_decoder_attention""" ) lowerCAmelCase_ : Optional[int] = layer_norm lowerCAmelCase_ : Any = k.T lowerCAmelCase_ : Any = o.T lowerCAmelCase_ : Optional[int] = q.T lowerCAmelCase_ : Dict = v.T # Block i, layer 2 (MLP). lowerCAmelCase_ : List[str] = tax_layer_norm_lookup(lowercase__ , lowercase__ , """decoder""" , """pre_mlp_layer_norm""" ) lowerCAmelCase_ , lowerCAmelCase_ : int = tax_mlp_lookup(lowercase__ , lowercase__ , """decoder""" , lowercase__ ) lowerCAmelCase_ : Any = layer_norm if split_mlp_wi: lowerCAmelCase_ : List[str] = wi[0].T lowerCAmelCase_ : List[Any] = wi[1].T else: lowerCAmelCase_ : Optional[Any] = wi.T lowerCAmelCase_ : str = wo.T lowerCAmelCase_ : int = old["""decoder/decoder_norm/scale"""] lowerCAmelCase_ : Union[str, Any] = old[ """decoder/relpos_bias/rel_embedding""" ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: lowerCAmelCase_ : Optional[Any] = old["""decoder/logits_dense/kernel"""].T return new def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : bool ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : List[Any] = state_dict["""shared.weight"""] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: lowerCAmelCase_ : Union[str, Any] = state_dict["""shared.weight"""] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("""Using shared word embeddings as lm_head.""" ) lowerCAmelCase_ : List[str] = state_dict["""shared.weight"""] return state_dict def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = checkpoints.load_tax_checkpoint(lowercase__ ) lowerCAmelCase_ : List[str] = convert_tax_to_pytorch(lowercase__ , num_layers=config.num_layers , is_encoder_only=lowercase__ ) lowerCAmelCase_ : List[str] = make_state_dict(lowercase__ , lowercase__ ) model.load_state_dict(lowercase__ , strict=lowercase__ ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : bool = False ) -> int: '''simple docstring''' lowerCAmelCase_ : Any = TaConfig.from_json_file(lowercase__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: lowerCAmelCase_ : Optional[int] = TaEncoderModel(lowercase__ ) else: lowerCAmelCase_ : Dict = TaForConditionalGeneration(lowercase__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowercase__ ) # Verify that we can load the checkpoint. model.from_pretrained(lowercase__ ) print("""Done""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) __UpperCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
28
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : str=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : int , lowercase__ : Dict , lowercase__ : Optional[Any]=False ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : int = """""" else: lowerCAmelCase_ : Union[str, Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : Any = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : int = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Dict = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : List[Any] = val def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[str] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Any , lowercase__ : Any=True ) -> Optional[int]: '''simple docstring''' lowerCAmelCase_ : List[Any] = ViTConfig() # patch_size if model_name[-1] == "8": lowerCAmelCase_ : Dict = 8 # set labels if required if not base_model: lowerCAmelCase_ : str = 1000 lowerCAmelCase_ : List[Any] = """huggingface/label-files""" lowerCAmelCase_ : Optional[int] = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : List[str] = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Any = idalabel lowerCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCAmelCase_ : Union[str, Any] = 384 lowerCAmelCase_ : Any = 1536 lowerCAmelCase_ : Union[str, Any] = 12 lowerCAmelCase_ : str = 6 # load original model from torch hub lowerCAmelCase_ : Any = torch.hub.load("""facebookresearch/dino:main""" , lowercase__ ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Any = original_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Dict = create_rename_keys(lowercase__ , base_model=lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if base_model: lowerCAmelCase_ : int = ViTModel(lowercase__ , add_pooling_layer=lowercase__ ).eval() else: lowerCAmelCase_ : Union[str, Any] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor lowerCAmelCase_ : List[str] = ViTImageProcessor() lowerCAmelCase_ : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : List[str] = encoding["""pixel_values"""] lowerCAmelCase_ : Optional[int] = model(lowercase__ ) if base_model: lowerCAmelCase_ : Union[str, Any] = original_model(lowercase__ ) assert torch.allclose(lowercase__ , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: lowerCAmelCase_ : int = original_model(lowercase__ ) assert logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
28
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __UpperCAmelCase = logging.get_logger(__name__) class __a ( lowerCamelCase__ ): __snake_case : Tuple = ['pixel_values'] def __init__( self : str , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 2_55 , UpperCAmelCase : bool = True , UpperCAmelCase : int = 8 , **UpperCAmelCase : Union[str, Any] , ): super().__init__(**lowercase__ ) lowerCAmelCase_ : str = do_rescale lowerCAmelCase_ : Union[str, Any] = rescale_factor lowerCAmelCase_ : List[str] = do_pad lowerCAmelCase_ : List[str] = pad_size def A ( self : Any , UpperCAmelCase : np.ndarray , UpperCAmelCase : float , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : int , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ): lowerCAmelCase_ , lowerCAmelCase_ : List[str] = get_image_size(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = (old_height // size + 1) * size - old_height lowerCAmelCase_ : Union[str, Any] = (old_width // size + 1) * size - old_width return pad(lowercase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowercase__ ) def A ( self : int , UpperCAmelCase : ImageInput , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **UpperCAmelCase : Union[str, Any] , ): lowerCAmelCase_ : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ : str = do_pad if do_pad is not None else self.do_pad lowerCAmelCase_ : int = pad_size if pad_size is not None else self.pad_size lowerCAmelCase_ : Optional[int] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase_ : List[Any] = [to_numpy_array(lowercase__ ) for image in images] if do_rescale: lowerCAmelCase_ : List[Any] = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_pad: lowerCAmelCase_ : Dict = [self.pad(lowercase__ , size=lowercase__ ) for image in images] lowerCAmelCase_ : Tuple = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] lowerCAmelCase_ : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
357
from math import factorial, pi def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowerCAmelCase_ : Optional[int] = float(lowercase__ ) lowerCAmelCase_ : Union[str, Any] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : float , lowercase__ : int = 30 ) -> float: '''simple docstring''' if not isinstance(lowercase__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(lowercase__ , lowercase__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowerCAmelCase_ : int = float(lowercase__ ) lowerCAmelCase_ : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(lowercase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
28
0
def __UpperCamelCase ( lowercase__ : int = 10 ) -> str: '''simple docstring''' if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0: raise ValueError("""Invalid input""" ) lowerCAmelCase_ : List[Any] = 10**n lowerCAmelCase_ : int = 28433 * (pow(2 , 7830457 , _UpperCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f"""{solution(10) = }""")
358
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __UpperCAmelCase = { 'Acehnese Arabic': 'ace_Arab', 'Acehnese Latin': 'ace_Latn', 'Mesopotamian Arabic': 'acm_Arab', 'Ta\'izzi-Adeni Arabic': 'acq_Arab', 'Tunisian Arabic': 'aeb_Arab', 'Afrikaans': 'afr_Latn', 'South Levantine Arabic': 'ajp_Arab', 'Akan': 'aka_Latn', 'Amharic': 'amh_Ethi', 'North Levantine Arabic': 'apc_Arab', 'Modern Standard Arabic': 'arb_Arab', 'Modern Standard Arabic Romanized': 'arb_Latn', 'Najdi Arabic': 'ars_Arab', 'Moroccan Arabic': 'ary_Arab', 'Egyptian Arabic': 'arz_Arab', 'Assamese': 'asm_Beng', 'Asturian': 'ast_Latn', 'Awadhi': 'awa_Deva', 'Central Aymara': 'ayr_Latn', 'South Azerbaijani': 'azb_Arab', 'North Azerbaijani': 'azj_Latn', 'Bashkir': 'bak_Cyrl', 'Bambara': 'bam_Latn', 'Balinese': 'ban_Latn', 'Belarusian': 'bel_Cyrl', 'Bemba': 'bem_Latn', 'Bengali': 'ben_Beng', 'Bhojpuri': 'bho_Deva', 'Banjar Arabic': 'bjn_Arab', 'Banjar Latin': 'bjn_Latn', 'Standard Tibetan': 'bod_Tibt', 'Bosnian': 'bos_Latn', 'Buginese': 'bug_Latn', 'Bulgarian': 'bul_Cyrl', 'Catalan': 'cat_Latn', 'Cebuano': 'ceb_Latn', 'Czech': 'ces_Latn', 'Chokwe': 'cjk_Latn', 'Central Kurdish': 'ckb_Arab', 'Crimean Tatar': 'crh_Latn', 'Welsh': 'cym_Latn', 'Danish': 'dan_Latn', 'German': 'deu_Latn', 'Southwestern Dinka': 'dik_Latn', 'Dyula': 'dyu_Latn', 'Dzongkha': 'dzo_Tibt', 'Greek': 'ell_Grek', 'English': 'eng_Latn', 'Esperanto': 'epo_Latn', 'Estonian': 'est_Latn', 'Basque': 'eus_Latn', 'Ewe': 'ewe_Latn', 'Faroese': 'fao_Latn', 'Fijian': 'fij_Latn', 'Finnish': 'fin_Latn', 'Fon': 'fon_Latn', 'French': 'fra_Latn', 'Friulian': 'fur_Latn', 'Nigerian Fulfulde': 'fuv_Latn', 'Scottish Gaelic': 'gla_Latn', 'Irish': 'gle_Latn', 'Galician': 'glg_Latn', 'Guarani': 'grn_Latn', 'Gujarati': 'guj_Gujr', 'Haitian Creole': 'hat_Latn', 'Hausa': 'hau_Latn', 'Hebrew': 'heb_Hebr', 'Hindi': 'hin_Deva', 'Chhattisgarhi': 'hne_Deva', 'Croatian': 'hrv_Latn', 'Hungarian': 'hun_Latn', 'Armenian': 'hye_Armn', 'Igbo': 'ibo_Latn', 'Ilocano': 'ilo_Latn', 'Indonesian': 'ind_Latn', 'Icelandic': 'isl_Latn', 'Italian': 'ita_Latn', 'Javanese': 'jav_Latn', 'Japanese': 'jpn_Jpan', 'Kabyle': 'kab_Latn', 'Jingpho': 'kac_Latn', 'Kamba': 'kam_Latn', 'Kannada': 'kan_Knda', 'Kashmiri Arabic': 'kas_Arab', 'Kashmiri Devanagari': 'kas_Deva', 'Georgian': 'kat_Geor', 'Central Kanuri Arabic': 'knc_Arab', 'Central Kanuri Latin': 'knc_Latn', 'Kazakh': 'kaz_Cyrl', 'Kabiyè': 'kbp_Latn', 'Kabuverdianu': 'kea_Latn', 'Khmer': 'khm_Khmr', 'Kikuyu': 'kik_Latn', 'Kinyarwanda': 'kin_Latn', 'Kyrgyz': 'kir_Cyrl', 'Kimbundu': 'kmb_Latn', 'Northern Kurdish': 'kmr_Latn', 'Kikongo': 'kon_Latn', 'Korean': 'kor_Hang', 'Lao': 'lao_Laoo', 'Ligurian': 'lij_Latn', 'Limburgish': 'lim_Latn', 'Lingala': 'lin_Latn', 'Lithuanian': 'lit_Latn', 'Lombard': 'lmo_Latn', 'Latgalian': 'ltg_Latn', 'Luxembourgish': 'ltz_Latn', 'Luba-Kasai': 'lua_Latn', 'Ganda': 'lug_Latn', 'Luo': 'luo_Latn', 'Mizo': 'lus_Latn', 'Standard Latvian': 'lvs_Latn', 'Magahi': 'mag_Deva', 'Maithili': 'mai_Deva', 'Malayalam': 'mal_Mlym', 'Marathi': 'mar_Deva', 'Minangkabau Arabic ': 'min_Arab', 'Minangkabau Latin': 'min_Latn', 'Macedonian': 'mkd_Cyrl', 'Plateau Malagasy': 'plt_Latn', 'Maltese': 'mlt_Latn', 'Meitei Bengali': 'mni_Beng', 'Halh Mongolian': 'khk_Cyrl', 'Mossi': 'mos_Latn', 'Maori': 'mri_Latn', 'Burmese': 'mya_Mymr', 'Dutch': 'nld_Latn', 'Norwegian Nynorsk': 'nno_Latn', 'Norwegian Bokmål': 'nob_Latn', 'Nepali': 'npi_Deva', 'Northern Sotho': 'nso_Latn', 'Nuer': 'nus_Latn', 'Nyanja': 'nya_Latn', 'Occitan': 'oci_Latn', 'West Central Oromo': 'gaz_Latn', 'Odia': 'ory_Orya', 'Pangasinan': 'pag_Latn', 'Eastern Panjabi': 'pan_Guru', 'Papiamento': 'pap_Latn', 'Western Persian': 'pes_Arab', 'Polish': 'pol_Latn', 'Portuguese': 'por_Latn', 'Dari': 'prs_Arab', 'Southern Pashto': 'pbt_Arab', 'Ayacucho Quechua': 'quy_Latn', 'Romanian': 'ron_Latn', 'Rundi': 'run_Latn', 'Russian': 'rus_Cyrl', 'Sango': 'sag_Latn', 'Sanskrit': 'san_Deva', 'Santali': 'sat_Olck', 'Sicilian': 'scn_Latn', 'Shan': 'shn_Mymr', 'Sinhala': 'sin_Sinh', 'Slovak': 'slk_Latn', 'Slovenian': 'slv_Latn', 'Samoan': 'smo_Latn', 'Shona': 'sna_Latn', 'Sindhi': 'snd_Arab', 'Somali': 'som_Latn', 'Southern Sotho': 'sot_Latn', 'Spanish': 'spa_Latn', 'Tosk Albanian': 'als_Latn', 'Sardinian': 'srd_Latn', 'Serbian': 'srp_Cyrl', 'Swati': 'ssw_Latn', 'Sundanese': 'sun_Latn', 'Swedish': 'swe_Latn', 'Swahili': 'swh_Latn', 'Silesian': 'szl_Latn', 'Tamil': 'tam_Taml', 'Tatar': 'tat_Cyrl', 'Telugu': 'tel_Telu', 'Tajik': 'tgk_Cyrl', 'Tagalog': 'tgl_Latn', 'Thai': 'tha_Thai', 'Tigrinya': 'tir_Ethi', 'Tamasheq Latin': 'taq_Latn', 'Tamasheq Tifinagh': 'taq_Tfng', 'Tok Pisin': 'tpi_Latn', 'Tswana': 'tsn_Latn', 'Tsonga': 'tso_Latn', 'Turkmen': 'tuk_Latn', 'Tumbuka': 'tum_Latn', 'Turkish': 'tur_Latn', 'Twi': 'twi_Latn', 'Central Atlas Tamazight': 'tzm_Tfng', 'Uyghur': 'uig_Arab', 'Ukrainian': 'ukr_Cyrl', 'Umbundu': 'umb_Latn', 'Urdu': 'urd_Arab', 'Northern Uzbek': 'uzn_Latn', 'Venetian': 'vec_Latn', 'Vietnamese': 'vie_Latn', 'Waray': 'war_Latn', 'Wolof': 'wol_Latn', 'Xhosa': 'xho_Latn', 'Eastern Yiddish': 'ydd_Hebr', 'Yoruba': 'yor_Latn', 'Yue Chinese': 'yue_Hant', 'Chinese Simplified': 'zho_Hans', 'Chinese Traditional': 'zho_Hant', 'Standard Malay': 'zsm_Latn', 'Zulu': 'zul_Latn', } class __a ( __UpperCamelCase ): __snake_case : int = """facebook/nllb-200-distilled-600M""" __snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) __snake_case : str = """translator""" __snake_case : Any = AutoTokenizer __snake_case : Union[str, Any] = AutoModelForSeqaSeqLM __snake_case : Optional[int] = LANGUAGE_CODES __snake_case : int = ["""text""", """text""", """text"""] __snake_case : str = ["""text"""] def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ): if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) lowerCAmelCase_ : List[Any] = self.lang_to_code[src_lang] lowerCAmelCase_ : int = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( UpperCAmelCase , return_tensors="""pt""" , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) def A ( self : Optional[Any] , UpperCAmelCase : str ): return self.model.generate(**UpperCAmelCase ) def A ( self : Union[str, Any] , UpperCAmelCase : int ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=UpperCAmelCase )
28
0
from __future__ import annotations import math def __UpperCamelCase ( lowercase__ : int ) -> list[int]: '''simple docstring''' if num <= 0: lowerCAmelCase_ : Optional[Any] = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(a__ ) lowerCAmelCase_ : Any = [True] * (num + 1) lowerCAmelCase_ : Optional[Any] = [] lowerCAmelCase_ : Dict = 2 lowerCAmelCase_ : List[str] = int(math.sqrt(a__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a__ ) # Set multiples of start be False for i in range(start * start , num + 1 , a__ ): if sieve[i] is True: lowerCAmelCase_ : List[str] = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(a__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
359
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Optional[int] = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[Any] = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase_ : Tuple = BitConfig( conv_layer=lowercase__ , num_labels=1000 , idalabel=lowercase__ , labelaid=lowercase__ , ) return config def __UpperCamelCase ( lowercase__ : List[Any] ) -> Optional[int]: '''simple docstring''' if "stem.conv" in name: lowerCAmelCase_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase_ : Tuple = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase_ : Dict = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase_ : List[str] = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase_ : Any = """bit.encoder.""" + name return name def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : List[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : Any , lowercase__ : Any=False ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = get_config(lowercase__ ) # load original model from timm lowerCAmelCase_ : str = create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model lowerCAmelCase_ : Any = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase_ : List[str] = state_dict.pop(lowercase__ ) lowerCAmelCase_ : Dict = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase_ : Tuple = BitForImageClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # create image processor lowerCAmelCase_ : Tuple = create_transform(**resolve_data_config({} , model=lowercase__ ) ) lowerCAmelCase_ : Union[str, Any] = transform.transforms lowerCAmelCase_ : str = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase_ : List[str] = BitImageProcessor( do_resize=lowercase__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowercase__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=lowercase__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase_ : int = prepare_img() lowerCAmelCase_ : Tuple = transform(lowercase__ ).unsqueeze(0 ) lowerCAmelCase_ : List[str] = processor(lowercase__ , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(lowercase__ , lowercase__ ) # verify logits with torch.no_grad(): lowerCAmelCase_ : Tuple = model(lowercase__ ) lowerCAmelCase_ : List[str] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase_ : Optional[Any] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if push_to_hub: print(f'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(f'ybelkada/{model_name}' ) processor.push_to_hub(f'ybelkada/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='resnetv2_50x1_bitm', type=str, help='Name of the BiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model to the hub.', ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( lowercase__ : Dict , lowercase__ : int=False ) -> Dict: '''simple docstring''' lowerCAmelCase_ : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase_ : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=False ) -> str: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ : Dict = """""" else: lowerCAmelCase_ : Optional[Any] = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ : Optional[Any] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) lowerCAmelCase_ : str = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ : Any = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ : Optional[Any] = in_proj_bias[: config.hidden_size] lowerCAmelCase_ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ : Union[str, Any] = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( lowercase__ : Any ) -> Tuple: '''simple docstring''' lowerCAmelCase_ : Tuple = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def __UpperCamelCase ( lowercase__ : List[Any] , lowercase__ : int , lowercase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ : Dict = dct.pop(lowercase__ ) lowerCAmelCase_ : Optional[int] = val def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : Any = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase_ : str = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( lowercase__ : Tuple , lowercase__ : List[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[int] = ViTConfig() lowerCAmelCase_ : str = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase_ : Tuple = True lowerCAmelCase_ : Optional[int] = int(vit_name[-12:-10] ) lowerCAmelCase_ : List[Any] = int(vit_name[-9:-6] ) else: lowerCAmelCase_ : Optional[int] = 1000 lowerCAmelCase_ : str = """huggingface/label-files""" lowerCAmelCase_ : int = """imagenet-1k-id2label.json""" lowerCAmelCase_ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase_ : Tuple = {int(lowercase__ ): v for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = idalabel lowerCAmelCase_ : Dict = {v: k for k, v in idalabel.items()} lowerCAmelCase_ : Optional[int] = int(vit_name[-6:-4] ) lowerCAmelCase_ : List[Any] = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("""tiny""" ): lowerCAmelCase_ : Tuple = 192 lowerCAmelCase_ : Optional[int] = 768 lowerCAmelCase_ : Any = 12 lowerCAmelCase_ : Any = 3 elif vit_name[9:].startswith("""small""" ): lowerCAmelCase_ : str = 384 lowerCAmelCase_ : str = 1536 lowerCAmelCase_ : Optional[int] = 12 lowerCAmelCase_ : int = 6 else: pass else: if vit_name[4:].startswith("""small""" ): lowerCAmelCase_ : Tuple = 768 lowerCAmelCase_ : str = 2304 lowerCAmelCase_ : Optional[Any] = 8 lowerCAmelCase_ : Any = 8 elif vit_name[4:].startswith("""base""" ): pass elif vit_name[4:].startswith("""large""" ): lowerCAmelCase_ : Tuple = 1024 lowerCAmelCase_ : Optional[int] = 4096 lowerCAmelCase_ : Optional[Any] = 24 lowerCAmelCase_ : Optional[int] = 16 elif vit_name[4:].startswith("""huge""" ): lowerCAmelCase_ : Any = 1280 lowerCAmelCase_ : str = 5120 lowerCAmelCase_ : Any = 32 lowerCAmelCase_ : Any = 16 # load original model from timm lowerCAmelCase_ : Any = timm.create_model(lowercase__ , pretrained=lowercase__ ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ : Tuple = timm_model.state_dict() if base_model: remove_classification_head_(lowercase__ ) lowerCAmelCase_ : Any = create_rename_keys(lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ , lowercase__ ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase_ : Optional[Any] = ViTModel(lowercase__ ).eval() else: lowerCAmelCase_ : List[str] = ViTForImageClassification(lowercase__ ).eval() model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase_ : List[str] = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase_ : Union[str, Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase_ : Dict = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[int] = encoding["""pixel_values"""] lowerCAmelCase_ : List[Any] = model(lowercase__ ) if base_model: lowerCAmelCase_ : List[str] = timm_model.forward_features(lowercase__ ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowercase__ , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase_ : Optional[int] = timm_model(lowercase__ ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowercase__ , outputs.logits , atol=1E-3 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCAmelCase = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
360
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class __a : def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : Any=64 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : str=True , UpperCAmelCase : str=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : Dict=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=[1, 16, 4, 4] , UpperCAmelCase : Union[str, Any]=None , ): lowerCAmelCase_ : Any = parent lowerCAmelCase_ : str = batch_size lowerCAmelCase_ : int = image_size lowerCAmelCase_ : Tuple = patch_size lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : List[str] = is_training lowerCAmelCase_ : List[str] = use_labels lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Union[str, Any] = num_attention_heads lowerCAmelCase_ : Any = intermediate_size lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : Dict = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Optional[Any] = type_sequence_label_size lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : int = scope lowerCAmelCase_ : Tuple = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size lowerCAmelCase_ : int = (self.image_size // 32) ** 2 lowerCAmelCase_ : Dict = num_patches + 1 def A ( self : Any ): lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Optional[int] = None if self.use_labels: lowerCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ : Union[str, Any] = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): lowerCAmelCase_ : List[Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCAmelCase , ) def A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): lowerCAmelCase_ : Tuple = ViTHybridModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : List[str] = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ): lowerCAmelCase_ : Tuple = self.type_sequence_label_size lowerCAmelCase_ : Tuple = ViTHybridForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCAmelCase_ : int = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Tuple = config_and_inputs lowerCAmelCase_ : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __a ( __UpperCamelCase ,__UpperCamelCase ,unittest.TestCase ): __snake_case : List[str] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __snake_case : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) __snake_case : int = False __snake_case : Tuple = False __snake_case : Tuple = False def A ( self : int ): lowerCAmelCase_ : Union[str, Any] = ViTHybridModelTester(self ) lowerCAmelCase_ : str = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def A ( self : Dict ): pass def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def A ( self : List[str] ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(UpperCAmelCase ) lowerCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : List[str] = [*signature.parameters.keys()] lowerCAmelCase_ : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def A ( self : str ): lowerCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def A ( self : Dict ): lowerCAmelCase_ , lowerCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase_ : Union[str, Any] = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: lowerCAmelCase_ : Any = model_class(config=UpperCAmelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": lowerCAmelCase_ : Tuple = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def A ( self : int ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = ViTHybridModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __UpperCamelCase ( ) -> Any: '''simple docstring''' lowerCAmelCase_ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def A ( self : int ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Tuple ): lowerCAmelCase_ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.default_image_processor lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : Optional[int] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCAmelCase_ : Any = model(**UpperCAmelCase ) # verify the logits lowerCAmelCase_ : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Optional[Any] ): lowerCAmelCase_ : Tuple = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) lowerCAmelCase_ : Optional[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) lowerCAmelCase_ : Optional[Any] = prepare_img() lowerCAmelCase_ : List[str] = image_processor(images=UpperCAmelCase , return_tensors="""pt""" ) lowerCAmelCase_ : Optional[Any] = model(**UpperCAmelCase ) lowerCAmelCase_ : List[str] = outputs.logits # model predicts one of the 1000 ImageNet classes lowerCAmelCase_ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
28
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __UpperCAmelCase = True from torch.cuda.amp import autocast __UpperCAmelCase = logging.getLogger(__name__) @dataclass class __a : __snake_case : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) __snake_case : Optional[str] = field( default=UpperCamelCase_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) __snake_case : Optional[bool] = field( default=UpperCamelCase_ ,metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) __snake_case : Optional[bool] = field( default=UpperCamelCase_ ,metadata={"""help""": """Whether to log verbose messages or not."""} ,) __snake_case : Optional[float] = field( default=2.0 ,metadata={"""help""": """Maximum temperature for gumbel softmax."""} ) __snake_case : Optional[float] = field( default=0.5 ,metadata={"""help""": """Minimum temperature for gumbel softmax."""} ) __snake_case : Optional[float] = field( default=0.99_9995 ,metadata={"""help""": """Decay of gumbel temperature during training."""} ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : Optional[Any] ) -> List[str]: '''simple docstring''' logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCAmelCase_ : Optional[int] = logging.WARNING if model_args.verbose_logging: lowerCAmelCase_ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowerCAmelCase_ : int = logging.INFO logger.setLevel(__lowerCAmelCase ) @dataclass class __a : __snake_case : str = field( default=UpperCamelCase_ ,metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) __snake_case : Optional[str] = field( default=UpperCamelCase_ ,metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) __snake_case : Optional[str] = field( default="""train""" ,metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } ,) __snake_case : Optional[str] = field( default="""validation""" ,metadata={ """help""": ( """The name of the validation data set split to use (via the datasets library). Defaults to 'validation'""" ) } ,) __snake_case : Optional[str] = field( default="""file""" ,metadata={"""help""": """Column in the dataset that contains speech file path. Defaults to 'file'"""} ,) __snake_case : bool = field( default=UpperCamelCase_ ,metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) __snake_case : Optional[int] = field( default=1 ,metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } ,) __snake_case : Optional[int] = field( default=UpperCamelCase_ ,metadata={"""help""": """The number of processes to use for the preprocessing."""} ,) __snake_case : Optional[float] = field( default=20.0 ,metadata={"""help""": """Filter audio files that are longer than `max_duration_in_seconds` seconds"""} ) @dataclass class __a : __snake_case : WavaVecaForPreTraining __snake_case : WavaVecaFeatureExtractor __snake_case : Union[bool, str] = "longest" __snake_case : Optional[int] = None __snake_case : Optional[int] = None def __call__( self : Dict , UpperCAmelCase : Optional[Any] ): lowerCAmelCase_ : str = self.feature_extractor.pad( _a , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) lowerCAmelCase_ : Optional[Any] = self.model._get_feat_extract_output_lengths(batch["""input_values"""].shape[-1] ) lowerCAmelCase_ : Any = batch["""input_values"""].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowerCAmelCase_ : List[Any] = self.model._get_feat_extract_output_lengths(batch["""attention_mask"""].sum(-1 ) ).to( torch.long ) lowerCAmelCase_ : List[str] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["""input_values"""].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowerCAmelCase_ : Union[str, Any] = 1 lowerCAmelCase_ : List[str] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowerCAmelCase_ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=_a , min_masks=2 , ) return batch class __a ( UpperCamelCase_ ): def __init__( self : int , *UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Any=0 , UpperCAmelCase : Tuple=1.0 , **UpperCAmelCase : Union[str, Any] ): super().__init__(*_a , **_a ) lowerCAmelCase_ : int = 0 lowerCAmelCase_ : Dict = max_gumbel_temp lowerCAmelCase_ : str = min_gumbel_temp lowerCAmelCase_ : Optional[Any] = gumbel_temp_decay def A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : str ): model.train() lowerCAmelCase_ : List[Any] = self._prepare_inputs(_a ) if self.use_amp: with autocast(): lowerCAmelCase_ : Optional[Any] = self.compute_loss(_a , _a ) else: lowerCAmelCase_ : str = self.compute_loss(_a , _a ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowerCAmelCase_ : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowerCAmelCase_ : Dict = loss.sum() / (inputs["""mask_time_indices"""]).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowerCAmelCase_ : str = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(_a ).backward() elif self.use_apex: with amp.scale_loss(_a , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(_a ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase_ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase_ : str = parser.parse_args_into_dataclasses() configure_logger(__lowerCAmelCase , __lowerCAmelCase ) # Downloading and loading a dataset from the hub. lowerCAmelCase_ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : Any = DatasetDict() lowerCAmelCase_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowerCAmelCase_ : str = DatasetDict() lowerCAmelCase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="""validation""" , cache_dir=model_args.cache_dir , ) lowerCAmelCase_ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=f'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowerCAmelCase_ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCAmelCase ) def prepare_dataset(lowercase__ : str ): # check that all files have the correct sampling rate lowerCAmelCase_ : Dict = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowerCAmelCase_ : Union[str, Any] = datasets.map( __lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["""train"""].column_names ) # filter audio files that are too long lowerCAmelCase_ : List[str] = vectorized_datasets.filter( lambda lowercase__ : len(data["""speech"""] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(lowercase__ : str ): return feature_extractor(batch["""speech"""] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowerCAmelCase_ : str = vectorized_datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["""train"""].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowerCAmelCase_ : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( """PreTraining is only supported for ``config.do_stable_layer_norm=True`` and""" """ ``config.feat_extract_norm='layer'""" ) lowerCAmelCase_ : Tuple = WavaVecaForPreTraining(__lowerCAmelCase ) lowerCAmelCase_ : int = DataCollatorForWavaVecaPretraining(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) lowerCAmelCase_ : str = WavaVecaPreTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=vectorized_datasets["""train"""] , eval_dataset=vectorized_datasets["""validation"""] , tokenizer=__lowerCAmelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
361
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : Dict ): warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
28
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class __a ( _A ): __snake_case : Tuple = """xlnet""" __snake_case : Any = ["""mems"""] __snake_case : Any = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=3_20_00 , UpperCAmelCase : Dict=10_24 , UpperCAmelCase : str=24 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Dict=40_96 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]="bi" , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : List[Any]=1e-1_2 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Union[str, Any]=5_12 , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=-1 , UpperCAmelCase : Dict=False , UpperCAmelCase : Any="last" , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple="tanh" , UpperCAmelCase : str=0.1 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : str=5 , UpperCAmelCase : Dict=1 , UpperCAmelCase : str=2 , **UpperCAmelCase : Optional[Any] , ): lowerCAmelCase_ : List[str] = vocab_size lowerCAmelCase_ : Optional[int] = d_model lowerCAmelCase_ : int = n_layer lowerCAmelCase_ : Optional[Any] = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) lowerCAmelCase_ : Tuple = d_model // n_head lowerCAmelCase_ : List[Any] = ff_activation lowerCAmelCase_ : List[Any] = d_inner lowerCAmelCase_ : Dict = untie_r lowerCAmelCase_ : Optional[Any] = attn_type lowerCAmelCase_ : Any = initializer_range lowerCAmelCase_ : Dict = layer_norm_eps lowerCAmelCase_ : Optional[int] = dropout lowerCAmelCase_ : List[Any] = mem_len lowerCAmelCase_ : Union[str, Any] = reuse_len lowerCAmelCase_ : Optional[int] = bi_data lowerCAmelCase_ : Tuple = clamp_len lowerCAmelCase_ : Optional[int] = same_length lowerCAmelCase_ : int = summary_type lowerCAmelCase_ : List[Any] = summary_use_proj lowerCAmelCase_ : Optional[int] = summary_activation lowerCAmelCase_ : Dict = summary_last_dropout lowerCAmelCase_ : Optional[int] = start_n_top lowerCAmelCase_ : str = end_n_top lowerCAmelCase_ : Optional[Any] = bos_token_id lowerCAmelCase_ : Any = pad_token_id lowerCAmelCase_ : str = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , __SCREAMING_SNAKE_CASE , ) lowerCAmelCase_ : int = kwargs["""use_cache"""] lowerCAmelCase_ : List[Any] = use_mems_eval lowerCAmelCase_ : Any = use_mems_train super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def A ( self : Any ): logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def A ( self : Any , UpperCAmelCase : List[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
362
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __a ( __UpperCamelCase ): __snake_case : Any = ["""image_processor""", """tokenizer"""] __snake_case : Tuple = """BlipImageProcessor""" __snake_case : int = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ): lowerCAmelCase_ : str = False super().__init__(UpperCAmelCase , UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Tuple , ): if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowerCAmelCase_ : str = self.tokenizer lowerCAmelCase_ : List[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) return text_encoding # add pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase ) if text is not None: lowerCAmelCase_ : Optional[Any] = self.tokenizer( text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) else: lowerCAmelCase_ : int = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase ) return encoding_image_processor def A ( self : Optional[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : int ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def A ( self : List[Any] , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def A ( self : int ): lowerCAmelCase_ : int = self.tokenizer.model_input_names lowerCAmelCase_ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
28
0
"""simple docstring""" def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : int ) -> float: '''simple docstring''' if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
363
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
0
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __a ( __snake_case ): __snake_case : jnp.ndarray @flax_register_to_config class __a ( nn.Module ,__snake_case ,__snake_case ): __snake_case : int = 32 __snake_case : int = 4 __snake_case : int = 4 __snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __snake_case : Union[bool, Tuple[bool]] = False __snake_case : Tuple[int] = (320, 640, 1280, 1280) __snake_case : int = 2 __snake_case : Union[int, Tuple[int]] = 8 __snake_case : Optional[Union[int, Tuple[int]]] = None __snake_case : int = 1280 __snake_case : float = 0.0 __snake_case : bool = False __snake_case : jnp.dtype = jnp.floataa __snake_case : bool = True __snake_case : int = 0 __snake_case : bool = False def A ( self : Any , UpperCAmelCase : jax.random.KeyArray ): # init input tensors lowerCAmelCase_ : Any = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase_ : Union[str, Any] = jnp.zeros(lowerCamelCase_ , dtype=jnp.floataa ) lowerCAmelCase_ : Union[str, Any] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase_ : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase_ : Optional[Any] = jax.random.split(lowerCamelCase_ ) lowerCAmelCase_ : List[Any] = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )["params"] def A ( self : Union[str, Any] ): lowerCAmelCase_ : Any = self.block_out_channels lowerCAmelCase_ : int = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( """At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase_ : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase_ : Dict = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase_ : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase_ : Union[str, Any] = FlaxTimestepEmbedding(lowerCamelCase_ , dtype=self.dtype ) lowerCAmelCase_ : List[str] = self.only_cross_attention if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ : List[str] = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : Any = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase_ : Optional[Any] = output_channel lowerCAmelCase_ : Any = block_out_channels[i] lowerCAmelCase_ : Tuple = i == len(lowerCamelCase_ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase_ : Dict = FlaxCrossAttnDownBlockaD( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase_ : int = FlaxDownBlockaD( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCamelCase_ ) lowerCAmelCase_ : str = down_blocks # mid lowerCAmelCase_ : Optional[Any] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up lowerCAmelCase_ : int = [] lowerCAmelCase_ : Optional[int] = list(reversed(lowerCamelCase_ ) ) lowerCAmelCase_ : str = list(reversed(lowerCamelCase_ ) ) lowerCAmelCase_ : Union[str, Any] = list(reversed(lowerCamelCase_ ) ) lowerCAmelCase_ : List[Any] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): lowerCAmelCase_ : int = output_channel lowerCAmelCase_ : List[Any] = reversed_block_out_channels[i] lowerCAmelCase_ : Any = reversed_block_out_channels[min(i + 1 , len(lowerCamelCase_ ) - 1 )] lowerCAmelCase_ : Optional[Any] = i == len(lowerCamelCase_ ) - 1 if up_block_type == "CrossAttnUpBlock2D": lowerCAmelCase_ : Union[str, Any] = FlaxCrossAttnUpBlockaD( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: lowerCAmelCase_ : Tuple = FlaxUpBlockaD( in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCamelCase_ ) lowerCAmelCase_ : Any = output_channel lowerCAmelCase_ : Dict = up_blocks # out lowerCAmelCase_ : int = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) lowerCAmelCase_ : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , ): # 1. time if not isinstance(lowerCamelCase_ , jnp.ndarray ): lowerCAmelCase_ : Optional[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCamelCase_ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase_ : Any = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase_ : Optional[Any] = jnp.expand_dims(lowerCamelCase_ , 0 ) lowerCAmelCase_ : Tuple = self.time_proj(lowerCamelCase_ ) lowerCAmelCase_ : List[str] = self.time_embedding(lowerCamelCase_ ) # 2. pre-process lowerCAmelCase_ : Any = jnp.transpose(lowerCamelCase_ , (0, 2, 3, 1) ) lowerCAmelCase_ : Tuple = self.conv_in(lowerCamelCase_ ) # 3. down lowerCAmelCase_ : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ : int = down_block(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , deterministic=not train ) else: lowerCAmelCase_ : List[Any] = down_block(lowerCamelCase_ , lowerCamelCase_ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: lowerCAmelCase_ : int = () for down_block_res_sample, down_block_additional_residual in zip( lowerCamelCase_ , lowerCamelCase_ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase_ : List[Any] = new_down_block_res_samples # 4. mid lowerCAmelCase_ : int = self.mid_block(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: lowerCAmelCase_ : List[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] lowerCAmelCase_ : List[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase_ : Dict = up_block( lowerCamelCase_ , temb=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , deterministic=not train , ) else: lowerCAmelCase_ : Tuple = up_block(lowerCamelCase_ , temb=lowerCamelCase_ , res_hidden_states_tuple=lowerCamelCase_ , deterministic=not train ) # 6. post-process lowerCAmelCase_ : int = self.conv_norm_out(lowerCamelCase_ ) lowerCAmelCase_ : Union[str, Any] = nn.silu(lowerCamelCase_ ) lowerCAmelCase_ : List[str] = self.conv_out(lowerCamelCase_ ) lowerCAmelCase_ : Optional[Any] = jnp.transpose(lowerCamelCase_ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCamelCase_ )
364
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
0
"""simple docstring""" from math import factorial def __UpperCamelCase ( lowercase__ : List[Any] = 100 ) -> int: '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE_ ) for x in str(factorial(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __a ( lowerCamelCase_ ): __snake_case : Optional[int] = (DDIMParallelScheduler,) __snake_case : List[Any] = (("""eta""", 0.0), ("""num_inference_steps""", 50)) def A ( self : Tuple , **UpperCAmelCase : Tuple ): lowerCAmelCase_ : Any = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_UpperCAmelCase ) return config def A ( self : str , **UpperCAmelCase : Tuple ): lowerCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**_UpperCAmelCase ) lowerCAmelCase_ : List[Any] = scheduler_class(**_UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = 10, 0.0 lowerCAmelCase_ : List[str] = self.dummy_model() lowerCAmelCase_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for t in scheduler.timesteps: lowerCAmelCase_ : List[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase_ : Optional[int] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def A ( self : int ): for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def A ( self : Optional[int] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) lowerCAmelCase_ : List[str] = self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase_ : Optional[Any] = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1] ) ) def A ( self : List[Any] ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def A ( self : int ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def A ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def A ( self : List[str] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def A ( self : Any ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_UpperCAmelCase ) def A ( self : str ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_UpperCAmelCase ) def A ( self : Optional[int] ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def A ( self : str ): for t in [1, 10, 49]: self.check_over_forward(time_step=_UpperCAmelCase ) def A ( self : Union[str, Any] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00] ): self.check_over_forward(time_step=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase ) def A ( self : Dict ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_UpperCAmelCase , eta=_UpperCAmelCase ) def A ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase_ : List[Any] = self.get_scheduler_config() lowerCAmelCase_ : List[Any] = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00 ) - 0.1_4771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60 ) - 0.3_2460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98 ) - 0.02 ) ) < 1e-5 def A ( self : Dict ): lowerCAmelCase_ : List[Any] = self.scheduler_classes[0] lowerCAmelCase_ : str = self.get_scheduler_config() lowerCAmelCase_ : Dict = scheduler_class(**_UpperCAmelCase ) lowerCAmelCase_ , lowerCAmelCase_ : str = 10, 0.0 scheduler.set_timesteps(_UpperCAmelCase ) lowerCAmelCase_ : Tuple = self.dummy_model() lowerCAmelCase_ : List[str] = self.dummy_sample_deter lowerCAmelCase_ : List[str] = self.dummy_sample_deter + 0.1 lowerCAmelCase_ : Tuple = self.dummy_sample_deter - 0.1 lowerCAmelCase_ : Optional[Any] = samplea.shape[0] lowerCAmelCase_ : Optional[int] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase_ : Dict = torch.arange(_UpperCAmelCase )[0:3, None].repeat(1 , _UpperCAmelCase ) lowerCAmelCase_ : Any = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase_ : List[str] = scheduler.batch_step_no_noise(_UpperCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _UpperCAmelCase ) lowerCAmelCase_ : Tuple = torch.sum(torch.abs(_UpperCAmelCase ) ) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1e-2 assert abs(result_mean.item() - 0.4982 ) < 1e-3 def A ( self : List[Any] ): lowerCAmelCase_ : Dict = self.full_loop() lowerCAmelCase_ : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) lowerCAmelCase_ : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1e-2 assert abs(result_mean.item() - 0.22_3967 ) < 1e-3 def A ( self : List[str] ): lowerCAmelCase_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) lowerCAmelCase_ : Tuple = torch.sum(torch.abs(_UpperCAmelCase ) ) lowerCAmelCase_ : Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1e-2 assert abs(result_mean.item() - 0.0684 ) < 1e-3 def A ( self : Tuple ): lowerCAmelCase_ : str = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) lowerCAmelCase_ : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) ) lowerCAmelCase_ : List[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1e-2 assert abs(result_mean.item() - 0.1951 ) < 1e-3 def A ( self : str ): lowerCAmelCase_ : int = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) lowerCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_UpperCAmelCase ) ) lowerCAmelCase_ : str = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1e-2 assert abs(result_mean.item() - 0.1941 ) < 1e-3
366
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer __UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase = { 'vocab_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt' ), 'google/electra-base-generator': 'https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt', 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'google/electra-small-generator': ( 'https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json' ), 'google/electra-base-generator': ( 'https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json' ), 'google/electra-large-generator': ( 'https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json' ), 'google/electra-small-discriminator': ( 'https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json' ), 'google/electra-base-discriminator': ( 'https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json' ), 'google/electra-large-discriminator': ( 'https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase = { 'google/electra-small-generator': 5_12, 'google/electra-base-generator': 5_12, 'google/electra-large-generator': 5_12, 'google/electra-small-discriminator': 5_12, 'google/electra-base-discriminator': 5_12, 'google/electra-large-discriminator': 5_12, } __UpperCAmelCase = { 'google/electra-small-generator': {'do_lower_case': True}, 'google/electra-base-generator': {'do_lower_case': True}, 'google/electra-large-generator': {'do_lower_case': True}, 'google/electra-small-discriminator': {'do_lower_case': True}, 'google/electra-base-discriminator': {'do_lower_case': True}, 'google/electra-large-discriminator': {'do_lower_case': True}, } class __a ( __UpperCamelCase ): __snake_case : List[Any] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : Dict = PRETRAINED_INIT_CONFIGURATION __snake_case : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : str = ElectraTokenizer def __init__( self : List[Any] , UpperCAmelCase : Any=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict="[UNK]" , UpperCAmelCase : Any="[SEP]" , UpperCAmelCase : Any="[PAD]" , UpperCAmelCase : Union[str, Any]="[CLS]" , UpperCAmelCase : Optional[Any]="[MASK]" , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : Optional[Any] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) lowerCAmelCase_ : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , UpperCAmelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , UpperCAmelCase ) != tokenize_chinese_chars ): lowerCAmelCase_ : Optional[Any] = getattr(UpperCAmelCase , normalizer_state.pop("""type""" ) ) lowerCAmelCase_ : List[Any] = do_lower_case lowerCAmelCase_ : Tuple = strip_accents lowerCAmelCase_ : Union[str, Any] = tokenize_chinese_chars lowerCAmelCase_ : int = normalizer_class(**UpperCAmelCase ) lowerCAmelCase_ : str = do_lower_case def A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=None ): lowerCAmelCase_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): lowerCAmelCase_ : str = [self.sep_token_id] lowerCAmelCase_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): lowerCAmelCase_ : Union[str, Any] = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
28
0