code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
a_ : List[str] = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _snake_case ( lowerCamelCase_ ):
_lowercase : int = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = None , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None:
super().__init__(**__snake_case)
SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 224}
SCREAMING_SNAKE_CASE = get_size_dict(__snake_case , default_to_square=__snake_case)
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='crop_size')
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_center_crop
SCREAMING_SNAKE_CASE = crop_size
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(__snake_case , default_to_square=__snake_case)
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''')
SCREAMING_SNAKE_CASE = get_resize_output_image_size(__snake_case , size=size['shortest_edge'] , default_to_square=__snake_case)
return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(__snake_case)
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''')
return center_crop(__snake_case , size=(size['height'], size['width']) , data_format=__snake_case , **__snake_case)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> List[Any]:
return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(__snake_case , param_name='size' , default_to_square=__snake_case)
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE = get_size_dict(__snake_case , param_name='crop_size' , default_to_square=__snake_case)
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE = make_list_of_images(__snake_case)
if not valid_images(__snake_case):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.')
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE = [convert_to_rgb(__snake_case) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(__snake_case) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE = [self.center_crop(image=__snake_case , size=__snake_case) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=__snake_case , scale=__snake_case) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(__snake_case , __snake_case) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=__snake_case , tensor_type=__snake_case)
| 371 |
import baseaa
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaaencode(string.encode('utf-8'))
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base')
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE = model(a)['last_hidden_state']
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape , a)
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 350 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model']
SCREAMING_SNAKE_CASE = mam_aaa['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = MaMaaaConfig(
vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , )
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase)
model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : List[str] = parser.parse_args()
a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 327 | 0 |
import sys
a_ : int = (
'73167176531330624919225119674426574742355349194934'
'96983520312774506326239578318016984801869478851843'
'85861560789112949495459501737958331952853208805511'
'12540698747158523863050715693290963295227443043557'
'66896648950445244523161731856403098711121722383113'
'62229893423380308135336276614282806444486645238749'
'30358907296290491560440772390713810515859307960866'
'70172427121883998797908792274921901699720888093776'
'65727333001053367881220235421809751254540594752243'
'52584907711670556013604839586446706324415722155397'
'53697817977846174064955149290862569321978468622482'
'83972241375657056057490261407972968652414535100474'
'82166370484403199890008895243450658541227588666881'
'16427171479924442928230863465674813919123162824586'
'17866458359124566529476545682848912883142607690042'
'24219022671055626321111109370544217506941658960408'
'07198403850962455444362981230987879927244284909188'
'84580156166097919133875499200524063689912560717606'
'05886116467109405077541002256983155200055935729725'
'71636269561882670428252483600823257530420752963450'
)
def lowerCamelCase__ (_UpperCAmelCase = N):
SCREAMING_SNAKE_CASE = -sys.maxsize - 1
for i in range(len(_UpperCAmelCase) - 12):
SCREAMING_SNAKE_CASE = 1
for j in range(13):
product *= int(n[i + j])
if product > largest_product:
SCREAMING_SNAKE_CASE = product
return largest_product
if __name__ == "__main__":
print(f"""{solution() = }""")
| 351 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused'
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = floats_list((3, 1000))
SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = 'This is a test string'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 327 | 0 |
import numpy as np
from PIL import Image
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = np.array(_UpperCAmelCase)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
# compute the shape of the output matrix
SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
SCREAMING_SNAKE_CASE = np.zeros((maxpool_shape, maxpool_shape))
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
SCREAMING_SNAKE_CASE = np.max(arr[i : i + size, j : j + size])
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
return updated_arr
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = np.array(_UpperCAmelCase)
if arr.shape[0] != arr.shape[1]:
raise ValueError('The input array is not a square matrix')
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
# compute the shape of the output matrix
SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
SCREAMING_SNAKE_CASE = np.zeros((avgpool_shape, avgpool_shape))
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
SCREAMING_SNAKE_CASE = int(np.average(arr[i : i + size, j : j + size]))
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
a_ : Optional[int] = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
| 352 |
import argparse
import datetime
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_UpperCAmelCase) < 11:
raise ValueError('Must be 10 characters long')
# Get month
SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12')
SCREAMING_SNAKE_CASE = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get day
SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31')
# Get second separator
SCREAMING_SNAKE_CASE = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get year
SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?')
# Get datetime obj for validation
SCREAMING_SNAKE_CASE = datetime.date(int(_UpperCAmelCase) , int(_UpperCAmelCase) , int(_UpperCAmelCase))
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE = y - 1
SCREAMING_SNAKE_CASE = m + 12
# maths var
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[:2])
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[2:])
SCREAMING_SNAKE_CASE = int(2.6 * m - 5.39)
SCREAMING_SNAKE_CASE = int(c / 4)
SCREAMING_SNAKE_CASE = int(k / 4)
SCREAMING_SNAKE_CASE = int(d + k)
SCREAMING_SNAKE_CASE = int(t + u + v + x)
SCREAMING_SNAKE_CASE = int(z - (2 * c))
SCREAMING_SNAKE_CASE = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.')
# Response
SCREAMING_SNAKE_CASE = F'''Your date {date_input}, is a {days[str(_UpperCAmelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Tuple = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
a_ : Any = parser.parse_args()
zeller(args.date_input)
| 327 | 0 |
"""simple docstring"""
def lowerCamelCase__ (_UpperCAmelCase):
if not grid or not grid[0]:
raise TypeError('The grid does not contain the appropriate information')
for cell_n in range(1 , len(grid[0])):
grid[0][cell_n] += grid[0][cell_n - 1]
SCREAMING_SNAKE_CASE = grid[0]
for row_n in range(1 , len(_UpperCAmelCase)):
SCREAMING_SNAKE_CASE = grid[row_n]
SCREAMING_SNAKE_CASE = fill_row(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = grid[row_n]
return grid[-1][-1]
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
current_row[0] += row_above[0]
for cell_n in range(1 , len(_UpperCAmelCase)):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n])
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a_ : Optional[Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : Optional[int] = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384}
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''')
SCREAMING_SNAKE_CASE = (size['height'], size['width'])
return resize(a , size=a , resample=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(a , mean=a , std=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a)
return encoded_outputs
| 327 | 0 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
a_ : Optional[Any] = '\nimport os\n'
a_ : List[str] = '\ndef foo():\n import os\n return False\n'
a_ : Optional[int] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n'
a_ : str = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n'
a_ : Any = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n'
a_ : List[str] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n'
a_ : Union[str, Any] = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n'
a_ : int = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n'
a_ : Tuple = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n'
a_ : Optional[int] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n'
a_ : List[str] = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('case' , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'test_file.py')
with open(_UpperCAmelCase , 'w') as _tmp_file:
_tmp_file.write(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = get_imports(_UpperCAmelCase)
assert parsed_imports == ["os"]
| 354 |
class _snake_case :
def __init__( self , a) -> Optional[Any]:
SCREAMING_SNAKE_CASE = val
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self , a) -> str:
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.left.insert(a)
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.right.insert(a)
else:
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
# Recursive traversal
if root:
inorder(root.left , _UpperCAmelCase)
res.append(root.val)
inorder(root.right , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
# Build BST
if len(_UpperCAmelCase) == 0:
return arr
SCREAMING_SNAKE_CASE = Node(arr[0])
for i in range(1 , len(_UpperCAmelCase)):
root.insert(arr[i])
# Traverse BST in order.
SCREAMING_SNAKE_CASE = []
inorder(_UpperCAmelCase , _UpperCAmelCase)
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 327 | 0 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
a_ : str = logging.get_logger(__name__)
def lowerCamelCase__ (_UpperCAmelCase):
"""simple docstring"""
if isinstance(_UpperCAmelCase , np.ndarray):
return list(tensor.shape)
SCREAMING_SNAKE_CASE = tf.shape(_UpperCAmelCase)
if tensor.shape == tf.TensorShape(_UpperCAmelCase):
return dynamic
SCREAMING_SNAKE_CASE = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_UpperCAmelCase)]
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None):
"""simple docstring"""
return tf.nn.softmax(logits=logits + 1e-9 , axis=_UpperCAmelCase , name=_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1e-5 , _UpperCAmelCase=-1):
"""simple docstring"""
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_UpperCAmelCase , _UpperCAmelCase):
raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.')
# Get mean and variance on the axis to be normalized
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tf.nn.moments(_UpperCAmelCase , axes=[axis] , keepdims=_UpperCAmelCase)
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
SCREAMING_SNAKE_CASE = [1] * inputs.shape.rank
SCREAMING_SNAKE_CASE = shape_list(_UpperCAmelCase)[axis]
SCREAMING_SNAKE_CASE = tf.reshape(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = tf.reshape(_UpperCAmelCase , _UpperCAmelCase)
# Compute layer normalization using the batch_normalization
# function.
SCREAMING_SNAKE_CASE = tf.nn.batch_normalization(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , offset=_UpperCAmelCase , scale=_UpperCAmelCase , variance_epsilon=_UpperCAmelCase , )
return outputs
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=0 , _UpperCAmelCase=-1):
"""simple docstring"""
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
SCREAMING_SNAKE_CASE = tf.shape(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1])
SCREAMING_SNAKE_CASE = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0)
return tf.reshape(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
"""simple docstring"""
if not isinstance(_UpperCAmelCase , tf.Tensor):
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(_UpperCAmelCase) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
SCREAMING_SNAKE_CASE = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
SCREAMING_SNAKE_CASE = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
SCREAMING_SNAKE_CASE = (
tf.cast(1 , encoder_attention_mask.dtype) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "input_ids"):
"""simple docstring"""
tf.debugging.assert_less(
_UpperCAmelCase , tf.cast(_UpperCAmelCase , dtype=tensor.dtype) , message=(
F'''The maximum value of {tensor_name} ({tf.math.reduce_max(_UpperCAmelCase)}) must be smaller than the embedding '''
F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.'''
) , )
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
"""simple docstring"""
SCREAMING_SNAKE_CASE = 6_4512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
SCREAMING_SNAKE_CASE = [x for x in data if len(_UpperCAmelCase) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
'The following attributes cannot be saved to HDF5 file because '
F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} '''
F'''bytes: {bad_attributes}''')
SCREAMING_SNAKE_CASE = np.asarray(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = np.array_split(_UpperCAmelCase , _UpperCAmelCase)
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data):
num_chunks += 1
SCREAMING_SNAKE_CASE = np.array_split(_UpperCAmelCase , _UpperCAmelCase)
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = chunk_data
else:
SCREAMING_SNAKE_CASE = data
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
"""simple docstring"""
if name in group.attrs:
SCREAMING_SNAKE_CASE = [n.decode('utf8') if hasattr(_UpperCAmelCase , 'decode') else n for n in group.attrs[name]]
else:
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode('utf8') if hasattr(_UpperCAmelCase , 'decode') else n for n in group.attrs['%s%d' % (name, chunk_id)]])
chunk_id += 1
return data
def lowerCamelCase__ (_UpperCAmelCase):
"""simple docstring"""
def _expand_single_ad_tensor(_UpperCAmelCase):
if isinstance(_UpperCAmelCase , tf.Tensor) and t.shape.rank == 1:
return tf.expand_dims(_UpperCAmelCase , axis=-1)
return t
return tf.nest.map_structure(_expand_single_ad_tensor , _UpperCAmelCase)
| 355 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a_ : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
a_ : Optional[int] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(state_dict.keys())
for name in state_dict_keys:
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
# emb -> embedding
if name.startswith('emb.'):
SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase)
# ffn -> feed_forward
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
SCREAMING_SNAKE_CASE = 'rwkv.' + name
SCREAMING_SNAKE_CASE = weight
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
SCREAMING_SNAKE_CASE = 5_0277
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
tokenizer.save_pretrained(_UpperCAmelCase)
# 2. Build the config
SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
SCREAMING_SNAKE_CASE = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
SCREAMING_SNAKE_CASE = RwkvConfig(
vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_UpperCAmelCase)
# 3. Download model file then convert state_dict
SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase)
# 4. Split in shards and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase)
for shard_file, shard in shards.items():
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
if index is not None:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
# Save the index as well
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
SCREAMING_SNAKE_CASE = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB')
tokenizer.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
a_ : Tuple = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 327 | 0 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(s_dict.keys())
for key in keys:
if "transformer_layers" in key:
SCREAMING_SNAKE_CASE = s_dict.pop(_UpperCAmelCase)
elif "subsample" in key:
SCREAMING_SNAKE_CASE = s_dict.pop(_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args']
SCREAMING_SNAKE_CASE = mam_aaa['model']
SCREAMING_SNAKE_CASE = state_dict['decoder.output_projection.weight']
remove_ignore_keys_(_UpperCAmelCase)
rename_keys(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = args.share_decoder_input_output_embed
SCREAMING_SNAKE_CASE = [int(_UpperCAmelCase) for i in args.conv_kernel_sizes.split(',')]
SCREAMING_SNAKE_CASE = SpeechaTextConfig(
vocab_size=_UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(_UpperCAmelCase) , conv_channels=args.conv_channels , conv_kernel_sizes=_UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=_UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=_UpperCAmelCase , decoder_start_token_id=2 , early_stopping=_UpperCAmelCase , )
SCREAMING_SNAKE_CASE = SpeechaTextForConditionalGeneration(_UpperCAmelCase)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
if len(_UpperCAmelCase) > 0 and not set(_UpperCAmelCase) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'
F''' but all the following weights are missing {missing}''')
if tie_embeds:
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.decoder.embed_tokens)
else:
SCREAMING_SNAKE_CASE = lm_head_weights
model.save_pretrained(_UpperCAmelCase)
if __name__ == "__main__":
a_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : Tuple = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 356 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set())
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
class _snake_case :
def __init__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = metric_id
class _snake_case :
_lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']]
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock())
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if "tmp_path" in args:
SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args)
with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'):
func(*_UpperCAmelCase)
| 327 | 0 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
a_ : Any = 'pt'
elif is_tf_available():
a_ : Union[str, Any] = 'tf'
else:
a_ : Tuple = 'jax'
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : Any = ByTaTokenizer
_lowercase : Union[str, Any] = False
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
super().setUp()
SCREAMING_SNAKE_CASE = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
return ByTaTokenizer.from_pretrained('google/byt5-small')
def SCREAMING_SNAKE_CASE__ ( self , **a) -> ByTaTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a=False , a=20 , a=5) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for ByT5 because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
SCREAMING_SNAKE_CASE = []
for i in range(len(a)):
try:
SCREAMING_SNAKE_CASE = tokenizer.decode([i] , clean_up_tokenization_spaces=a)
except UnicodeDecodeError:
pass
toks.append((i, tok))
SCREAMING_SNAKE_CASE = list(filter(lambda a: re.match(R'^[ a-zA-Z]+$' , t[1]) , a))
SCREAMING_SNAKE_CASE = list(filter(lambda a: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a) , a))
if max_length is not None and len(a) > max_length:
SCREAMING_SNAKE_CASE = toks[:max_length]
if min_length is not None and len(a) < min_length and len(a) > 0:
while len(a) < min_length:
SCREAMING_SNAKE_CASE = toks + toks
# toks_str = [t[1] for t in toks]
SCREAMING_SNAKE_CASE = [t[0] for t in toks]
# Ensure consistency
SCREAMING_SNAKE_CASE = tokenizer.decode(a , clean_up_tokenization_spaces=a)
if " " not in output_txt and len(a) > 1:
SCREAMING_SNAKE_CASE = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a)
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a)
)
if with_prefix_space:
SCREAMING_SNAKE_CASE = ' ' + output_txt
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
return output_txt, output_ids
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'])
SCREAMING_SNAKE_CASE = tokenizer(['hi', 'I went to the gym', ''])
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'])
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE = 'Unicode €.'
SCREAMING_SNAKE_CASE = tokenizer(a)
SCREAMING_SNAKE_CASE = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , a)
# decoding
SCREAMING_SNAKE_CASE = tokenizer.decode(a)
self.assertEqual(a , 'Unicode €.</s>')
SCREAMING_SNAKE_CASE = tokenizer('e è é ê ë')
SCREAMING_SNAKE_CASE = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , a)
# decoding
SCREAMING_SNAKE_CASE = tokenizer.decode(a)
self.assertEqual(a , 'e è é ê ë</s>')
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , 'e è é ê ë</s>')
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
SCREAMING_SNAKE_CASE = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
SCREAMING_SNAKE_CASE = tokenizer(a , padding=a , return_tensors=a)
self.assertIsInstance(a , a)
if FRAMEWORK != "jax":
SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0])
else:
SCREAMING_SNAKE_CASE = list(batch.input_ids.tolist()[0])
self.assertListEqual(a , a)
self.assertEqual((2, 37) , batch.input_ids.shape)
self.assertEqual((2, 37) , batch.attention_mask.shape)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
SCREAMING_SNAKE_CASE = tokenizer(a , padding=a , return_tensors=a)
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , a)
self.assertIn('attention_mask' , a)
self.assertNotIn('decoder_input_ids' , a)
self.assertNotIn('decoder_attention_mask' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE = [
'Summary of the text.',
'Another summary.',
]
SCREAMING_SNAKE_CASE = tokenizer(
text_target=a , max_length=32 , padding='max_length' , truncation=a , return_tensors=a)
self.assertEqual(32 , targets['input_ids'].shape[1])
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.ta_base_tokenizer
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization. </s>']
SCREAMING_SNAKE_CASE = ['Summary of the text. </s>']
# fmt: off
SCREAMING_SNAKE_CASE = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
SCREAMING_SNAKE_CASE = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
SCREAMING_SNAKE_CASE = tokenizer(a , text_target=a)
self.assertEqual(a , batch['input_ids'][0])
self.assertEqual(a , batch['labels'][0])
def SCREAMING_SNAKE_CASE__ ( self) -> str:
# safety check on max_len default value so we are sure the test works
SCREAMING_SNAKE_CASE = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
self.assertNotEqual(tokenizer.model_max_length , 42)
# Now let's start the test
SCREAMING_SNAKE_CASE = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running'
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
tokenizer.save_pretrained(a)
SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a)
SCREAMING_SNAKE_CASE = after_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
shutil.rmtree(a)
SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42)
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'])
SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token')
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens})
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
tokenizer.save_pretrained(a)
SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a)
SCREAMING_SNAKE_CASE = after_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens)
self.assertEqual(after_tokenizer.model_max_length , 42)
SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a , model_max_length=43)
self.assertEqual(tokenizer.model_max_length , 43)
shutil.rmtree(a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a)
with open(os.path.join(a , 'special_tokens_map.json') , encoding='utf-8') as json_file:
SCREAMING_SNAKE_CASE = json.load(a)
with open(os.path.join(a , 'tokenizer_config.json') , encoding='utf-8') as json_file:
SCREAMING_SNAKE_CASE = json.load(a)
SCREAMING_SNAKE_CASE = [f'''<extra_id_{i}>''' for i in range(125)]
SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [
'an_additional_special_token'
]
SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(a , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile:
json.dump(a , a)
with open(os.path.join(a , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile:
json.dump(a , a)
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(
a , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens)
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=a)]
SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(
a , additional_special_tokens=a , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens)
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , )
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a)
SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(a)
self.assertTrue(tokenizer.decode([255]) == '')
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> str:
# The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings
# and special added tokens as tokens
SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=a , do_lower_case=a)
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
SCREAMING_SNAKE_CASE = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(a)
self.assertIsInstance(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
SCREAMING_SNAKE_CASE = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(
a , skip_special_tokens=a)
for attr in attributes_list:
setattr(a , attr + '_id' , a)
self.assertEqual(getattr(a , a) , a)
self.assertEqual(getattr(a , attr + '_id') , a)
setattr(a , attr + '_id' , a)
self.assertEqual(getattr(a , a) , a)
self.assertEqual(getattr(a , attr + '_id') , a)
setattr(a , 'additional_special_tokens_ids' , [])
self.assertListEqual(getattr(a , 'additional_special_tokens') , [])
self.assertListEqual(getattr(a , 'additional_special_tokens_ids') , [])
setattr(a , 'additional_special_tokens_ids' , [token_id_to_test_setters])
self.assertListEqual(getattr(a , 'additional_special_tokens') , [token_to_test_setters])
self.assertListEqual(getattr(a , 'additional_special_tokens_ids') , [token_id_to_test_setters])
| 357 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Any = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 327 | 0 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model']
SCREAMING_SNAKE_CASE = mam_aaa['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = MaMaaaConfig(
vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , )
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase)
model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : List[str] = parser.parse_args()
a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 358 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : str = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
a_ : List[Any] = {'allegro/herbert-base-cased': 5_14}
a_ : Dict = {}
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Any = PRETRAINED_INIT_CONFIGURATION
_lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Any = HerbertTokenizer
def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict:
super().__init__(
a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return [1] + ([0] * len(a)) + [1]
return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
| 327 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
a_ : Dict = logging.get_logger(__name__)
a_ : Tuple = {
'post_extract_proj': 'feature_projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.upsample.0': 'encoder.upsample.projection',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'layer_norm',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
for attribute in key.split('.'):
SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase)
if weight_type is not None:
SCREAMING_SNAKE_CASE = getattr(_UpperCAmelCase , _UpperCAmelCase).shape
else:
SCREAMING_SNAKE_CASE = hf_pointer.shape
assert hf_shape == value.shape, (
F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be'''
F''' {value.shape} for {full_name}'''
)
if weight_type == "weight":
SCREAMING_SNAKE_CASE = value
elif weight_type == "weight_g":
SCREAMING_SNAKE_CASE = value
elif weight_type == "weight_v":
SCREAMING_SNAKE_CASE = value
elif weight_type == "bias":
SCREAMING_SNAKE_CASE = value
else:
SCREAMING_SNAKE_CASE = value
logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''')
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = fairseq_model.state_dict()
SCREAMING_SNAKE_CASE = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
SCREAMING_SNAKE_CASE = False
if "conv_layers" in name:
load_conv_layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == 'group' , )
SCREAMING_SNAKE_CASE = True
else:
for key, mapped_key in MAPPING.items():
SCREAMING_SNAKE_CASE = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key
if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]:
SCREAMING_SNAKE_CASE = True
if "*" in mapped_key:
SCREAMING_SNAKE_CASE = name.split(_UpperCAmelCase)[0].split('.')[-2]
SCREAMING_SNAKE_CASE = mapped_key.replace('*' , _UpperCAmelCase)
if "weight_g" in name:
SCREAMING_SNAKE_CASE = 'weight_g'
elif "weight_v" in name:
SCREAMING_SNAKE_CASE = 'weight_v'
elif "weight" in name:
SCREAMING_SNAKE_CASE = 'weight'
elif "bias" in name:
SCREAMING_SNAKE_CASE = 'bias'
else:
SCREAMING_SNAKE_CASE = None
set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
continue
if not is_used:
unused_weights.append(_UpperCAmelCase)
logger.warning(F'''Unused weights: {unused_weights}''')
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = full_name.split('conv_layers.')[-1]
SCREAMING_SNAKE_CASE = name.split('.')
SCREAMING_SNAKE_CASE = int(items[0])
SCREAMING_SNAKE_CASE = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.'''
)
SCREAMING_SNAKE_CASE = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.'''
)
SCREAMING_SNAKE_CASE = value
logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''')
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was'''
" found."
)
SCREAMING_SNAKE_CASE = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F'''{full_name} has size {value.shape}, but'''
F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.'''
)
SCREAMING_SNAKE_CASE = value
logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''')
else:
unused_weights.append(_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = SEWConfig()
if is_finetuned:
SCREAMING_SNAKE_CASE = model.wav_encoder.wav_model.cfg
else:
SCREAMING_SNAKE_CASE = model.cfg
SCREAMING_SNAKE_CASE = fs_config.conv_bias
SCREAMING_SNAKE_CASE = eval(fs_config.conv_feature_layers)
SCREAMING_SNAKE_CASE = [x[0] for x in conv_layers]
SCREAMING_SNAKE_CASE = [x[1] for x in conv_layers]
SCREAMING_SNAKE_CASE = [x[2] for x in conv_layers]
SCREAMING_SNAKE_CASE = 'gelu'
SCREAMING_SNAKE_CASE = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group'
SCREAMING_SNAKE_CASE = 0.0
SCREAMING_SNAKE_CASE = fs_config.activation_fn.name
SCREAMING_SNAKE_CASE = fs_config.encoder_embed_dim
SCREAMING_SNAKE_CASE = 0.02
SCREAMING_SNAKE_CASE = fs_config.encoder_ffn_embed_dim
SCREAMING_SNAKE_CASE = 1e-5
SCREAMING_SNAKE_CASE = fs_config.encoder_layerdrop
SCREAMING_SNAKE_CASE = fs_config.encoder_attention_heads
SCREAMING_SNAKE_CASE = fs_config.conv_pos_groups
SCREAMING_SNAKE_CASE = fs_config.conv_pos
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = fs_config.encoder_layers
SCREAMING_SNAKE_CASE = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
SCREAMING_SNAKE_CASE = model.cfg
SCREAMING_SNAKE_CASE = fs_config.final_dropout
SCREAMING_SNAKE_CASE = fs_config.layerdrop
SCREAMING_SNAKE_CASE = fs_config.activation_dropout
SCREAMING_SNAKE_CASE = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
SCREAMING_SNAKE_CASE = fs_config.attention_dropout
SCREAMING_SNAKE_CASE = fs_config.dropout_input
SCREAMING_SNAKE_CASE = fs_config.dropout
SCREAMING_SNAKE_CASE = fs_config.mask_channel_length
SCREAMING_SNAKE_CASE = fs_config.mask_channel_prob
SCREAMING_SNAKE_CASE = fs_config.mask_length
SCREAMING_SNAKE_CASE = fs_config.mask_prob
SCREAMING_SNAKE_CASE = 'Wav2Vec2FeatureExtractor'
SCREAMING_SNAKE_CASE = 'Wav2Vec2CTCTokenizer'
return config
@torch.no_grad()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True):
if is_finetuned:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])})
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
if config_path is not None:
SCREAMING_SNAKE_CASE = SEWConfig.from_pretrained(_UpperCAmelCase)
else:
SCREAMING_SNAKE_CASE = convert_config(model[0] , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = model[0].eval()
SCREAMING_SNAKE_CASE = True if config.feat_extract_norm == 'layer' else False
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , )
if is_finetuned:
if dict_path:
SCREAMING_SNAKE_CASE = Dictionary.load(_UpperCAmelCase)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
SCREAMING_SNAKE_CASE = target_dict.pad_index
SCREAMING_SNAKE_CASE = target_dict.bos_index
SCREAMING_SNAKE_CASE = target_dict.pad_index
SCREAMING_SNAKE_CASE = target_dict.bos_index
SCREAMING_SNAKE_CASE = target_dict.eos_index
SCREAMING_SNAKE_CASE = len(target_dict.symbols)
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , 'vocab.json')
if not os.path.isdir(_UpperCAmelCase):
logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCAmelCase))
return
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as vocab_handle:
json.dump(target_dict.indices , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = WavaVecaCTCTokenizer(
_UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCAmelCase , )
SCREAMING_SNAKE_CASE = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase)
processor.save_pretrained(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = SEWForCTC(_UpperCAmelCase)
else:
SCREAMING_SNAKE_CASE = SEWModel(_UpperCAmelCase)
feature_extractor.save_pretrained(_UpperCAmelCase)
recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
hf_model.save_pretrained(_UpperCAmelCase)
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
a_ : List[str] = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 359 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
a_ : Dict = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( A__ ):
def __init__( self , *a , a=None , a=None , a=None , **a) -> List[Any]:
super().__init__(*a , **a)
SCREAMING_SNAKE_CASE = eval_examples
SCREAMING_SNAKE_CASE = post_process_function
SCREAMING_SNAKE_CASE = quant_trainer_args
SCREAMING_SNAKE_CASE = 128 # default number of calibration samples
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Union[str, Any]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.')
SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset
SCREAMING_SNAKE_CASE = self._remove_unused_columns(a , description='Calibration')
return DataLoader(
a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a , )
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset
SCREAMING_SNAKE_CASE = self.get_calib_dataloader(a)
SCREAMING_SNAKE_CASE = self.model
quant_trainer.configure_model(a , self.quant_trainer_args , calib=a)
model.eval()
quant_trainer.enable_calibration(a)
logger.info('***** Running calibration *****')
logger.info(f''' Num examples = {self.calib_num}''')
logger.info(f''' Batch size = {calib_dataloader.batch_size}''')
for step, inputs in enumerate(a):
# Prediction step
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prediction_step(a , a , prediction_loss_only=a)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = model
def SCREAMING_SNAKE_CASE__ ( self , a=None , a=None , a=None , a = "eval") -> str:
SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions)
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
self.log(a)
else:
SCREAMING_SNAKE_CASE = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , a)
return metrics
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a = "test") -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.get_test_dataloader(a)
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions , 'predict')
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a)
def SCREAMING_SNAKE_CASE__ ( self , a="./") -> List[Any]:
SCREAMING_SNAKE_CASE = self.eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = next(iter(a))
# saving device - to make it consistent
SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# convert to tuple
SCREAMING_SNAKE_CASE = tuple(v.to(a) for k, v in batch.items())
logger.info('Converting model to be onnx compatible')
from pytorch_quantization.nn import TensorQuantizer
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.model.to(a)
model.eval()
model.float()
SCREAMING_SNAKE_CASE = model.module if hasattr(a , 'module') else model
quant_trainer.configure_model(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = os.path.join(a , 'model.onnx')
logger.info(f'''exporting model to {output_model_file}''')
SCREAMING_SNAKE_CASE = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
a , a , a , export_params=a , opset_version=13 , do_constant_folding=a , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=a , )
logger.info('onnx export finished')
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
a_ : int = {'tokenization_herbert': ['HerbertTokenizer']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ['HerbertTokenizerFast']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
a_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 360 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : List[str] = ['''pixel_values''']
def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
SCREAMING_SNAKE_CASE = pad_size
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a)
SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height
SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width
return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]:
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad
SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_pad:
SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 327 | 0 |
import json
import logging
import os
import socket
import git
import numpy as np
import torch
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
a_ : List[str] = logging.getLogger(__name__)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {
'repo_id': str(_UpperCAmelCase),
'repo_sha': str(repo.head.object.hexsha),
'repo_branch': str(repo.active_branch),
}
with open(os.path.join(_UpperCAmelCase , 'git_log.json') , 'w') as f:
json.dump(_UpperCAmelCase , _UpperCAmelCase , indent=4)
def lowerCamelCase__ (_UpperCAmelCase):
if params.n_gpu <= 0:
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
return
assert torch.cuda.is_available()
logger.info('Initializing GPUs')
if params.n_gpu > 1:
assert params.local_rank != -1
SCREAMING_SNAKE_CASE = int(os.environ['WORLD_SIZE'])
SCREAMING_SNAKE_CASE = int(os.environ['N_GPU_NODE'])
SCREAMING_SNAKE_CASE = int(os.environ['RANK'])
# number of nodes / node ID
SCREAMING_SNAKE_CASE = params.world_size // params.n_gpu_per_node
SCREAMING_SNAKE_CASE = params.global_rank // params.n_gpu_per_node
SCREAMING_SNAKE_CASE = True
assert params.n_nodes == int(os.environ['N_NODES'])
assert params.node_id == int(os.environ['NODE_RANK'])
# local job (single GPU)
else:
assert params.local_rank == -1
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = False
# sanity checks
assert params.n_nodes >= 1
assert 0 <= params.node_id < params.n_nodes
assert 0 <= params.local_rank <= params.global_rank < params.world_size
assert params.world_size == params.n_nodes * params.n_gpu_per_node
# define whether this is the master process / if we are in multi-node distributed mode
SCREAMING_SNAKE_CASE = params.node_id == 0 and params.local_rank == 0
SCREAMING_SNAKE_CASE = params.n_nodes > 1
# summary
SCREAMING_SNAKE_CASE = F'''--- Global rank: {params.global_rank} - '''
logger.info(PREFIX + 'Number of nodes: %i' % params.n_nodes)
logger.info(PREFIX + 'Node ID : %i' % params.node_id)
logger.info(PREFIX + 'Local rank : %i' % params.local_rank)
logger.info(PREFIX + 'World size : %i' % params.world_size)
logger.info(PREFIX + 'GPUs per node : %i' % params.n_gpu_per_node)
logger.info(PREFIX + 'Master : %s' % str(params.is_master))
logger.info(PREFIX + 'Multi-node : %s' % str(params.multi_node))
logger.info(PREFIX + 'Multi-GPU : %s' % str(params.multi_gpu))
logger.info(PREFIX + 'Hostname : %s' % socket.gethostname())
# set GPU device
torch.cuda.set_device(params.local_rank)
# initialize multi-GPU
if params.multi_gpu:
logger.info('Initializing PyTorch distributed')
torch.distributed.init_process_group(
init_method='env://' , backend='nccl' , )
def lowerCamelCase__ (_UpperCAmelCase):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
| 361 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base')
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE = model(a)['last_hidden_state']
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape , a)
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 327 | 0 |
import math
import sys
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = ''
try:
with open(_UpperCAmelCase , 'rb') as binary_file:
SCREAMING_SNAKE_CASE = binary_file.read()
for dat in data:
SCREAMING_SNAKE_CASE = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('File not accessible')
sys.exit()
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {'0': '0', '1': '1'}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = '', ''
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
for i in range(len(_UpperCAmelCase)):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
SCREAMING_SNAKE_CASE = lexicon[curr_string]
result += last_match_id
SCREAMING_SNAKE_CASE = last_match_id + '0'
if math.loga(_UpperCAmelCase).is_integer():
SCREAMING_SNAKE_CASE = {}
for curr_key in list(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = lexicon.pop(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = new_lex
SCREAMING_SNAKE_CASE = last_match_id + '1'
index += 1
SCREAMING_SNAKE_CASE = ''
return result
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = 8
try:
with open(_UpperCAmelCase , 'wb') as opened_file:
SCREAMING_SNAKE_CASE = [
to_write[i : i + byte_length]
for i in range(0 , len(_UpperCAmelCase) , _UpperCAmelCase)
]
if len(result_byte_array[-1]) % byte_length == 0:
result_byte_array.append('10000000')
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1]) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_UpperCAmelCase , 2).to_bytes(1 , byteorder='big'))
except OSError:
print('File not accessible')
sys.exit()
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
SCREAMING_SNAKE_CASE = data_bits[counter:]
SCREAMING_SNAKE_CASE = data_bits[counter + 1 :]
return data_bits
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = read_file_binary(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = remove_prefix(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = decompress_data(_UpperCAmelCase)
write_file_binary(_UpperCAmelCase , _UpperCAmelCase)
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 362 |
from scipy.stats import pearsonr
import datasets
a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float'),
'references': datasets.Value('float'),
}) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]:
if return_pvalue:
SCREAMING_SNAKE_CASE = pearsonr(a , a)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(a , a)[0])}
| 327 | 0 |
a_ : str = {
'a': 'AAAAA',
'b': 'AAAAB',
'c': 'AAABA',
'd': 'AAABB',
'e': 'AABAA',
'f': 'AABAB',
'g': 'AABBA',
'h': 'AABBB',
'i': 'ABAAA',
'j': 'BBBAA',
'k': 'ABAAB',
'l': 'ABABA',
'm': 'ABABB',
'n': 'ABBAA',
'o': 'ABBAB',
'p': 'ABBBA',
'q': 'ABBBB',
'r': 'BAAAA',
's': 'BAAAB',
't': 'BAABA',
'u': 'BAABB',
'v': 'BBBAB',
'w': 'BABAA',
'x': 'BABAB',
'y': 'BABBA',
'z': 'BABBB',
' ': ' ',
}
a_ : Union[str, Any] = {value: key for key, value in encode_dict.items()}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = ''
for letter in word.lower():
if letter.isalpha() or letter == " ":
encoded += encode_dict[letter]
else:
raise Exception('encode() accepts only letters of the alphabet and spaces')
return encoded
def lowerCamelCase__ (_UpperCAmelCase):
if set(_UpperCAmelCase) - {"A", "B", " "} != set():
raise Exception('decode() accepts only \'A\', \'B\' and spaces')
SCREAMING_SNAKE_CASE = ''
for word in coded.split():
while len(_UpperCAmelCase) != 0:
decoded += decode_dict[word[:5]]
SCREAMING_SNAKE_CASE = word[5:]
decoded += " "
return decoded.strip()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 363 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _snake_case ( unittest.TestCase ):
_lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a)
return generator, ["Something to write", "Something else"]
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any:
SCREAMING_SNAKE_CASE = generator('Something there')
self.assertEqual(a , [{'generated_text': ANY(a)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['generated_text'].startswith('Something there'))
SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
SCREAMING_SNAKE_CASE = generator(
['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
with self.assertRaises(a):
generator(4)
@require_torch
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = generator(
'Something there' , num_return_sequences=a , num_beams=a , )
SCREAMING_SNAKE_CASE = [
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': ''},
]
self.assertEqual(a , a)
SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a)
self.assertEqual(
a , [
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
] , )
SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id
SCREAMING_SNAKE_CASE = '<pad>'
SCREAMING_SNAKE_CASE = generator(
['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , )
self.assertEqual(
a , [
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
] , )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a_ : List[Any] = {
'configuration_convbert': ['CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvBertConfig', 'ConvBertOnnxConfig'],
'tokenization_convbert': ['ConvBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = ['ConvBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
'CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConvBertForMaskedLM',
'ConvBertForMultipleChoice',
'ConvBertForQuestionAnswering',
'ConvBertForSequenceClassification',
'ConvBertForTokenClassification',
'ConvBertLayer',
'ConvBertModel',
'ConvBertPreTrainedModel',
'load_tf_weights_in_convbert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = [
'TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFConvBertForMaskedLM',
'TFConvBertForMultipleChoice',
'TFConvBertForQuestionAnswering',
'TFConvBertForSequenceClassification',
'TFConvBertForTokenClassification',
'TFConvBertLayer',
'TFConvBertModel',
'TFConvBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 364 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a)
SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))]
SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin') for f in files)
@slow
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3
assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1
SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(a) == num_samples
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , )
SCREAMING_SNAKE_CASE = scheduler.create_state()
SCREAMING_SNAKE_CASE = scheduler_state
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice).max() < 1E-2
| 327 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=A__ )
class _snake_case ( A__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
_lowercase : str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
_lowercase : ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} )
_lowercase : ClassVar[Features] = Features(
{
'''answers''': Sequence(
{
'''text''': Value('''string''' ),
'''answer_start''': Value('''int32''' ),
} )
} )
_lowercase : str = "question"
_lowercase : str = "context"
_lowercase : str = "answers"
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Dict[str, str]:
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 365 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]:
if rouge_types is None:
SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a)
if use_aggregator:
SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE = []
for ref, pred in zip(a , a):
SCREAMING_SNAKE_CASE = scorer.score(a , a)
if use_aggregator:
aggregator.add_scores(a)
else:
scores.append(a)
if use_aggregator:
SCREAMING_SNAKE_CASE = aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE = {}
for key in scores[0]:
SCREAMING_SNAKE_CASE = [score[key] for score in scores]
return result
| 327 | 0 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase)
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE = ParquetDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase).read()
_check_parquet_dataset(_UpperCAmelCase , _UpperCAmelCase)
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE = (
Features({feature: Value(_UpperCAmelCase) for feature, dtype in features.items()}) if features is not None else None
)
SCREAMING_SNAKE_CASE = ParquetDatasetReader(_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase).read()
_check_parquet_dataset(_UpperCAmelCase , _UpperCAmelCase)
@pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test'])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE = ParquetDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase , split=_UpperCAmelCase).read()
_check_parquet_dataset(_UpperCAmelCase , _UpperCAmelCase)
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if issubclass(_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = parquet_path
elif issubclass(_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = [parquet_path]
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE = ParquetDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase).read()
_check_parquet_dataset(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=("train",)):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase)
for split in splits:
SCREAMING_SNAKE_CASE = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase).read()
_check_parquet_datasetdict(_UpperCAmelCase , _UpperCAmelCase)
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE = (
Features({feature: Value(_UpperCAmelCase) for feature, dtype in features.items()}) if features is not None else None
)
SCREAMING_SNAKE_CASE = ParquetDatasetReader({'train': parquet_path} , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase).read()
_check_parquet_datasetdict(_UpperCAmelCase , _UpperCAmelCase)
@pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test'])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if split:
SCREAMING_SNAKE_CASE = {split: parquet_path}
else:
SCREAMING_SNAKE_CASE = 'train'
SCREAMING_SNAKE_CASE = {'train': parquet_path, 'test': parquet_path}
SCREAMING_SNAKE_CASE = tmp_path / 'cache'
SCREAMING_SNAKE_CASE = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
SCREAMING_SNAKE_CASE = ParquetDatasetReader(_UpperCAmelCase , cache_dir=_UpperCAmelCase).read()
_check_parquet_datasetdict(_UpperCAmelCase , _UpperCAmelCase , splits=list(path.keys()))
assert all(dataset[split].split == split for split in path.keys())
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = ParquetDatasetWriter(_UpperCAmelCase , tmp_path / 'foo.parquet')
assert writer.write() > 0
SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / 'foo.parquet')
SCREAMING_SNAKE_CASE = pf.read()
assert dataset.data.table == output_table
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = str(shared_datadir / 'test_image_rgb.jpg')
SCREAMING_SNAKE_CASE = {'image': [image_path]}
SCREAMING_SNAKE_CASE = Features({'image': Image()})
SCREAMING_SNAKE_CASE = Dataset.from_dict(_UpperCAmelCase , features=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = ParquetDatasetWriter(_UpperCAmelCase , tmp_path / 'foo.parquet')
assert writer.write() > 0
SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / 'foo.parquet'))
assert dataset.features == reloaded_dataset.features
SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / 'foo.parquet') , streaming=_UpperCAmelCase).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32')}), None),
(Features({'image': Image(), 'foo': Value('int32')}), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio())}), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
assert get_writer_batch_size(_UpperCAmelCase) == expected
| 366 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ (_UpperCAmelCase):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _snake_case ( nn.Module ):
def __init__( self , a , a) -> Union[str, Any]:
super().__init__()
SCREAMING_SNAKE_CASE = module
SCREAMING_SNAKE_CASE = nn.Sequential(
nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , )
SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=a)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any:
return self.module(a , *a , **a) + self.adapter(a)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
_lowercase : Union[str, Any] = '''bigscience/bloom-1b7'''
# Constant values
_lowercase : str = 2.109_6595_5269_2574
_lowercase : Any = '''Hello my name is'''
_lowercase : Any = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
_lowercase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
super().setUp()
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_abit.config
self.assertTrue(hasattr(a , 'quantization_config'))
SCREAMING_SNAKE_CASE = config.to_dict()
SCREAMING_SNAKE_CASE = config.to_diff_dict()
SCREAMING_SNAKE_CASE = config.to_json_string()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
from bitsandbytes.nn import Paramsabit
SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint()
SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(a , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
with self.assertRaises(a):
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , )
def SCREAMING_SNAKE_CASE__ ( self) -> int:
with self.assertRaises(a):
# Tries with `str`
self.model_abit.to('cpu')
with self.assertRaises(a):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0'))
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa)
SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu')
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.half()
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.float()
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple:
SCREAMING_SNAKE_CASE = 't5-small'
SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name)
SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute'
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
from transformers import TaForConditionalGeneration
SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules
SCREAMING_SNAKE_CASE = None
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
SCREAMING_SNAKE_CASE = modules
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> str:
super().setUp()
# model_name
SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m'
SCREAMING_SNAKE_CASE = 't5-small'
# Different types of model
SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Sequence classification model
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=a , device_map='auto')
# CausalLM model
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Seq2seq model
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
SCREAMING_SNAKE_CASE = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> int:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=a , device_map='balanced')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
# Second real batch
SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = 'facebook/opt-350m'
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'):
return
# Step 1: freeze all parameters
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
SCREAMING_SNAKE_CASE = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(a)):
SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE = model.forward(**a)
out.logits.norm().backward()
for module in model.modules():
if isinstance(a , a):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(a , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class _snake_case ( A__ ):
_lowercase : str = '''gpt2-xl'''
_lowercase : Union[str, Any] = 3.3191_8548_5415_2187
| 327 | 0 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a_ : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
a_ : Optional[int] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(state_dict.keys())
for name in state_dict_keys:
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
# emb -> embedding
if name.startswith('emb.'):
SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase)
# ffn -> feed_forward
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
SCREAMING_SNAKE_CASE = 'rwkv.' + name
SCREAMING_SNAKE_CASE = weight
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
SCREAMING_SNAKE_CASE = 5_0277
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
tokenizer.save_pretrained(_UpperCAmelCase)
# 2. Build the config
SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
SCREAMING_SNAKE_CASE = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
SCREAMING_SNAKE_CASE = RwkvConfig(
vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_UpperCAmelCase)
# 3. Download model file then convert state_dict
SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase)
# 4. Split in shards and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase)
for shard_file, shard in shards.items():
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
if index is not None:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
# Save the index as well
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
SCREAMING_SNAKE_CASE = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB')
tokenizer.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
a_ : Tuple = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 367 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ : Optional[Any] = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 327 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPSegProcessor, ViTImageProcessor
@require_vision
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
# fmt: off
SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>']
# fmt: on
SCREAMING_SNAKE_CASE = dict(zip(a , range(len(a))))
SCREAMING_SNAKE_CASE = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', '']
SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as fp:
fp.write(json.dumps(a) + '\n')
with open(self.merges_file , 'w' , encoding='utf-8') as fp:
fp.write('\n'.join(a))
SCREAMING_SNAKE_CASE = {
'do_resize': True,
'size': 20,
'do_center_crop': True,
'crop_size': 18,
'do_normalize': True,
'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73],
'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11],
}
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , a)
with open(self.image_processor_file , 'w' , encoding='utf-8') as fp:
json.dump(a , a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Any:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> List[str]:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> List[str]:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(a , 0 , -1)) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
processor_slow.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=a)
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
processor_fast.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab())
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab())
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab())
self.assertIsInstance(processor_slow.tokenizer , a)
self.assertIsInstance(processor_fast.tokenizer , a)
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string())
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor_slow.image_processor , a)
self.assertIsInstance(processor_fast.image_processor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = CLIPSegProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(images=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
SCREAMING_SNAKE_CASE = 'lower newer'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
SCREAMING_SNAKE_CASE = 'lower newer'
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=a , images=a)
self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values'])
# test if it raises when no input is passed
with pytest.raises(a):
processor()
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(images=a , visual_prompt=a)
self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'conditional_pixel_values'])
# test if it raises when no input is passed
with pytest.raises(a):
processor()
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = CLIPSegProcessor(tokenizer=a , image_processor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
| 368 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a_ : Dict = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , a = None) -> Optional[int]:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature'))
SCREAMING_SNAKE_CASE = os.path.abspath('examples')
for item in os.listdir(a):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE = os.path.join(a , a)
if os.path.isfile(a) and ".py" in item_path:
with self.subTest(
tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE = compare_against_test(
os.path.join(a , a) , a , a , a)
SCREAMING_SNAKE_CASE = '\n'.join(a)
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE = diff.replace(a , '')
self.assertEqual(a , '')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
self.one_complete_example('complete_nlp_example.py' , a)
self.one_complete_example('complete_nlp_example.py' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py'))
SCREAMING_SNAKE_CASE = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , a , a , a)
self.one_complete_example('complete_cv_example.py' , a , a , a)
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class _snake_case ( A__ ):
_lowercase : int = False
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Union[str, Any]:
super().setUpClass()
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml')
write_basic_config(save_location=cls.configPath)
SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Dict:
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0')))
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2')))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
else:
self.assertIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}):
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
SCREAMING_SNAKE_CASE = re.findall('({.+})' , a)
SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE = ast.literal_eval(a)
self.assertGreaterEqual(results['accuracy'] , 0.75)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'})
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(a , 'tracking')))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs)
| 327 | 0 |
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
a_ : Optional[int] = logging.get_logger(__name__)
a_ : List[str] = {
'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class _snake_case ( A__ ):
_lowercase : List[str] = '''gptj'''
_lowercase : Tuple = {
'''max_position_embeddings''': '''n_positions''',
'''hidden_size''': '''n_embd''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , a=5_0400 , a=2048 , a=4096 , a=28 , a=16 , a=64 , a=None , a="gelu_new" , a=0.0 , a=0.0 , a=0.0 , a=1E-5 , a=0.02 , a=True , a=5_0256 , a=5_0256 , a=False , **a , ) -> str:
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = rotary_dim
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
super().__init__(
bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a)
class _snake_case ( A__ ):
def __init__( self , a , a = "default" , a = None , a = False , ) -> Optional[Any]:
super().__init__(a , task=a , patching_specs=a , use_past=a)
if not getattr(self._config , 'pad_token_id' , a):
# TODO: how to do that better?
SCREAMING_SNAKE_CASE = 0
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Mapping[str, Mapping[int, str]]:
SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}})
if self.use_past:
self.fill_with_past_key_values_(a , direction='inputs')
SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'past_sequence + sequence'}
else:
SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def SCREAMING_SNAKE_CASE__ ( self) -> int:
return self._config.n_layer
@property
def SCREAMING_SNAKE_CASE__ ( self) -> int:
return self._config.n_head
def SCREAMING_SNAKE_CASE__ ( self , a , a = -1 , a = -1 , a = False , a = None , ) -> Mapping[str, Any]:
SCREAMING_SNAKE_CASE = super(a , self).generate_dummy_inputs(
a , batch_size=a , seq_length=a , is_pair=a , framework=a)
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({'input_ids': common_inputs['input_ids']})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.')
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(a), torch.zeros(a)) for _ in range(self.num_layers)
]
SCREAMING_SNAKE_CASE = common_inputs['attention_mask']
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs['attention_mask'].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(a , a , dtype=a)] , dim=1)
return ordered_inputs
@property
def SCREAMING_SNAKE_CASE__ ( self) -> int:
return 13
| 369 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self , a , a=3 , a=32 , a=3 , a=10 , a=[10, 20, 30, 40] , a=[1, 1, 2, 1] , a=True , a=True , a="relu" , a=3 , a=None , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embeddings_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = len(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TFResNetModel(config=a)
SCREAMING_SNAKE_CASE = model(a)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFResNetForImageClassification(a)
SCREAMING_SNAKE_CASE = model(a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowercase : Dict = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Any = False
_lowercase : List[str] = False
_lowercase : str = False
_lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = TFResNetModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return
@unittest.skip(reason='ResNet does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> int:
pass
@unittest.skip(reason='ResNet does not support input and output embeddings')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
def check_hidden_states_output(a , a , a):
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(a) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> str:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(a)
self.assertIsNotNone(a)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='tf')
# forward pass
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = tf.constant([-11.10_69, -9.78_77, -8.37_77])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4))
| 327 | 0 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _snake_case ( unittest.TestCase ):
_lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a)
return generator, ["Something to write", "Something else"]
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any:
SCREAMING_SNAKE_CASE = generator('Something there')
self.assertEqual(a , [{'generated_text': ANY(a)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['generated_text'].startswith('Something there'))
SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
SCREAMING_SNAKE_CASE = generator(
['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
with self.assertRaises(a):
generator(4)
@require_torch
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = generator(
'Something there' , num_return_sequences=a , num_beams=a , )
SCREAMING_SNAKE_CASE = [
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': ''},
]
self.assertEqual(a , a)
SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a)
self.assertEqual(
a , [
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
] , )
SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id
SCREAMING_SNAKE_CASE = '<pad>'
SCREAMING_SNAKE_CASE = generator(
['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , )
self.assertEqual(
a , [
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
] , )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
| 370 |
from math import isqrt
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]]
def lowerCamelCase__ (_UpperCAmelCase = 10**8):
SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 327 | 0 |
from __future__ import annotations
from collections import namedtuple
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = namedtuple('result' , 'name value')
if (voltage, current, power).count(0) != 1:
raise ValueError('Only one argument must be 0')
elif power < 0:
raise ValueError(
'Power cannot be negative in any electrical/electronics system')
elif voltage == 0:
return result('voltage' , power / current)
elif current == 0:
return result('current' , power / voltage)
elif power == 0:
return result('power' , float(round(abs(voltage * current) , 2)))
else:
raise ValueError('Exactly one argument must be 0')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371 |
import baseaa
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaaencode(string.encode('utf-8'))
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
a_ : str = logging.get_logger(__name__)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False):
SCREAMING_SNAKE_CASE = 'backbone.' if is_semantic else ''
SCREAMING_SNAKE_CASE = []
for i in range(config.num_hidden_layers):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight'''))
rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias'''))
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight'''))
rename_keys.append(
(F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias'''))
rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight'''))
rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias'''))
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight'''))
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias'''))
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight'''))
rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias'''))
# projection layer + position embeddings
rename_keys.extend(
[
(F'''{prefix}cls_token''', 'beit.embeddings.cls_token'),
(F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'),
(F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'),
(F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'),
])
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
('mask_token', 'beit.embeddings.mask_token'),
('norm.weight', 'layernorm.weight'),
('norm.bias', 'layernorm.bias'),
])
else:
# layernorm + classification head
rename_keys.extend(
[
('fc_norm.weight', 'beit.pooler.layernorm.weight'),
('fc_norm.bias', 'beit.pooler.layernorm.bias'),
('head.weight', 'classifier.weight'),
('head.bias', 'classifier.bias'),
])
return rename_keys
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False):
for i in range(config.num_hidden_layers):
SCREAMING_SNAKE_CASE = 'backbone.' if is_semantic else ''
# queries, keys and values
SCREAMING_SNAKE_CASE = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''')
SCREAMING_SNAKE_CASE = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''')
SCREAMING_SNAKE_CASE = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''')
SCREAMING_SNAKE_CASE = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE = q_bias
SCREAMING_SNAKE_CASE = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
SCREAMING_SNAKE_CASE = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''')
SCREAMING_SNAKE_CASE = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''')
SCREAMING_SNAKE_CASE = gamma_a
SCREAMING_SNAKE_CASE = gamma_a
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg'
SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw)
return im
@torch.no_grad()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False):
SCREAMING_SNAKE_CASE = False if 'rvlcdip' in checkpoint_url else True
SCREAMING_SNAKE_CASE = BeitConfig(use_absolute_position_embeddings=_UpperCAmelCase , use_mask_token=_UpperCAmelCase)
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
SCREAMING_SNAKE_CASE = 1024
SCREAMING_SNAKE_CASE = 4096
SCREAMING_SNAKE_CASE = 24
SCREAMING_SNAKE_CASE = 16
# labels
if "rvlcdip" in checkpoint_url:
SCREAMING_SNAKE_CASE = 16
SCREAMING_SNAKE_CASE = 'huggingface/label-files'
SCREAMING_SNAKE_CASE = 'rvlcdip-id2label.json'
SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset') , 'r'))
SCREAMING_SNAKE_CASE = {int(_UpperCAmelCase): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = idalabel
SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu')['model']
SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase , has_lm_head=_UpperCAmelCase)
for src, dest in rename_keys:
rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , has_lm_head=_UpperCAmelCase)
# load HuggingFace model
SCREAMING_SNAKE_CASE = BeitForMaskedImageModeling(_UpperCAmelCase) if has_lm_head else BeitForImageClassification(_UpperCAmelCase)
model.eval()
model.load_state_dict(_UpperCAmelCase)
# Check outputs on an image
SCREAMING_SNAKE_CASE = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=_UpperCAmelCase , return_tensors='pt')
SCREAMING_SNAKE_CASE = encoding['pixel_values']
SCREAMING_SNAKE_CASE = model(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = outputs.logits
# verify logits
SCREAMING_SNAKE_CASE = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192]
assert logits.shape == torch.Size(_UpperCAmelCase), "Shape of logits not as expected"
Path(_UpperCAmelCase).mkdir(exist_ok=_UpperCAmelCase)
print(F'''Saving model to {pytorch_dump_folder_path}''')
model.save_pretrained(_UpperCAmelCase)
print(F'''Saving image processor to {pytorch_dump_folder_path}''')
image_processor.save_pretrained(_UpperCAmelCase)
if push_to_hub:
if has_lm_head:
SCREAMING_SNAKE_CASE = 'dit-base' if 'base' in checkpoint_url else 'dit-large'
else:
SCREAMING_SNAKE_CASE = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip'
image_processor.push_to_hub(
repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , )
model.push_to_hub(
repo_path_or_name=Path(_UpperCAmelCase , _UpperCAmelCase) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , )
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_url',
default='https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth',
type=str,
help='URL to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
a_ : int = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 350 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model']
SCREAMING_SNAKE_CASE = mam_aaa['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = MaMaaaConfig(
vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , )
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase)
model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : List[str] = parser.parse_args()
a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 327 | 0 |
import math
from collections.abc import Iterator
from itertools import takewhile
def lowerCamelCase__ (_UpperCAmelCase):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_UpperCAmelCase) + 1) , 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = 2
while True:
if is_prime(_UpperCAmelCase):
yield num
num += 1
def lowerCamelCase__ (_UpperCAmelCase = 200_0000):
return sum(takewhile(lambda _UpperCAmelCase: x < n , prime_generator()))
if __name__ == "__main__":
print(f"""{solution() = }""")
| 351 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused'
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = floats_list((3, 1000))
SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = 'This is a test string'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 327 | 0 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class _snake_case ( A__ ):
def __init__( self , a , a = None , a = None , a = None , a = False , a = False , a = None , a = None , **a , ) -> Any:
super().__init__(
a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , )
SCREAMING_SNAKE_CASE = field
SCREAMING_SNAKE_CASE = path_or_paths if isinstance(a , a) else {self.split: path_or_paths}
SCREAMING_SNAKE_CASE = Json(
cache_dir=a , data_files=a , features=a , field=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
# Build iterable dataset
if self.streaming:
SCREAMING_SNAKE_CASE = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
self.builder.download_and_prepare(
download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , )
SCREAMING_SNAKE_CASE = self.builder.as_dataset(
split=self.split , verification_mode=a , in_memory=self.keep_in_memory)
return dataset
class _snake_case :
def __init__( self , a , a , a = None , a = None , **a , ) -> int:
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''')
SCREAMING_SNAKE_CASE = dataset
SCREAMING_SNAKE_CASE = path_or_buf
SCREAMING_SNAKE_CASE = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
SCREAMING_SNAKE_CASE = num_proc
SCREAMING_SNAKE_CASE = 'utf-8'
SCREAMING_SNAKE_CASE = to_json_kwargs
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop('path_or_buf' , a)
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop('orient' , 'records')
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False)
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True)
SCREAMING_SNAKE_CASE = self.to_json_kwargs.pop('compression' , a)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(f'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , 'wb' , compression=a) as buffer:
SCREAMING_SNAKE_CASE = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
f'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
' was passed. Please provide a local path instead.')
SCREAMING_SNAKE_CASE = self._write(
file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs)
return written
def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = args
SCREAMING_SNAKE_CASE = query_table(
table=self.dataset.data , key=slice(a , offset + self.batch_size) , indices=self.dataset._indices , )
SCREAMING_SNAKE_CASE = batch.to_pandas().to_json(
path_or_buf=a , orient=a , lines=a , index=a , **a)
if not json_str.endswith('\n'):
json_str += "\n"
return json_str.encode(self.encoding)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , **a , ) -> int:
SCREAMING_SNAKE_CASE = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ):
SCREAMING_SNAKE_CASE = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(a)
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ):
written += file_obj.write(a)
return written
| 352 |
import argparse
import datetime
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_UpperCAmelCase) < 11:
raise ValueError('Must be 10 characters long')
# Get month
SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12')
SCREAMING_SNAKE_CASE = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get day
SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31')
# Get second separator
SCREAMING_SNAKE_CASE = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get year
SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?')
# Get datetime obj for validation
SCREAMING_SNAKE_CASE = datetime.date(int(_UpperCAmelCase) , int(_UpperCAmelCase) , int(_UpperCAmelCase))
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE = y - 1
SCREAMING_SNAKE_CASE = m + 12
# maths var
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[:2])
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[2:])
SCREAMING_SNAKE_CASE = int(2.6 * m - 5.39)
SCREAMING_SNAKE_CASE = int(c / 4)
SCREAMING_SNAKE_CASE = int(k / 4)
SCREAMING_SNAKE_CASE = int(d + k)
SCREAMING_SNAKE_CASE = int(t + u + v + x)
SCREAMING_SNAKE_CASE = int(z - (2 * c))
SCREAMING_SNAKE_CASE = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.')
# Response
SCREAMING_SNAKE_CASE = F'''Your date {date_input}, is a {days[str(_UpperCAmelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Tuple = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
a_ : Any = parser.parse_args()
zeller(args.date_input)
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
a_ : List[str] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = ['BeitFeatureExtractor']
a_ : int = ['BeitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[Any] = [
'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BeitForImageClassification',
'BeitForMaskedImageModeling',
'BeitForSemanticSegmentation',
'BeitModel',
'BeitPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Optional[int] = [
'FlaxBeitForImageClassification',
'FlaxBeitForMaskedImageModeling',
'FlaxBeitModel',
'FlaxBeitPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 353 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a_ : Optional[Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : Optional[int] = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384}
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''')
SCREAMING_SNAKE_CASE = (size['height'], size['width'])
return resize(a , size=a , resample=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(a , mean=a , std=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a)
return encoded_outputs
| 327 | 0 |
from math import ceil, sqrt
def lowerCamelCase__ (_UpperCAmelCase = 100_0000):
SCREAMING_SNAKE_CASE = 0
for outer_width in range(3 , (limit // 4) + 2):
if outer_width**2 > limit:
SCREAMING_SNAKE_CASE = max(ceil(sqrt(outer_width**2 - limit)) , 1)
else:
SCREAMING_SNAKE_CASE = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f"""{solution() = }""")
| 354 |
class _snake_case :
def __init__( self , a) -> Optional[Any]:
SCREAMING_SNAKE_CASE = val
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self , a) -> str:
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.left.insert(a)
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.right.insert(a)
else:
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
# Recursive traversal
if root:
inorder(root.left , _UpperCAmelCase)
res.append(root.val)
inorder(root.right , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
# Build BST
if len(_UpperCAmelCase) == 0:
return arr
SCREAMING_SNAKE_CASE = Node(arr[0])
for i in range(1 , len(_UpperCAmelCase)):
root.insert(arr[i])
# Traverse BST in order.
SCREAMING_SNAKE_CASE = []
inorder(_UpperCAmelCase , _UpperCAmelCase)
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 327 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a_ : Any = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : Union[str, Any] = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PIL.Image.BICUBIC , a = True , a = None , a = 1 / 255 , a = True , a = True , a = None , a = None , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 256, 'width': 256}
SCREAMING_SNAKE_CASE = get_size_dict(a)
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {'height': 224, 'width': 224}
SCREAMING_SNAKE_CASE = get_size_dict(a , param_name='crop_size')
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_center_crop
SCREAMING_SNAKE_CASE = crop_size
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PIL.Image.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''')
return resize(
a , size=(size['height'], size['width']) , resample=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''')
return center_crop(a , size=(size['height'], size['width']) , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> str:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(a , mean=a , std=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a=None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(a)
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE = get_size_dict(a , param_name='crop_size')
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images]
if do_center_crop:
SCREAMING_SNAKE_CASE = [self.center_crop(image=a , size=a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 355 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a_ : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
a_ : Optional[int] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(state_dict.keys())
for name in state_dict_keys:
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
# emb -> embedding
if name.startswith('emb.'):
SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase)
# ffn -> feed_forward
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
SCREAMING_SNAKE_CASE = 'rwkv.' + name
SCREAMING_SNAKE_CASE = weight
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
SCREAMING_SNAKE_CASE = 5_0277
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
tokenizer.save_pretrained(_UpperCAmelCase)
# 2. Build the config
SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
SCREAMING_SNAKE_CASE = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
SCREAMING_SNAKE_CASE = RwkvConfig(
vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_UpperCAmelCase)
# 3. Download model file then convert state_dict
SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase)
# 4. Split in shards and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase)
for shard_file, shard in shards.items():
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
if index is not None:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
# Save the index as well
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
SCREAMING_SNAKE_CASE = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB')
tokenizer.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
a_ : Tuple = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 327 | 0 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]:
if rouge_types is None:
SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a)
if use_aggregator:
SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE = []
for ref, pred in zip(a , a):
SCREAMING_SNAKE_CASE = scorer.score(a , a)
if use_aggregator:
aggregator.add_scores(a)
else:
scores.append(a)
if use_aggregator:
SCREAMING_SNAKE_CASE = aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE = {}
for key in scores[0]:
SCREAMING_SNAKE_CASE = [score[key] for score in scores]
return result
| 356 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set())
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
class _snake_case :
def __init__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = metric_id
class _snake_case :
_lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']]
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock())
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if "tmp_path" in args:
SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args)
with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'):
func(*_UpperCAmelCase)
| 327 | 0 |
"""simple docstring"""
import argparse
from transformers import (
TapasConfig,
TapasForMaskedLM,
TapasForQuestionAnswering,
TapasForSequenceClassification,
TapasModel,
TapasTokenizer,
load_tf_weights_in_tapas,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
# Initialise PyTorch model.
# If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of
# TapasConfig to False.
# initialize configuration from json file
SCREAMING_SNAKE_CASE = TapasConfig.from_json_file(_UpperCAmelCase)
# set absolute/relative position embeddings parameter
SCREAMING_SNAKE_CASE = reset_position_index_per_cell
# set remaining parameters of TapasConfig as well as the model based on the task
if task == "SQA":
SCREAMING_SNAKE_CASE = TapasForQuestionAnswering(config=_UpperCAmelCase)
elif task == "WTQ":
# run_task_main.py hparams
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = True
# hparam_utils.py hparams
SCREAMING_SNAKE_CASE = 0.66_46_94
SCREAMING_SNAKE_CASE = 0.20_79_51
SCREAMING_SNAKE_CASE = 0.12_11_94
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = 0.0_35_25_13
SCREAMING_SNAKE_CASE = TapasForQuestionAnswering(config=_UpperCAmelCase)
elif task == "WIKISQL_SUPERVISED":
# run_task_main.py hparams
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = False
# hparam_utils.py hparams
SCREAMING_SNAKE_CASE = 36.45_19
SCREAMING_SNAKE_CASE = 0.90_34_21
SCREAMING_SNAKE_CASE = 222.088
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = 0.76_31_41
SCREAMING_SNAKE_CASE = TapasForQuestionAnswering(config=_UpperCAmelCase)
elif task == "TABFACT":
SCREAMING_SNAKE_CASE = TapasForSequenceClassification(config=_UpperCAmelCase)
elif task == "MLM":
SCREAMING_SNAKE_CASE = TapasForMaskedLM(config=_UpperCAmelCase)
elif task == "INTERMEDIATE_PRETRAINING":
SCREAMING_SNAKE_CASE = TapasModel(config=_UpperCAmelCase)
else:
raise ValueError(F'''Task {task} not supported.''')
print(F'''Building PyTorch model from configuration: {config}''')
# Load weights from tf checkpoint
load_tf_weights_in_tapas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# Save pytorch-model (weights and configuration)
print(F'''Save PyTorch model to {pytorch_dump_path}''')
model.save_pretrained(_UpperCAmelCase)
# Save tokenizer files
print(F'''Save tokenizer files to {pytorch_dump_path}''')
SCREAMING_SNAKE_CASE = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512)
tokenizer.save_pretrained(_UpperCAmelCase)
print('Used relative position embeddings:' , model.config.reset_position_index_per_cell)
if __name__ == "__main__":
a_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.'
)
parser.add_argument(
'--reset_position_index_per_cell',
default=False,
action='store_true',
help='Whether to use relative position embeddings or not. Defaults to True.',
)
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--tapas_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained TAPAS model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
a_ : str = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.task,
args.reset_position_index_per_cell,
args.tf_checkpoint_path,
args.tapas_config_file,
args.pytorch_dump_path,
)
| 357 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Any = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 327 | 0 |
import sacrebleu as scb
from packaging import version
from sacrebleu import TER
import datasets
a_ : Dict = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
a_ : Optional[Any] = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n'
a_ : int = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
if version.parse(scb.__version__) < version.parse('1.4.12'):
raise ImportWarning(
'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'
'You can install it with `pip install "sacrebleu>=1.4.12"`.')
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Sequence(datasets.Value('string' , id='sequence') , id='references'),
}) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[
'https://github.com/jhclark/tercom',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = False , a = False , a = False , a = False , ) -> Optional[int]:
SCREAMING_SNAKE_CASE = len(references[0])
if any(len(a) != references_per_prediction for refs in references):
raise ValueError('Sacrebleu requires the same number of references for each prediction')
SCREAMING_SNAKE_CASE = [[refs[i] for refs in references] for i in range(a)]
SCREAMING_SNAKE_CASE = TER(
normalized=a , no_punct=a , asian_support=a , case_sensitive=a , )
SCREAMING_SNAKE_CASE = sb_ter.corpus_score(a , a)
return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
| 358 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : str = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
a_ : List[Any] = {'allegro/herbert-base-cased': 5_14}
a_ : Dict = {}
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Any = PRETRAINED_INIT_CONFIGURATION
_lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Any = HerbertTokenizer
def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict:
super().__init__(
a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return [1] + ([0] * len(a)) + [1]
return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
| 327 | 0 |
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case :
def __init__( self , a , a=13 , a=30 , a=2 , a=3 , a=True , a=True , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=10 , a=0.02 , a=None , ) -> List[str]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE = num_patches + 1
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Dict:
SCREAMING_SNAKE_CASE = ViTMSNModel(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> List[str]:
SCREAMING_SNAKE_CASE = self.type_sequence_label_size
SCREAMING_SNAKE_CASE = ViTMSNForImageClassification(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , labels=a)
print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}')
print('Labels: {labels}')
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = ViTMSNForImageClassification(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = model(a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : Union[str, Any] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_lowercase : Any = (
{'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_lowercase : List[str] = False
_lowercase : List[str] = False
_lowercase : Dict = False
_lowercase : Tuple = False
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = ViTMSNModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason='ViTMSN does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear))
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = ViTMSNModel.from_pretrained(a)
self.assertIsNotNone(a)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> int:
return ViTImageProcessor.from_pretrained('facebook/vit-msn-small') if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
torch.manual_seed(2)
SCREAMING_SNAKE_CASE = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small').to(a)
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='pt').to(a)
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([-0.08_03, -0.44_54, -0.23_75]).to(a)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4))
| 359 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
a_ : Dict = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( A__ ):
def __init__( self , *a , a=None , a=None , a=None , **a) -> List[Any]:
super().__init__(*a , **a)
SCREAMING_SNAKE_CASE = eval_examples
SCREAMING_SNAKE_CASE = post_process_function
SCREAMING_SNAKE_CASE = quant_trainer_args
SCREAMING_SNAKE_CASE = 128 # default number of calibration samples
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Union[str, Any]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.')
SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset
SCREAMING_SNAKE_CASE = self._remove_unused_columns(a , description='Calibration')
return DataLoader(
a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a , )
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset
SCREAMING_SNAKE_CASE = self.get_calib_dataloader(a)
SCREAMING_SNAKE_CASE = self.model
quant_trainer.configure_model(a , self.quant_trainer_args , calib=a)
model.eval()
quant_trainer.enable_calibration(a)
logger.info('***** Running calibration *****')
logger.info(f''' Num examples = {self.calib_num}''')
logger.info(f''' Batch size = {calib_dataloader.batch_size}''')
for step, inputs in enumerate(a):
# Prediction step
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prediction_step(a , a , prediction_loss_only=a)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = model
def SCREAMING_SNAKE_CASE__ ( self , a=None , a=None , a=None , a = "eval") -> str:
SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions)
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
self.log(a)
else:
SCREAMING_SNAKE_CASE = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , a)
return metrics
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a = "test") -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.get_test_dataloader(a)
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions , 'predict')
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a)
def SCREAMING_SNAKE_CASE__ ( self , a="./") -> List[Any]:
SCREAMING_SNAKE_CASE = self.eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = next(iter(a))
# saving device - to make it consistent
SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# convert to tuple
SCREAMING_SNAKE_CASE = tuple(v.to(a) for k, v in batch.items())
logger.info('Converting model to be onnx compatible')
from pytorch_quantization.nn import TensorQuantizer
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.model.to(a)
model.eval()
model.float()
SCREAMING_SNAKE_CASE = model.module if hasattr(a , 'module') else model
quant_trainer.configure_model(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = os.path.join(a , 'model.onnx')
logger.info(f'''exporting model to {output_model_file}''')
SCREAMING_SNAKE_CASE = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
a , a , a , export_params=a , opset_version=13 , do_constant_folding=a , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=a , )
logger.info('onnx export finished')
| 327 | 0 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
a_ : List[Any] = logging.get_logger(__name__)
a_ : int = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : List[Any] = {
'vocab_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'
),
'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt',
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'squeezebert/squeezebert-uncased': (
'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli': (
'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'
),
'squeezebert/squeezebert-mnli-headless': (
'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'
),
},
}
a_ : List[str] = {
'squeezebert/squeezebert-uncased': 5_12,
'squeezebert/squeezebert-mnli': 5_12,
'squeezebert/squeezebert-mnli-headless': 5_12,
}
a_ : List[Any] = {
'squeezebert/squeezebert-uncased': {'do_lower_case': True},
'squeezebert/squeezebert-mnli': {'do_lower_case': True},
'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True},
}
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Dict = PRETRAINED_INIT_CONFIGURATION
_lowercase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : List[str] = SqueezeBertTokenizer
def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> List[Any]:
super().__init__(
a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , )
SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
normalizer_state.get('lowercase' , a) != do_lower_case
or normalizer_state.get('strip_accents' , a) != strip_accents
or normalizer_state.get('handle_chinese_chars' , a) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE = getattr(a , normalizer_state.pop('type'))
SCREAMING_SNAKE_CASE = do_lower_case
SCREAMING_SNAKE_CASE = strip_accents
SCREAMING_SNAKE_CASE = tokenize_chinese_chars
SCREAMING_SNAKE_CASE = normalizer_class(**a)
SCREAMING_SNAKE_CASE = do_lower_case
def SCREAMING_SNAKE_CASE__ ( self , a , a=None) -> List[str]:
SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
| 360 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : List[str] = ['''pixel_values''']
def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
SCREAMING_SNAKE_CASE = pad_size
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a)
SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height
SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width
return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]:
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad
SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_pad:
SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 327 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
a_ : Dict = logging.get_logger(__name__)
# General docstring
a_ : Any = 'MobileNetV1Config'
# Base docstring
a_ : Any = 'google/mobilenet_v1_1.0_224'
a_ : Optional[Any] = [1, 10_24, 7, 7]
# Image classification docstring
a_ : str = 'google/mobilenet_v1_1.0_224'
a_ : int = 'tabby, tabby cat'
a_ : Any = [
'google/mobilenet_v1_1.0_224',
'google/mobilenet_v1_0.75_192',
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = {}
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = model.mobilenet_va
else:
SCREAMING_SNAKE_CASE = model
SCREAMING_SNAKE_CASE = 'MobilenetV1/Conv2d_0/'
SCREAMING_SNAKE_CASE = backbone.conv_stem.convolution.weight
SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.bias
SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.weight
SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_mean
SCREAMING_SNAKE_CASE = backbone.conv_stem.normalization.running_var
for i in range(13):
SCREAMING_SNAKE_CASE = i + 1
SCREAMING_SNAKE_CASE = i * 2
SCREAMING_SNAKE_CASE = backbone.layer[pt_index]
SCREAMING_SNAKE_CASE = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/'''
SCREAMING_SNAKE_CASE = pointer.convolution.weight
SCREAMING_SNAKE_CASE = pointer.normalization.bias
SCREAMING_SNAKE_CASE = pointer.normalization.weight
SCREAMING_SNAKE_CASE = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE = pointer.normalization.running_var
SCREAMING_SNAKE_CASE = backbone.layer[pt_index + 1]
SCREAMING_SNAKE_CASE = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/'''
SCREAMING_SNAKE_CASE = pointer.convolution.weight
SCREAMING_SNAKE_CASE = pointer.normalization.bias
SCREAMING_SNAKE_CASE = pointer.normalization.weight
SCREAMING_SNAKE_CASE = pointer.normalization.running_mean
SCREAMING_SNAKE_CASE = pointer.normalization.running_var
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = 'MobilenetV1/Logits/Conv2d_1c_1x1/'
SCREAMING_SNAKE_CASE = model.classifier.weight
SCREAMING_SNAKE_CASE = model.classifier.bias
return tf_to_pt_map
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see '
'https://www.tensorflow.org/install/ for installation instructions.')
raise
# Load weights from TF model
SCREAMING_SNAKE_CASE = tf.train.list_variables(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {}
for name, shape in init_vars:
logger.info(F'''Loading TF weight {name} with shape {shape}''')
SCREAMING_SNAKE_CASE = tf.train.load_variable(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = array
# Build TF to PyTorch weights loading map
SCREAMING_SNAKE_CASE = _build_tf_to_pytorch_map(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
for name, pointer in tf_to_pt_map.items():
logger.info(F'''Importing {name}''')
if name not in tf_weights:
logger.info(F'''{name} not in tf pre-trained weights, skipping''')
continue
SCREAMING_SNAKE_CASE = tf_weights[name]
if "depthwise_weights" in name:
logger.info('Transposing depthwise')
SCREAMING_SNAKE_CASE = np.transpose(_UpperCAmelCase , (2, 3, 0, 1))
elif "weights" in name:
logger.info('Transposing')
if len(pointer.shape) == 2: # copying into linear layer
SCREAMING_SNAKE_CASE = array.squeeze().transpose()
else:
SCREAMING_SNAKE_CASE = np.transpose(_UpperCAmelCase , (3, 2, 0, 1))
if pointer.shape != array.shape:
raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''')
logger.info(F'''Initialize PyTorch weight {name} {array.shape}''')
SCREAMING_SNAKE_CASE = torch.from_numpy(_UpperCAmelCase)
tf_weights.pop(_UpperCAmelCase , _UpperCAmelCase)
tf_weights.pop(name + '/RMSProp' , _UpperCAmelCase)
tf_weights.pop(name + '/RMSProp_1' , _UpperCAmelCase)
tf_weights.pop(name + '/ExponentialMovingAverage' , _UpperCAmelCase)
logger.info(F'''Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}''')
return model
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = features.shape[-2:]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = conv_layer.stride
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = conv_layer.kernel_size
if in_height % stride_height == 0:
SCREAMING_SNAKE_CASE = max(kernel_height - stride_height , 0)
else:
SCREAMING_SNAKE_CASE = max(kernel_height - (in_height % stride_height) , 0)
if in_width % stride_width == 0:
SCREAMING_SNAKE_CASE = max(kernel_width - stride_width , 0)
else:
SCREAMING_SNAKE_CASE = max(kernel_width - (in_width % stride_width) , 0)
SCREAMING_SNAKE_CASE = pad_along_width // 2
SCREAMING_SNAKE_CASE = pad_along_width - pad_left
SCREAMING_SNAKE_CASE = pad_along_height // 2
SCREAMING_SNAKE_CASE = pad_along_height - pad_top
SCREAMING_SNAKE_CASE = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(_UpperCAmelCase , _UpperCAmelCase , 'constant' , 0.0)
class _snake_case ( nn.Module ):
def __init__( self , a , a , a , a , a = 1 , a = 1 , a = False , a = True , a = True , ) -> None:
super().__init__()
SCREAMING_SNAKE_CASE = config
if in_channels % groups != 0:
raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''')
if out_channels % groups != 0:
raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''')
SCREAMING_SNAKE_CASE = 0 if config.tf_padding else int((kernel_size - 1) / 2)
SCREAMING_SNAKE_CASE = nn.Convad(
in_channels=a , out_channels=a , kernel_size=a , stride=a , padding=a , groups=a , bias=a , padding_mode='zeros' , )
if use_normalization:
SCREAMING_SNAKE_CASE = nn.BatchNormad(
num_features=a , eps=config.layer_norm_eps , momentum=0.99_97 , affine=a , track_running_stats=a , )
else:
SCREAMING_SNAKE_CASE = None
if use_activation:
if isinstance(a , a):
SCREAMING_SNAKE_CASE = ACTaFN[use_activation]
elif isinstance(config.hidden_act , a):
SCREAMING_SNAKE_CASE = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE = config.hidden_act
else:
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self , a) -> torch.Tensor:
if self.config.tf_padding:
SCREAMING_SNAKE_CASE = apply_tf_padding(a , self.convolution)
SCREAMING_SNAKE_CASE = self.convolution(a)
if self.normalization is not None:
SCREAMING_SNAKE_CASE = self.normalization(a)
if self.activation is not None:
SCREAMING_SNAKE_CASE = self.activation(a)
return features
class _snake_case ( A__ ):
_lowercase : List[str] = MobileNetVaConfig
_lowercase : str = load_tf_weights_in_mobilenet_va
_lowercase : Any = '''mobilenet_v1'''
_lowercase : Optional[Any] = '''pixel_values'''
_lowercase : Any = False
def SCREAMING_SNAKE_CASE__ ( self , a) -> None:
if isinstance(a , (nn.Linear, nn.Convad)):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(a , nn.BatchNormad):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
a_ : Dict = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
a_ : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , A__ , )
class _snake_case ( A__ ):
def __init__( self , a , a = True) -> Union[str, Any]:
super().__init__(a)
SCREAMING_SNAKE_CASE = config
SCREAMING_SNAKE_CASE = 32
SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier) , config.min_depth)
SCREAMING_SNAKE_CASE = MobileNetVaConvLayer(
a , in_channels=config.num_channels , out_channels=a , kernel_size=3 , stride=2 , )
SCREAMING_SNAKE_CASE = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
SCREAMING_SNAKE_CASE = nn.ModuleList()
for i in range(13):
SCREAMING_SNAKE_CASE = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
SCREAMING_SNAKE_CASE = max(int(depth * config.depth_multiplier) , config.min_depth)
self.layer.append(
MobileNetVaConvLayer(
a , in_channels=a , out_channels=a , kernel_size=3 , stride=strides[i] , groups=a , ))
self.layer.append(
MobileNetVaConvLayer(
a , in_channels=a , out_channels=a , kernel_size=1 , ))
SCREAMING_SNAKE_CASE = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]:
raise NotImplementedError
@add_start_docstrings_to_model_forward(a)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def SCREAMING_SNAKE_CASE__ ( self , a = None , a = None , a = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
SCREAMING_SNAKE_CASE = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError('You have to specify pixel_values')
SCREAMING_SNAKE_CASE = self.conv_stem(a)
SCREAMING_SNAKE_CASE = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
SCREAMING_SNAKE_CASE = layer_module(a)
if output_hidden_states:
SCREAMING_SNAKE_CASE = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE = hidden_states
if self.pooler is not None:
SCREAMING_SNAKE_CASE = torch.flatten(self.pooler(a) , start_dim=1)
else:
SCREAMING_SNAKE_CASE = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=a , pooler_output=a , hidden_states=a , )
@add_start_docstrings(
'''
MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , A__ , )
class _snake_case ( A__ ):
def __init__( self , a) -> None:
super().__init__(a)
SCREAMING_SNAKE_CASE = config.num_labels
SCREAMING_SNAKE_CASE = MobileNetVaModel(a)
SCREAMING_SNAKE_CASE = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
SCREAMING_SNAKE_CASE = nn.Dropout(config.classifier_dropout_prob , inplace=a)
SCREAMING_SNAKE_CASE = nn.Linear(a , config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(a)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def SCREAMING_SNAKE_CASE__ ( self , a = None , a = None , a = None , a = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE = self.mobilenet_va(a , output_hidden_states=a , return_dict=a)
SCREAMING_SNAKE_CASE = outputs.pooler_output if return_dict else outputs[1]
SCREAMING_SNAKE_CASE = self.classifier(self.dropout(a))
SCREAMING_SNAKE_CASE = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE = 'single_label_classification'
else:
SCREAMING_SNAKE_CASE = 'multi_label_classification'
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE = loss_fct(logits.squeeze() , labels.squeeze())
else:
SCREAMING_SNAKE_CASE = loss_fct(a , a)
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE = CrossEntropyLoss()
SCREAMING_SNAKE_CASE = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE = loss_fct(a , a)
if not return_dict:
SCREAMING_SNAKE_CASE = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=a , logits=a , hidden_states=outputs.hidden_states , )
| 361 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base')
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE = model(a)['last_hidden_state']
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape , a)
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 327 | 0 |
from __future__ import annotations
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
print(F'''Vertex\tShortest Distance from vertex {src}''')
for i, d in enumerate(_UpperCAmelCase):
print(F'''{i}\t\t{d}''')
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
for j in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (graph[j][k] for k in ['src', 'dst', 'weight'])
if distance[u] != float('inf') and distance[u] + w < distance[v]:
return True
return False
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = [float('inf')] * vertex_count
SCREAMING_SNAKE_CASE = 0.0
for _ in range(vertex_count - 1):
for j in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (graph[j][k] for k in ['src', 'dst', 'weight'])
if distance[u] != float('inf') and distance[u] + w < distance[v]:
SCREAMING_SNAKE_CASE = distance[u] + w
SCREAMING_SNAKE_CASE = check_negative_cycle(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
if negative_cycle_exists:
raise Exception('Negative cycle found')
return distance
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Optional[Any] = int(input('Enter number of vertices: ').strip())
a_ : Tuple = int(input('Enter number of edges: ').strip())
a_ : list[dict[str, int]] = [{} for _ in range(E)]
for i in range(E):
print('Edge ', i + 1)
a_ : Dict = (
int(x)
for x in input('Enter source, destination, weight: ').strip().split(' ')
)
a_ : str = {'src': src, 'dst': dest, 'weight': weight}
a_ : Optional[Any] = int(input('\nEnter shortest path source:').strip())
a_ : Optional[int] = bellman_ford(graph, V, E, source)
print_distance(shortest_distance, 0)
| 362 |
from scipy.stats import pearsonr
import datasets
a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float'),
'references': datasets.Value('float'),
}) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]:
if return_pvalue:
SCREAMING_SNAKE_CASE = pearsonr(a , a)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(a , a)[0])}
| 327 | 0 |
from ..utils import DummyObject, requires_backends
class _snake_case ( metaclass=A__ ):
_lowercase : Union[str, Any] = ['''transformers''', '''torch''', '''note_seq''']
def __init__( self , *a , **a) -> Union[str, Any]:
requires_backends(self , ['transformers', 'torch', 'note_seq'])
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , *a , **a) -> Any:
requires_backends(cls , ['transformers', 'torch', 'note_seq'])
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls , *a , **a) -> Union[str, Any]:
requires_backends(cls , ['transformers', 'torch', 'note_seq'])
| 363 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _snake_case ( unittest.TestCase ):
_lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a)
return generator, ["Something to write", "Something else"]
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any:
SCREAMING_SNAKE_CASE = generator('Something there')
self.assertEqual(a , [{'generated_text': ANY(a)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['generated_text'].startswith('Something there'))
SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
SCREAMING_SNAKE_CASE = generator(
['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
with self.assertRaises(a):
generator(4)
@require_torch
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = generator(
'Something there' , num_return_sequences=a , num_beams=a , )
SCREAMING_SNAKE_CASE = [
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': ''},
]
self.assertEqual(a , a)
SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a)
self.assertEqual(
a , [
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
] , )
SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id
SCREAMING_SNAKE_CASE = '<pad>'
SCREAMING_SNAKE_CASE = generator(
['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , )
self.assertEqual(
a , [
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
] , )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
| 327 | 0 |
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = []
for line in lines:
SCREAMING_SNAKE_CASE = re.sub(R'#.*' , '' , _UpperCAmelCase) # remove comments
if line:
filtered_lines.append(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = '\n'.join(_UpperCAmelCase)
# Make a hash from all this code
SCREAMING_SNAKE_CASE = full_str.encode('utf-8')
return shaaaa(_UpperCAmelCase).hexdigest()
# get importable module names and hash for caching
a_ : int = {
'csv': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'json': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'pandas': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'parquet': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'arrow': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'text': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'imagefolder': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'audiofolder': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
a_ : List[Any] = {
'.csv': ('csv', {}),
'.tsv': ('csv', {'sep': '\t'}),
'.json': ('json', {}),
'.jsonl': ('json', {}),
'.parquet': ('parquet', {}),
'.arrow': ('arrow', {}),
'.txt': ('text', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('imagefolder', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('audiofolder', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
a_ : Optional[Any] = {'imagefolder', 'audiofolder'}
# Used to filter data files based on extensions given a module name
a_ : Dict[str, List[str]] = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('.zip')
_MODULE_TO_EXTENSIONS["audiofolder"].append('.zip')
| 364 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a)
SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))]
SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin') for f in files)
@slow
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3
assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1
SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(a) == num_samples
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , )
SCREAMING_SNAKE_CASE = scheduler.create_state()
SCREAMING_SNAKE_CASE = scheduler_state
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice).max() < 1E-2
| 327 | 0 |
import fire
from utils import calculate_rouge, save_json
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [x.strip() for x in open(_UpperCAmelCase).readlines()]
SCREAMING_SNAKE_CASE = [x.strip() for x in open(_UpperCAmelCase).readlines()][: len(_UpperCAmelCase)]
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase)
if save_path is not None:
save_json(_UpperCAmelCase , _UpperCAmelCase , indent=_UpperCAmelCase)
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 365 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]:
if rouge_types is None:
SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a)
if use_aggregator:
SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE = []
for ref, pred in zip(a , a):
SCREAMING_SNAKE_CASE = scorer.score(a , a)
if use_aggregator:
aggregator.add_scores(a)
else:
scores.append(a)
if use_aggregator:
SCREAMING_SNAKE_CASE = aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE = {}
for key in scores[0]:
SCREAMING_SNAKE_CASE = [score[key] for score in scores]
return result
| 327 | 0 |
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
a_ : str = False, False, False
@dataclass
class _snake_case :
_lowercase : Optional[int] = None
_lowercase : bool = True
_lowercase : bool = True
_lowercase : Optional[str] = None
# Automatically constructed
_lowercase : ClassVar[str] = "dict"
_lowercase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
_lowercase : str = field(default='''Audio''' , init=A__ , repr=A__ )
def __call__( self) -> Optional[int]:
return self.pa_type
def SCREAMING_SNAKE_CASE__ ( self , a) -> dict:
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError('To support encoding audio data, please install \'soundfile\'.') from err
if isinstance(a , a):
return {"bytes": None, "path": value}
elif isinstance(a , a):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
SCREAMING_SNAKE_CASE = BytesIO()
sf.write(a , value['array'] , value['sampling_rate'] , format='wav')
return {"bytes": buffer.getvalue(), "path": None}
elif value.get('path') is not None and os.path.isfile(value['path']):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith('pcm'):
# "PCM" only has raw audio bytes
if value.get('sampling_rate') is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object')
if value.get('bytes'):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
SCREAMING_SNAKE_CASE = np.frombuffer(value['bytes'] , dtype=np.intaa).astype(np.floataa) / 3_2767
else:
SCREAMING_SNAKE_CASE = np.memmap(value['path'] , dtype='h' , mode='r').astype(np.floataa) / 3_2767
SCREAMING_SNAKE_CASE = BytesIO(bytes())
sf.write(a , a , value['sampling_rate'] , format='wav')
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get('path')}
elif value.get('bytes') is not None or value.get('path') is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get('bytes'), "path": value.get('path')}
else:
raise ValueError(
f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''')
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> dict:
if not self.decode:
raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (value['path'], BytesIO(value['bytes'])) if value['bytes'] is not None else (value['path'], None)
if path is None and file is None:
raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''')
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.') from err
SCREAMING_SNAKE_CASE = xsplitext(a)[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, '
'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ')
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, '
'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ')
if file is None:
SCREAMING_SNAKE_CASE = token_per_repo_id or {}
SCREAMING_SNAKE_CASE = path.split('::')[-1]
try:
SCREAMING_SNAKE_CASE = string_to_dict(a , config.HUB_DATASETS_URL)['repo_id']
SCREAMING_SNAKE_CASE = token_per_repo_id[repo_id]
except (ValueError, KeyError):
SCREAMING_SNAKE_CASE = None
with xopen(a , 'rb' , use_auth_token=a) as f:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sf.read(a)
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sf.read(a)
SCREAMING_SNAKE_CASE = array.T
if self.mono:
SCREAMING_SNAKE_CASE = librosa.to_mono(a)
if self.sampling_rate and self.sampling_rate != sampling_rate:
SCREAMING_SNAKE_CASE = librosa.resample(a , orig_sr=a , target_sr=self.sampling_rate)
SCREAMING_SNAKE_CASE = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def SCREAMING_SNAKE_CASE__ ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
if self.decode:
raise ValueError('Cannot flatten a decoded Audio feature.')
return {
"bytes": Value('binary'),
"path": Value('string'),
}
def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.StructArray:
if pa.types.is_string(storage.type):
SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.binary())
SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null())
elif pa.types.is_binary(storage.type):
SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string())
SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null())
elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('array'):
SCREAMING_SNAKE_CASE = pa.array([Audio().encode_example(a) if x is not None else None for x in storage.to_pylist()])
elif pa.types.is_struct(storage.type):
if storage.type.get_field_index('bytes') >= 0:
SCREAMING_SNAKE_CASE = storage.field('bytes')
else:
SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.binary())
if storage.type.get_field_index('path') >= 0:
SCREAMING_SNAKE_CASE = storage.field('path')
else:
SCREAMING_SNAKE_CASE = pa.array([None] * len(a) , type=pa.string())
SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null())
return array_cast(a , self.pa_type)
def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(a):
with xopen(a , 'rb') as f:
SCREAMING_SNAKE_CASE = f.read()
return bytes_
SCREAMING_SNAKE_CASE = pa.array(
[
(path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
SCREAMING_SNAKE_CASE = pa.array(
[os.path.basename(a) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , )
SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null())
return array_cast(a , self.pa_type)
| 366 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ (_UpperCAmelCase):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _snake_case ( nn.Module ):
def __init__( self , a , a) -> Union[str, Any]:
super().__init__()
SCREAMING_SNAKE_CASE = module
SCREAMING_SNAKE_CASE = nn.Sequential(
nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , )
SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=a)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any:
return self.module(a , *a , **a) + self.adapter(a)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
_lowercase : Union[str, Any] = '''bigscience/bloom-1b7'''
# Constant values
_lowercase : str = 2.109_6595_5269_2574
_lowercase : Any = '''Hello my name is'''
_lowercase : Any = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
_lowercase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
super().setUp()
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_abit.config
self.assertTrue(hasattr(a , 'quantization_config'))
SCREAMING_SNAKE_CASE = config.to_dict()
SCREAMING_SNAKE_CASE = config.to_diff_dict()
SCREAMING_SNAKE_CASE = config.to_json_string()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
from bitsandbytes.nn import Paramsabit
SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint()
SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(a , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
with self.assertRaises(a):
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , )
def SCREAMING_SNAKE_CASE__ ( self) -> int:
with self.assertRaises(a):
# Tries with `str`
self.model_abit.to('cpu')
with self.assertRaises(a):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0'))
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa)
SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu')
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.half()
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.float()
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple:
SCREAMING_SNAKE_CASE = 't5-small'
SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name)
SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute'
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
from transformers import TaForConditionalGeneration
SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules
SCREAMING_SNAKE_CASE = None
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
SCREAMING_SNAKE_CASE = modules
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> str:
super().setUp()
# model_name
SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m'
SCREAMING_SNAKE_CASE = 't5-small'
# Different types of model
SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Sequence classification model
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=a , device_map='auto')
# CausalLM model
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Seq2seq model
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
SCREAMING_SNAKE_CASE = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> int:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=a , device_map='balanced')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
# Second real batch
SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = 'facebook/opt-350m'
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'):
return
# Step 1: freeze all parameters
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
SCREAMING_SNAKE_CASE = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(a)):
SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE = model.forward(**a)
out.logits.norm().backward()
for module in model.modules():
if isinstance(a , a):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(a , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class _snake_case ( A__ ):
_lowercase : str = '''gpt2-xl'''
_lowercase : Union[str, Any] = 3.3191_8548_5415_2187
| 327 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
a_ : Tuple = logging.get_logger(__name__)
a_ : Any = {
'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class _snake_case ( A__ ):
_lowercase : Union[str, Any] = '''dpt'''
def __init__( self , a=768 , a=12 , a=12 , a=3072 , a="gelu" , a=0.0 , a=0.0 , a=0.02 , a=1E-12 , a=384 , a=16 , a=3 , a=False , a=True , a=[2, 5, 8, 11] , a="project" , a=[4, 2, 1, 0.5] , a=[96, 192, 384, 768] , a=256 , a=-1 , a=False , a=True , a=0.4 , a=255 , a=0.1 , a=[1, 1024, 24, 24] , a=[0, 1] , a=None , **a , ) -> Optional[Any]:
super().__init__(**a)
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('Initializing the config with a `BiT` backbone.')
SCREAMING_SNAKE_CASE = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
}
SCREAMING_SNAKE_CASE = BitConfig(**a)
elif isinstance(a , a):
logger.info('Initializing the config with a `BiT` backbone.')
SCREAMING_SNAKE_CASE = BitConfig(**a)
elif isinstance(a , a):
SCREAMING_SNAKE_CASE = backbone_config
else:
raise ValueError(
f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''')
SCREAMING_SNAKE_CASE = backbone_featmap_shape
SCREAMING_SNAKE_CASE = neck_ignore_stages
if readout_type != "project":
raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.')
else:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = qkv_bias
SCREAMING_SNAKE_CASE = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']')
SCREAMING_SNAKE_CASE = readout_type
SCREAMING_SNAKE_CASE = reassemble_factors
SCREAMING_SNAKE_CASE = neck_hidden_sizes
SCREAMING_SNAKE_CASE = fusion_hidden_size
SCREAMING_SNAKE_CASE = head_in_index
SCREAMING_SNAKE_CASE = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
SCREAMING_SNAKE_CASE = use_auxiliary_head
SCREAMING_SNAKE_CASE = auxiliary_loss_weight
SCREAMING_SNAKE_CASE = semantic_loss_ignore_index
SCREAMING_SNAKE_CASE = semantic_classifier_dropout
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
| 367 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ : Optional[Any] = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 327 | 0 |
import argparse
import os
import re
import numpy as np
import PIL
import torch
from timm import create_model
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = fname.split(os.path.sep)[-1]
return re.search(R'^(.*)_\d+\.jpg$' , _UpperCAmelCase).groups()[0]
class _snake_case ( A__ ):
def __init__( self , a , a=None , a=None) -> Dict:
SCREAMING_SNAKE_CASE = file_names
SCREAMING_SNAKE_CASE = image_transform
SCREAMING_SNAKE_CASE = label_to_id
def __len__( self) -> List[str]:
return len(self.file_names)
def __getitem__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = self.file_names[idx]
SCREAMING_SNAKE_CASE = PIL.Image.open(a)
SCREAMING_SNAKE_CASE = raw_image.convert('RGB')
if self.image_transform is not None:
SCREAMING_SNAKE_CASE = self.image_transform(a)
SCREAMING_SNAKE_CASE = extract_label(a)
if self.label_to_id is not None:
SCREAMING_SNAKE_CASE = self.label_to_id[label]
return {"image": image, "label": label}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
# Initialize accelerator
if args.with_tracking:
SCREAMING_SNAKE_CASE = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir)
else:
SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision)
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE = config['lr']
SCREAMING_SNAKE_CASE = int(config['num_epochs'])
SCREAMING_SNAKE_CASE = int(config['seed'])
SCREAMING_SNAKE_CASE = int(config['batch_size'])
SCREAMING_SNAKE_CASE = config['image_size']
if not isinstance(_UpperCAmelCase , (list, tuple)):
SCREAMING_SNAKE_CASE = (image_size, image_size)
# Parse out whether we are saving every epoch or after a certain number of batches
if hasattr(args.checkpointing_steps , 'isdigit'):
if args.checkpointing_steps == "epoch":
SCREAMING_SNAKE_CASE = args.checkpointing_steps
elif args.checkpointing_steps.isdigit():
SCREAMING_SNAKE_CASE = int(args.checkpointing_steps)
else:
raise ValueError(
F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''')
else:
SCREAMING_SNAKE_CASE = None
# We need to initialize the trackers we use, and also store our configuration
if args.with_tracking:
SCREAMING_SNAKE_CASE = os.path.split(_UpperCAmelCase)[-1].split('.')[0]
accelerator.init_trackers(_UpperCAmelCase , _UpperCAmelCase)
# Grab all the image filenames
SCREAMING_SNAKE_CASE = [os.path.join(args.data_dir , _UpperCAmelCase) for fname in os.listdir(args.data_dir) if fname.endswith('.jpg')]
# Build the label correspondences
SCREAMING_SNAKE_CASE = [extract_label(_UpperCAmelCase) for fname in file_names]
SCREAMING_SNAKE_CASE = list(set(_UpperCAmelCase))
id_to_label.sort()
SCREAMING_SNAKE_CASE = {lbl: i for i, lbl in enumerate(_UpperCAmelCase)}
# Set the seed before splitting the data.
np.random.seed(_UpperCAmelCase)
torch.manual_seed(_UpperCAmelCase)
torch.cuda.manual_seed_all(_UpperCAmelCase)
# Split our filenames between train and validation
SCREAMING_SNAKE_CASE = np.random.permutation(len(_UpperCAmelCase))
SCREAMING_SNAKE_CASE = int(0.8 * len(_UpperCAmelCase))
SCREAMING_SNAKE_CASE = random_perm[:cut]
SCREAMING_SNAKE_CASE = random_perm[cut:]
# For training we use a simple RandomResizedCrop
SCREAMING_SNAKE_CASE = Compose([RandomResizedCrop(_UpperCAmelCase , scale=(0.5, 1.0)), ToTensor()])
SCREAMING_SNAKE_CASE = PetsDataset(
[file_names[i] for i in train_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase)
# For evaluation, we use a deterministic Resize
SCREAMING_SNAKE_CASE = Compose([Resize(_UpperCAmelCase), ToTensor()])
SCREAMING_SNAKE_CASE = PetsDataset([file_names[i] for i in eval_split] , image_transform=_UpperCAmelCase , label_to_id=_UpperCAmelCase)
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4)
SCREAMING_SNAKE_CASE = DataLoader(_UpperCAmelCase , shuffle=_UpperCAmelCase , batch_size=_UpperCAmelCase , num_workers=4)
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE = create_model('resnet50d' , pretrained=_UpperCAmelCase , num_classes=len(_UpperCAmelCase))
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE = model.to(accelerator.device)
# Freezing the base model
for param in model.parameters():
SCREAMING_SNAKE_CASE = False
for param in model.get_classifier().parameters():
SCREAMING_SNAKE_CASE = True
# We normalize the batches of images to be a bit faster.
SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg['mean'])[None, :, None, None].to(accelerator.device)
SCREAMING_SNAKE_CASE = torch.tensor(model.default_cfg['std'])[None, :, None, None].to(accelerator.device)
# Instantiate optimizer
SCREAMING_SNAKE_CASE = torch.optim.Adam(params=model.parameters() , lr=lr / 25)
# Instantiate learning rate scheduler
SCREAMING_SNAKE_CASE = OneCycleLR(optimizer=_UpperCAmelCase , max_lr=_UpperCAmelCase , epochs=_UpperCAmelCase , steps_per_epoch=len(_UpperCAmelCase))
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# We need to keep track of how many total steps we have iterated over
SCREAMING_SNAKE_CASE = 0
# We also need to keep track of the starting epoch so files are named properly
SCREAMING_SNAKE_CASE = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''')
accelerator.load_state(args.resume_from_checkpoint)
SCREAMING_SNAKE_CASE = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
SCREAMING_SNAKE_CASE = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
SCREAMING_SNAKE_CASE = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Extract `epoch_{i}` or `step_{i}`
SCREAMING_SNAKE_CASE = os.path.splitext(_UpperCAmelCase)[0]
if "epoch" in training_difference:
SCREAMING_SNAKE_CASE = int(training_difference.replace('epoch_' , '')) + 1
SCREAMING_SNAKE_CASE = None
else:
SCREAMING_SNAKE_CASE = int(training_difference.replace('step_' , ''))
SCREAMING_SNAKE_CASE = resume_step // len(_UpperCAmelCase)
resume_step -= starting_epoch * len(_UpperCAmelCase)
# Now we train the model
for epoch in range(_UpperCAmelCase , _UpperCAmelCase):
model.train()
if args.with_tracking:
SCREAMING_SNAKE_CASE = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We need to skip steps until we reach the resumed step
SCREAMING_SNAKE_CASE = accelerator.skip_first_batches(_UpperCAmelCase , _UpperCAmelCase)
overall_step += resume_step
else:
# After the first iteration though, we need to go back to the original dataloader
SCREAMING_SNAKE_CASE = train_dataloader
for batch in active_dataloader:
# We could avoid this line since we set the accelerator with `device_placement=True`.
SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device) for k, v in batch.items()}
SCREAMING_SNAKE_CASE = (batch['image'] - mean) / std
SCREAMING_SNAKE_CASE = model(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.nn.functional.cross_entropy(_UpperCAmelCase , batch['label'])
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(_UpperCAmelCase)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = F'''step_{overall_step}'''
if overall_step % checkpointing_steps == 0:
if args.output_dir is not None:
SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , _UpperCAmelCase)
accelerator.save_state(_UpperCAmelCase)
model.eval()
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
for step, batch in enumerate(_UpperCAmelCase):
# We could avoid this line since we set the accelerator with `device_placement=True`.
SCREAMING_SNAKE_CASE = {k: v.to(accelerator.device) for k, v in batch.items()}
SCREAMING_SNAKE_CASE = (batch['image'] - mean) / std
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = outputs.argmax(dim=-1)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch['label']))
SCREAMING_SNAKE_CASE = predictions == references
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
SCREAMING_SNAKE_CASE = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''')
if args.with_tracking:
accelerator.log(
{
'accuracy': 100 * eval_metric,
'train_loss': total_loss.item() / len(_UpperCAmelCase),
'epoch': epoch,
} , step=_UpperCAmelCase , )
if checkpointing_steps == "epoch":
SCREAMING_SNAKE_CASE = F'''epoch_{epoch}'''
if args.output_dir is not None:
SCREAMING_SNAKE_CASE = os.path.join(args.output_dir , _UpperCAmelCase)
accelerator.save_state(_UpperCAmelCase)
if args.with_tracking:
accelerator.end_training()
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Simple example of training script.')
parser.add_argument('--data_dir' , required=_UpperCAmelCase , help='The data folder on disk.')
parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.')
parser.add_argument(
'--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose'
'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'
'and an Nvidia Ampere GPU.' , )
parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.')
parser.add_argument(
'--checkpointing_steps' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , )
parser.add_argument(
'--output_dir' , type=_UpperCAmelCase , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , )
parser.add_argument(
'--resume_from_checkpoint' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='If the training should continue from a checkpoint folder.' , )
parser.add_argument(
'--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , )
parser.add_argument(
'--project_dir' , type=_UpperCAmelCase , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , )
SCREAMING_SNAKE_CASE = parser.parse_args()
SCREAMING_SNAKE_CASE = {'lr': 3e-2, 'num_epochs': 3, 'seed': 42, 'batch_size': 64, 'image_size': 224}
training_function(_UpperCAmelCase , _UpperCAmelCase)
if __name__ == "__main__":
main()
| 368 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a_ : Dict = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , a = None) -> Optional[int]:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature'))
SCREAMING_SNAKE_CASE = os.path.abspath('examples')
for item in os.listdir(a):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE = os.path.join(a , a)
if os.path.isfile(a) and ".py" in item_path:
with self.subTest(
tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE = compare_against_test(
os.path.join(a , a) , a , a , a)
SCREAMING_SNAKE_CASE = '\n'.join(a)
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE = diff.replace(a , '')
self.assertEqual(a , '')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
self.one_complete_example('complete_nlp_example.py' , a)
self.one_complete_example('complete_nlp_example.py' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py'))
SCREAMING_SNAKE_CASE = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , a , a , a)
self.one_complete_example('complete_cv_example.py' , a , a , a)
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class _snake_case ( A__ ):
_lowercase : int = False
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Union[str, Any]:
super().setUpClass()
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml')
write_basic_config(save_location=cls.configPath)
SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Dict:
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0')))
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2')))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
else:
self.assertIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}):
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
SCREAMING_SNAKE_CASE = re.findall('({.+})' , a)
SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE = ast.literal_eval(a)
self.assertGreaterEqual(results['accuracy'] , 0.75)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'})
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(a , 'tracking')))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs)
| 327 | 0 |
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class _snake_case ( A__ ):
def __init__( self , a , a) -> str:
super().__init__()
self.register_modules(unet=a , scheduler=a)
@torch.no_grad()
def __call__( self , a = 1 , a = None , a = 50 , a = "pil" , a = True , **a , ) -> Union[ImagePipelineOutput, Tuple]:
SCREAMING_SNAKE_CASE = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a , )
SCREAMING_SNAKE_CASE = image.to(self.device)
# set step values
self.scheduler.set_timesteps(a)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
SCREAMING_SNAKE_CASE = self.unet(a , a).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
SCREAMING_SNAKE_CASE = self.scheduler.step(a , a , a).prev_sample
SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1)
SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1).numpy()
if output_type == "pil":
SCREAMING_SNAKE_CASE = self.numpy_to_pil(a)
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=a), "This is a local test"
| 369 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self , a , a=3 , a=32 , a=3 , a=10 , a=[10, 20, 30, 40] , a=[1, 1, 2, 1] , a=True , a=True , a="relu" , a=3 , a=None , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embeddings_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = len(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TFResNetModel(config=a)
SCREAMING_SNAKE_CASE = model(a)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFResNetForImageClassification(a)
SCREAMING_SNAKE_CASE = model(a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowercase : Dict = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Any = False
_lowercase : List[str] = False
_lowercase : str = False
_lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = TFResNetModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return
@unittest.skip(reason='ResNet does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> int:
pass
@unittest.skip(reason='ResNet does not support input and output embeddings')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
def check_hidden_states_output(a , a , a):
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(a) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> str:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(a)
self.assertIsNotNone(a)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='tf')
# forward pass
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = tf.constant([-11.10_69, -9.78_77, -8.37_77])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4))
| 327 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class _snake_case ( A__ ):
_lowercase : Optional[torch.FloatTensor] = None
_lowercase : torch.FloatTensor = None
_lowercase : Optional[Tuple[torch.FloatTensor]] = None
_lowercase : Optional[Tuple[torch.FloatTensor]] = None
class _snake_case ( A__ ):
def __init__( self , a=1 , a=0 , a=2 , a=512 , a="cls" , a=False , a=True , **a , ) -> Dict:
super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a)
SCREAMING_SNAKE_CASE = project_dim
SCREAMING_SNAKE_CASE = pooler_fn
SCREAMING_SNAKE_CASE = learn_encoder
SCREAMING_SNAKE_CASE = use_attention_mask
class _snake_case ( A__ ):
_lowercase : Any = [R'''pooler''', R'''logit_scale''']
_lowercase : Any = [R'''position_ids''', R'''predictions.decoder.bias''']
_lowercase : str = '''roberta'''
_lowercase : Tuple = RobertaSeriesConfig
def __init__( self , a) -> Union[str, Any]:
super().__init__(a)
SCREAMING_SNAKE_CASE = XLMRobertaModel(a)
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim)
SCREAMING_SNAKE_CASE = getattr(a , 'has_pre_transformation' , a)
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim)
SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps)
self.post_init()
def SCREAMING_SNAKE_CASE__ ( self , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , ) -> Tuple:
SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE = self.base_model(
input_ids=a , attention_mask=a , token_type_ids=a , position_ids=a , head_mask=a , inputs_embeds=a , encoder_hidden_states=a , encoder_attention_mask=a , output_attentions=a , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=a , )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = outputs['hidden_states'][-2]
SCREAMING_SNAKE_CASE = self.pre_LN(a)
SCREAMING_SNAKE_CASE = self.transformation_pre(a)
return TransformationModelOutput(
projection_state=a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state)
return TransformationModelOutput(
projection_state=a , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 370 |
from math import isqrt
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]]
def lowerCamelCase__ (_UpperCAmelCase = 10**8):
SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 327 | 0 |
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a_ : Dict = logging.get_logger(__name__)
a_ : Union[str, Any] = '▁'
a_ : List[str] = {'vocab_file': 'prophetnet.tokenizer'}
a_ : int = {
'vocab_file': {
'microsoft/xprophetnet-large-wiki100-cased': (
'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer'
),
}
}
a_ : Tuple = {
'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False},
}
a_ : Dict = {
'microsoft/xprophetnet-large-wiki100-cased': 5_12,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = collections.OrderedDict()
with open(_UpperCAmelCase , 'r' , encoding='utf-8') as reader:
SCREAMING_SNAKE_CASE = reader.readlines()
for index, token in enumerate(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = token.rstrip('\n')
SCREAMING_SNAKE_CASE = index
return vocab
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : str = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : str = ['''input_ids''', '''attention_mask''']
def __init__( self , a , a="[SEP]" , a="[SEP]" , a="[SEP]" , a="[UNK]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a = None , **a , ) -> None:
SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=a , eos_token=a , sep_token=a , unk_token=a , pad_token=a , cls_token=a , mask_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'
' pip install sentencepiece')
raise
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(a))
SCREAMING_SNAKE_CASE = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
SCREAMING_SNAKE_CASE = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4}
for i in range(10):
SCREAMING_SNAKE_CASE = f'''[unused{i}]'''
SCREAMING_SNAKE_CASE = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE = 12
SCREAMING_SNAKE_CASE = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(a)
def __getstate__( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.__dict__.copy()
SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'
' pip install sentencepiece')
raise
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs'):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return ([0] * len(a)) + [1]
return ([0] * len(a)) + [1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return len(self.sp_model) + self.fairseq_offset
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(a): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def SCREAMING_SNAKE_CASE__ ( self , a) -> str:
return self.sp_model.encode(a , out_type=a)
def SCREAMING_SNAKE_CASE__ ( self , a) -> int:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE = self.sp_model.PieceToId(a)
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict:
SCREAMING_SNAKE_CASE = ''.join(a).replace(a , ' ').strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
if not os.path.isdir(a):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
SCREAMING_SNAKE_CASE = os.path.join(
a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(a) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , a)
elif not os.path.isfile(self.vocab_file):
with open(a , 'wb') as fi:
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(a)
return (out_vocab_file,)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 371 |
import baseaa
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaaencode(string.encode('utf-8'))
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class _snake_case :
def __init__( self , a , a , a = True , a = False) -> Tuple:
SCREAMING_SNAKE_CASE = scheduler
SCREAMING_SNAKE_CASE = optimizers if isinstance(a , (list, tuple)) else [optimizers]
SCREAMING_SNAKE_CASE = split_batches
SCREAMING_SNAKE_CASE = step_with_optimizer
SCREAMING_SNAKE_CASE = GradientState()
def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*a , **a)
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*a , **a)
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
SCREAMING_SNAKE_CASE = AcceleratorState().num_processes
for _ in range(a):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps'):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*a , **a)
else:
self.scheduler.step(*a , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
return self.scheduler.get_last_lr()
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
return self.scheduler.state_dict()
def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]:
self.scheduler.load_state_dict(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
return self.scheduler.get_lr()
def SCREAMING_SNAKE_CASE__ ( self , *a , **a) -> List[Any]:
return self.scheduler.print_lr(*a , **a)
| 350 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model']
SCREAMING_SNAKE_CASE = mam_aaa['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = MaMaaaConfig(
vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , )
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase)
model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : List[str] = parser.parse_args()
a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available
a_ : List[Any] = {
'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = [
'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST',
'ErnieForCausalLM',
'ErnieForMaskedLM',
'ErnieForMultipleChoice',
'ErnieForNextSentencePrediction',
'ErnieForPreTraining',
'ErnieForQuestionAnswering',
'ErnieForSequenceClassification',
'ErnieForTokenClassification',
'ErnieModel',
'ErniePreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie import (
ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST,
ErnieForCausalLM,
ErnieForMaskedLM,
ErnieForMultipleChoice,
ErnieForNextSentencePrediction,
ErnieForPreTraining,
ErnieForQuestionAnswering,
ErnieForSequenceClassification,
ErnieForTokenClassification,
ErnieModel,
ErniePreTrainedModel,
)
else:
import sys
a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 351 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused'
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = floats_list((3, 1000))
SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = 'This is a test string'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 327 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a_ : str = logging.get_logger(__name__)
a_ : Optional[int] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : Tuple = {
'tokenizer_file': {
'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json',
},
}
a_ : Any = {
'gpt-neox-20b': 20_48,
}
class _snake_case ( A__ ):
_lowercase : str = VOCAB_FILES_NAMES
_lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
_lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : List[Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , a=None , a=None , a=None , a="<|endoftext|>" , a="<|endoftext|>" , a="<|endoftext|>" , a=False , **a , ) -> Tuple:
super().__init__(
a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , add_prefix_space=a , **a , )
SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get('add_prefix_space' , a) != add_prefix_space:
SCREAMING_SNAKE_CASE = getattr(a , pre_tok_state.pop('type'))
SCREAMING_SNAKE_CASE = add_prefix_space
SCREAMING_SNAKE_CASE = pre_tok_class(**a)
SCREAMING_SNAKE_CASE = add_prefix_space
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
def SCREAMING_SNAKE_CASE__ ( self , a) -> List[int]:
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(a , add_special_tokens=a) + [self.eos_token_id])
if len(a) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
return input_ids
| 352 |
import argparse
import datetime
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_UpperCAmelCase) < 11:
raise ValueError('Must be 10 characters long')
# Get month
SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12')
SCREAMING_SNAKE_CASE = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get day
SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31')
# Get second separator
SCREAMING_SNAKE_CASE = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get year
SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?')
# Get datetime obj for validation
SCREAMING_SNAKE_CASE = datetime.date(int(_UpperCAmelCase) , int(_UpperCAmelCase) , int(_UpperCAmelCase))
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE = y - 1
SCREAMING_SNAKE_CASE = m + 12
# maths var
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[:2])
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[2:])
SCREAMING_SNAKE_CASE = int(2.6 * m - 5.39)
SCREAMING_SNAKE_CASE = int(c / 4)
SCREAMING_SNAKE_CASE = int(k / 4)
SCREAMING_SNAKE_CASE = int(d + k)
SCREAMING_SNAKE_CASE = int(t + u + v + x)
SCREAMING_SNAKE_CASE = int(z - (2 * c))
SCREAMING_SNAKE_CASE = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.')
# Response
SCREAMING_SNAKE_CASE = F'''Your date {date_input}, is a {days[str(_UpperCAmelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Tuple = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
a_ : Any = parser.parse_args()
zeller(args.date_input)
| 327 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a_ : List[Any] = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : int = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 353 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a_ : Optional[Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : Optional[int] = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384}
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''')
SCREAMING_SNAKE_CASE = (size['height'], size['width'])
return resize(a , size=a , resample=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(a , mean=a , std=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a)
return encoded_outputs
| 327 | 0 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class _snake_case ( A__ ):
_lowercase : Any = (DPMSolverSDEScheduler,)
_lowercase : Any = 10
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[int]:
SCREAMING_SNAKE_CASE = {
'num_train_timesteps': 1100,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'noise_sampler_seed': 0,
}
config.update(**a)
return config
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02]):
self.check_over_configs(beta_start=a , beta_end=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**a)
scheduler.set_timesteps(self.num_inference_steps)
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(a)
for i, t in enumerate(scheduler.timesteps):
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(a , a)
SCREAMING_SNAKE_CASE = model(a , a)
SCREAMING_SNAKE_CASE = scheduler.step(a , a , a)
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a))
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a))
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_8210_4492_1875) < 1E-2
assert abs(result_mean.item() - 0.21_78_70_59_64_56_52_77) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_3521_1181_6406) < 1E-2
assert abs(result_mean.item() - 0.2_23_42_90_68_92_29_96_52) < 1E-3
else:
assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1E-2
assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type='v_prediction')
SCREAMING_SNAKE_CASE = scheduler_class(**a)
scheduler.set_timesteps(self.num_inference_steps)
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(a)
for i, t in enumerate(scheduler.timesteps):
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(a , a)
SCREAMING_SNAKE_CASE = model(a , a)
SCREAMING_SNAKE_CASE = scheduler.step(a , a , a)
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a))
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a))
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_1492_0043_9453) < 1E-2
assert abs(result_mean.item() - 0.1_62_26_28_90_14_81_62_84) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_6633_6059_5703) < 1E-2
assert abs(result_mean.item() - 0.1_66_88_32_60_01_16_72_97) < 1E-3
else:
assert abs(result_sum.item() - 119.8_4875_4882_8125) < 1E-2
assert abs(result_mean.item() - 0.15_60_53_06_62_53_66_21) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**a)
scheduler.set_timesteps(self.num_inference_steps , device=a)
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(a) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(a , a)
SCREAMING_SNAKE_CASE = model(a , a)
SCREAMING_SNAKE_CASE = scheduler.step(a , a , a)
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a))
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a))
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_9573_9746_0938) < 1E-2
assert abs(result_mean.item() - 0.2_18_05_93_46_07_98_26_35) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_3536_3769_5312) < 1E-2
assert abs(result_mean.item() - 0.2_23_42_90_83_82_41_57_71) < 1E-3
else:
assert abs(result_sum.item() - 162.52_3834_2285_1562) < 1E-2
assert abs(result_mean.item() - 0.2_11_61_95_70_85_13_26) < 1E-3
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**a , use_karras_sigmas=a)
scheduler.set_timesteps(self.num_inference_steps , device=a)
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(a) * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(a)
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(a , a)
SCREAMING_SNAKE_CASE = model(a , a)
SCREAMING_SNAKE_CASE = scheduler.step(a , a , a)
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(a))
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(a))
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_9741_3574_2188) < 1E-2
assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_6535_6445_3125) < 1E-2
assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11) < 1E-2
else:
assert abs(result_sum.item() - 170.3_1352_2338_8672) < 1E-2
assert abs(result_mean.item() - 0.2_30_03_87_27_30_98_18_11) < 1E-2
| 354 |
class _snake_case :
def __init__( self , a) -> Optional[Any]:
SCREAMING_SNAKE_CASE = val
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self , a) -> str:
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.left.insert(a)
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.right.insert(a)
else:
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
# Recursive traversal
if root:
inorder(root.left , _UpperCAmelCase)
res.append(root.val)
inorder(root.right , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
# Build BST
if len(_UpperCAmelCase) == 0:
return arr
SCREAMING_SNAKE_CASE = Node(arr[0])
for i in range(1 , len(_UpperCAmelCase)):
root.insert(arr[i])
# Traverse BST in order.
SCREAMING_SNAKE_CASE = []
inorder(_UpperCAmelCase , _UpperCAmelCase)
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 327 | 0 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class _snake_case :
def __init__( self , a , a=13 , a=10 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=10 , a=0.02 , a=0.9 , a=None , ) -> Any:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = tubelet_size
SCREAMING_SNAKE_CASE = num_frames
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = mask_ratio
SCREAMING_SNAKE_CASE = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
SCREAMING_SNAKE_CASE = int(mask_ratio * self.seq_length)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Tuple:
SCREAMING_SNAKE_CASE = VideoMAEModel(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Tuple:
SCREAMING_SNAKE_CASE = VideoMAEForPreTraining(a)
model.to(a)
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
SCREAMING_SNAKE_CASE = torch.ones((self.num_masks,))
SCREAMING_SNAKE_CASE = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))])
SCREAMING_SNAKE_CASE = mask.expand(self.batch_size , -1).bool()
SCREAMING_SNAKE_CASE = model(a , a)
# model only returns predictions for masked patches
SCREAMING_SNAKE_CASE = mask.sum().item()
SCREAMING_SNAKE_CASE = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : List[str] = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
_lowercase : str = (
{'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Optional[Any] = False
_lowercase : int = False
_lowercase : Optional[int] = False
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = VideoMAEModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> List[Any]:
SCREAMING_SNAKE_CASE = copy.deepcopy(a)
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
SCREAMING_SNAKE_CASE = torch.ones((self.model_tester.num_masks,))
SCREAMING_SNAKE_CASE = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))])
SCREAMING_SNAKE_CASE = mask.expand(self.model_tester.batch_size , -1).bool()
SCREAMING_SNAKE_CASE = bool_masked_pos.to(a)
if return_labels:
if model_class in [
*get_values(a),
]:
SCREAMING_SNAKE_CASE = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a)
return inputs_dict
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason='VideoMAE does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
SCREAMING_SNAKE_CASE = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(a , nn.Linear))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = VideoMAEModel.from_pretrained(a)
self.assertIsNotNone(a)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
if not self.has_attentions:
pass
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = self.model_tester.seq_length - self.model_tester.num_masks
SCREAMING_SNAKE_CASE = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(a)
model.to(a)
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.attentions
self.assertEqual(len(a) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(a)
model.to(a)
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.attentions
self.assertEqual(len(a) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
SCREAMING_SNAKE_CASE = len(a)
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = model_class(a)
model.to(a)
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
self.assertEqual(out_len + 1 , len(a))
SCREAMING_SNAKE_CASE = outputs.attentions
self.assertEqual(len(a) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
def check_hidden_states_output(a , a , a):
SCREAMING_SNAKE_CASE = model_class(a)
model.to(a)
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(a) , a)
SCREAMING_SNAKE_CASE = self.model_tester.seq_length - self.model_tester.num_masks
SCREAMING_SNAKE_CASE = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
pass
def lowerCamelCase__ ():
"""simple docstring"""
SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset')
SCREAMING_SNAKE_CASE = np.load(_UpperCAmelCase)
return list(_UpperCAmelCase)
@require_torch
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to(
a)
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_video()
SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='pt').to(a)
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 400))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([0.36_69, -0.06_88, -0.24_21]).to(a)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4))
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(a)
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_video()
SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='pt').to(a)
# add boolean mask, indicating which patches to mask
SCREAMING_SNAKE_CASE = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt')
SCREAMING_SNAKE_CASE = torch.load(a)
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size([1, 1408, 1536])
SCREAMING_SNAKE_CASE = torch.tensor(
[[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=a)
self.assertEqual(outputs.logits.shape , a)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1E-4))
# verify the loss (`config.norm_pix_loss` = `True`)
SCREAMING_SNAKE_CASE = torch.tensor([0.51_42] , device=a)
self.assertTrue(torch.allclose(outputs.loss , a , atol=1E-4))
# verify the loss (`config.norm_pix_loss` = `False`)
SCREAMING_SNAKE_CASE = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a).to(
a)
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**a)
SCREAMING_SNAKE_CASE = torch.tensor(torch.tensor([0.64_69]) , device=a)
self.assertTrue(torch.allclose(outputs.loss , a , atol=1E-4))
| 355 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a_ : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
a_ : Optional[int] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(state_dict.keys())
for name in state_dict_keys:
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
# emb -> embedding
if name.startswith('emb.'):
SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase)
# ffn -> feed_forward
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
SCREAMING_SNAKE_CASE = 'rwkv.' + name
SCREAMING_SNAKE_CASE = weight
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
SCREAMING_SNAKE_CASE = 5_0277
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
tokenizer.save_pretrained(_UpperCAmelCase)
# 2. Build the config
SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
SCREAMING_SNAKE_CASE = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
SCREAMING_SNAKE_CASE = RwkvConfig(
vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_UpperCAmelCase)
# 3. Download model file then convert state_dict
SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase)
# 4. Split in shards and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase)
for shard_file, shard in shards.items():
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
if index is not None:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
# Save the index as well
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
SCREAMING_SNAKE_CASE = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB')
tokenizer.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
a_ : Tuple = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 327 | 0 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = None
if token is not None:
SCREAMING_SNAKE_CASE = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''}
SCREAMING_SNAKE_CASE = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
SCREAMING_SNAKE_CASE = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase).json()
SCREAMING_SNAKE_CASE = {}
try:
job_links.update({job['name']: job['html_url'] for job in result['jobs']})
SCREAMING_SNAKE_CASE = math.ceil((result['total_count'] - 100) / 100)
for i in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = requests.get(url + F'''&page={i + 2}''' , headers=_UpperCAmelCase).json()
job_links.update({job['name']: job['html_url'] for job in result['jobs']})
return job_links
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''')
return {}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = None
if token is not None:
SCREAMING_SNAKE_CASE = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''}
SCREAMING_SNAKE_CASE = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
SCREAMING_SNAKE_CASE = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase).json()
SCREAMING_SNAKE_CASE = {}
try:
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']})
SCREAMING_SNAKE_CASE = math.ceil((result['total_count'] - 100) / 100)
for i in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = requests.get(url + F'''&page={i + 2}''' , headers=_UpperCAmelCase).json()
artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']})
return artifacts
except Exception:
print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''')
return {}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = None
if token is not None:
SCREAMING_SNAKE_CASE = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''}
SCREAMING_SNAKE_CASE = requests.get(_UpperCAmelCase , headers=_UpperCAmelCase , allow_redirects=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = result.headers['Location']
SCREAMING_SNAKE_CASE = requests.get(_UpperCAmelCase , allow_redirects=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''{artifact_name}.zip''')
with open(_UpperCAmelCase , 'wb') as fp:
fp.write(response.content)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = None
with zipfile.ZipFile(_UpperCAmelCase) as z:
for filename in z.namelist():
if not os.path.isdir(_UpperCAmelCase):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_UpperCAmelCase) as f:
for line in f:
SCREAMING_SNAKE_CASE = line.decode('UTF-8').strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
SCREAMING_SNAKE_CASE = line[: line.index(': ')]
SCREAMING_SNAKE_CASE = line[line.index(': ') + len(': ') :]
errors.append([error_line, error])
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('FAILED '):
# `test` is the test method that failed
SCREAMING_SNAKE_CASE = line[len('FAILED ') :]
failed_tests.append(_UpperCAmelCase)
elif filename == "job_name.txt":
SCREAMING_SNAKE_CASE = line
if len(_UpperCAmelCase) != len(_UpperCAmelCase):
raise ValueError(
F'''`errors` and `failed_tests` should have the same number of elements. Got {len(_UpperCAmelCase)} for `errors` '''
F'''and {len(_UpperCAmelCase)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
' problem.')
SCREAMING_SNAKE_CASE = None
if job_name and job_links:
SCREAMING_SNAKE_CASE = job_links.get(_UpperCAmelCase , _UpperCAmelCase)
# A list with elements of the form (line of error, error, failed test)
SCREAMING_SNAKE_CASE = [x + [y] + [job_link] for x, y in zip(_UpperCAmelCase , _UpperCAmelCase)]
return result
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = [os.path.join(_UpperCAmelCase , _UpperCAmelCase) for p in os.listdir(_UpperCAmelCase) if p.endswith('.zip')]
for p in paths:
errors.extend(get_errors_from_single_artifact(_UpperCAmelCase , job_links=_UpperCAmelCase))
return errors
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = Counter()
counter.update([x[1] for x in logs])
SCREAMING_SNAKE_CASE = counter.most_common()
SCREAMING_SNAKE_CASE = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
SCREAMING_SNAKE_CASE = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]}
SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda _UpperCAmelCase: item[1]["count"] , reverse=_UpperCAmelCase))
return r
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = test.split('::')[0]
if test.startswith('tests/models/'):
SCREAMING_SNAKE_CASE = test.split('/')[2]
else:
SCREAMING_SNAKE_CASE = None
return test
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = [(x[0], x[1], get_model(x[2])) for x in logs]
SCREAMING_SNAKE_CASE = [x for x in logs if x[2] is not None]
SCREAMING_SNAKE_CASE = {x[2] for x in logs}
SCREAMING_SNAKE_CASE = {}
for test in tests:
SCREAMING_SNAKE_CASE = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test])
SCREAMING_SNAKE_CASE = counter.most_common()
SCREAMING_SNAKE_CASE = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
SCREAMING_SNAKE_CASE = sum(error_counts.values())
if n_errors > 0:
SCREAMING_SNAKE_CASE = {'count': n_errors, 'errors': error_counts}
SCREAMING_SNAKE_CASE = dict(sorted(r.items() , key=lambda _UpperCAmelCase: item[1]["count"] , reverse=_UpperCAmelCase))
return r
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = '| no. | error | status |'
SCREAMING_SNAKE_CASE = '|-:|:-|:-|'
SCREAMING_SNAKE_CASE = [header, sep]
for error in reduced_by_error:
SCREAMING_SNAKE_CASE = reduced_by_error[error]['count']
SCREAMING_SNAKE_CASE = F'''| {count} | {error[:100]} | |'''
lines.append(_UpperCAmelCase)
return "\n".join(_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = '| model | no. of errors | major error | count |'
SCREAMING_SNAKE_CASE = '|-:|-:|-:|-:|'
SCREAMING_SNAKE_CASE = [header, sep]
for model in reduced_by_model:
SCREAMING_SNAKE_CASE = reduced_by_model[model]['count']
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(reduced_by_model[model]['errors'].items())[0]
SCREAMING_SNAKE_CASE = F'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(_UpperCAmelCase)
return "\n".join(_UpperCAmelCase)
if __name__ == "__main__":
a_ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
a_ : int = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token)
a_ : List[Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a_ : int = k.find(' / ')
a_ : List[Any] = k[index + len(' / ') :]
a_ : str = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a_ : Any = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a_ : str = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a_ : List[Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a_ : List[Any] = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a_ : Union[str, Any] = reduce_by_error(errors)
a_ : List[str] = reduce_by_model(errors)
a_ : List[Any] = make_github_table(reduced_by_error)
a_ : Any = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
| 356 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set())
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
class _snake_case :
def __init__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = metric_id
class _snake_case :
_lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']]
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock())
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if "tmp_path" in args:
SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args)
with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'):
func(*_UpperCAmelCase)
| 327 | 0 |
"""simple docstring"""
import warnings
from ...utils import is_sklearn_available, requires_backends
if is_sklearn_available():
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
a_ : List[Any] = (
'This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate '
'library. You can have a look at this example script for pointers: '
'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py'
)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
warnings.warn(_UpperCAmelCase , _UpperCAmelCase)
requires_backends(_UpperCAmelCase , 'sklearn')
return (preds == labels).mean()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
warnings.warn(_UpperCAmelCase , _UpperCAmelCase)
requires_backends(_UpperCAmelCase , 'sklearn')
SCREAMING_SNAKE_CASE = simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = fa_score(y_true=_UpperCAmelCase , y_pred=_UpperCAmelCase)
return {
"acc": acc,
"f1": fa,
"acc_and_f1": (acc + fa) / 2,
}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
warnings.warn(_UpperCAmelCase , _UpperCAmelCase)
requires_backends(_UpperCAmelCase , 'sklearn')
SCREAMING_SNAKE_CASE = pearsonr(_UpperCAmelCase , _UpperCAmelCase)[0]
SCREAMING_SNAKE_CASE = spearmanr(_UpperCAmelCase , _UpperCAmelCase)[0]
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
"corr": (pearson_corr + spearman_corr) / 2,
}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
warnings.warn(_UpperCAmelCase , _UpperCAmelCase)
requires_backends(_UpperCAmelCase , 'sklearn')
assert len(_UpperCAmelCase) == len(_UpperCAmelCase), F'''Predictions and labels have mismatched lengths {len(_UpperCAmelCase)} and {len(_UpperCAmelCase)}'''
if task_name == "cola":
return {"mcc": matthews_corrcoef(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "mrpc":
return acc_and_fa(_UpperCAmelCase , _UpperCAmelCase)
elif task_name == "sts-b":
return pearson_and_spearman(_UpperCAmelCase , _UpperCAmelCase)
elif task_name == "qqp":
return acc_and_fa(_UpperCAmelCase , _UpperCAmelCase)
elif task_name == "mnli":
return {"mnli/acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "mnli-mm":
return {"mnli-mm/acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "qnli":
return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "rte":
return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "wnli":
return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
elif task_name == "hans":
return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
else:
raise KeyError(_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
warnings.warn(_UpperCAmelCase , _UpperCAmelCase)
requires_backends(_UpperCAmelCase , 'sklearn')
if len(_UpperCAmelCase) != len(_UpperCAmelCase):
raise ValueError(F'''Predictions and labels have mismatched lengths {len(_UpperCAmelCase)} and {len(_UpperCAmelCase)}''')
if task_name == "xnli":
return {"acc": simple_accuracy(_UpperCAmelCase , _UpperCAmelCase)}
else:
raise KeyError(_UpperCAmelCase)
| 357 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Any = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 327 | 0 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version('>=', FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
a_ : str = get_logger(__name__)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0):
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
with FSDP.state_dict_type(
_UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
SCREAMING_SNAKE_CASE = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
SCREAMING_SNAKE_CASE = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
if accelerator.process_index == 0:
logger.info(F'''Saving model to {output_model_file}''')
torch.save(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Model saved to {output_model_file}''')
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
SCREAMING_SNAKE_CASE = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Saving model to {output_model_file}''')
torch.save(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Model saved to {output_model_file}''')
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''')
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
logger.info(F'''Saving model to {ckpt_dir}''')
SCREAMING_SNAKE_CASE = {'model': state_dict}
dist_cp.save_state_dict(
state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase) , planner=DefaultSavePlanner() , )
logger.info(F'''Model saved to {ckpt_dir}''')
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
_UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(_UpperCAmelCase) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
'Set the `sync_module_states` flag to `True` so that model states are synced across processes when '
'initializing FSDP object')
return
SCREAMING_SNAKE_CASE = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin'''
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Loading model from {input_model_file}''')
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase)
logger.info(F'''Model loaded from {input_model_file}''')
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
SCREAMING_SNAKE_CASE = (
F'''{MODEL_NAME}_rank{accelerator.process_index}.bin'''
if model_index == 0
else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin'''
)
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Loading model from {input_model_file}''')
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase)
logger.info(F'''Model loaded from {input_model_file}''')
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
SCREAMING_SNAKE_CASE = (
os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''')
if F'''{MODEL_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading model from {ckpt_dir}''')
SCREAMING_SNAKE_CASE = {'model': model.state_dict()}
dist_cp.load_state_dict(
state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase) , planner=DefaultLoadPlanner() , )
SCREAMING_SNAKE_CASE = state_dict['model']
logger.info(F'''Model loaded from {ckpt_dir}''')
model.load_state_dict(_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0):
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
with FSDP.state_dict_type(
_UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
SCREAMING_SNAKE_CASE = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase)
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
SCREAMING_SNAKE_CASE = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Saving Optimizer state to {output_optimizer_file}''')
torch.save(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Optimizer state saved in {output_optimizer_file}''')
else:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''')
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
logger.info(F'''Saving Optimizer state to {ckpt_dir}''')
dist_cp.save_state_dict(
state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase) , planner=DefaultSavePlanner() , )
logger.info(F'''Optimizer state saved in {ckpt_dir}''')
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=0):
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
_UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
SCREAMING_SNAKE_CASE = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
SCREAMING_SNAKE_CASE = (
F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin'''
)
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
logger.info(F'''Loading Optimizer state from {input_optimizer_file}''')
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase)
logger.info(F'''Optimizer state loaded from {input_optimizer_file}''')
else:
SCREAMING_SNAKE_CASE = (
os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''')
if F'''{OPTIMIZER_NAME}''' not in input_dir
else input_dir
)
logger.info(F'''Loading Optimizer from {ckpt_dir}''')
SCREAMING_SNAKE_CASE = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase) , )
SCREAMING_SNAKE_CASE = optim_state['optimizer']
logger.info(F'''Optimizer loaded from {ckpt_dir}''')
SCREAMING_SNAKE_CASE = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
optimizer.load_state_dict(_UpperCAmelCase)
| 358 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : str = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
a_ : List[Any] = {'allegro/herbert-base-cased': 5_14}
a_ : Dict = {}
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Any = PRETRAINED_INIT_CONFIGURATION
_lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Any = HerbertTokenizer
def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict:
super().__init__(
a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return [1] + ([0] * len(a)) + [1]
return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
| 327 | 0 |
import re
from filelock import FileLock
try:
import nltk
a_ : Union[str, Any] = True
except (ImportError, ModuleNotFoundError):
a_ : Optional[int] = False
if NLTK_AVAILABLE:
with FileLock('.lock') as lock:
nltk.download('punkt', quiet=True)
def lowerCamelCase__ (_UpperCAmelCase):
re.sub('<n>' , '' , _UpperCAmelCase) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_UpperCAmelCase))
| 359 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
a_ : Dict = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( A__ ):
def __init__( self , *a , a=None , a=None , a=None , **a) -> List[Any]:
super().__init__(*a , **a)
SCREAMING_SNAKE_CASE = eval_examples
SCREAMING_SNAKE_CASE = post_process_function
SCREAMING_SNAKE_CASE = quant_trainer_args
SCREAMING_SNAKE_CASE = 128 # default number of calibration samples
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Union[str, Any]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.')
SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset
SCREAMING_SNAKE_CASE = self._remove_unused_columns(a , description='Calibration')
return DataLoader(
a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a , )
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset
SCREAMING_SNAKE_CASE = self.get_calib_dataloader(a)
SCREAMING_SNAKE_CASE = self.model
quant_trainer.configure_model(a , self.quant_trainer_args , calib=a)
model.eval()
quant_trainer.enable_calibration(a)
logger.info('***** Running calibration *****')
logger.info(f''' Num examples = {self.calib_num}''')
logger.info(f''' Batch size = {calib_dataloader.batch_size}''')
for step, inputs in enumerate(a):
# Prediction step
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prediction_step(a , a , prediction_loss_only=a)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = model
def SCREAMING_SNAKE_CASE__ ( self , a=None , a=None , a=None , a = "eval") -> str:
SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions)
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
self.log(a)
else:
SCREAMING_SNAKE_CASE = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , a)
return metrics
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a = "test") -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.get_test_dataloader(a)
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions , 'predict')
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a)
def SCREAMING_SNAKE_CASE__ ( self , a="./") -> List[Any]:
SCREAMING_SNAKE_CASE = self.eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = next(iter(a))
# saving device - to make it consistent
SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# convert to tuple
SCREAMING_SNAKE_CASE = tuple(v.to(a) for k, v in batch.items())
logger.info('Converting model to be onnx compatible')
from pytorch_quantization.nn import TensorQuantizer
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.model.to(a)
model.eval()
model.float()
SCREAMING_SNAKE_CASE = model.module if hasattr(a , 'module') else model
quant_trainer.configure_model(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = os.path.join(a , 'model.onnx')
logger.info(f'''exporting model to {output_model_file}''')
SCREAMING_SNAKE_CASE = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
a , a , a , export_params=a , opset_version=13 , do_constant_folding=a , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=a , )
logger.info('onnx export finished')
| 327 | 0 |
"""simple docstring"""
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ (_UpperCAmelCase):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _snake_case ( nn.Module ):
def __init__( self , a , a) -> Union[str, Any]:
super().__init__()
SCREAMING_SNAKE_CASE = module
SCREAMING_SNAKE_CASE = nn.Sequential(
nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , )
SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=a)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any:
return self.module(a , *a , **a) + self.adapter(a)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
_lowercase : Union[str, Any] = '''bigscience/bloom-1b7'''
# Constant values
_lowercase : str = 2.109_6595_5269_2574
_lowercase : Any = '''Hello my name is'''
_lowercase : Any = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
_lowercase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
super().setUp()
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_abit.config
self.assertTrue(hasattr(a , 'quantization_config'))
SCREAMING_SNAKE_CASE = config.to_dict()
SCREAMING_SNAKE_CASE = config.to_diff_dict()
SCREAMING_SNAKE_CASE = config.to_json_string()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
from bitsandbytes.nn import Paramsabit
SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint()
SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(a , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
with self.assertRaises(a):
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , )
def SCREAMING_SNAKE_CASE__ ( self) -> int:
with self.assertRaises(a):
# Tries with `str`
self.model_abit.to('cpu')
with self.assertRaises(a):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0'))
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa)
SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu')
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.half()
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.float()
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple:
SCREAMING_SNAKE_CASE = 't5-small'
SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name)
SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute'
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
from transformers import TaForConditionalGeneration
SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules
SCREAMING_SNAKE_CASE = None
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
SCREAMING_SNAKE_CASE = modules
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> str:
super().setUp()
# model_name
SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m'
SCREAMING_SNAKE_CASE = 't5-small'
# Different types of model
SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Sequence classification model
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=a , device_map='auto')
# CausalLM model
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Seq2seq model
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
SCREAMING_SNAKE_CASE = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> int:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=a , device_map='balanced')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
# Second real batch
SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = 'facebook/opt-350m'
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'):
return
# Step 1: freeze all parameters
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
SCREAMING_SNAKE_CASE = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(a)):
SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE = model.forward(**a)
out.logits.norm().backward()
for module in model.modules():
if isinstance(a , a):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(a , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class _snake_case ( A__ ):
_lowercase : str = '''gpt2-xl'''
_lowercase : Union[str, Any] = 3.3191_8548_5415_2187
| 360 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : List[str] = ['''pixel_values''']
def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
SCREAMING_SNAKE_CASE = pad_size
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a)
SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height
SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width
return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]:
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad
SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_pad:
SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 327 | 0 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class _snake_case ( A__ ):
def __init__( self , a , a=13 , a=7 , a=True , a=True , a=False , a=True , a=99 , a=32 , a=5 , a=4 , a=64 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=3 , a=4 , a=None , a=2 , a=2 , a=2 , a=2 , a=4 , a=1 , ) -> Tuple:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = seq_length
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_input_mask
SCREAMING_SNAKE_CASE = use_token_type_ids
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = type_sequence_label_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = num_choices
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = q_groups
SCREAMING_SNAKE_CASE = k_groups
SCREAMING_SNAKE_CASE = v_groups
SCREAMING_SNAKE_CASE = post_attention_groups
SCREAMING_SNAKE_CASE = intermediate_groups
SCREAMING_SNAKE_CASE = output_groups
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
SCREAMING_SNAKE_CASE = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length])
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size)
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices)
SCREAMING_SNAKE_CASE = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Tuple:
SCREAMING_SNAKE_CASE = SqueezeBertModel(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , a)
SCREAMING_SNAKE_CASE = model(a)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Optional[int]:
SCREAMING_SNAKE_CASE = SqueezeBertForMaskedLM(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Tuple:
SCREAMING_SNAKE_CASE = SqueezeBertForQuestionAnswering(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(
a , attention_mask=a , start_positions=a , end_positions=a)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> List[str]:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification(a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = SqueezeBertForTokenClassification(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = model(a , attention_mask=a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a , a , a) -> Dict:
SCREAMING_SNAKE_CASE = self.num_choices
SCREAMING_SNAKE_CASE = SqueezeBertForMultipleChoice(config=a)
model.to(a)
model.eval()
SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
SCREAMING_SNAKE_CASE = model(
a , attention_mask=a , labels=a , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = config_and_inputs
SCREAMING_SNAKE_CASE = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
_lowercase : List[str] = (
{
'''feature-extraction''': SqueezeBertModel,
'''fill-mask''': SqueezeBertForMaskedLM,
'''question-answering''': SqueezeBertForQuestionAnswering,
'''text-classification''': SqueezeBertForSequenceClassification,
'''token-classification''': SqueezeBertForTokenClassification,
'''zero-shot''': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
_lowercase : Any = False
_lowercase : Dict = True
_lowercase : Dict = False
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = SqueezeBertModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , dim=37)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = SqueezeBertModel.from_pretrained(a)
self.assertIsNotNone(a)
@require_sentencepiece
@require_tokenizers
@require_torch
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli')
SCREAMING_SNAKE_CASE = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]])
SCREAMING_SNAKE_CASE = model(a)[0]
SCREAMING_SNAKE_CASE = torch.Size((1, 3))
self.assertEqual(output.shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([[0.64_01, -0.03_49, -0.60_41]])
self.assertTrue(torch.allclose(a , a , atol=1E-4))
| 361 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base')
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE = model(a)['last_hidden_state']
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape , a)
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 327 | 0 |
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
a_ : str = logging.getLogger(__name__)
@dataclass
class _snake_case :
_lowercase : str
_lowercase : List[str]
_lowercase : Optional[List[str]]
@dataclass
class _snake_case :
_lowercase : List[int]
_lowercase : List[int]
_lowercase : Optional[List[int]] = None
_lowercase : Optional[List[int]] = None
class _snake_case ( A__ ):
_lowercase : List[Any] = '''train'''
_lowercase : Dict = '''dev'''
_lowercase : Union[str, Any] = '''test'''
class _snake_case :
@staticmethod
def SCREAMING_SNAKE_CASE__ ( a , a) -> List[InputExample]:
raise NotImplementedError
@staticmethod
def SCREAMING_SNAKE_CASE__ ( a) -> List[str]:
raise NotImplementedError
@staticmethod
def SCREAMING_SNAKE_CASE__ ( a , a , a , a , a=False , a="[CLS]" , a=1 , a="[SEP]" , a=False , a=False , a=0 , a=0 , a=-100 , a=0 , a=True , ) -> List[InputFeatures]:
SCREAMING_SNAKE_CASE = {label: i for i, label in enumerate(a)}
SCREAMING_SNAKE_CASE = []
for ex_index, example in enumerate(a):
if ex_index % 1_0000 == 0:
logger.info('Writing example %d of %d' , a , len(a))
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for word, label in zip(example.words , example.labels):
SCREAMING_SNAKE_CASE = tokenizer.tokenize(a)
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(a) > 0:
tokens.extend(a)
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(a) - 1))
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
SCREAMING_SNAKE_CASE = tokenizer.num_special_tokens_to_add()
if len(a) > max_seq_length - special_tokens_count:
SCREAMING_SNAKE_CASE = tokens[: (max_seq_length - special_tokens_count)]
SCREAMING_SNAKE_CASE = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
SCREAMING_SNAKE_CASE = [sequence_a_segment_id] * len(a)
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
SCREAMING_SNAKE_CASE = [cls_token] + tokens
SCREAMING_SNAKE_CASE = [pad_token_label_id] + label_ids
SCREAMING_SNAKE_CASE = [cls_token_segment_id] + segment_ids
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(a)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
SCREAMING_SNAKE_CASE = [1 if mask_padding_with_zero else 0] * len(a)
# Zero-pad up to the sequence length.
SCREAMING_SNAKE_CASE = max_seq_length - len(a)
if pad_on_left:
SCREAMING_SNAKE_CASE = ([pad_token] * padding_length) + input_ids
SCREAMING_SNAKE_CASE = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
SCREAMING_SNAKE_CASE = ([pad_token_segment_id] * padding_length) + segment_ids
SCREAMING_SNAKE_CASE = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(a) == max_seq_length
assert len(a) == max_seq_length
assert len(a) == max_seq_length
assert len(a) == max_seq_length
if ex_index < 5:
logger.info('*** Example ***')
logger.info('guid: %s' , example.guid)
logger.info('tokens: %s' , ' '.join([str(a) for x in tokens]))
logger.info('input_ids: %s' , ' '.join([str(a) for x in input_ids]))
logger.info('input_mask: %s' , ' '.join([str(a) for x in input_mask]))
logger.info('segment_ids: %s' , ' '.join([str(a) for x in segment_ids]))
logger.info('label_ids: %s' , ' '.join([str(a) for x in label_ids]))
if "token_type_ids" not in tokenizer.model_input_names:
SCREAMING_SNAKE_CASE = None
features.append(
InputFeatures(
input_ids=a , attention_mask=a , token_type_ids=a , label_ids=a))
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class _snake_case ( A__ ):
_lowercase : List[InputFeatures]
_lowercase : int = nn.CrossEntropyLoss().ignore_index
def __init__( self , a , a , a , a , a , a = None , a=False , a = Split.train , ) -> List[str]:
# Load data features from cache or dataset file
SCREAMING_SNAKE_CASE = os.path.join(
a , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(a)) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
SCREAMING_SNAKE_CASE = cached_features_file + '.lock'
with FileLock(a):
if os.path.exists(a) and not overwrite_cache:
logger.info(f'''Loading features from cached file {cached_features_file}''')
SCREAMING_SNAKE_CASE = torch.load(a)
else:
logger.info(f'''Creating features from dataset file at {data_dir}''')
SCREAMING_SNAKE_CASE = token_classification_task.read_examples_from_file(a , a)
# TODO clean up all this to leverage built-in features of tokenizers
SCREAMING_SNAKE_CASE = token_classification_task.convert_examples_to_features(
a , a , a , a , cls_token_at_end=bool(model_type in ['xlnet']) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=a , pad_on_left=bool(tokenizer.padding_side == 'left') , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(f'''Saving features into cached file {cached_features_file}''')
torch.save(self.features , a)
def __len__( self) -> Dict:
return len(self.features)
def __getitem__( self , a) -> InputFeatures:
return self.features[i]
if is_tf_available():
import tensorflow as tf
class _snake_case :
_lowercase : List[InputFeatures]
_lowercase : int = -1_00
def __init__( self , a , a , a , a , a , a = None , a=False , a = Split.train , ) -> Dict:
SCREAMING_SNAKE_CASE = token_classification_task.read_examples_from_file(a , a)
# TODO clean up all this to leverage built-in features of tokenizers
SCREAMING_SNAKE_CASE = token_classification_task.convert_examples_to_features(
a , a , a , a , cls_token_at_end=bool(model_type in ['xlnet']) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=a , pad_on_left=bool(tokenizer.padding_side == 'left') , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
SCREAMING_SNAKE_CASE = tf.data.Dataset.from_generator(
a , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , (
{'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None])},
tf.TensorShape([None]),
) , )
else:
SCREAMING_SNAKE_CASE = tf.data.Dataset.from_generator(
a , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , (
{
'input_ids': tf.TensorShape([None]),
'attention_mask': tf.TensorShape([None]),
'token_type_ids': tf.TensorShape([None]),
},
tf.TensorShape([None]),
) , )
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features)))
return self.dataset
def __len__( self) -> int:
return len(self.features)
def __getitem__( self , a) -> InputFeatures:
return self.features[i]
| 362 |
from scipy.stats import pearsonr
import datasets
a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float'),
'references': datasets.Value('float'),
}) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]:
if return_pvalue:
SCREAMING_SNAKE_CASE = pearsonr(a , a)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(a , a)[0])}
| 327 | 0 |
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(matrix[0])
SCREAMING_SNAKE_CASE = min(_UpperCAmelCase , _UpperCAmelCase)
for row in range(_UpperCAmelCase):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1 , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = matrix[col][row] / matrix[row][row]
for i in range(_UpperCAmelCase , _UpperCAmelCase):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
SCREAMING_SNAKE_CASE = True
for i in range(row + 1 , _UpperCAmelCase):
if matrix[i][row] != 0:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = matrix[i], matrix[row]
SCREAMING_SNAKE_CASE = False
break
if reduce:
rank -= 1
for i in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()
| 363 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _snake_case ( unittest.TestCase ):
_lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a)
return generator, ["Something to write", "Something else"]
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any:
SCREAMING_SNAKE_CASE = generator('Something there')
self.assertEqual(a , [{'generated_text': ANY(a)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['generated_text'].startswith('Something there'))
SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
SCREAMING_SNAKE_CASE = generator(
['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
with self.assertRaises(a):
generator(4)
@require_torch
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = generator(
'Something there' , num_return_sequences=a , num_beams=a , )
SCREAMING_SNAKE_CASE = [
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': ''},
]
self.assertEqual(a , a)
SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a)
self.assertEqual(
a , [
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
] , )
SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id
SCREAMING_SNAKE_CASE = '<pad>'
SCREAMING_SNAKE_CASE = generator(
['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , )
self.assertEqual(
a , [
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
] , )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
| 327 | 0 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw).convert('RGB')
return image
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = []
# fmt: off
# vision encoder
rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding'))
rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding'))
rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight'))
rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias'))
rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight'))
rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias'))
for i in range(config.vision_config.num_hidden_layers):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',))
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight'''))
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias'''))
# QFormer
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight'))
rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias'))
# fmt: on
return rename_keys
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
for i in range(config.vision_config.num_hidden_layers):
# read in original q and v biases
SCREAMING_SNAKE_CASE = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''')
SCREAMING_SNAKE_CASE = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''')
# next, set bias in the state dict
SCREAMING_SNAKE_CASE = torch.cat((q_bias, torch.zeros_like(_UpperCAmelCase , requires_grad=_UpperCAmelCase), v_bias))
SCREAMING_SNAKE_CASE = qkv_bias
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = 364 if 'coco' in model_name else 224
SCREAMING_SNAKE_CASE = BlipaVisionConfig(image_size=_UpperCAmelCase).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=_UpperCAmelCase).to_dict()
elif "opt-6.7b" in model_name:
SCREAMING_SNAKE_CASE = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=_UpperCAmelCase).to_dict()
elif "t5-xl" in model_name:
SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1).to_dict()
elif "t5-xxl" in model_name:
SCREAMING_SNAKE_CASE = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1).to_dict()
SCREAMING_SNAKE_CASE = BlipaConfig(vision_config=_UpperCAmelCase , text_config=_UpperCAmelCase)
return config, image_size
@torch.no_grad()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False):
SCREAMING_SNAKE_CASE = (
AutoTokenizer.from_pretrained('facebook/opt-2.7b')
if 'opt' in model_name
else AutoTokenizer.from_pretrained('google/flan-t5-xl')
)
SCREAMING_SNAKE_CASE = tokenizer('\n' , add_special_tokens=_UpperCAmelCase).input_ids[0]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_blipa_config(_UpperCAmelCase , eos_token_id=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = BlipaForConditionalGeneration(_UpperCAmelCase).eval()
SCREAMING_SNAKE_CASE = {
'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'),
'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'),
'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'),
'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'),
'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'),
'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'),
'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'),
}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model_name_to_original[model_name]
# load original model
print('Loading original model...')
SCREAMING_SNAKE_CASE = 'cuda' if torch.cuda.is_available() else 'cpu'
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = load_model_and_preprocess(
name=_UpperCAmelCase , model_type=_UpperCAmelCase , is_eval=_UpperCAmelCase , device=_UpperCAmelCase)
original_model.eval()
print('Done!')
# update state dict keys
SCREAMING_SNAKE_CASE = original_model.state_dict()
SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase)
for src, dest in rename_keys:
rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
if key.startswith('Qformer.bert'):
SCREAMING_SNAKE_CASE = key.replace('Qformer.bert' , 'qformer')
if "attention.self" in key:
SCREAMING_SNAKE_CASE = key.replace('self' , 'attention')
if "opt_proj" in key:
SCREAMING_SNAKE_CASE = key.replace('opt_proj' , 'language_projection')
if "t5_proj" in key:
SCREAMING_SNAKE_CASE = key.replace('t5_proj' , 'language_projection')
if key.startswith('opt'):
SCREAMING_SNAKE_CASE = key.replace('opt' , 'language')
if key.startswith('t5'):
SCREAMING_SNAKE_CASE = key.replace('t5' , 'language')
SCREAMING_SNAKE_CASE = val
# read in qv biases
read_in_q_v_bias(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = hf_model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
assert len(_UpperCAmelCase) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
SCREAMING_SNAKE_CASE = load_demo_image()
SCREAMING_SNAKE_CASE = vis_processors['eval'](_UpperCAmelCase).unsqueeze(0).to(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = tokenizer(['\n'] , return_tensors='pt').input_ids.to(_UpperCAmelCase)
# create processor
SCREAMING_SNAKE_CASE = BlipImageProcessor(
size={'height': image_size, 'width': image_size} , image_mean=_UpperCAmelCase , image_std=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = BlipaProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = processor(images=_UpperCAmelCase , return_tensors='pt').pixel_values.to(_UpperCAmelCase)
# make sure processor creates exact same pixel values
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase)
original_model.to(_UpperCAmelCase)
hf_model.to(_UpperCAmelCase)
with torch.no_grad():
if "opt" in model_name:
SCREAMING_SNAKE_CASE = original_model({'image': original_pixel_values, 'text_input': ['']}).logits
SCREAMING_SNAKE_CASE = hf_model(_UpperCAmelCase , _UpperCAmelCase).logits
else:
SCREAMING_SNAKE_CASE = original_model(
{'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']}).logits
SCREAMING_SNAKE_CASE = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100)
SCREAMING_SNAKE_CASE = hf_model(_UpperCAmelCase , _UpperCAmelCase , labels=_UpperCAmelCase).logits
assert original_logits.shape == logits.shape
print('First values of original logits:' , original_logits[0, :3, :3])
print('First values of HF logits:' , logits[0, :3, :3])
# assert values
if model_name == "blip2-flan-t5-xl":
SCREAMING_SNAKE_CASE = torch.tensor(
[[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=_UpperCAmelCase)
assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)
elif model_name == "blip2-flan-t5-xl-coco":
SCREAMING_SNAKE_CASE = torch.tensor(
[[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=_UpperCAmelCase)
else:
# cast to same type
SCREAMING_SNAKE_CASE = logits.dtype
assert torch.allclose(original_logits.to(_UpperCAmelCase) , _UpperCAmelCase , atol=1e-2)
print('Looks ok!')
print('Generating a caption...')
SCREAMING_SNAKE_CASE = ''
SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids.to(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = original_model.generate({'image': original_pixel_values})
SCREAMING_SNAKE_CASE = hf_model.generate(
_UpperCAmelCase , _UpperCAmelCase , do_sample=_UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print('Original generation:' , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = input_ids.shape[1]
SCREAMING_SNAKE_CASE = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = [text.strip() for text in output_text]
print('HF generation:' , _UpperCAmelCase)
if pytorch_dump_folder_path is not None:
processor.save_pretrained(_UpperCAmelCase)
hf_model.save_pretrained(_UpperCAmelCase)
if push_to_hub:
processor.push_to_hub(F'''nielsr/{model_name}''')
hf_model.push_to_hub(F'''nielsr/{model_name}''')
if __name__ == "__main__":
a_ : Optional[Any] = argparse.ArgumentParser()
a_ : str = [
'blip2-opt-2.7b',
'blip2-opt-6.7b',
'blip2-opt-2.7b-coco',
'blip2-opt-6.7b-coco',
'blip2-flan-t5-xl',
'blip2-flan-t5-xl-coco',
'blip2-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='blip2-opt-2.7b',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
a_ : Optional[int] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 364 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a)
SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))]
SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin') for f in files)
@slow
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3
assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1
SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(a) == num_samples
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , )
SCREAMING_SNAKE_CASE = scheduler.create_state()
SCREAMING_SNAKE_CASE = scheduler_state
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice).max() < 1E-2
| 327 | 0 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
a_ : Any = 'pt'
elif is_tf_available():
a_ : Dict = 'tf'
else:
a_ : Tuple = 'jax'
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : List[str] = PerceiverTokenizer
_lowercase : Dict = False
def SCREAMING_SNAKE_CASE__ ( self) -> int:
super().setUp()
SCREAMING_SNAKE_CASE = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver')
def SCREAMING_SNAKE_CASE__ ( self , **a) -> PerceiverTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a=False , a=20 , a=5) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
SCREAMING_SNAKE_CASE = []
for i in range(len(a)):
try:
SCREAMING_SNAKE_CASE = tokenizer.decode([i] , clean_up_tokenization_spaces=a)
except UnicodeDecodeError:
pass
toks.append((i, tok))
SCREAMING_SNAKE_CASE = list(filter(lambda a: re.match(R'^[ a-zA-Z]+$' , t[1]) , a))
SCREAMING_SNAKE_CASE = list(filter(lambda a: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=a) , a))
if max_length is not None and len(a) > max_length:
SCREAMING_SNAKE_CASE = toks[:max_length]
if min_length is not None and len(a) < min_length and len(a) > 0:
while len(a) < min_length:
SCREAMING_SNAKE_CASE = toks + toks
# toks_str = [t[1] for t in toks]
SCREAMING_SNAKE_CASE = [t[0] for t in toks]
# Ensure consistency
SCREAMING_SNAKE_CASE = tokenizer.decode(a , clean_up_tokenization_spaces=a)
if " " not in output_txt and len(a) > 1:
SCREAMING_SNAKE_CASE = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=a)
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=a)
)
if with_prefix_space:
SCREAMING_SNAKE_CASE = ' ' + output_txt
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
return output_txt, output_ids
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE = 'Unicode €.'
SCREAMING_SNAKE_CASE = tokenizer(a)
SCREAMING_SNAKE_CASE = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['input_ids'] , a)
# decoding
SCREAMING_SNAKE_CASE = tokenizer.decode(a)
self.assertEqual(a , '[CLS]Unicode €.[SEP]')
SCREAMING_SNAKE_CASE = tokenizer('e è é ê ë')
SCREAMING_SNAKE_CASE = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['input_ids'] , a)
# decoding
SCREAMING_SNAKE_CASE = tokenizer.decode(a)
self.assertEqual(a , '[CLS]e è é ê ë[SEP]')
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , '[CLS]e è é ê ë[SEP]')
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
SCREAMING_SNAKE_CASE = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
SCREAMING_SNAKE_CASE = tokenizer(a , padding=a , return_tensors=a)
self.assertIsInstance(a , a)
if FRAMEWORK != "jax":
SCREAMING_SNAKE_CASE = list(batch.input_ids.numpy()[0])
else:
SCREAMING_SNAKE_CASE = list(batch.input_ids.tolist()[0])
self.assertListEqual(a , a)
self.assertEqual((2, 38) , batch.input_ids.shape)
self.assertEqual((2, 38) , batch.attention_mask.shape)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
SCREAMING_SNAKE_CASE = tokenizer(a , padding=a , return_tensors=a)
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , a)
self.assertIn('attention_mask' , a)
self.assertNotIn('decoder_input_ids' , a)
self.assertNotIn('decoder_attention_mask' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.perceiver_tokenizer
SCREAMING_SNAKE_CASE = [
'Summary of the text.',
'Another summary.',
]
SCREAMING_SNAKE_CASE = tokenizer(
text_target=a , max_length=32 , padding='max_length' , truncation=a , return_tensors=a)
self.assertEqual(32 , targets['input_ids'].shape[1])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
# safety check on max_len default value so we are sure the test works
SCREAMING_SNAKE_CASE = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
self.assertNotEqual(tokenizer.model_max_length , 42)
# Now let's start the test
SCREAMING_SNAKE_CASE = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running'
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
tokenizer.save_pretrained(a)
SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a)
SCREAMING_SNAKE_CASE = after_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
shutil.rmtree(a)
SCREAMING_SNAKE_CASE = self.get_tokenizers(model_max_length=42)
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
# Isolate this from the other tests because we save additional tokens/etc
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'])
SCREAMING_SNAKE_CASE = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token')
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens})
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
tokenizer.save_pretrained(a)
SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a)
SCREAMING_SNAKE_CASE = after_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens)
self.assertEqual(after_tokenizer.model_max_length , 42)
SCREAMING_SNAKE_CASE = tokenizer.__class__.from_pretrained(a , model_max_length=43)
self.assertEqual(tokenizer.model_max_length , 43)
shutil.rmtree(a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()))
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(a)
with open(os.path.join(a , 'special_tokens_map.json') , encoding='utf-8') as json_file:
SCREAMING_SNAKE_CASE = json.load(a)
with open(os.path.join(a , 'tokenizer_config.json') , encoding='utf-8') as json_file:
SCREAMING_SNAKE_CASE = json.load(a)
SCREAMING_SNAKE_CASE = [f'''<extra_id_{i}>''' for i in range(125)]
SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [
'an_additional_special_token'
]
SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(a , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile:
json.dump(a , a)
with open(os.path.join(a , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile:
json.dump(a , a)
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(
a , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens)
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
SCREAMING_SNAKE_CASE = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=a)]
SCREAMING_SNAKE_CASE = tokenizer_class.from_pretrained(
a , additional_special_tokens=a , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens)
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , )
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178]) , '�')
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
SCREAMING_SNAKE_CASE = self.get_tokenizers(fast=a , do_lower_case=a)
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
SCREAMING_SNAKE_CASE = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]']
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_string(a)
self.assertIsInstance(a , a)
| 365 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]:
if rouge_types is None:
SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a)
if use_aggregator:
SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE = []
for ref, pred in zip(a , a):
SCREAMING_SNAKE_CASE = scorer.score(a , a)
if use_aggregator:
aggregator.add_scores(a)
else:
scores.append(a)
if use_aggregator:
SCREAMING_SNAKE_CASE = aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE = {}
for key in scores[0]:
SCREAMING_SNAKE_CASE = [score[key] for score in scores]
return result
| 327 | 0 |
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = F'''{sampling_rate}'''
SCREAMING_SNAKE_CASE = '1'
SCREAMING_SNAKE_CASE = 'f32le'
SCREAMING_SNAKE_CASE = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(_UpperCAmelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE) as ffmpeg_process:
SCREAMING_SNAKE_CASE = ffmpeg_process.communicate(_UpperCAmelCase)
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename') from error
SCREAMING_SNAKE_CASE = output_stream[0]
SCREAMING_SNAKE_CASE = np.frombuffer(_UpperCAmelCase , np.floataa)
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile')
return audio
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = "f32le" , ):
SCREAMING_SNAKE_CASE = F'''{sampling_rate}'''
SCREAMING_SNAKE_CASE = '1'
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE = 4
else:
raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''')
SCREAMING_SNAKE_CASE = platform.system()
if system == "Linux":
SCREAMING_SNAKE_CASE = 'alsa'
SCREAMING_SNAKE_CASE = 'default'
elif system == "Darwin":
SCREAMING_SNAKE_CASE = 'avfoundation'
SCREAMING_SNAKE_CASE = ':0'
elif system == "Windows":
SCREAMING_SNAKE_CASE = 'dshow'
SCREAMING_SNAKE_CASE = 'default'
SCREAMING_SNAKE_CASE = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
SCREAMING_SNAKE_CASE = int(round(sampling_rate * chunk_length_s)) * size_of_sample
SCREAMING_SNAKE_CASE = _ffmpeg_stream(_UpperCAmelCase , _UpperCAmelCase)
for item in iterator:
yield item
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = "f32le" , ):
if stream_chunk_s is not None:
SCREAMING_SNAKE_CASE = stream_chunk_s
else:
SCREAMING_SNAKE_CASE = chunk_length_s
SCREAMING_SNAKE_CASE = ffmpeg_microphone(_UpperCAmelCase , _UpperCAmelCase , format_for_conversion=_UpperCAmelCase)
if format_for_conversion == "s16le":
SCREAMING_SNAKE_CASE = np.intaa
SCREAMING_SNAKE_CASE = 2
elif format_for_conversion == "f32le":
SCREAMING_SNAKE_CASE = np.floataa
SCREAMING_SNAKE_CASE = 4
else:
raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''')
if stride_length_s is None:
SCREAMING_SNAKE_CASE = chunk_length_s / 6
SCREAMING_SNAKE_CASE = int(round(sampling_rate * chunk_length_s)) * size_of_sample
if isinstance(_UpperCAmelCase , (int, float)):
SCREAMING_SNAKE_CASE = [stride_length_s, stride_length_s]
SCREAMING_SNAKE_CASE = int(round(sampling_rate * stride_length_s[0])) * size_of_sample
SCREAMING_SNAKE_CASE = int(round(sampling_rate * stride_length_s[1])) * size_of_sample
SCREAMING_SNAKE_CASE = datetime.datetime.now()
SCREAMING_SNAKE_CASE = datetime.timedelta(seconds=_UpperCAmelCase)
for item in chunk_bytes_iter(_UpperCAmelCase , _UpperCAmelCase , stride=(stride_left, stride_right) , stream=_UpperCAmelCase):
# Put everything back in numpy scale
SCREAMING_SNAKE_CASE = np.frombuffer(item['raw'] , dtype=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
SCREAMING_SNAKE_CASE = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False):
SCREAMING_SNAKE_CASE = B''
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''')
SCREAMING_SNAKE_CASE = 0
for raw in iterator:
acc += raw
if stream and len(_UpperCAmelCase) < chunk_len:
SCREAMING_SNAKE_CASE = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(_UpperCAmelCase) >= chunk_len:
# We are flushing the accumulator
SCREAMING_SNAKE_CASE = (_stride_left, stride_right)
SCREAMING_SNAKE_CASE = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
SCREAMING_SNAKE_CASE = False
yield item
SCREAMING_SNAKE_CASE = stride_left
SCREAMING_SNAKE_CASE = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(_UpperCAmelCase) > stride_left:
SCREAMING_SNAKE_CASE = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
SCREAMING_SNAKE_CASE = False
yield item
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = 2**24 # 16Mo
try:
with subprocess.Popen(_UpperCAmelCase , stdout=subprocess.PIPE , bufsize=_UpperCAmelCase) as ffmpeg_process:
while True:
SCREAMING_SNAKE_CASE = ffmpeg_process.stdout.read(_UpperCAmelCase)
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename') from error
| 366 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ (_UpperCAmelCase):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _snake_case ( nn.Module ):
def __init__( self , a , a) -> Union[str, Any]:
super().__init__()
SCREAMING_SNAKE_CASE = module
SCREAMING_SNAKE_CASE = nn.Sequential(
nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , )
SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=a)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any:
return self.module(a , *a , **a) + self.adapter(a)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
_lowercase : Union[str, Any] = '''bigscience/bloom-1b7'''
# Constant values
_lowercase : str = 2.109_6595_5269_2574
_lowercase : Any = '''Hello my name is'''
_lowercase : Any = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
_lowercase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
super().setUp()
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_abit.config
self.assertTrue(hasattr(a , 'quantization_config'))
SCREAMING_SNAKE_CASE = config.to_dict()
SCREAMING_SNAKE_CASE = config.to_diff_dict()
SCREAMING_SNAKE_CASE = config.to_json_string()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
from bitsandbytes.nn import Paramsabit
SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint()
SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(a , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
with self.assertRaises(a):
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , )
def SCREAMING_SNAKE_CASE__ ( self) -> int:
with self.assertRaises(a):
# Tries with `str`
self.model_abit.to('cpu')
with self.assertRaises(a):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0'))
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa)
SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu')
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.half()
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.float()
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple:
SCREAMING_SNAKE_CASE = 't5-small'
SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name)
SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute'
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
from transformers import TaForConditionalGeneration
SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules
SCREAMING_SNAKE_CASE = None
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
SCREAMING_SNAKE_CASE = modules
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> str:
super().setUp()
# model_name
SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m'
SCREAMING_SNAKE_CASE = 't5-small'
# Different types of model
SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Sequence classification model
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=a , device_map='auto')
# CausalLM model
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Seq2seq model
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
SCREAMING_SNAKE_CASE = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> int:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=a , device_map='balanced')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
# Second real batch
SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = 'facebook/opt-350m'
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'):
return
# Step 1: freeze all parameters
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
SCREAMING_SNAKE_CASE = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(a)):
SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE = model.forward(**a)
out.logits.norm().backward()
for module in model.modules():
if isinstance(a , a):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(a , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class _snake_case ( A__ ):
_lowercase : str = '''gpt2-xl'''
_lowercase : Union[str, Any] = 3.3191_8548_5415_2187
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ : List[str] = {
'configuration_poolformer': [
'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'PoolFormerConfig',
'PoolFormerOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[Any] = ['PoolFormerFeatureExtractor']
a_ : Optional[Any] = ['PoolFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Any = [
'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PoolFormerForImageClassification',
'PoolFormerModel',
'PoolFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_poolformer import (
POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
PoolFormerConfig,
PoolFormerOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_poolformer import PoolFormerFeatureExtractor
from .image_processing_poolformer import PoolFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_poolformer import (
POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
PoolFormerForImageClassification,
PoolFormerModel,
PoolFormerPreTrainedModel,
)
else:
import sys
a_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 367 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ : Optional[Any] = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 327 | 0 |
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',)
SCREAMING_SNAKE_CASE = torch.permute(_UpperCAmelCase , (0, 2, 1))
elif flax_key_tuple[-1] == "kernel" and ".".join(_UpperCAmelCase):
# linear layer
SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',)
SCREAMING_SNAKE_CASE = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
SCREAMING_SNAKE_CASE = flax_key_tuple[:-1] + ('weight',)
return flax_key_tuple, flax_tensor
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if "metadata" in layer:
SCREAMING_SNAKE_CASE = layer.split('metadata')
SCREAMING_SNAKE_CASE = ''.join(split_layer[0])[:-1]
SCREAMING_SNAKE_CASE = [tuple(('metadata' + split_layer[1]).split('/'))]
elif "kvstore" in layer:
SCREAMING_SNAKE_CASE = layer.split('kvstore')
SCREAMING_SNAKE_CASE = ''.join(split_layer[0])[:-1]
SCREAMING_SNAKE_CASE = [tuple(('kvstore' + split_layer[1]).split('/'))]
else:
SCREAMING_SNAKE_CASE = layer.split('/')
SCREAMING_SNAKE_CASE = '/'.join(split_layer[:-1])
SCREAMING_SNAKE_CASE = (split_layer[-1],)
if "kvstore/path" in layer:
SCREAMING_SNAKE_CASE = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}'''
elif "kvstore/driver" in layer:
SCREAMING_SNAKE_CASE = 'file'
else:
SCREAMING_SNAKE_CASE = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = rename_keys(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = {}
for k, v in current_block.items():
SCREAMING_SNAKE_CASE = v
SCREAMING_SNAKE_CASE = new_current_block
torch.save(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = WEIGHTS_NAME):
SCREAMING_SNAKE_CASE = convert_file_size_to_int(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase)
with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb') as fp:
SCREAMING_SNAKE_CASE = serialization.msgpack_restore(fp.read())['optimizer']['target']
SCREAMING_SNAKE_CASE = flatten_dict(_UpperCAmelCase , sep='/')
SCREAMING_SNAKE_CASE = {}
for layer in checkpoint_info.keys():
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_key_and_tensorstore_dict(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
if curr_real_layer_name in all_layers:
SCREAMING_SNAKE_CASE = content
else:
SCREAMING_SNAKE_CASE = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
SCREAMING_SNAKE_CASE = ts.open(unflatten_dict(all_layers[key])).result().read().result()
SCREAMING_SNAKE_CASE = torch.tensor(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = raw_weights.numel() * dtype_byte_size(raw_weights.dtype)
# use the renaming pattern from the small conversion scripts
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = rename_base_flax_keys(tuple(key.split('/')) , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = '/'.join(_UpperCAmelCase)
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
SCREAMING_SNAKE_CASE = os.path.join(
_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin'''))
rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase)
sharded_state_dicts.append(current_block.keys())
del current_block
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = raw_weights.to(getattr(_UpperCAmelCase , _UpperCAmelCase))
current_block_size += weight_size
total_size += weight_size
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{len(_UpperCAmelCase)+1:05d}-of-???.bin'''))
rename_and_save_block(_UpperCAmelCase , _UpperCAmelCase)
sharded_state_dicts.append(current_block.keys())
# If we only have one shard, we return it
if len(_UpperCAmelCase) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = weights_name.replace(
'.bin' , F'''-{idx+1:05d}-of-{len(_UpperCAmelCase):05d}.bin''') # len(sharded_state_dicts):05d}
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin'''))
os.rename(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
SCREAMING_SNAKE_CASE = shard
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {'total_size': total_size}
SCREAMING_SNAKE_CASE = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(_UpperCAmelCase , _UpperCAmelCase) , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
return metadata, index
if __name__ == "__main__":
a_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--switch_t5x_checkpoint_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--max_shard_size', default='10GB', required=False, help='Max shard size')
parser.add_argument('--dtype', default='bfloat16', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted',
type=str,
required=False,
help='Path to the output pytorch model.',
)
a_ : int = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def lowerCamelCase__ ():
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
SCREAMING_SNAKE_CASE = SwitchTransformersConfig.from_pretrained('google/switch-base-8')
config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted')
SCREAMING_SNAKE_CASE = SwitchTransformersForConditionalGeneration.from_pretrained(
'/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto')
SCREAMING_SNAKE_CASE = TaTokenizer.from_pretrained('t5-small')
SCREAMING_SNAKE_CASE = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'
SCREAMING_SNAKE_CASE = tokenizer(_UpperCAmelCase , return_tensors='pt').input_ids
SCREAMING_SNAKE_CASE = model.generate(_UpperCAmelCase , decoder_start_token_id=0)
print(tokenizer.decode(out[0]))
| 368 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a_ : Dict = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , a = None) -> Optional[int]:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature'))
SCREAMING_SNAKE_CASE = os.path.abspath('examples')
for item in os.listdir(a):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE = os.path.join(a , a)
if os.path.isfile(a) and ".py" in item_path:
with self.subTest(
tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE = compare_against_test(
os.path.join(a , a) , a , a , a)
SCREAMING_SNAKE_CASE = '\n'.join(a)
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE = diff.replace(a , '')
self.assertEqual(a , '')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
self.one_complete_example('complete_nlp_example.py' , a)
self.one_complete_example('complete_nlp_example.py' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py'))
SCREAMING_SNAKE_CASE = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , a , a , a)
self.one_complete_example('complete_cv_example.py' , a , a , a)
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class _snake_case ( A__ ):
_lowercase : int = False
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Union[str, Any]:
super().setUpClass()
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml')
write_basic_config(save_location=cls.configPath)
SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Dict:
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0')))
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2')))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
else:
self.assertIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}):
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
SCREAMING_SNAKE_CASE = re.findall('({.+})' , a)
SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE = ast.literal_eval(a)
self.assertGreaterEqual(results['accuracy'] , 0.75)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'})
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(a , 'tracking')))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs)
| 327 | 0 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused'
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = floats_list((3, 1000))
SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = 'This is a test string'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 369 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self , a , a=3 , a=32 , a=3 , a=10 , a=[10, 20, 30, 40] , a=[1, 1, 2, 1] , a=True , a=True , a="relu" , a=3 , a=None , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embeddings_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = len(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TFResNetModel(config=a)
SCREAMING_SNAKE_CASE = model(a)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFResNetForImageClassification(a)
SCREAMING_SNAKE_CASE = model(a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowercase : Dict = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Any = False
_lowercase : List[str] = False
_lowercase : str = False
_lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = TFResNetModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return
@unittest.skip(reason='ResNet does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> int:
pass
@unittest.skip(reason='ResNet does not support input and output embeddings')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
def check_hidden_states_output(a , a , a):
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(a) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> str:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(a)
self.assertIsNotNone(a)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='tf')
# forward pass
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = tf.constant([-11.10_69, -9.78_77, -8.37_77])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4))
| 327 | 0 |
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionImgaImgPipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : List[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline'''
def SCREAMING_SNAKE_CASE__ ( self , a=0) -> Optional[Any]:
SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 128, 128) , rng=random.Random(a))
SCREAMING_SNAKE_CASE = np.random.RandomState(a)
SCREAMING_SNAKE_CASE = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'generator': generator,
'num_inference_steps': 3,
'strength': 0.75,
'guidance_scale': 7.5,
'output_type': 'numpy',
}
return inputs
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE = pipe(**a).images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 128, 128, 3)
SCREAMING_SNAKE_CASE = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87])
assert np.abs(image_slice - expected_slice).max() < 1E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a)
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE = pipe(**a).images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
SCREAMING_SNAKE_CASE = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=a)
# warmup pass to apply optimizations
SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs())
SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE = pipe(**a).images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
SCREAMING_SNAKE_CASE = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE = pipe(**a).images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
SCREAMING_SNAKE_CASE = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE = pipe(**a).images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
SCREAMING_SNAKE_CASE = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider')
SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = self.get_dummy_inputs()
SCREAMING_SNAKE_CASE = pipe(**a).images
SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
SCREAMING_SNAKE_CASE = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _snake_case ( unittest.TestCase ):
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = ort.SessionOptions()
SCREAMING_SNAKE_CASE = False
return options
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
SCREAMING_SNAKE_CASE = init_image.resize((768, 512))
# using the PNDM scheduler by default
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE = np.random.RandomState(0)
SCREAMING_SNAKE_CASE = pipe(
prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type='np' , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
SCREAMING_SNAKE_CASE = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/img2img/sketch-mountains-input.jpg')
SCREAMING_SNAKE_CASE = init_image.resize((768, 512))
SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained(
'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx')
SCREAMING_SNAKE_CASE = OnnxStableDiffusionImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=a)
SCREAMING_SNAKE_CASE = 'A fantasy landscape, trending on artstation'
SCREAMING_SNAKE_CASE = np.random.RandomState(0)
SCREAMING_SNAKE_CASE = pipe(
prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type='np' , )
SCREAMING_SNAKE_CASE = output.images
SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 768, 3)
SCREAMING_SNAKE_CASE = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2E-2
| 370 |
from math import isqrt
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]]
def lowerCamelCase__ (_UpperCAmelCase = 10**8):
SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 327 | 0 |
from __future__ import annotations
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None):
if start is None:
SCREAMING_SNAKE_CASE = 0
if end is None:
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
if start >= end:
return
SCREAMING_SNAKE_CASE = (start + end) // 2
slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase)
if sequence[end] < sequence[mid]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = sequence[mid], sequence[end]
slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1)
if __name__ == "__main__":
from doctest import testmod
testmod()
| 371 |
import baseaa
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaaencode(string.encode('utf-8'))
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import argparse
import copy
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {}
with open(_UpperCAmelCase) as f:
for line in f:
if line.split()[0] not in dict_of_neighbours:
SCREAMING_SNAKE_CASE = []
_list.append([line.split()[1], line.split()[2]])
SCREAMING_SNAKE_CASE = _list
else:
dict_of_neighbours[line.split()[0]].append(
[line.split()[1], line.split()[2]])
if line.split()[1] not in dict_of_neighbours:
SCREAMING_SNAKE_CASE = []
_list.append([line.split()[0], line.split()[2]])
SCREAMING_SNAKE_CASE = _list
else:
dict_of_neighbours[line.split()[1]].append(
[line.split()[0], line.split()[2]])
return dict_of_neighbours
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
with open(_UpperCAmelCase) as f:
SCREAMING_SNAKE_CASE = f.read(1)
SCREAMING_SNAKE_CASE = start_node
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = start_node
SCREAMING_SNAKE_CASE = 0
while visiting not in first_solution:
SCREAMING_SNAKE_CASE = 1_0000
for k in dict_of_neighbours[visiting]:
if int(k[1]) < int(_UpperCAmelCase) and k[0] not in first_solution:
SCREAMING_SNAKE_CASE = k[1]
SCREAMING_SNAKE_CASE = k[0]
first_solution.append(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = distance_of_first_solution + int(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = best_node
first_solution.append(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = 0
for k in dict_of_neighbours[first_solution[-2]]:
if k[0] == start_node:
break
position += 1
SCREAMING_SNAKE_CASE = (
distance_of_first_solution
+ int(dict_of_neighbours[first_solution[-2]][position][1])
- 1_0000
)
return first_solution, distance_of_first_solution
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = []
for n in solution[1:-1]:
SCREAMING_SNAKE_CASE = solution.index(_UpperCAmelCase)
for kn in solution[1:-1]:
SCREAMING_SNAKE_CASE = solution.index(_UpperCAmelCase)
if n == kn:
continue
SCREAMING_SNAKE_CASE = copy.deepcopy(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = kn
SCREAMING_SNAKE_CASE = n
SCREAMING_SNAKE_CASE = 0
for k in _tmp[:-1]:
SCREAMING_SNAKE_CASE = _tmp[_tmp.index(_UpperCAmelCase) + 1]
for i in dict_of_neighbours[k]:
if i[0] == next_node:
SCREAMING_SNAKE_CASE = distance + int(i[1])
_tmp.append(_UpperCAmelCase)
if _tmp not in neighborhood_of_solution:
neighborhood_of_solution.append(_tmp)
SCREAMING_SNAKE_CASE = len(neighborhood_of_solution[0]) - 1
neighborhood_of_solution.sort(key=lambda _UpperCAmelCase: x[index_of_last_item_in_the_list])
return neighborhood_of_solution
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = first_solution
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = distance_of_first_solution
SCREAMING_SNAKE_CASE = solution
while count <= iters:
SCREAMING_SNAKE_CASE = find_neighborhood(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution]
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
SCREAMING_SNAKE_CASE = False
while not found:
SCREAMING_SNAKE_CASE = 0
while i < len(_UpperCAmelCase):
if best_solution[i] != solution[i]:
SCREAMING_SNAKE_CASE = best_solution[i]
SCREAMING_SNAKE_CASE = solution[i]
break
SCREAMING_SNAKE_CASE = i + 1
if [first_exchange_node, second_exchange_node] not in tabu_list and [
second_exchange_node,
first_exchange_node,
] not in tabu_list:
tabu_list.append([first_exchange_node, second_exchange_node])
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = best_solution[:-1]
SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution][best_cost_index]
if cost < best_cost:
SCREAMING_SNAKE_CASE = cost
SCREAMING_SNAKE_CASE = solution
else:
SCREAMING_SNAKE_CASE = index_of_best_solution + 1
SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution]
if len(_UpperCAmelCase) >= size:
tabu_list.pop(0)
SCREAMING_SNAKE_CASE = count + 1
return best_solution_ever, best_cost
def lowerCamelCase__ (_UpperCAmelCase=None):
SCREAMING_SNAKE_CASE = generate_neighbours(args.File)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_first_solution(
args.File , _UpperCAmelCase)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tabu_search(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.Iterations , args.Size , )
print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''')
if __name__ == "__main__":
a_ : Optional[Any] = argparse.ArgumentParser(description='Tabu Search')
parser.add_argument(
'-f',
'--File',
type=str,
help='Path to the file containing the data',
required=True,
)
parser.add_argument(
'-i',
'--Iterations',
type=int,
help='How many iterations the algorithm should perform',
required=True,
)
parser.add_argument(
'-s', '--Size', type=int, help='Size of the tabu list', required=True
)
# Pass the arguments to main method
main(parser.parse_args())
| 350 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model']
SCREAMING_SNAKE_CASE = mam_aaa['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = MaMaaaConfig(
vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , )
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase)
model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : List[str] = parser.parse_args()
a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 327 | 0 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , a , a=13 , a=3 , a=224 , a=30 , a=400 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , ) -> Any:
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18}
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = min_resolution
SCREAMING_SNAKE_CASE = max_resolution
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean
SCREAMING_SNAKE_CASE = image_std
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : Optional[Any] = ViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = EfficientFormerImageProcessorTester(self)
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return self.image_proc_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(a , 'image_mean'))
self.assertTrue(hasattr(a , 'image_std'))
self.assertTrue(hasattr(a , 'do_normalize'))
self.assertTrue(hasattr(a , 'do_resize'))
self.assertTrue(hasattr(a , 'size'))
def SCREAMING_SNAKE_CASE__ ( self) -> str:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
# Initialize image_processor
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_proc_tester , equal_resolution=a)
for image in image_inputs:
self.assertIsInstance(a , Image.Image)
# Test not batched input
SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
# Initialize image_processor
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_proc_tester , equal_resolution=a , numpify=a)
for image in image_inputs:
self.assertIsInstance(a , np.ndarray)
# Test not batched input
SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
# Initialize image_processor
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_proc_tester , equal_resolution=a , torchify=a)
for image in image_inputs:
self.assertIsInstance(a , torch.Tensor)
# Test not batched input
SCREAMING_SNAKE_CASE = image_processor(image_inputs[0] , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processor(a , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['height'],
self.image_proc_tester.size['width'],
) , )
| 351 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused'
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = floats_list((3, 1000))
SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = 'This is a test string'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 327 | 0 |
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('3.8'):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False):
try:
SCREAMING_SNAKE_CASE = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
SCREAMING_SNAKE_CASE = default
else:
# KEY is set, convert it to True or False.
try:
SCREAMING_SNAKE_CASE = strtobool(_UpperCAmelCase)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F'''If set, {key} must be yes or no.''')
return _value
a_ : str = parse_flag_from_env('RUN_SLOW', default=False)
a_ : Optional[int] = parse_flag_from_env('RUN_REMOTE', default=False)
a_ : Optional[int] = parse_flag_from_env('RUN_LOCAL', default=True)
a_ : Union[str, Any] = parse_flag_from_env('RUN_PACKAGED', default=True)
# Compression
a_ : Union[str, Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='test requires lz4')
a_ : Dict = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='test requires py7zr')
a_ : Union[str, Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='test requires zstandard')
# Audio
a_ : int = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('soundfile') is None or version.parse(importlib_metadata.version('soundfile')) < version.parse('0.12.0'),
reason='test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ',
)
# Beam
a_ : Dict = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('0.3.2'),
reason='test requires apache-beam and a compatible dill version',
)
# Dill-cloudpickle compatibility
a_ : Optional[Any] = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('0.3.2'),
reason='test requires dill>0.3.2 for cloudpickle compatibility',
)
# Windows
a_ : List[str] = pytest.mark.skipif(
sys.platform == 'win32',
reason='test should not be run on Windows',
)
def lowerCamelCase__ (_UpperCAmelCase):
try:
import faiss # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip('test requires faiss')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import regex # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip('test requires regex')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import elasticsearch # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip('test requires elasticsearch')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import sqlalchemy # noqa
except ImportError:
SCREAMING_SNAKE_CASE = unittest.skip('test requires sqlalchemy')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not config.TORCH_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip('test requires PyTorch')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not config.TF_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip('test requires TensorFlow')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not config.JAX_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip('test requires JAX')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not config.PIL_AVAILABLE:
SCREAMING_SNAKE_CASE = unittest.skip('test requires Pillow')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import transformers # noqa F401
except ImportError:
return unittest.skip('test requires transformers')(_UpperCAmelCase)
else:
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip('test requires tiktoken')(_UpperCAmelCase)
else:
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import spacy # noqa F401
except ImportError:
return unittest.skip('test requires spacy')(_UpperCAmelCase)
else:
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
def _require_spacy_model(_UpperCAmelCase):
try:
import spacy # noqa F401
spacy.load(_UpperCAmelCase)
except ImportError:
return unittest.skip('test requires spacy')(_UpperCAmelCase)
except OSError:
return unittest.skip('test requires spacy model \'{}\''.format(_UpperCAmelCase))(_UpperCAmelCase)
else:
return test_case
return _require_spacy_model
def lowerCamelCase__ (_UpperCAmelCase):
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip('test requires pyspark')(_UpperCAmelCase)
else:
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip('test requires joblibspark')(_UpperCAmelCase)
else:
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not _run_slow_tests or _run_slow_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip('test is slow')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not _run_local_tests or _run_local_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip('test is local')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not _run_packaged_tests or _run_packaged_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip('test is packaged')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (_UpperCAmelCase):
if not _run_remote_tests or _run_remote_tests == 0:
SCREAMING_SNAKE_CASE = unittest.skip('test requires remote')(_UpperCAmelCase)
return test_case
def lowerCamelCase__ (*_UpperCAmelCase):
def decorate(cls):
for name, fn in cls.__dict__.items():
if callable(_UpperCAmelCase) and name.startswith('test'):
for decorator in decorators:
SCREAMING_SNAKE_CASE = decorator(_UpperCAmelCase)
setattr(cls , _UpperCAmelCase , _UpperCAmelCase)
return cls
return decorate
class _snake_case ( A__ ):
pass
class _snake_case ( A__ ):
_lowercase : Union[str, Any] = 0
_lowercase : List[Any] = 1
_lowercase : Optional[Any] = 2
@contextmanager
def lowerCamelCase__ (_UpperCAmelCase=OfflineSimulationMode.CONNECTION_FAILS , _UpperCAmelCase=1e-16):
SCREAMING_SNAKE_CASE = requests.Session().request
def timeout_request(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase):
# Change the url to an invalid url so that the connection hangs
SCREAMING_SNAKE_CASE = 'https://10.255.255.1'
if kwargs.get('timeout') is None:
raise RequestWouldHangIndefinitelyError(
F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''')
SCREAMING_SNAKE_CASE = timeout
try:
return online_request(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase)
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
SCREAMING_SNAKE_CASE = url
SCREAMING_SNAKE_CASE = e.args[0]
SCREAMING_SNAKE_CASE = (max_retry_error.args[0].replace('10.255.255.1' , F'''OfflineMock[{url}]'''),)
SCREAMING_SNAKE_CASE = (max_retry_error,)
raise
def raise_connection_error(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase):
raise requests.ConnectionError('Offline mode is enabled.' , request=_UpperCAmelCase)
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch('requests.Session.send' , _UpperCAmelCase):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch('requests.Session.request' , _UpperCAmelCase):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch('datasets.config.HF_DATASETS_OFFLINE' , _UpperCAmelCase):
yield
else:
raise ValueError('Please use a value from the OfflineSimulationMode enum.')
@contextmanager
def lowerCamelCase__ (*_UpperCAmelCase , **_UpperCAmelCase):
SCREAMING_SNAKE_CASE = str(Path().resolve())
with tempfile.TemporaryDirectory(*_UpperCAmelCase , **_UpperCAmelCase) as tmp_dir:
try:
os.chdir(_UpperCAmelCase)
yield
finally:
os.chdir(_UpperCAmelCase)
@contextmanager
def lowerCamelCase__ ():
import gc
gc.collect()
SCREAMING_SNAKE_CASE = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def lowerCamelCase__ ():
import gc
gc.collect()
SCREAMING_SNAKE_CASE = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
return deepcopy(_UpperCAmelCase).integers(0 , 100 , 10).tolist() == deepcopy(_UpperCAmelCase).integers(0 , 100 , 10).tolist()
def lowerCamelCase__ (_UpperCAmelCase):
import decorator
from requests.exceptions import HTTPError
def _wrapper(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase):
try:
return func(*_UpperCAmelCase , **_UpperCAmelCase)
except HTTPError as err:
if str(_UpperCAmelCase).startswith('500') or str(_UpperCAmelCase).startswith('502'):
pytest.xfail(str(_UpperCAmelCase))
raise err
return decorator.decorator(_wrapper , _UpperCAmelCase)
class _snake_case :
def __init__( self , a , a , a) -> str:
SCREAMING_SNAKE_CASE = returncode
SCREAMING_SNAKE_CASE = stdout
SCREAMING_SNAKE_CASE = stderr
async def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
while True:
SCREAMING_SNAKE_CASE = await stream.readline()
if line:
callback(_UpperCAmelCase)
else:
break
async def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False):
if echo:
print('\nRunning: ' , ' '.join(_UpperCAmelCase))
SCREAMING_SNAKE_CASE = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_UpperCAmelCase , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
def tee(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=""):
SCREAMING_SNAKE_CASE = line.decode('utf-8').rstrip()
sink.append(_UpperCAmelCase)
if not quiet:
print(_UpperCAmelCase , _UpperCAmelCase , file=_UpperCAmelCase)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda _UpperCAmelCase: tee(_UpperCAmelCase , _UpperCAmelCase , sys.stdout , label='stdout:')),
_read_stream(p.stderr , lambda _UpperCAmelCase: tee(_UpperCAmelCase , _UpperCAmelCase , sys.stderr , label='stderr:')),
] , timeout=_UpperCAmelCase , )
return _RunOutput(await p.wait() , _UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=180 , _UpperCAmelCase=False , _UpperCAmelCase=True):
SCREAMING_SNAKE_CASE = asyncio.get_event_loop()
SCREAMING_SNAKE_CASE = loop.run_until_complete(
_stream_subprocess(_UpperCAmelCase , env=_UpperCAmelCase , stdin=_UpperCAmelCase , timeout=_UpperCAmelCase , quiet=_UpperCAmelCase , echo=_UpperCAmelCase))
SCREAMING_SNAKE_CASE = ' '.join(_UpperCAmelCase)
if result.returncode > 0:
SCREAMING_SNAKE_CASE = '\n'.join(result.stderr)
raise RuntimeError(
F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
F'''The combined stderr from workers follows:\n{stderr}''')
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F'''\'{cmd_str}\' produced no output.''')
return result
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0')
SCREAMING_SNAKE_CASE = re.sub(R'^gw' , '' , _UpperCAmelCase , 0 , re.M)
return int(_UpperCAmelCase)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = 2_9500
SCREAMING_SNAKE_CASE = pytest_xdist_worker_id()
return port + uniq_delta
| 352 |
import argparse
import datetime
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_UpperCAmelCase) < 11:
raise ValueError('Must be 10 characters long')
# Get month
SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12')
SCREAMING_SNAKE_CASE = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get day
SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31')
# Get second separator
SCREAMING_SNAKE_CASE = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get year
SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?')
# Get datetime obj for validation
SCREAMING_SNAKE_CASE = datetime.date(int(_UpperCAmelCase) , int(_UpperCAmelCase) , int(_UpperCAmelCase))
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE = y - 1
SCREAMING_SNAKE_CASE = m + 12
# maths var
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[:2])
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[2:])
SCREAMING_SNAKE_CASE = int(2.6 * m - 5.39)
SCREAMING_SNAKE_CASE = int(c / 4)
SCREAMING_SNAKE_CASE = int(k / 4)
SCREAMING_SNAKE_CASE = int(d + k)
SCREAMING_SNAKE_CASE = int(t + u + v + x)
SCREAMING_SNAKE_CASE = int(z - (2 * c))
SCREAMING_SNAKE_CASE = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.')
# Response
SCREAMING_SNAKE_CASE = F'''Your date {date_input}, is a {days[str(_UpperCAmelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Tuple = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
a_ : Any = parser.parse_args()
zeller(args.date_input)
| 327 | 0 |
"""simple docstring"""
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
if density <= 0:
raise ValueError('Impossible fluid density')
if bulk_modulus <= 0:
raise ValueError('Impossible bulk modulus')
return (bulk_modulus / density) ** 0.5
if __name__ == "__main__":
import doctest
doctest.testmod()
| 353 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a_ : Optional[Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : Optional[int] = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384}
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''')
SCREAMING_SNAKE_CASE = (size['height'], size['width'])
return resize(a , size=a , resample=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(a , mean=a , std=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a)
return encoded_outputs
| 327 | 0 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-t5'
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(a)
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a)
SCREAMING_SNAKE_CASE = tokenizer('This is me' , return_tensors='pt')
SCREAMING_SNAKE_CASE = model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules()))
SCREAMING_SNAKE_CASE = model.generate(**a)
SCREAMING_SNAKE_CASE = model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules()))
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(a)
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a)
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules()))
SCREAMING_SNAKE_CASE = model_reloaded.generate(**a)
self.assertTrue(torch.allclose(a , a))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-t5'
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(a)
SCREAMING_SNAKE_CASE = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(a):
model.save_pretrained(a)
SCREAMING_SNAKE_CASE = model.reverse_bettertransformer()
model.save_pretrained(a)
| 354 |
class _snake_case :
def __init__( self , a) -> Optional[Any]:
SCREAMING_SNAKE_CASE = val
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self , a) -> str:
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.left.insert(a)
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.right.insert(a)
else:
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
# Recursive traversal
if root:
inorder(root.left , _UpperCAmelCase)
res.append(root.val)
inorder(root.right , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
# Build BST
if len(_UpperCAmelCase) == 0:
return arr
SCREAMING_SNAKE_CASE = Node(arr[0])
for i in range(1 , len(_UpperCAmelCase)):
root.insert(arr[i])
# Traverse BST in order.
SCREAMING_SNAKE_CASE = []
inorder(_UpperCAmelCase , _UpperCAmelCase)
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 327 | 0 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
a_ : Union[str, Any] = logging.get_logger(__name__)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
"""simple docstring"""
SCREAMING_SNAKE_CASE = nn.ModuleList([src_layers[i] for i in layers_to_copy])
assert len(_UpperCAmelCase) == len(_UpperCAmelCase), F'''{len(_UpperCAmelCase)} != {len(_UpperCAmelCase)}'''
dest_layers.load_state_dict(layers_to_copy.state_dict())
a_ : Union[str, Any] = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
a_ : Optional[Any] = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
"""simple docstring"""
try:
SCREAMING_SNAKE_CASE = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first'''
F''' {n_student}''')
return list(range(_UpperCAmelCase))
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
"""simple docstring"""
if n_student > n_teacher:
raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''')
elif n_teacher == n_student:
return list(range(_UpperCAmelCase))
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = "student" , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.'
assert (e is not None) or (d is not None), _msg
if isinstance(_UpperCAmelCase , _UpperCAmelCase):
AutoTokenizer.from_pretrained(_UpperCAmelCase).save_pretrained(_UpperCAmelCase) # purely for convenience
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase).eval()
else:
assert isinstance(_UpperCAmelCase , _UpperCAmelCase), F'''teacher must be a model or string got type {type(_UpperCAmelCase)}'''
SCREAMING_SNAKE_CASE = teacher.config.to_diff_dict()
try:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
SCREAMING_SNAKE_CASE = teacher_e
if d is None:
SCREAMING_SNAKE_CASE = teacher_d
init_kwargs.update({'encoder_layers': e, 'decoder_layers': d})
except AttributeError: # T5
if hasattr(teacher.config , 'num_encoder_layers'):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
SCREAMING_SNAKE_CASE = teacher_e
if d is None:
SCREAMING_SNAKE_CASE = teacher_d
if hasattr(teacher.config , 'num_encoder_layers'):
init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d})
else:
init_kwargs.update({'num_layers': e, 'num_decoder_layers': d})
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(_UpperCAmelCase)
# Copy weights
SCREAMING_SNAKE_CASE = teacher.config_class(**_UpperCAmelCase)
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_config(_UpperCAmelCase)
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
SCREAMING_SNAKE_CASE = student.load_state_dict(teacher.state_dict() , strict=_UpperCAmelCase)
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = list(range(_UpperCAmelCase)), list(range(_UpperCAmelCase))
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to'''
F''' {save_path}''')
student.save_pretrained(_UpperCAmelCase)
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
SCREAMING_SNAKE_CASE = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase)
if d_layers_to_copy is None:
SCREAMING_SNAKE_CASE = pick_layers_to_copy(_UpperCAmelCase , _UpperCAmelCase)
try:
if hasattr(
_UpperCAmelCase , 'prophetnet'): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , _UpperCAmelCase)
copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , _UpperCAmelCase)
else:
copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , _UpperCAmelCase)
copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , _UpperCAmelCase)
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block , student.encoder.block , _UpperCAmelCase)
copy_layers(teacher.decoder.block , student.decoder.block , _UpperCAmelCase)
logger.info(
F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''')
SCREAMING_SNAKE_CASE = {
'teacher_type': teacher.config.model_type,
'copied_encoder_layers': e_layers_to_copy,
'copied_decoder_layers': d_layers_to_copy,
}
student.save_pretrained(_UpperCAmelCase)
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
| 355 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a_ : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
a_ : Optional[int] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(state_dict.keys())
for name in state_dict_keys:
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
# emb -> embedding
if name.startswith('emb.'):
SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase)
# ffn -> feed_forward
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
SCREAMING_SNAKE_CASE = 'rwkv.' + name
SCREAMING_SNAKE_CASE = weight
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
SCREAMING_SNAKE_CASE = 5_0277
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
tokenizer.save_pretrained(_UpperCAmelCase)
# 2. Build the config
SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
SCREAMING_SNAKE_CASE = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
SCREAMING_SNAKE_CASE = RwkvConfig(
vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_UpperCAmelCase)
# 3. Download model file then convert state_dict
SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase)
# 4. Split in shards and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase)
for shard_file, shard in shards.items():
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
if index is not None:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
# Save the index as well
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
SCREAMING_SNAKE_CASE = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB')
tokenizer.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
a_ : Tuple = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 327 | 0 |
import baseaa
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaaencode(string.encode('utf-8'))
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set())
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
class _snake_case :
def __init__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = metric_id
class _snake_case :
_lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']]
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock())
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if "tmp_path" in args:
SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args)
with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'):
func(*_UpperCAmelCase)
| 327 | 0 |
"""simple docstring"""
import argparse
import torch
from transformers import GPTaLMHeadModel, RobertaForMaskedLM
if __name__ == "__main__":
a_ : Dict = argparse.ArgumentParser(
description=(
'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2'])
parser.add_argument('--model_name', default='roberta-large', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
a_ : str = parser.parse_args()
if args.model_type == "roberta":
a_ : int = RobertaForMaskedLM.from_pretrained(args.model_name)
a_ : Optional[int] = 'roberta'
elif args.model_type == "gpt2":
a_ : List[str] = GPTaLMHeadModel.from_pretrained(args.model_name)
a_ : int = 'transformer'
a_ : Tuple = model.state_dict()
a_ : Tuple = {}
# Embeddings #
if args.model_type == "gpt2":
for param_name in ["wte.weight", "wpe.weight"]:
a_ : Optional[int] = state_dict[f"""{prefix}.{param_name}"""]
else:
for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]:
a_ : Tuple = f"""{prefix}.embeddings.{w}.weight"""
a_ : Optional[Any] = state_dict[param_name]
for w in ["weight", "bias"]:
a_ : int = f"""{prefix}.embeddings.LayerNorm.{w}"""
a_ : Optional[Any] = state_dict[param_name]
# Transformer Blocks #
a_ : Optional[Any] = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
if args.model_type == "gpt2":
for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]:
for w in ["weight", "bias"]:
a_ : str = state_dict[
f"""{prefix}.h.{teacher_idx}.{layer}.{w}"""
]
a_ : Optional[Any] = state_dict[f"""{prefix}.h.{teacher_idx}.attn.bias"""]
else:
for layer in [
"attention.self.query",
"attention.self.key",
"attention.self.value",
"attention.output.dense",
"attention.output.LayerNorm",
"intermediate.dense",
"output.dense",
"output.LayerNorm",
]:
for w in ["weight", "bias"]:
a_ : str = state_dict[
f"""{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}"""
]
std_idx += 1
# Language Modeling Head ###s
if args.model_type == "roberta":
for layer in ["lm_head.decoder.weight", "lm_head.bias"]:
a_ : List[str] = state_dict[f"""{layer}"""]
if args.vocab_transform:
for w in ["weight", "bias"]:
a_ : Optional[int] = state_dict[f"""lm_head.dense.{w}"""]
a_ : Dict = state_dict[f"""lm_head.layer_norm.{w}"""]
elif args.model_type == "gpt2":
for w in ["weight", "bias"]:
a_ : Optional[int] = state_dict[f"""{prefix}.ln_f.{w}"""]
a_ : Union[str, Any] = state_dict['lm_head.weight']
print(f"""N layers selected for distillation: {std_idx}""")
print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""")
print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""")
torch.save(compressed_sd, args.dump_checkpoint)
| 357 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Any = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 327 | 0 |
import argparse
import gdown
import numpy as np
import torch
from huggingface_hub import hf_hub_download
from transformers import (
CLIPTokenizer,
CLIPTokenizerFast,
VideoMAEImageProcessor,
XCLIPConfig,
XCLIPModel,
XCLIPProcessor,
XCLIPTextConfig,
XCLIPVisionConfig,
)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = XCLIPTextConfig()
# derive patch size from model name
SCREAMING_SNAKE_CASE = model_name.find('patch')
SCREAMING_SNAKE_CASE = int(model_name[start_idx + len('patch') : start_idx + len('patch') + 2])
SCREAMING_SNAKE_CASE = XCLIPVisionConfig(patch_size=_UpperCAmelCase , num_frames=_UpperCAmelCase)
if "large" in model_name:
SCREAMING_SNAKE_CASE = 768
SCREAMING_SNAKE_CASE = 3072
SCREAMING_SNAKE_CASE = 12
SCREAMING_SNAKE_CASE = 1024
SCREAMING_SNAKE_CASE = 4096
SCREAMING_SNAKE_CASE = 16
SCREAMING_SNAKE_CASE = 24
SCREAMING_SNAKE_CASE = 768
SCREAMING_SNAKE_CASE = 3072
if model_name == "xclip-large-patch14-16-frames":
SCREAMING_SNAKE_CASE = 336
SCREAMING_SNAKE_CASE = XCLIPConfig.from_text_vision_configs(_UpperCAmelCase , _UpperCAmelCase)
if "large" in model_name:
SCREAMING_SNAKE_CASE = 768
return config
def lowerCamelCase__ (_UpperCAmelCase):
# text encoder
if name == "token_embedding.weight":
SCREAMING_SNAKE_CASE = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight')
if name == "positional_embedding":
SCREAMING_SNAKE_CASE = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight')
if "ln_1" in name:
SCREAMING_SNAKE_CASE = name.replace('ln_1' , 'layer_norm1')
if "ln_2" in name:
SCREAMING_SNAKE_CASE = name.replace('ln_2' , 'layer_norm2')
if "c_fc" in name:
SCREAMING_SNAKE_CASE = name.replace('c_fc' , 'fc1')
if "c_proj" in name:
SCREAMING_SNAKE_CASE = name.replace('c_proj' , 'fc2')
if name.startswith('transformer.resblocks'):
SCREAMING_SNAKE_CASE = name.replace('transformer.resblocks' , 'text_model.encoder.layers')
if "attn.out_proj" in name and "message" not in name:
SCREAMING_SNAKE_CASE = name.replace('attn.out_proj' , 'self_attn.out_proj')
if "ln_final" in name:
SCREAMING_SNAKE_CASE = name.replace('ln_final' , 'text_model.final_layer_norm')
# visual encoder
if name == "visual.class_embedding":
SCREAMING_SNAKE_CASE = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding')
if name == "visual.positional_embedding":
SCREAMING_SNAKE_CASE = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight')
if name.startswith('visual.transformer.resblocks'):
SCREAMING_SNAKE_CASE = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers')
if "visual.conv1" in name:
SCREAMING_SNAKE_CASE = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding')
if "visual.ln_pre" in name:
SCREAMING_SNAKE_CASE = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm')
if "visual.ln_post" in name:
SCREAMING_SNAKE_CASE = name.replace('visual.ln_post' , 'vision_model.post_layernorm')
if "visual.proj" in name:
SCREAMING_SNAKE_CASE = name.replace('visual.proj' , 'visual_projection.weight')
if "text_projection" in name:
SCREAMING_SNAKE_CASE = name.replace('text_projection' , 'text_projection.weight')
# things on top
if "prompts_visual_proj" in name:
SCREAMING_SNAKE_CASE = name.replace('prompts_visual_proj' , 'prompts_visual_projection')
if "prompts_visual_ln" in name:
SCREAMING_SNAKE_CASE = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm')
# mit
if name == "mit.positional_embedding":
SCREAMING_SNAKE_CASE = name.replace('positional' , 'position')
if name.startswith('mit.resblocks'):
SCREAMING_SNAKE_CASE = name.replace('mit.resblocks' , 'mit.encoder.layers')
# prompts generator
if name.startswith('prompts_generator.norm'):
SCREAMING_SNAKE_CASE = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm')
return name
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE = orig_state_dict.pop(_UpperCAmelCase)
if "attn.in_proj" in key:
SCREAMING_SNAKE_CASE = key.split('.')
if key.startswith('visual'):
SCREAMING_SNAKE_CASE = key_split[3]
SCREAMING_SNAKE_CASE = config.vision_config.hidden_size
if "message_attn" in key:
if "weight" in key:
SCREAMING_SNAKE_CASE = val[
:dim, :
]
SCREAMING_SNAKE_CASE = val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE = val[
-dim:, :
]
else:
SCREAMING_SNAKE_CASE = val[
:dim
]
SCREAMING_SNAKE_CASE = val[
dim : dim * 2
]
SCREAMING_SNAKE_CASE = val[
-dim:
]
else:
if "weight" in key:
SCREAMING_SNAKE_CASE = val[
:dim, :
]
SCREAMING_SNAKE_CASE = val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE = val[
-dim:, :
]
else:
SCREAMING_SNAKE_CASE = val[:dim]
SCREAMING_SNAKE_CASE = val[
dim : dim * 2
]
SCREAMING_SNAKE_CASE = val[-dim:]
elif key.startswith('mit'):
SCREAMING_SNAKE_CASE = key_split[2]
SCREAMING_SNAKE_CASE = config.vision_config.mit_hidden_size
if "weight" in key:
SCREAMING_SNAKE_CASE = val[:dim, :]
SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE = val[:dim]
SCREAMING_SNAKE_CASE = val[dim : dim * 2]
SCREAMING_SNAKE_CASE = val[-dim:]
else:
SCREAMING_SNAKE_CASE = key_split[2]
SCREAMING_SNAKE_CASE = config.text_config.hidden_size
if "weight" in key:
SCREAMING_SNAKE_CASE = val[:dim, :]
SCREAMING_SNAKE_CASE = val[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE = val[:dim]
SCREAMING_SNAKE_CASE = val[
dim : dim * 2
]
SCREAMING_SNAKE_CASE = val[-dim:]
else:
SCREAMING_SNAKE_CASE = rename_key(_UpperCAmelCase)
if new_key_name in ["visual_projection.weight", "text_projection.weight"]:
SCREAMING_SNAKE_CASE = val.T
SCREAMING_SNAKE_CASE = val
return orig_state_dict
def lowerCamelCase__ (_UpperCAmelCase):
if num_frames == 8:
SCREAMING_SNAKE_CASE = 'eating_spaghetti_8_frames.npy'
elif num_frames == 16:
SCREAMING_SNAKE_CASE = 'eating_spaghetti.npy'
elif num_frames == 32:
SCREAMING_SNAKE_CASE = 'eating_spaghetti_32_frames.npy'
SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id='hf-internal-testing/spaghetti-video' , filename=_UpperCAmelCase , repo_type='dataset' , )
SCREAMING_SNAKE_CASE = np.load(_UpperCAmelCase)
return list(_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=False):
SCREAMING_SNAKE_CASE = {
# fully supervised kinetics-400 checkpoints
'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth',
'xclip-base-patch32-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth'
),
'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth',
'xclip-base-patch16-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth'
),
'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&export=download&confirm=t&uuid=b26caedc-88e2-473e-830a-9d158b653cdb',
'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&export=download&confirm=t&uuid=538fa810-e671-4050-b385-9a623f89804f',
# fully supervised kinetics-600 checkpoints
'xclip-base-patch16-kinetics-600': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth'
),
'xclip-base-patch16-kinetics-600-16-frames': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth'
),
'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&export=download&confirm=t&uuid=141d4977-4a65-44ae-864f-4b0c19f838be',
# few shot
'xclip-base-patch16-hmdb-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth'
),
'xclip-base-patch16-hmdb-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth'
),
'xclip-base-patch16-hmdb-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth'
),
'xclip-base-patch16-hmdb-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth'
),
'xclip-base-patch16-ucf-2-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth'
),
'xclip-base-patch16-ucf-4-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth'
),
'xclip-base-patch16-ucf-8-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth'
),
'xclip-base-patch16-ucf-16-shot': (
'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth'
),
# zero shot
'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth',
}
SCREAMING_SNAKE_CASE = model_to_url[model_name]
SCREAMING_SNAKE_CASE = 8
if "16-frames" in model_name:
SCREAMING_SNAKE_CASE = 16
elif "shot" in model_name:
SCREAMING_SNAKE_CASE = 32
SCREAMING_SNAKE_CASE = get_xclip_config(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = XCLIPModel(_UpperCAmelCase)
model.eval()
if "drive" in checkpoint_url:
SCREAMING_SNAKE_CASE = 'pytorch_model.bin'
gdown.cached_download(_UpperCAmelCase , _UpperCAmelCase , quiet=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')['model']
else:
SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(_UpperCAmelCase)['model']
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = XCLIPModel(_UpperCAmelCase)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"]
model.eval()
SCREAMING_SNAKE_CASE = 336 if model_name == 'xclip-large-patch14-16-frames' else 224
SCREAMING_SNAKE_CASE = VideoMAEImageProcessor(size=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32')
SCREAMING_SNAKE_CASE = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32')
SCREAMING_SNAKE_CASE = XCLIPProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = prepare_video(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = processor(
text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=_UpperCAmelCase , return_tensors='pt' , padding=_UpperCAmelCase)
print('Shape of pixel values:' , inputs.pixel_values.shape)
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**_UpperCAmelCase)
# Verify outputs
SCREAMING_SNAKE_CASE = outputs.logits_per_video
SCREAMING_SNAKE_CASE = logits_per_video.softmax(dim=1)
print('Probs:' , _UpperCAmelCase)
# kinetics-400
if model_name == "xclip-base-patch32":
SCREAMING_SNAKE_CASE = torch.tensor([[0.00_19, 0.99_51, 0.00_30]])
elif model_name == "xclip-base-patch32-16-frames":
SCREAMING_SNAKE_CASE = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]])
elif model_name == "xclip-base-patch16":
SCREAMING_SNAKE_CASE = torch.tensor([[0.00_83, 0.96_81, 0.02_36]])
elif model_name == "xclip-base-patch16-16-frames":
SCREAMING_SNAKE_CASE = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]])
elif model_name == "xclip-large-patch14":
SCREAMING_SNAKE_CASE = torch.tensor([[0.00_62, 0.98_64, 0.00_75]])
elif model_name == "xclip-large-patch14-16-frames":
SCREAMING_SNAKE_CASE = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]])
# kinetics-600
elif model_name == "xclip-base-patch16-kinetics-600":
SCREAMING_SNAKE_CASE = torch.tensor([[0.05_55, 0.89_14, 0.05_31]])
elif model_name == "xclip-base-patch16-kinetics-600-16-frames":
SCREAMING_SNAKE_CASE = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]])
elif model_name == "xclip-large-patch14-kinetics-600":
SCREAMING_SNAKE_CASE = torch.tensor([[0.00_36, 0.99_20, 0.00_45]])
# few shot
elif model_name == "xclip-base-patch16-hmdb-2-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]])
elif model_name == "xclip-base-patch16-hmdb-4-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]])
elif model_name == "xclip-base-patch16-hmdb-8-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]])
elif model_name == "xclip-base-patch16-hmdb-16-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]])
elif model_name == "xclip-base-patch16-ucf-2-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]])
elif model_name == "xclip-base-patch16-ucf-4-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]])
elif model_name == "xclip-base-patch16-ucf-8-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[0.00_27, 0.99_04, 0.00_70]])
elif model_name == "xclip-base-patch16-ucf-16-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]])
# zero shot
elif model_name == "xclip-base-patch16-zero-shot":
SCREAMING_SNAKE_CASE = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]])
else:
raise ValueError(F'''Model name {model_name} not supported''')
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3)
print('Looks ok!')
if pytorch_dump_folder_path is not None:
print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''')
model.save_pretrained(_UpperCAmelCase)
if push_to_hub:
print('Pushing model, processor and slow tokenizer files to the hub...')
model.push_to_hub(_UpperCAmelCase , organization='nielsr')
processor.push_to_hub(_UpperCAmelCase , organization='nielsr')
slow_tokenizer.push_to_hub(_UpperCAmelCase , organization='nielsr')
if __name__ == "__main__":
a_ : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='xclip-base-patch32',
type=str,
help='Name of the model.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
a_ : Dict = parser.parse_args()
convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 358 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : str = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
a_ : List[Any] = {'allegro/herbert-base-cased': 5_14}
a_ : Dict = {}
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Any = PRETRAINED_INIT_CONFIGURATION
_lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Any = HerbertTokenizer
def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict:
super().__init__(
a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return [1] + ([0] * len(a)) + [1]
return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
| 327 | 0 |
from __future__ import annotations
def lowerCamelCase__ (_UpperCAmelCase):
if not nums:
raise ValueError('List is empty')
return sum(_UpperCAmelCase) / len(_UpperCAmelCase)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 359 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
a_ : Dict = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( A__ ):
def __init__( self , *a , a=None , a=None , a=None , **a) -> List[Any]:
super().__init__(*a , **a)
SCREAMING_SNAKE_CASE = eval_examples
SCREAMING_SNAKE_CASE = post_process_function
SCREAMING_SNAKE_CASE = quant_trainer_args
SCREAMING_SNAKE_CASE = 128 # default number of calibration samples
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Union[str, Any]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.')
SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset
SCREAMING_SNAKE_CASE = self._remove_unused_columns(a , description='Calibration')
return DataLoader(
a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a , )
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset
SCREAMING_SNAKE_CASE = self.get_calib_dataloader(a)
SCREAMING_SNAKE_CASE = self.model
quant_trainer.configure_model(a , self.quant_trainer_args , calib=a)
model.eval()
quant_trainer.enable_calibration(a)
logger.info('***** Running calibration *****')
logger.info(f''' Num examples = {self.calib_num}''')
logger.info(f''' Batch size = {calib_dataloader.batch_size}''')
for step, inputs in enumerate(a):
# Prediction step
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prediction_step(a , a , prediction_loss_only=a)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = model
def SCREAMING_SNAKE_CASE__ ( self , a=None , a=None , a=None , a = "eval") -> str:
SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions)
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
self.log(a)
else:
SCREAMING_SNAKE_CASE = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , a)
return metrics
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a = "test") -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.get_test_dataloader(a)
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions , 'predict')
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a)
def SCREAMING_SNAKE_CASE__ ( self , a="./") -> List[Any]:
SCREAMING_SNAKE_CASE = self.eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = next(iter(a))
# saving device - to make it consistent
SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# convert to tuple
SCREAMING_SNAKE_CASE = tuple(v.to(a) for k, v in batch.items())
logger.info('Converting model to be onnx compatible')
from pytorch_quantization.nn import TensorQuantizer
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.model.to(a)
model.eval()
model.float()
SCREAMING_SNAKE_CASE = model.module if hasattr(a , 'module') else model
quant_trainer.configure_model(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = os.path.join(a , 'model.onnx')
logger.info(f'''exporting model to {output_model_file}''')
SCREAMING_SNAKE_CASE = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
a , a , a , export_params=a , opset_version=13 , do_constant_folding=a , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=a , )
logger.info('onnx export finished')
| 327 | 0 |
"""simple docstring"""
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a_ : Dict = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , a = None) -> Optional[int]:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature'))
SCREAMING_SNAKE_CASE = os.path.abspath('examples')
for item in os.listdir(a):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE = os.path.join(a , a)
if os.path.isfile(a) and ".py" in item_path:
with self.subTest(
tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE = compare_against_test(
os.path.join(a , a) , a , a , a)
SCREAMING_SNAKE_CASE = '\n'.join(a)
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE = diff.replace(a , '')
self.assertEqual(a , '')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
self.one_complete_example('complete_nlp_example.py' , a)
self.one_complete_example('complete_nlp_example.py' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py'))
SCREAMING_SNAKE_CASE = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , a , a , a)
self.one_complete_example('complete_cv_example.py' , a , a , a)
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class _snake_case ( A__ ):
_lowercase : int = False
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Union[str, Any]:
super().setUpClass()
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml')
write_basic_config(save_location=cls.configPath)
SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Dict:
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0')))
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2')))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
else:
self.assertIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}):
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
SCREAMING_SNAKE_CASE = re.findall('({.+})' , a)
SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE = ast.literal_eval(a)
self.assertGreaterEqual(results['accuracy'] , 0.75)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'})
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(a , 'tracking')))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs)
| 360 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : List[str] = ['''pixel_values''']
def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
SCREAMING_SNAKE_CASE = pad_size
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a)
SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height
SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width
return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]:
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad
SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_pad:
SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 327 | 0 |
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = 0
for ch in input_str:
SCREAMING_SNAKE_CASE = ord(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = pow(2 , _UpperCAmelCase)
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 361 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _snake_case ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base')
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
SCREAMING_SNAKE_CASE = model(a)['last_hidden_state']
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape , a)
# compare the actual values for a slice.
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(
[[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 327 | 0 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
a_ : Tuple = 1_00
a_ : Dict = set(range(3, NUM_PRIMES, 2))
primes.add(2)
a_ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100)
def lowerCamelCase__ (_UpperCAmelCase):
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = 42
SCREAMING_SNAKE_CASE = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime):
ret.add(sub * prime)
return ret
def lowerCamelCase__ (_UpperCAmelCase = 5000):
for number_to_partition in range(1 , _UpperCAmelCase):
if len(partition(_UpperCAmelCase)) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(f"""{solution() = }""")
| 362 |
from scipy.stats import pearsonr
import datasets
a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float'),
'references': datasets.Value('float'),
}) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]:
if return_pvalue:
SCREAMING_SNAKE_CASE = pearsonr(a , a)
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(a , a)[0])}
| 327 | 0 |
from __future__ import annotations
class _snake_case :
def __init__( self , a = 0) -> Optional[Any]:
SCREAMING_SNAKE_CASE = key
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> list[str]:
assert isinstance(a , a) and isinstance(a , a)
SCREAMING_SNAKE_CASE = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a) ^ key) for ch in content]
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> list[str]:
assert isinstance(a , a) and isinstance(a , a)
SCREAMING_SNAKE_CASE = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a) ^ key) for ch in content]
def SCREAMING_SNAKE_CASE__ ( self , a , a = 0) -> str:
assert isinstance(a , a) and isinstance(a , a)
SCREAMING_SNAKE_CASE = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE = ''
for ch in content:
ans += chr(ord(a) ^ key)
return ans
def SCREAMING_SNAKE_CASE__ ( self , a , a = 0) -> str:
assert isinstance(a , a) and isinstance(a , a)
SCREAMING_SNAKE_CASE = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE = ''
for ch in content:
ans += chr(ord(a) ^ key)
return ans
def SCREAMING_SNAKE_CASE__ ( self , a , a = 0) -> bool:
assert isinstance(a , a) and isinstance(a , a)
try:
with open(a) as fin, open('encrypt.out' , 'w+') as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(a , a))
except OSError:
return False
return True
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> bool:
assert isinstance(a , a) and isinstance(a , a)
try:
with open(a) as fin, open('decrypt.out' , 'w+') as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(a , a))
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 363 |
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class _snake_case ( unittest.TestCase ):
_lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
_lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a)
return generator, ["Something to write", "Something else"]
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any:
SCREAMING_SNAKE_CASE = generator('Something there')
self.assertEqual(a , [{'generated_text': ANY(a)}])
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]['generated_text'].startswith('Something there'))
SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
SCREAMING_SNAKE_CASE = generator(
['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a)
self.assertEqual(
a , [
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
[{'generated_text': ANY(a)}, {'generated_text': ANY(a)}],
] , )
with self.assertRaises(a):
generator(4)
@require_torch
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
SCREAMING_SNAKE_CASE = 3
SCREAMING_SNAKE_CASE = generator(
'Something there' , num_return_sequences=a , num_beams=a , )
SCREAMING_SNAKE_CASE = [
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'},
{'generated_text': ''},
]
self.assertEqual(a , a)
SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a)
self.assertEqual(
a , [
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
] , )
SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id
SCREAMING_SNAKE_CASE = '<pad>'
SCREAMING_SNAKE_CASE = generator(
['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , )
self.assertEqual(
a , [
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
[
{'generated_token_ids': ANY(torch.Tensor)},
{'generated_token_ids': ANY(torch.Tensor)},
],
] , )
@require_tf
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf')
# do_sample=False necessary for reproducibility
SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a)
self.assertEqual(a , [{'generated_text': ''}])
| 327 | 0 |
from statistics import mean, stdev
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 3):
SCREAMING_SNAKE_CASE = min(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = max(_UpperCAmelCase)
# normalize data
return [round((x - x_min) / (x_max - x_min) , _UpperCAmelCase) for x in data]
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 3):
SCREAMING_SNAKE_CASE = mean(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = stdev(_UpperCAmelCase)
# standardize data
return [round((x - mu) / (sigma) , _UpperCAmelCase) for x in data]
| 364 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a)
SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))]
SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith('.bin') for f in files)
@slow
@require_flax
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 4
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3
assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1
SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:])))
assert len(a) == num_samples
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa)
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = FlaxDDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , )
SCREAMING_SNAKE_CASE = scheduler.create_state()
SCREAMING_SNAKE_CASE = scheduler_state
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0)
SCREAMING_SNAKE_CASE = 50
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
# shard inputs and rng
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = jax.random.split(a , a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3
assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = (
'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of'
' field, close up, split lighting, cinematic'
)
SCREAMING_SNAKE_CASE = jax.device_count()
SCREAMING_SNAKE_CASE = num_samples * [prompt]
SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained(
'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , )
SCREAMING_SNAKE_CASE = replicate(a)
SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a)
SCREAMING_SNAKE_CASE = shard(a)
SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice).max() < 1E-2
| 327 | 0 |
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff)
# formula for sum of series
return total
def lowerCamelCase__ ():
print(sum_of_series(1 , 1 , 10))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 365 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]:
if rouge_types is None:
SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a)
if use_aggregator:
SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator()
else:
SCREAMING_SNAKE_CASE = []
for ref, pred in zip(a , a):
SCREAMING_SNAKE_CASE = scorer.score(a , a)
if use_aggregator:
aggregator.add_scores(a)
else:
scores.append(a)
if use_aggregator:
SCREAMING_SNAKE_CASE = aggregator.aggregate()
else:
SCREAMING_SNAKE_CASE = {}
for key in scores[0]:
SCREAMING_SNAKE_CASE = [score[key] for score in scores]
return result
| 327 | 0 |
from math import isqrt
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]]
def lowerCamelCase__ (_UpperCAmelCase = 10**8):
SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 366 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def lowerCamelCase__ (_UpperCAmelCase):
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class _snake_case ( nn.Module ):
def __init__( self , a , a) -> Union[str, Any]:
super().__init__()
SCREAMING_SNAKE_CASE = module
SCREAMING_SNAKE_CASE = nn.Sequential(
nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , )
SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=a)
nn.init.zeros_(self.adapter[1].weight)
self.adapter.to(module.weight.device)
def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any:
return self.module(a , *a , **a) + self.adapter(a)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
_lowercase : Union[str, Any] = '''bigscience/bloom-1b7'''
# Constant values
_lowercase : str = 2.109_6595_5269_2574
_lowercase : Any = '''Hello my name is'''
_lowercase : Any = set()
EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' )
EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' )
EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' )
_lowercase : Union[str, Any] = 10
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
super().setUp()
# Models and tokenizer
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.model_abit.config
self.assertTrue(hasattr(a , 'quantization_config'))
SCREAMING_SNAKE_CASE = config.to_dict()
SCREAMING_SNAKE_CASE = config.to_diff_dict()
SCREAMING_SNAKE_CASE = config.to_json_string()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
from bitsandbytes.nn import Paramsabit
SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint()
SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE)
SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit)
self.assertTrue(linear.weight.__class__ == Paramsabit)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(a , torch.nn.Linear):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
def SCREAMING_SNAKE_CASE__ ( self) -> str:
with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BitsAndBytesConfig()
with self.assertRaises(a):
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , )
def SCREAMING_SNAKE_CASE__ ( self) -> int:
with self.assertRaises(a):
# Tries with `str`
self.model_abit.to('cpu')
with self.assertRaises(a):
# Tries with a `dtype``
self.model_abit.to(torch.floataa)
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0'))
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(a):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa)
SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu')
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.half()
# Check this does not throw an error
SCREAMING_SNAKE_CASE = self.model_fpaa.float()
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto')
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa)
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class _snake_case ( unittest.TestCase ):
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple:
SCREAMING_SNAKE_CASE = 't5-small'
SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name)
SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute'
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
from transformers import TaForConditionalGeneration
SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules
SCREAMING_SNAKE_CASE = None
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
SCREAMING_SNAKE_CASE = modules
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit))
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
# test with `flan-t5-small`
SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=a , device_map='auto')
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0)
SCREAMING_SNAKE_CASE = model.generate(**a)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> str:
super().setUp()
# model_name
SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m'
SCREAMING_SNAKE_CASE = 't5-small'
# Different types of model
SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Sequence classification model
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=a , device_map='auto')
# CausalLM model
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto')
# Seq2seq model
SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=a , device_map='auto')
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit)
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter)
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
SCREAMING_SNAKE_CASE = self.pipe(self.input_text)
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS)
@require_torch_multi_gpu
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> int:
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=a , device_map='balanced')
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1})
# Check that inference pass works on the model
SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt')
# Second real batch
SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10)
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS)
class _snake_case ( A__ ):
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = 'facebook/opt-350m'
super().setUp()
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'):
return
# Step 1: freeze all parameters
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a)
self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()})
for param in model.parameters():
SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
SCREAMING_SNAKE_CASE = param.data.to(torch.floataa)
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(a)):
SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16)
SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16)
# Step 3: dummy batch
SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0)
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
SCREAMING_SNAKE_CASE = model.forward(**a)
out.logits.norm().backward()
for module in model.modules():
if isinstance(a , a):
self.assertTrue(module.adapter[1].weight.grad is not None)
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0)
elif isinstance(a , nn.Embedding):
self.assertTrue(module.weight.grad is None)
class _snake_case ( A__ ):
_lowercase : str = '''gpt2-xl'''
_lowercase : Union[str, Any] = 3.3191_8548_5415_2187
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : Optional[Any] = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Any = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
a_ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 367 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a_ : Optional[Any] = {
'configuration_efficientnet': [
'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientNetConfig',
'EfficientNetOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : List[str] = ['EfficientNetImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Union[str, Any] = [
'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientNetForImageClassification',
'EfficientNetModel',
'EfficientNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 327 | 0 |
a_ : Any = 'Alexander Joslin'
import operator as op
from .stack import Stack
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub}
SCREAMING_SNAKE_CASE = Stack()
SCREAMING_SNAKE_CASE = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_UpperCAmelCase))
elif i in operators:
# RULE 2
operator_stack.push(_UpperCAmelCase)
elif i == ")":
# RULE 4
SCREAMING_SNAKE_CASE = operator_stack.peek()
operator_stack.pop()
SCREAMING_SNAKE_CASE = operand_stack.peek()
operand_stack.pop()
SCREAMING_SNAKE_CASE = operand_stack.peek()
operand_stack.pop()
SCREAMING_SNAKE_CASE = operators[opr](_UpperCAmelCase , _UpperCAmelCase)
operand_stack.push(_UpperCAmelCase)
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
a_ : Tuple = '(5 + ((4 * 2) * (2 + 3)))'
# answer = 45
print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 368 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
a_ : Dict = [
'cross_validation.py',
'gradient_accumulation.py',
'local_sgd.py',
'multi_process_metrics.py',
'memory.py',
'automatic_gradient_accumulation.py',
'fsdp_with_peak_mem_tracking.py',
'deepspeed_with_config_support.py',
'megatron_lm_gpt_pretraining.py',
]
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , a = None) -> Optional[int]:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature'))
SCREAMING_SNAKE_CASE = os.path.abspath('examples')
for item in os.listdir(a):
if item not in EXCLUDE_EXAMPLES:
SCREAMING_SNAKE_CASE = os.path.join(a , a)
if os.path.isfile(a) and ".py" in item_path:
with self.subTest(
tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ):
SCREAMING_SNAKE_CASE = compare_against_test(
os.path.join(a , a) , a , a , a)
SCREAMING_SNAKE_CASE = '\n'.join(a)
if special_strings is not None:
for string in special_strings:
SCREAMING_SNAKE_CASE = diff.replace(a , '')
self.assertEqual(a , '')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
self.one_complete_example('complete_nlp_example.py' , a)
self.one_complete_example('complete_nlp_example.py' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py'))
SCREAMING_SNAKE_CASE = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , a , a , a)
self.one_complete_example('complete_cv_example.py' , a , a , a)
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class _snake_case ( A__ ):
_lowercase : int = False
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Union[str, Any]:
super().setUpClass()
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml')
write_basic_config(save_location=cls.configPath)
SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls) -> Dict:
super().tearDownClass()
shutil.rmtree(cls._tmpdir)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0')))
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2')))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')}
'''.split()
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
if torch.cuda.is_available():
SCREAMING_SNAKE_CASE = torch.cuda.device_count()
else:
SCREAMING_SNAKE_CASE = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
else:
self.assertIn('epoch 0:' , a)
self.assertIn('epoch 1:' , a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}):
SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a)
SCREAMING_SNAKE_CASE = re.findall('({.+})' , a)
SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1]
SCREAMING_SNAKE_CASE = ast.literal_eval(a)
self.assertGreaterEqual(results['accuracy'] , 0.75)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs)
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'})
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
with tempfile.TemporaryDirectory() as tmpdir:
SCREAMING_SNAKE_CASE = f'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs)
self.assertTrue(os.path.exists(os.path.join(a , 'tracking')))
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs)
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs)
| 327 | 0 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : Optional[int] = MobileBertTokenizer
_lowercase : Optional[Any] = MobileBertTokenizerFast
_lowercase : Dict = True
_lowercase : Dict = True
_lowercase : List[Any] = filter_non_english
_lowercase : int = '''google/mobilebert-uncased'''
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
super().setUp()
SCREAMING_SNAKE_CASE = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'])
with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens]))
SCREAMING_SNAKE_CASE = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]:
SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running'
SCREAMING_SNAKE_CASE = 'unwanted, running'
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file)
SCREAMING_SNAKE_CASE = tokenizer.tokenize('UNwant\u00E9d,running')
self.assertListEqual(a , ['un', '##want', '##ed', ',', 'runn', '##ing'])
self.assertListEqual(tokenizer.convert_tokens_to_ids(a) , [9, 6, 7, 12, 10, 11])
def SCREAMING_SNAKE_CASE__ ( self) -> str:
if not self.test_rust_tokenizer:
return
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running'
SCREAMING_SNAKE_CASE = tokenizer.tokenize(a)
SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE = tokenizer.encode(a)
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a)
self.assertListEqual(a , a)
# With lower casing
SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=a)
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=a)
SCREAMING_SNAKE_CASE = 'UNwant\u00E9d,running'
SCREAMING_SNAKE_CASE = tokenizer.tokenize(a)
SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = tokenizer.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a , add_special_tokens=a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE = tokenizer.encode(a)
SCREAMING_SNAKE_CASE = rust_tokenizer.encode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz'])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a)
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello'])
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo'])
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello'])
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?'])
self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello'])
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a)
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'])
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'])
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , strip_accents=a)
self.assertListEqual(
tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'])
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=a , never_split=['[UNK]'])
self.assertListEqual(
tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'])
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing']
SCREAMING_SNAKE_CASE = {}
for i, token in enumerate(a):
SCREAMING_SNAKE_CASE = i
SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=a , unk_token='[UNK]')
self.assertListEqual(tokenizer.tokenize('') , [])
self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing'])
self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing'])
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
self.assertTrue(_is_whitespace(' '))
self.assertTrue(_is_whitespace('\t'))
self.assertTrue(_is_whitespace('\r'))
self.assertTrue(_is_whitespace('\n'))
self.assertTrue(_is_whitespace('\u00A0'))
self.assertFalse(_is_whitespace('A'))
self.assertFalse(_is_whitespace('-'))
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
self.assertTrue(_is_control('\u0005'))
self.assertFalse(_is_control('A'))
self.assertFalse(_is_control(' '))
self.assertFalse(_is_control('\t'))
self.assertFalse(_is_control('\r'))
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
self.assertTrue(_is_punctuation('-'))
self.assertTrue(_is_punctuation('$'))
self.assertTrue(_is_punctuation('`'))
self.assertTrue(_is_punctuation('.'))
self.assertFalse(_is_punctuation('A'))
self.assertFalse(_is_punctuation(' '))
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']])
self.assertListEqual(
[rust_tokenizer.tokenize(a) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']])
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('google/mobilebert-uncased')
SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=a)
SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=a)
SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(a)
SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(a , a)
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def SCREAMING_SNAKE_CASE__ ( self) -> str:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''):
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a)
SCREAMING_SNAKE_CASE = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(
a , return_attention_mask=a , return_token_type_ids=a , return_offsets_mapping=a , add_special_tokens=a , )
SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(a , 'do_lower_case') else False
SCREAMING_SNAKE_CASE = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), 'A'),
((1, 2), ','),
((3, 5), 'na'),
((5, 6), '##ï'),
((6, 8), '##ve'),
((9, 15), tokenizer_r.mask_token),
((16, 21), 'Allen'),
((21, 23), '##NL'),
((23, 24), '##P'),
((25, 33), 'sentence'),
((33, 34), '.'),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), 'a'),
((1, 2), ','),
((3, 8), 'naive'),
((9, 15), tokenizer_r.mask_token),
((16, 21), 'allen'),
((21, 23), '##nl'),
((23, 24), '##p'),
((25, 33), 'sentence'),
((33, 34), '.'),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids']))
self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'])
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = ['的', '人', '有']
SCREAMING_SNAKE_CASE = ''.join(a)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''):
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(a , **a)
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a)
SCREAMING_SNAKE_CASE = tokenizer_p.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = tokenizer_r.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(a)
SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(a)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(a , a)
self.assertListEqual(a , a)
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(a , **a)
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(a , **a)
SCREAMING_SNAKE_CASE = tokenizer_r.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = tokenizer_p.encode(a , add_special_tokens=a)
SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(a)
SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(a)
# it is expected that only the first Chinese character is not preceded by "##".
SCREAMING_SNAKE_CASE = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(a)
]
self.assertListEqual(a , a)
self.assertListEqual(a , a)
| 369 |
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _snake_case :
def __init__( self , a , a=3 , a=32 , a=3 , a=10 , a=[10, 20, 30, 40] , a=[1, 1, 2, 1] , a=True , a=True , a="relu" , a=3 , a=None , ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embeddings_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = scope
SCREAMING_SNAKE_CASE = len(a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels)
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any:
SCREAMING_SNAKE_CASE = TFResNetModel(config=a)
SCREAMING_SNAKE_CASE = model(a)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int:
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = TFResNetForImageClassification(a)
SCREAMING_SNAKE_CASE = model(a , labels=a)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _snake_case ( A__ , A__ , unittest.TestCase ):
_lowercase : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
_lowercase : Dict = (
{'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification}
if is_tf_available()
else {}
)
_lowercase : Union[str, Any] = False
_lowercase : Any = False
_lowercase : List[str] = False
_lowercase : str = False
_lowercase : int = False
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
SCREAMING_SNAKE_CASE = TFResNetModelTester(self)
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a)
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return
@unittest.skip(reason='ResNet does not use inputs_embeds')
def SCREAMING_SNAKE_CASE__ ( self) -> int:
pass
@unittest.skip(reason='ResNet does not support input and output embeddings')
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ['pixel_values']
self.assertListEqual(arg_names[:1] , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
def check_hidden_states_output(a , a , a):
SCREAMING_SNAKE_CASE = model_class(a)
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a))
SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE = self.model_tester.num_stages
self.assertEqual(len(a) , expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(a , a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> str:
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(a)
self.assertIsNotNone(a)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
return image
@require_tf
@require_vision
class _snake_case ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0])
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='tf')
# forward pass
SCREAMING_SNAKE_CASE = model(**a)
# verify the logits
SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape , a)
SCREAMING_SNAKE_CASE = tf.constant([-11.10_69, -9.78_77, -8.37_77])
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4))
| 327 | 0 |
def lowerCamelCase__ (_UpperCAmelCase):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase):
raise ValueError('multiplicative_persistence() only accepts integral values')
if num < 0:
raise ValueError('multiplicative_persistence() does not accept negative values')
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = str(_UpperCAmelCase)
while len(_UpperCAmelCase) != 1:
SCREAMING_SNAKE_CASE = [int(_UpperCAmelCase) for i in num_string]
SCREAMING_SNAKE_CASE = 1
for i in range(0 , len(_UpperCAmelCase)):
total *= numbers[i]
SCREAMING_SNAKE_CASE = str(_UpperCAmelCase)
steps += 1
return steps
def lowerCamelCase__ (_UpperCAmelCase):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase):
raise ValueError('additive_persistence() only accepts integral values')
if num < 0:
raise ValueError('additive_persistence() does not accept negative values')
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = str(_UpperCAmelCase)
while len(_UpperCAmelCase) != 1:
SCREAMING_SNAKE_CASE = [int(_UpperCAmelCase) for i in num_string]
SCREAMING_SNAKE_CASE = 0
for i in range(0 , len(_UpperCAmelCase)):
total += numbers[i]
SCREAMING_SNAKE_CASE = str(_UpperCAmelCase)
steps += 1
return steps
if __name__ == "__main__":
import doctest
doctest.testmod()
| 370 |
from math import isqrt
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1) + 1):
if is_prime[i]:
for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]]
def lowerCamelCase__ (_UpperCAmelCase = 10**8):
SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2)
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(f"""{solution() = }""")
| 327 | 0 |
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = False):
if n == 2:
return True
if not n % 2 or n < 2:
return False
if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit
return False
if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable:
raise ValueError(
'Warning: upper bound of deterministic test is exceeded. '
'Pass allow_probable=True to allow probabilistic test. '
'A return value of True indicates a probable prime.')
# array bounds provided by analysis
SCREAMING_SNAKE_CASE = [
2047,
137_3653,
2532_6001,
32_1503_1751,
2_1523_0289_8747,
3_4747_4966_0383,
341_5500_7172_8321,
1,
382_5123_0565_4641_3051,
1,
1,
3186_6585_7834_0311_5116_7461,
3_3170_4406_4679_8873_8596_1981,
]
SCREAMING_SNAKE_CASE = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(_UpperCAmelCase , 1):
if n < _p:
# then we have our last prime to check
SCREAMING_SNAKE_CASE = primes[:idx]
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = n - 1, 0
# break up n -1 into a power of 2 (s) and
# remaining odd component
# essentially, solve for d * 2 ** s == n - 1
while d % 2 == 0:
d //= 2
s += 1
for prime in plist:
SCREAMING_SNAKE_CASE = False
for r in range(_UpperCAmelCase):
SCREAMING_SNAKE_CASE = pow(_UpperCAmelCase , d * 2**r , _UpperCAmelCase)
# see article for analysis explanation for m
if (r == 0 and m == 1) or ((m + 1) % n == 0):
SCREAMING_SNAKE_CASE = True
# this loop will not determine compositeness
break
if pr:
continue
# if pr is False, then the above loop never evaluated to true,
# and the n MUST be composite
return False
return True
def lowerCamelCase__ ():
assert not miller_rabin(561)
assert miller_rabin(563)
# 2047
assert not miller_rabin(83_8201)
assert miller_rabin(83_8207)
# 1_373_653
assert not miller_rabin(1731_6001)
assert miller_rabin(1731_6017)
# 25_326_001
assert not miller_rabin(30_7838_6641)
assert miller_rabin(30_7838_6653)
# 3_215_031_751
assert not miller_rabin(1_7130_4557_4801)
assert miller_rabin(1_7130_4557_4819)
# 2_152_302_898_747
assert not miller_rabin(2_7797_9972_8307)
assert miller_rabin(2_7797_9972_8327)
# 3_474_749_660_383
assert not miller_rabin(113_8500_2390_9441)
assert miller_rabin(113_8500_2390_9527)
# 341_550_071_728_321
assert not miller_rabin(127_5041_0188_4880_4351)
assert miller_rabin(127_5041_0188_4880_4391)
# 3_825_123_056_546_413_051
assert not miller_rabin(796_6646_4458_5077_8779_1867)
assert miller_rabin(796_6646_4458_5077_8779_1951)
# 318_665_857_834_031_151_167_461
assert not miller_rabin(5528_4067_7446_6478_9766_0333)
assert miller_rabin(5528_4067_7446_6478_9766_0359)
# 3_317_044_064_679_887_385_961_981
# upper limit for probabilistic test
if __name__ == "__main__":
test_miller_rabin()
| 371 |
import baseaa
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaaencode(string.encode('utf-8'))
def lowerCamelCase__ (_UpperCAmelCase):
return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8')
if __name__ == "__main__":
import doctest
doctest.testmod()
| 327 | 0 |
import argparse
import collections
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="attention"):
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/{layer_name}/key/kernel''']
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/{layer_name}/out/kernel''']
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/{layer_name}/query/kernel''']
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/{layer_name}/value/kernel''']
return k, o, q, v
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False):
if split_mlp_wi:
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/mlp/wi_0/kernel''']
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/mlp/wi_1/kernel''']
SCREAMING_SNAKE_CASE = (wi_a, wi_a)
else:
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/mlp/wi/kernel''']
SCREAMING_SNAKE_CASE = params[F'''{prefix}/layers_{i}/mlp/wo/kernel''']
return wi, wo
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
return params[F'''{prefix}/layers_{i}/{layer_name}/scale''']
def lowerCamelCase__ (_UpperCAmelCase , *, _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = traverse_util.flatten_dict(variables['target'])
SCREAMING_SNAKE_CASE = {'/'.join(_UpperCAmelCase): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
SCREAMING_SNAKE_CASE = 'encoder/layers_0/mlp/wi_0/kernel' in old
print('Split MLP:' , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = collections.OrderedDict()
# Shared embeddings.
SCREAMING_SNAKE_CASE = old['token_embedder/embedding']
# Encoder.
for i in range(_UpperCAmelCase):
# Block i, layer 0 (Self Attention).
SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , 'pre_attention_layer_norm')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , 'attention')
SCREAMING_SNAKE_CASE = layer_norm
SCREAMING_SNAKE_CASE = k.T
SCREAMING_SNAKE_CASE = o.T
SCREAMING_SNAKE_CASE = q.T
SCREAMING_SNAKE_CASE = v.T
# Block i, layer 1 (MLP).
SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , 'pre_mlp_layer_norm')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , 'encoder' , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = layer_norm
if split_mlp_wi:
SCREAMING_SNAKE_CASE = wi[0].T
SCREAMING_SNAKE_CASE = wi[1].T
else:
SCREAMING_SNAKE_CASE = wi.T
SCREAMING_SNAKE_CASE = wo.T
SCREAMING_SNAKE_CASE = old[
'encoder/relpos_bias/rel_embedding'
].T
SCREAMING_SNAKE_CASE = old['encoder/encoder_norm/scale']
if not is_encoder_only:
# Decoder.
for i in range(_UpperCAmelCase):
# Block i, layer 0 (Self Attention).
SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'pre_self_attention_layer_norm')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'self_attention')
SCREAMING_SNAKE_CASE = layer_norm
SCREAMING_SNAKE_CASE = k.T
SCREAMING_SNAKE_CASE = o.T
SCREAMING_SNAKE_CASE = q.T
SCREAMING_SNAKE_CASE = v.T
# Block i, layer 1 (Cross Attention).
SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'pre_cross_attention_layer_norm')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_attention_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'encoder_decoder_attention')
SCREAMING_SNAKE_CASE = layer_norm
SCREAMING_SNAKE_CASE = k.T
SCREAMING_SNAKE_CASE = o.T
SCREAMING_SNAKE_CASE = q.T
SCREAMING_SNAKE_CASE = v.T
# Block i, layer 2 (MLP).
SCREAMING_SNAKE_CASE = tax_layer_norm_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , 'pre_mlp_layer_norm')
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tax_mlp_lookup(_UpperCAmelCase , _UpperCAmelCase , 'decoder' , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = layer_norm
if split_mlp_wi:
SCREAMING_SNAKE_CASE = wi[0].T
SCREAMING_SNAKE_CASE = wi[1].T
else:
SCREAMING_SNAKE_CASE = wi.T
SCREAMING_SNAKE_CASE = wo.T
SCREAMING_SNAKE_CASE = old['decoder/decoder_norm/scale']
SCREAMING_SNAKE_CASE = old[
'decoder/relpos_bias/rel_embedding'
].T
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
SCREAMING_SNAKE_CASE = old['decoder/logits_dense/kernel'].T
return new
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = collections.OrderedDict([(k, torch.from_numpy(v.copy())) for (k, v) in converted_params.items()])
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
SCREAMING_SNAKE_CASE = state_dict['shared.weight']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
SCREAMING_SNAKE_CASE = state_dict['shared.weight']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('Using shared word embeddings as lm_head.')
SCREAMING_SNAKE_CASE = state_dict['shared.weight']
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = convert_tax_to_pytorch(_UpperCAmelCase , num_layers=config.num_layers , is_encoder_only=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_state_dict(_UpperCAmelCase , _UpperCAmelCase)
model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False):
SCREAMING_SNAKE_CASE = TaConfig.from_json_file(_UpperCAmelCase)
print(F'''Building PyTorch model from configuration: {config}''')
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
SCREAMING_SNAKE_CASE = TaEncoderModel(_UpperCAmelCase)
else:
SCREAMING_SNAKE_CASE = TaForConditionalGeneration(_UpperCAmelCase)
# Load weights from tf checkpoint
load_tax_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''')
model.save_pretrained(_UpperCAmelCase)
# Verify that we can load the checkpoint.
model.from_pretrained(_UpperCAmelCase)
print('Done')
if __name__ == "__main__":
a_ : Optional[Any] = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.')
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False
)
a_ : Tuple = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only
)
| 350 |
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(_UpperCAmelCase , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = mam_aaa['args'] or mam_aaa['cfg']['model']
SCREAMING_SNAKE_CASE = mam_aaa['model']
remove_ignore_keys_(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = state_dict['encoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE = MaMaaaConfig(
vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , )
SCREAMING_SNAKE_CASE = state_dict['decoder.embed_tokens.weight']
SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(_UpperCAmelCase)
model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared)
return model
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.')
parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
a_ : List[str] = parser.parse_args()
a_ : Dict = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path)
| 327 | 0 |
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
a_ : List[str] = [
'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'
' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'
' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.',
'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'
' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'
' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'
' body.',
'Amnesty International releases its annual report on the death penalty. The report catalogs the use of'
' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'
' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'
' punishment.',
]
a_ : List[str] = [
'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'
' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'
' had informed his Lufthansa training school of an episode of severe depression, airline says .',
'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'
' Israel and the United States opposed the move, which could open the door to war crimes investigations against'
' Israelis .',
'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'
' death . Organization claims that governments around the world are using the threat of terrorism to advance'
' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'
' sentences up by 28% .',
]
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=['rouge2', 'rougeL'])
assert isinstance(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , bootstrap_aggregation=_UpperCAmelCase , rouge_keys=['rouge2'])
assert (
pd.DataFrame(no_aggregation['rouge2']).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['rouge2']).fmeasure.mean()
)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = 'rougeLsum'
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k])[k]
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=[k])[k]
assert score > score_no_sep
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL']
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase , rouge_keys=_UpperCAmelCase)
assert score_sep == score_no_sep
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = [
'Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.',
'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .',
]
SCREAMING_SNAKE_CASE = [
'Margot Frank, died in 1945, a month earlier than previously thought.',
'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'
' the final seconds on board Flight 9525.',
]
assert calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase) == calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , newline_sep=_UpperCAmelCase)
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = [
'" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '
]
SCREAMING_SNAKE_CASE = [
' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'
]
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=['rougeLsum'] , newline_sep=_UpperCAmelCase)['rougeLsum']
SCREAMING_SNAKE_CASE = calculate_rouge(_UpperCAmelCase , _UpperCAmelCase , rouge_keys=['rougeLsum'])['rougeLsum']
assert new_score > prev_score
def lowerCamelCase__ ():
SCREAMING_SNAKE_CASE = Path('examples/seq2seq/test_data/wmt_en_ro')
SCREAMING_SNAKE_CASE = calculate_rouge_path(data_dir.joinpath('test.source') , data_dir.joinpath('test.target'))
assert isinstance(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = calculate_rouge_path(
data_dir.joinpath('test.source') , data_dir.joinpath('test.target') , bootstrap_aggregation=_UpperCAmelCase)
assert isinstance(_UpperCAmelCase , _UpperCAmelCase)
| 351 |
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class _snake_case ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = 'laion/clap-htsat-unfused'
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Optional[Any]:
return RobertaTokenizer.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self , **a) -> Union[str, Any]:
return ClapFeatureExtractor.from_pretrained(self.checkpoint , **a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)')
SCREAMING_SNAKE_CASE = self.get_feature_extractor(do_normalize=a , padding_value=1.0)
SCREAMING_SNAKE_CASE = ClapProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=a , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , a)
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor , a)
def SCREAMING_SNAKE_CASE__ ( self) -> int:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = floats_list((3, 1000))
SCREAMING_SNAKE_CASE = feature_extractor(a , return_tensors='np')
SCREAMING_SNAKE_CASE = processor(audios=a , return_tensors='np')
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = 'This is a test string'
SCREAMING_SNAKE_CASE = processor(text=a)
SCREAMING_SNAKE_CASE = tokenizer(a)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(a)
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(a)
self.assertListEqual(a , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
SCREAMING_SNAKE_CASE = self.get_feature_extractor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = ClapProcessor(tokenizer=a , feature_extractor=a)
self.assertListEqual(
processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
| 327 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Any = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 352 |
import argparse
import datetime
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = {
'0': 'Sunday',
'1': 'Monday',
'2': 'Tuesday',
'3': 'Wednesday',
'4': 'Thursday',
'5': 'Friday',
'6': 'Saturday',
}
SCREAMING_SNAKE_CASE = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_UpperCAmelCase) < 11:
raise ValueError('Must be 10 characters long')
# Get month
SCREAMING_SNAKE_CASE = int(date_input[0] + date_input[1])
# Validate
if not 0 < m < 13:
raise ValueError('Month must be between 1 - 12')
SCREAMING_SNAKE_CASE = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get day
SCREAMING_SNAKE_CASE = int(date_input[3] + date_input[4])
# Validate
if not 0 < d < 32:
raise ValueError('Date must be between 1 - 31')
# Get second separator
SCREAMING_SNAKE_CASE = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('Date separator must be \'-\' or \'/\'')
# Get year
SCREAMING_SNAKE_CASE = int(date_input[6] + date_input[7] + date_input[8] + date_input[9])
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
'Year out of range. There has to be some sort of limit...right?')
# Get datetime obj for validation
SCREAMING_SNAKE_CASE = datetime.date(int(_UpperCAmelCase) , int(_UpperCAmelCase) , int(_UpperCAmelCase))
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE = y - 1
SCREAMING_SNAKE_CASE = m + 12
# maths var
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[:2])
SCREAMING_SNAKE_CASE = int(str(_UpperCAmelCase)[2:])
SCREAMING_SNAKE_CASE = int(2.6 * m - 5.39)
SCREAMING_SNAKE_CASE = int(c / 4)
SCREAMING_SNAKE_CASE = int(k / 4)
SCREAMING_SNAKE_CASE = int(d + k)
SCREAMING_SNAKE_CASE = int(t + u + v + x)
SCREAMING_SNAKE_CASE = int(z - (2 * c))
SCREAMING_SNAKE_CASE = round(w % 7)
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('The date was evaluated incorrectly. Contact developer.')
# Response
SCREAMING_SNAKE_CASE = F'''Your date {date_input}, is a {days[str(_UpperCAmelCase)]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
a_ : Tuple = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
a_ : Any = parser.parse_args()
zeller(args.date_input)
| 327 | 0 |
"""simple docstring"""
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class _snake_case ( A__ ):
def __init__( self , a , a = None , a = None , a = True , a = None , a = False , a = None , a = True , a = "arrow" , **a , ) -> Optional[int]:
super().__init__(
split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , **a , )
SCREAMING_SNAKE_CASE = load_from_cache_file
SCREAMING_SNAKE_CASE = file_format
SCREAMING_SNAKE_CASE = Spark(
df=a , features=a , cache_dir=a , working_dir=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split)
SCREAMING_SNAKE_CASE = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=a , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split)
| 353 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
a_ : Optional[Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : Optional[int] = ['''pixel_values''']
def __init__( self , a = True , a = None , a = PILImageResampling.BICUBIC , a = True , a = 1 / 255 , a = True , a = None , a = None , a = True , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = size if size is not None else {'height': 384, 'width': 384}
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else OPENAI_CLIP_STD
SCREAMING_SNAKE_CASE = do_convert_rgb
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray:
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''')
SCREAMING_SNAKE_CASE = (size['height'], size['width'])
return resize(a , size=a , resample=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a , ) -> Optional[Any]:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a , a = None , **a , ) -> np.ndarray:
return normalize(a , mean=a , std=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image:
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(a , default_to_square=a)
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.')
# PIL RGBA images are converted to RGB
if do_convert_rgb:
SCREAMING_SNAKE_CASE = [convert_to_rgb(a) for image in images]
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_resize:
SCREAMING_SNAKE_CASE = [self.resize(image=a , size=a , resample=a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_normalize:
SCREAMING_SNAKE_CASE = [self.normalize(image=a , mean=a , std=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = BatchFeature(data={'pixel_values': images} , tensor_type=a)
return encoded_outputs
| 327 | 0 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
a_ : int = logging.get_logger(__name__)
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = downstream_dict['projector.weight']
SCREAMING_SNAKE_CASE = downstream_dict['projector.bias']
SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.weight']
SCREAMING_SNAKE_CASE = downstream_dict['model.post_net.linear.bias']
return model
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = downstream_dict['model.linear.weight']
SCREAMING_SNAKE_CASE = downstream_dict['model.linear.bias']
return model
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(_UpperCAmelCase , config=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = downstream_dict['connector.weight']
SCREAMING_SNAKE_CASE = downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel):
SCREAMING_SNAKE_CASE = downstream_dict[
F'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
SCREAMING_SNAKE_CASE = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
SCREAMING_SNAKE_CASE = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
SCREAMING_SNAKE_CASE = downstream_dict['objective.W']
return model
@torch.no_grad()
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = checkpoint['Downstream']
SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(_UpperCAmelCase)
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(
_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , do_normalize=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = hf_config.architectures[0]
if arch.endswith('ForSequenceClassification'):
SCREAMING_SNAKE_CASE = convert_classification(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
elif arch.endswith('ForAudioFrameClassification'):
SCREAMING_SNAKE_CASE = convert_diarization(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
elif arch.endswith('ForXVector'):
SCREAMING_SNAKE_CASE = convert_xvector(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase)
else:
raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''')
if hf_config.use_weighted_layer_sum:
SCREAMING_SNAKE_CASE = checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(_UpperCAmelCase)
hf_model.save_pretrained(_UpperCAmelCase)
if __name__ == "__main__":
a_ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
a_ : Tuple = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 354 |
class _snake_case :
def __init__( self , a) -> Optional[Any]:
SCREAMING_SNAKE_CASE = val
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self , a) -> str:
if self.val:
if val < self.val:
if self.left is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.left.insert(a)
elif val > self.val:
if self.right is None:
SCREAMING_SNAKE_CASE = Node(a)
else:
self.right.insert(a)
else:
SCREAMING_SNAKE_CASE = val
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase):
# Recursive traversal
if root:
inorder(root.left , _UpperCAmelCase)
res.append(root.val)
inorder(root.right , _UpperCAmelCase)
def lowerCamelCase__ (_UpperCAmelCase):
# Build BST
if len(_UpperCAmelCase) == 0:
return arr
SCREAMING_SNAKE_CASE = Node(arr[0])
for i in range(1 , len(_UpperCAmelCase)):
root.insert(arr[i])
# Traverse BST in order.
SCREAMING_SNAKE_CASE = []
inorder(_UpperCAmelCase , _UpperCAmelCase)
return res
if __name__ == "__main__":
print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
| 327 | 0 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class _snake_case ( A__ ):
_lowercase : Tuple = ''''''
_lowercase : Optional[int] = '''hf-legacy''' # "hf://"" is reserved for hffs
def __init__( self , a = None , a = None , **a , ) -> Any:
super().__init__(self , **a)
SCREAMING_SNAKE_CASE = repo_info
SCREAMING_SNAKE_CASE = token
SCREAMING_SNAKE_CASE = None
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
if self.dir_cache is None:
SCREAMING_SNAKE_CASE = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
SCREAMING_SNAKE_CASE = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(a): {'name': str(a), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1]
})
def SCREAMING_SNAKE_CASE__ ( self , a , a = "rb" , **a , ) -> Tuple:
if not isinstance(self.repo_info , a):
raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''')
SCREAMING_SNAKE_CASE = hf_hub_url(self.repo_info.id , a , revision=self.repo_info.sha)
return fsspec.open(
a , mode=a , headers=get_authentication_headers_for_url(a , use_auth_token=self.token) , client_kwargs={'trust_env': True} , ).open()
def SCREAMING_SNAKE_CASE__ ( self , a , **a) -> List[Any]:
self._get_dirs()
SCREAMING_SNAKE_CASE = self._strip_protocol(a)
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(a)
def SCREAMING_SNAKE_CASE__ ( self , a , a=False , **a) -> List[str]:
self._get_dirs()
SCREAMING_SNAKE_CASE = PurePosixPath(path.strip('/'))
SCREAMING_SNAKE_CASE = {}
for p, f in self.dir_cache.items():
SCREAMING_SNAKE_CASE = PurePosixPath(p.strip('/'))
SCREAMING_SNAKE_CASE = p.parent
if root == path:
SCREAMING_SNAKE_CASE = f
SCREAMING_SNAKE_CASE = list(paths.values())
if detail:
return out
else:
return sorted(f['name'] for f in out)
| 355 |
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a_ : Optional[int] = {
'169M': 12,
'430M': 24,
'1B5': 24,
'3B': 32,
'7B': 32,
'14B': 40,
}
a_ : Optional[int] = {
'169M': 7_68,
'430M': 10_24,
'1B5': 20_48,
'3B': 25_60,
'7B': 40_96,
'14B': 51_20,
}
def lowerCamelCase__ (_UpperCAmelCase):
SCREAMING_SNAKE_CASE = list(state_dict.keys())
for name in state_dict_keys:
SCREAMING_SNAKE_CASE = state_dict.pop(_UpperCAmelCase)
# emb -> embedding
if name.startswith('emb.'):
SCREAMING_SNAKE_CASE = name.replace('emb.' , 'embeddings.')
# ln_0 -> pre_ln (only present at block 0)
if name.startswith('blocks.0.ln0'):
SCREAMING_SNAKE_CASE = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln')
# att -> attention
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.att' , R'blocks.\1.attention' , _UpperCAmelCase)
# ffn -> feed_forward
SCREAMING_SNAKE_CASE = re.sub(R'blocks\.(\d+)\.ffn' , R'blocks.\1.feed_forward' , _UpperCAmelCase)
# time_mix_k -> time_mix_key and reshape
if name.endswith('.time_mix_k'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_k' , '.time_mix_key')
# time_mix_v -> time_mix_value and reshape
if name.endswith('.time_mix_v'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_v' , '.time_mix_value')
# time_mix_r -> time_mix_key and reshape
if name.endswith('.time_mix_r'):
SCREAMING_SNAKE_CASE = name.replace('.time_mix_r' , '.time_mix_receptance')
if name != "head.weight":
SCREAMING_SNAKE_CASE = 'rwkv.' + name
SCREAMING_SNAKE_CASE = weight
return state_dict
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=None):
# 1. If possible, build the tokenizer.
if tokenizer_file is None:
print('No `--tokenizer_file` provided, we will use the default tokenizer.')
SCREAMING_SNAKE_CASE = 5_0277
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b')
else:
SCREAMING_SNAKE_CASE = PreTrainedTokenizerFast(tokenizer_file=_UpperCAmelCase)
SCREAMING_SNAKE_CASE = len(_UpperCAmelCase)
tokenizer.save_pretrained(_UpperCAmelCase)
# 2. Build the config
SCREAMING_SNAKE_CASE = list(NUM_HIDDEN_LAYERS_MAPPING.keys())
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
SCREAMING_SNAKE_CASE = candidate
break
if size is None:
raise ValueError('Could not infer the size, please provide it with the `--size` argument.')
if size not in possible_sizes:
raise ValueError(F'''`size` should be one of {possible_sizes}, got {size}.''')
SCREAMING_SNAKE_CASE = RwkvConfig(
vocab_size=_UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(_UpperCAmelCase)
# 3. Download model file then convert state_dict
SCREAMING_SNAKE_CASE = hf_hub_download(_UpperCAmelCase , _UpperCAmelCase)
SCREAMING_SNAKE_CASE = torch.load(_UpperCAmelCase , map_location='cpu')
SCREAMING_SNAKE_CASE = convert_state_dict(_UpperCAmelCase)
# 4. Split in shards and save
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = shard_checkpoint(_UpperCAmelCase)
for shard_file, shard in shards.items():
torch.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
if index is not None:
SCREAMING_SNAKE_CASE = os.path.join(_UpperCAmelCase , _UpperCAmelCase)
# Save the index as well
with open(_UpperCAmelCase , 'w' , encoding='utf-8') as f:
SCREAMING_SNAKE_CASE = json.dumps(_UpperCAmelCase , indent=2 , sort_keys=_UpperCAmelCase) + '\n'
f.write(_UpperCAmelCase)
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.')
SCREAMING_SNAKE_CASE = list(shards.keys())
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
SCREAMING_SNAKE_CASE = torch.load(os.path.join(_UpperCAmelCase , _UpperCAmelCase))
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCAmelCase , _UpperCAmelCase))
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError('Please provide a `model_name` to push the model to the Hub.')
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(_UpperCAmelCase)
model.push_to_hub(_UpperCAmelCase , max_shard_size='2GB')
tokenizer.push_to_hub(_UpperCAmelCase)
if __name__ == "__main__":
a_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--repo_id', default=None, type=str, required=True, help='Repo ID from which to pull the checkpoint.'
)
parser.add_argument(
'--checkpoint_file', default=None, type=str, required=True, help='Name of the checkpoint file in the repo.'
)
parser.add_argument(
'--output_dir', default=None, type=str, required=True, help='Where to save the converted model.'
)
parser.add_argument(
'--tokenizer_file',
default=None,
type=str,
help='Path to the tokenizer file to use (if not provided, only the model is converted).',
)
parser.add_argument(
'--size',
default=None,
type=str,
help='Size of the model. Will be inferred from the `checkpoint_file` if not passed.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Push to the Hub the converted model.',
)
parser.add_argument(
'--model_name',
default=None,
type=str,
help='Name of the pushed model on the Hub, including the username / organization.',
)
a_ : Tuple = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 327 | 0 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class _snake_case ( unittest.TestCase ):
def __init__( self , a , a=7 , a=3 , a=30 , a=400 , a=True , a=None , a=True , a=[0.5, 0.5, 0.5] , a=[0.5, 0.5, 0.5] , a=True , a=1 / 255 , a=True , ) -> Optional[Any]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
SCREAMING_SNAKE_CASE = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333}
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = min_resolution
SCREAMING_SNAKE_CASE = max_resolution
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean
SCREAMING_SNAKE_CASE = image_std
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def SCREAMING_SNAKE_CASE__ ( self , a , a=False) -> Any:
if not batched:
SCREAMING_SNAKE_CASE = image_inputs[0]
if isinstance(a , Image.Image):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * h / w)
SCREAMING_SNAKE_CASE = self.size['shortest_edge']
elif w > h:
SCREAMING_SNAKE_CASE = self.size['shortest_edge']
SCREAMING_SNAKE_CASE = int(self.size['shortest_edge'] * w / h)
else:
SCREAMING_SNAKE_CASE = self.size['shortest_edge']
SCREAMING_SNAKE_CASE = self.size['shortest_edge']
else:
SCREAMING_SNAKE_CASE = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
SCREAMING_SNAKE_CASE = max(a , key=lambda a: item[0])[0]
SCREAMING_SNAKE_CASE = max(a , key=lambda a: item[1])[1]
return expected_height, expected_width
@require_torch
@require_vision
class _snake_case ( A__ , unittest.TestCase ):
_lowercase : Dict = DetaImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE__ ( self) -> Any:
SCREAMING_SNAKE_CASE = DetaImageProcessingTester(self)
@property
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(a , 'image_mean'))
self.assertTrue(hasattr(a , 'image_std'))
self.assertTrue(hasattr(a , 'do_normalize'))
self.assertTrue(hasattr(a , 'do_resize'))
self.assertTrue(hasattr(a , 'do_rescale'))
self.assertTrue(hasattr(a , 'do_pad'))
self.assertTrue(hasattr(a , 'size'))
def SCREAMING_SNAKE_CASE__ ( self) -> str:
SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333})
self.assertEqual(image_processor.do_pad , a)
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]:
pass
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a)
for image in image_inputs:
self.assertIsInstance(a , Image.Image)
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a , batched=a)
SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE__ ( self) -> Tuple:
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , numpify=a)
for image in image_inputs:
self.assertIsInstance(a , np.ndarray)
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a , batched=a)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]:
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=a , torchify=a)
for image in image_inputs:
self.assertIsInstance(a , torch.Tensor)
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt').pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a)
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(a , return_tensors='pt').pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor_tester.get_expected_values(a , batched=a)
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
# prepare image and target
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f:
SCREAMING_SNAKE_CASE = json.loads(f.read())
SCREAMING_SNAKE_CASE = {'image_id': 3_9769, 'annotations': target}
# encode them
SCREAMING_SNAKE_CASE = DetaImageProcessor()
SCREAMING_SNAKE_CASE = image_processing(images=a , annotations=a , return_tensors='pt')
# verify pixel values
SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding['pixel_values'].shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81])
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1E-4))
# verify area
SCREAMING_SNAKE_CASE = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438])
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a))
# verify boxes
SCREAMING_SNAKE_CASE = torch.Size([6, 4])
self.assertEqual(encoding['labels'][0]['boxes'].shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15])
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1E-3))
# verify image_id
SCREAMING_SNAKE_CASE = torch.tensor([3_9769])
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a))
# verify is_crowd
SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a))
# verify class_labels
SCREAMING_SNAKE_CASE = torch.tensor([75, 75, 63, 65, 17, 17])
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a))
# verify orig_size
SCREAMING_SNAKE_CASE = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a))
# verify size
SCREAMING_SNAKE_CASE = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a))
@slow
def SCREAMING_SNAKE_CASE__ ( self) -> Dict:
# prepare image, target and masks_path
SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png')
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f:
SCREAMING_SNAKE_CASE = json.loads(f.read())
SCREAMING_SNAKE_CASE = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target}
SCREAMING_SNAKE_CASE = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic')
# encode them
SCREAMING_SNAKE_CASE = DetaImageProcessor(format='coco_panoptic')
SCREAMING_SNAKE_CASE = image_processing(images=a , annotations=a , masks_path=a , return_tensors='pt')
# verify pixel values
SCREAMING_SNAKE_CASE = torch.Size([1, 3, 800, 1066])
self.assertEqual(encoding['pixel_values'].shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([0.27_96, 0.31_38, 0.34_81])
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , a , atol=1E-4))
# verify area
SCREAMING_SNAKE_CASE = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147])
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , a))
# verify boxes
SCREAMING_SNAKE_CASE = torch.Size([6, 4])
self.assertEqual(encoding['labels'][0]['boxes'].shape , a)
SCREAMING_SNAKE_CASE = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25])
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , a , atol=1E-3))
# verify image_id
SCREAMING_SNAKE_CASE = torch.tensor([3_9769])
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , a))
# verify is_crowd
SCREAMING_SNAKE_CASE = torch.tensor([0, 0, 0, 0, 0, 0])
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , a))
# verify class_labels
SCREAMING_SNAKE_CASE = torch.tensor([17, 17, 63, 75, 75, 93])
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , a))
# verify masks
SCREAMING_SNAKE_CASE = 82_2873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , a)
# verify orig_size
SCREAMING_SNAKE_CASE = torch.tensor([480, 640])
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , a))
# verify size
SCREAMING_SNAKE_CASE = torch.tensor([800, 1066])
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , a))
| 356 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
monkeypatch.setattr('datasets.utils.deprecation_utils._emitted_deprecation_warnings' , set())
@pytest.fixture
def lowerCamelCase__ (_UpperCAmelCase):
class _snake_case :
def __init__( self , a) -> List[Any]:
SCREAMING_SNAKE_CASE = metric_id
class _snake_case :
_lowercase : Optional[Any] = [MetricMock(A__ ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']]
def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]:
return self._metrics
monkeypatch.setattr('datasets.inspect.huggingface_hub' , HfhMock())
@pytest.mark.parametrize(
'func, args' , [(load_metric, ('metrics/mse',)), (list_metrics, ()), (inspect_metric, ('metrics/mse', 'tmp_path'))])
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase):
if "tmp_path" in args:
SCREAMING_SNAKE_CASE = tuple(arg if arg != 'tmp_path' else tmp_path for arg in args)
with pytest.warns(_UpperCAmelCase , match='https://huggingface.co/docs/evaluate'):
func(*_UpperCAmelCase)
| 327 | 0 |
"""simple docstring"""
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
a_ : Optional[Any] = '\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n'
a_ : Any = '\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.\n'
a_ : List[str] = R'\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting "1/2" to "\\frac{1}{2}")\n\nExamples:\n >>> metric = datasets.load_metric("competition_math")\n >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])\n >>> print(results)\n {\'accuracy\': 1.0}\n'
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string'),
'references': datasets.Value('string'),
}) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , )
def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[int]:
SCREAMING_SNAKE_CASE = 0.0
for i, j in zip(a , a):
n_correct += 1.0 if math_equivalence.is_equiv(a , a) else 0.0
SCREAMING_SNAKE_CASE = n_correct / len(a)
return {
"accuracy": accuracy,
}
| 357 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a_ : Any = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Dict = ['MLukeTokenizer']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
a_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 327 | 0 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : List[Any] = {
'configuration_autoformer': [
'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'AutoformerConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : Tuple = [
'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'AutoformerForPrediction',
'AutoformerModel',
'AutoformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 358 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
a_ : List[Any] = logging.get_logger(__name__)
a_ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
a_ : str = {
'vocab_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json'
},
'merges_file': {
'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt'
},
}
a_ : List[Any] = {'allegro/herbert-base-cased': 5_14}
a_ : Dict = {}
class _snake_case ( A__ ):
_lowercase : Dict = VOCAB_FILES_NAMES
_lowercase : int = PRETRAINED_VOCAB_FILES_MAP
_lowercase : Any = PRETRAINED_INIT_CONFIGURATION
_lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase : Any = HerbertTokenizer
def __init__( self , a=None , a=None , a=None , a="<s>" , a="<unk>" , a="<pad>" , a="<mask>" , a="</s>" , **a , ) -> Dict:
super().__init__(
a , a , tokenizer_file=a , cls_token=a , unk_token=a , pad_token=a , mask_token=a , sep_token=a , **a , )
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = False) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a , token_ids_a=a , already_has_special_tokens=a)
if token_ids_a is None:
return [1] + ([0] * len(a)) + [1]
return [1] + ([0] * len(a)) + [1] + ([0] * len(a)) + [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> List[int]:
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def SCREAMING_SNAKE_CASE__ ( self , a , a = None) -> Tuple[str]:
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(a , name=a)
return tuple(a)
| 327 | 0 |
import numpy as np
from nltk.translate import meteor_score
import datasets
from datasets.config import importlib_metadata, version
a_ : List[str] = version.parse(importlib_metadata.version('nltk'))
if NLTK_VERSION >= version.Version('3.6.4'):
from nltk import word_tokenize
a_ : Any = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n'
a_ : int = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n'
a_ : Any = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence'),
'references': datasets.Value('string' , id='sequence'),
}) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[
'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score',
'https://en.wikipedia.org/wiki/METEOR',
] , )
def SCREAMING_SNAKE_CASE__ ( self , a) -> int:
import nltk
nltk.download('wordnet')
if NLTK_VERSION >= version.Version('3.6.5'):
nltk.download('punkt')
if NLTK_VERSION >= version.Version('3.6.6'):
nltk.download('omw-1.4')
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=0.9 , a=3 , a=0.5) -> Optional[Any]:
if NLTK_VERSION >= version.Version('3.6.5'):
SCREAMING_SNAKE_CASE = [
meteor_score.single_meteor_score(
word_tokenize(a) , word_tokenize(a) , alpha=a , beta=a , gamma=a)
for ref, pred in zip(a , a)
]
else:
SCREAMING_SNAKE_CASE = [
meteor_score.single_meteor_score(a , a , alpha=a , beta=a , gamma=a)
for ref, pred in zip(a , a)
]
return {"meteor": np.mean(a)}
| 359 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
a_ : Dict = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class _snake_case ( A__ ):
def __init__( self , *a , a=None , a=None , a=None , **a) -> List[Any]:
super().__init__(*a , **a)
SCREAMING_SNAKE_CASE = eval_examples
SCREAMING_SNAKE_CASE = post_process_function
SCREAMING_SNAKE_CASE = quant_trainer_args
SCREAMING_SNAKE_CASE = 128 # default number of calibration samples
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Union[str, Any]:
if calib_dataset is None and self.calib_dataset is None:
raise ValueError('Trainer: calibration requires an calib_dataset.')
SCREAMING_SNAKE_CASE = calib_dataset if calib_dataset is not None else self.calib_dataset
SCREAMING_SNAKE_CASE = self._remove_unused_columns(a , description='Calibration')
return DataLoader(
a , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=a , )
def SCREAMING_SNAKE_CASE__ ( self , a=None) -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.train_dataset if calib_dataset is None else calib_dataset
SCREAMING_SNAKE_CASE = self.get_calib_dataloader(a)
SCREAMING_SNAKE_CASE = self.model
quant_trainer.configure_model(a , self.quant_trainer_args , calib=a)
model.eval()
quant_trainer.enable_calibration(a)
logger.info('***** Running calibration *****')
logger.info(f''' Num examples = {self.calib_num}''')
logger.info(f''' Batch size = {calib_dataloader.batch_size}''')
for step, inputs in enumerate(a):
# Prediction step
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.prediction_step(a , a , prediction_loss_only=a)
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = model
def SCREAMING_SNAKE_CASE__ ( self , a=None , a=None , a=None , a = "eval") -> str:
SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions)
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
self.log(a)
else:
SCREAMING_SNAKE_CASE = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , a)
return metrics
def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a = "test") -> Optional[Any]:
SCREAMING_SNAKE_CASE = self.get_test_dataloader(a)
# Temporarily disable metric computation, we will do it in the loop here.
SCREAMING_SNAKE_CASE = self.compute_metrics
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
SCREAMING_SNAKE_CASE = eval_loop(
a , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a , )
finally:
SCREAMING_SNAKE_CASE = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
SCREAMING_SNAKE_CASE = self.post_process_function(a , a , output.predictions , 'predict')
SCREAMING_SNAKE_CASE = self.compute_metrics(a)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f'''{metric_key_prefix}_'''):
SCREAMING_SNAKE_CASE = metrics.pop(a)
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a)
def SCREAMING_SNAKE_CASE__ ( self , a="./") -> List[Any]:
SCREAMING_SNAKE_CASE = self.eval_dataset
SCREAMING_SNAKE_CASE = self.get_eval_dataloader(a)
SCREAMING_SNAKE_CASE = next(iter(a))
# saving device - to make it consistent
SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# convert to tuple
SCREAMING_SNAKE_CASE = tuple(v.to(a) for k, v in batch.items())
logger.info('Converting model to be onnx compatible')
from pytorch_quantization.nn import TensorQuantizer
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = self.model.to(a)
model.eval()
model.float()
SCREAMING_SNAKE_CASE = model.module if hasattr(a , 'module') else model
quant_trainer.configure_model(a , self.quant_trainer_args)
SCREAMING_SNAKE_CASE = os.path.join(a , 'model.onnx')
logger.info(f'''exporting model to {output_model_file}''')
SCREAMING_SNAKE_CASE = {0: 'batch_size', 1: 'seq_len'}
torch.onnx.export(
a , a , a , export_params=a , opset_version=13 , do_constant_folding=a , input_names=['input_ids', 'attention_mask', 'token_type_ids'] , output_names=['output_start_logits', 'output_end_logits'] , dynamic_axes={
'input_ids': axes,
'attention_mask': axes,
'token_type_ids': axes,
'output_start_logits': axes,
'output_end_logits': axes,
} , verbose=a , )
logger.info('onnx export finished')
| 327 | 0 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : List[str] = ['''pixel_values''']
def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
SCREAMING_SNAKE_CASE = pad_size
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a)
SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height
SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width
return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]:
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad
SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_pad:
SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 360 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
a_ : Union[str, Any] = logging.get_logger(__name__)
class _snake_case ( A__ ):
_lowercase : List[str] = ['''pixel_values''']
def __init__( self , a = True , a = 1 / 255 , a = True , a = 8 , **a , ) -> None:
super().__init__(**a)
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_pad
SCREAMING_SNAKE_CASE = pad_size
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , **a) -> np.ndarray:
return rescale(a , scale=a , data_format=a , **a)
def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> List[str]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_image_size(a)
SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height
SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width
return pad(a , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=a)
def SCREAMING_SNAKE_CASE__ ( self , a , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> List[str]:
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad
SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size
SCREAMING_SNAKE_CASE = make_list_of_images(a)
if not valid_images(a):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.')
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = [to_numpy_array(a) for image in images]
if do_rescale:
SCREAMING_SNAKE_CASE = [self.rescale(image=a , scale=a) for image in images]
if do_pad:
SCREAMING_SNAKE_CASE = [self.pad(a , size=a) for image in images]
SCREAMING_SNAKE_CASE = [to_channel_dimension_format(a , a) for image in images]
SCREAMING_SNAKE_CASE = {'pixel_values': images}
return BatchFeature(data=a , tensor_type=a)
| 327 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.