code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def lowerCamelCase__ (): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT): with pytest.raises(_UpperCAmelCase): requests.request('GET' , 'https://huggingface.co') with pytest.raises(requests.exceptions.ConnectTimeout): requests.request('GET' , 'https://huggingface.co' , timeout=1.0) @pytest.mark.integration def lowerCamelCase__ (): with offline(OfflineSimulationMode.CONNECTION_FAILS): with pytest.raises(requests.exceptions.ConnectionError): requests.request('GET' , 'https://huggingface.co') def lowerCamelCase__ (): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1): with pytest.raises(_UpperCAmelCase): http_head('https://huggingface.co')
361
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = TFCamembertModel.from_pretrained('jplu/tf-camembert-base') SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" SCREAMING_SNAKE_CASE = model(a)['last_hidden_state'] SCREAMING_SNAKE_CASE = tf.TensorShape((1, 10, 768)) self.assertEqual(output.shape , a) # compare the actual values for a slice. SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[[-0.02_54, 0.02_35, 0.10_27], [0.06_06, -0.18_11, -0.04_18], [-0.15_61, -0.11_27, 0.26_87]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
327
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=0): return sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x[column]) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=float('inf')): for i in range(points_counts - 1): for j in range(i + 1 , _UpperCAmelCase): SCREAMING_SNAKE_CASE = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: SCREAMING_SNAKE_CASE = current_dis return min_dis def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=float('inf')): for i in range(min(6 , points_counts - 1) , _UpperCAmelCase): for j in range(max(0 , i - 6) , _UpperCAmelCase): SCREAMING_SNAKE_CASE = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: SCREAMING_SNAKE_CASE = current_dis return min_dis def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): # base case if points_counts <= 3: return dis_between_closest_pair(_UpperCAmelCase , _UpperCAmelCase) # recursion SCREAMING_SNAKE_CASE = points_counts // 2 SCREAMING_SNAKE_CASE = closest_pair_of_points_sqr( _UpperCAmelCase , points_sorted_on_y[:mid] , _UpperCAmelCase) SCREAMING_SNAKE_CASE = closest_pair_of_points_sqr( _UpperCAmelCase , points_sorted_on_y[mid:] , points_counts - mid) SCREAMING_SNAKE_CASE = min(_UpperCAmelCase , _UpperCAmelCase) SCREAMING_SNAKE_CASE = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(_UpperCAmelCase) SCREAMING_SNAKE_CASE = dis_between_closest_in_strip( _UpperCAmelCase , len(_UpperCAmelCase) , _UpperCAmelCase) return min(_UpperCAmelCase , _UpperCAmelCase) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = column_based_sort(_UpperCAmelCase , column=0) SCREAMING_SNAKE_CASE = column_based_sort(_UpperCAmelCase , column=1) return ( closest_pair_of_points_sqr( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) ) ** 0.5 if __name__ == "__main__": a_ : Union[str, Any] = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
362
from scipy.stats import pearsonr import datasets a_ : Optional[int] = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' a_ : Optional[int] = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' a_ : Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=False) -> Optional[Any]: if return_pvalue: SCREAMING_SNAKE_CASE = pearsonr(a , a) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(a , a)[0])}
327
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union a_ : Tuple = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class _snake_case : _lowercase : str _lowercase : Optional[str] = None _lowercase : Optional[Union[str, int]] = None _lowercase : Optional[Union[str, int]] = None _lowercase : Optional[Union[str, int]] = None def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _str_to_version_tuple(self.version_str) def __repr__( self) -> List[str]: return f'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def SCREAMING_SNAKE_CASE__ ( self) -> Any: return self.major, self.minor, self.patch def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: if isinstance(a , a): return Version(a) elif isinstance(a , a): return other raise TypeError(f'''{other} (type {type(a)}) cannot be compared to version.''') def __eq__( self , a) -> str: try: SCREAMING_SNAKE_CASE = self._validate_operand(a) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , a) -> Tuple: SCREAMING_SNAKE_CASE = self._validate_operand(a) return self.tuple < other.tuple def __hash__( self) -> Dict: return hash(_version_tuple_to_str(self.tuple)) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , a) -> int: SCREAMING_SNAKE_CASE = {f.name for f in dataclasses.fields(cls)} return cls(**{k: v for k, v in dic.items() if k in field_names}) def SCREAMING_SNAKE_CASE__ ( self) -> str: return self.version_str def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = _VERSION_REG.match(_UpperCAmelCase) if not res: raise ValueError(F'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''') return tuple(int(_UpperCAmelCase) for v in [res.group('major'), res.group('minor'), res.group('patch')]) def lowerCamelCase__ (_UpperCAmelCase): return ".".join(str(_UpperCAmelCase) for v in version_tuple)
363
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class _snake_case ( unittest.TestCase ): _lowercase : List[Any] = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _lowercase : int = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = TextaTextGenerationPipeline(model=a , tokenizer=a) return generator, ["Something to write", "Something else"] def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Any: SCREAMING_SNAKE_CASE = generator('Something there') self.assertEqual(a , [{'generated_text': ANY(a)}]) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there')) SCREAMING_SNAKE_CASE = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) SCREAMING_SNAKE_CASE = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=a) self.assertEqual( a , [ [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], [{'generated_text': ANY(a)}, {'generated_text': ANY(a)}], ] , ) with self.assertRaises(a): generator(4) @require_torch def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}]) SCREAMING_SNAKE_CASE = 3 SCREAMING_SNAKE_CASE = generator( 'Something there' , num_return_sequences=a , num_beams=a , ) SCREAMING_SNAKE_CASE = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(a , a) SCREAMING_SNAKE_CASE = generator('This is a test' , do_sample=a , num_return_sequences=2 , return_tensors=a) self.assertEqual( a , [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ] , ) SCREAMING_SNAKE_CASE = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE = '<pad>' SCREAMING_SNAKE_CASE = generator( ['This is a test', 'This is a second test'] , do_sample=a , num_return_sequences=2 , batch_size=2 , return_tensors=a , ) self.assertEqual( a , [ [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], [ {'generated_token_ids': ANY(torch.Tensor)}, {'generated_token_ids': ANY(torch.Tensor)}, ], ] , ) @require_tf def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf') # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE = generator('Something there' , do_sample=a) self.assertEqual(a , [{'generated_text': ''}])
327
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel a_ : Tuple = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 13_10_72, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, } def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return torch.atana(_UpperCAmelCase , _UpperCAmelCase) / math.pi * 2 def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2) ** 2 SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_UpperCAmelCase , _UpperCAmelCase) class _snake_case ( A__ ): pass class _snake_case ( nn.Module ): def __init__( self , a) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(a , n_attn_layers=4) SCREAMING_SNAKE_CASE = deepcopy(self.diffusion) SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=a) def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['url'] os.system(F'''wget {url} ./''') return F'''./{model_name}.ckpt''' a_ : Tuple = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } a_ : Optional[Any] = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } a_ : Optional[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } a_ : Tuple = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } a_ : Optional[int] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } a_ : Dict = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def lowerCamelCase__ (_UpperCAmelCase): if name.startswith('skip'): return name.replace('skip' , RES_CONV_MAP['skip']) # name has to be of format main.{digit} if not name.startswith('main.'): raise ValueError(F'''ResConvBlock error with {name}''') return name.replace(name[:6] , RES_CONV_MAP[name[:6]]) def lowerCamelCase__ (_UpperCAmelCase): for key, value in ATTN_MAP.items(): if name.startswith(_UpperCAmelCase) and not isinstance(_UpperCAmelCase , _UpperCAmelCase): return name.replace(_UpperCAmelCase , _UpperCAmelCase) elif name.startswith(_UpperCAmelCase): return [name.replace(_UpperCAmelCase , _UpperCAmelCase) for v in value] raise ValueError(F'''Attn error with {name}''') def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=13): SCREAMING_SNAKE_CASE = input_string if string.split('.')[0] == "timestep_embed": return string.replace('timestep_embed' , 'time_proj') SCREAMING_SNAKE_CASE = 0 if string.startswith('net.3.'): depth += 1 SCREAMING_SNAKE_CASE = string[6:] elif string.startswith('net.'): SCREAMING_SNAKE_CASE = string[4:] while string.startswith('main.7.'): depth += 1 SCREAMING_SNAKE_CASE = string[7:] if string.startswith('main.'): SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE = string[:2] SCREAMING_SNAKE_CASE = string[2:] else: SCREAMING_SNAKE_CASE = string[0] SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = 'mid_block' elif depth > 0 and int(_UpperCAmelCase) < 7: SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'''down_blocks.{depth}''' elif depth > 0 and int(_UpperCAmelCase) > 7: SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE = F'''up_blocks.{max_depth - 1}''' if int(_UpperCAmelCase) > 3 else 'down_blocks.0' if not string_left.startswith('.'): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''') SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE = convert_resconv_naming(_UpperCAmelCase) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE = convert_attn_naming(_UpperCAmelCase) SCREAMING_SNAKE_CASE = new_string_left if not isinstance(_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = prefix + '.' + new_layer + '.' + string_left else: SCREAMING_SNAKE_CASE = [prefix + '.' + new_layer + '.' + s for s in string_left] return new_string def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith('kernel'): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE = rename(_UpperCAmelCase) # check if we need to transform from Conv => Linear for attention if isinstance(_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = transform_conv_attns(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) else: SCREAMING_SNAKE_CASE = v return new_state_dict def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if len(_UpperCAmelCase) == 1: if len(v.shape) == 3: # weight SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE = v else: # qkv matrices SCREAMING_SNAKE_CASE = v.shape[0] SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3): if len(v.shape) == 3: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') SCREAMING_SNAKE_CASE = args.model_path.split('/')[-1].split('.')[0] if not os.path.isfile(args.model_path): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' SCREAMING_SNAKE_CASE = download(_UpperCAmelCase) SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_rate'] SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]['sample_size'] SCREAMING_SNAKE_CASE = Object() SCREAMING_SNAKE_CASE = sample_size SCREAMING_SNAKE_CASE = sample_rate SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=_UpperCAmelCase , sample_rate=_UpperCAmelCase) SCREAMING_SNAKE_CASE = diffusers_model.state_dict() SCREAMING_SNAKE_CASE = DiffusionUncond(_UpperCAmelCase) orig_model.load_state_dict(torch.load(args.model_path , map_location=_UpperCAmelCase)['state_dict']) SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE = orig_model.state_dict() SCREAMING_SNAKE_CASE = rename_orig_weights(_UpperCAmelCase) SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys()) - set(diffusers_state_dict.keys()) SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys()) - set(renamed_state_dict.keys()) assert len(_UpperCAmelCase) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('kernel') for k in list(_UpperCAmelCase)), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": SCREAMING_SNAKE_CASE = value.squeeze() SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(_UpperCAmelCase) SCREAMING_SNAKE_CASE = 100 SCREAMING_SNAKE_CASE = 33 SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=_UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.manual_seed(_UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=_UpperCAmelCase).to(_UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=_UpperCAmelCase)[:-1] SCREAMING_SNAKE_CASE = get_crash_schedule(_UpperCAmelCase) SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase) SCREAMING_SNAKE_CASE = torch.manual_seed(33) SCREAMING_SNAKE_CASE = pipe(num_inference_steps=_UpperCAmelCase , generator=_UpperCAmelCase).audios SCREAMING_SNAKE_CASE = sampling.iplms_sample(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , {}) SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1) SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path) print('Diff sum' , _UpperCAmelCase) print('Diff max' , _UpperCAmelCase) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''') if __name__ == "__main__": a_ : Dict = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') a_ : Tuple = parser.parse_args() main(args)
364
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(a) == num_samples def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
327
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { 'configuration_time_series_transformer': [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimeSeriesTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ 'TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimeSeriesTransformerForPrediction', 'TimeSeriesTransformerModel', 'TimeSeriesTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
365
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets a_ : Tuple = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n' a_ : List[Any] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' a_ : List[str] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a=None , a=True , a=False) -> Optional[Any]: if rouge_types is None: SCREAMING_SNAKE_CASE = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum'] SCREAMING_SNAKE_CASE = rouge_scorer.RougeScorer(rouge_types=a , use_stemmer=a) if use_aggregator: SCREAMING_SNAKE_CASE = scoring.BootstrapAggregator() else: SCREAMING_SNAKE_CASE = [] for ref, pred in zip(a , a): SCREAMING_SNAKE_CASE = scorer.score(a , a) if use_aggregator: aggregator.add_scores(a) else: scores.append(a) if use_aggregator: SCREAMING_SNAKE_CASE = aggregator.aggregate() else: SCREAMING_SNAKE_CASE = {} for key in scores[0]: SCREAMING_SNAKE_CASE = [score[key] for score in scores] return result
327
0
from __future__ import annotations class _snake_case : def __init__( self , a) -> None: SCREAMING_SNAKE_CASE = data SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None def lowerCamelCase__ (_UpperCAmelCase): # In Order traversal of the tree if tree: display(tree.left) print(tree.data) display(tree.right) def lowerCamelCase__ (_UpperCAmelCase): return 1 + max(depth_of_tree(tree.left) , depth_of_tree(tree.right)) if tree else 0 def lowerCamelCase__ (_UpperCAmelCase): if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left) and is_full_binary_tree(tree.right) else: return not tree.left and not tree.right def lowerCamelCase__ (): # Main function for testing. SCREAMING_SNAKE_CASE = Node(1) SCREAMING_SNAKE_CASE = Node(2) SCREAMING_SNAKE_CASE = Node(3) SCREAMING_SNAKE_CASE = Node(4) SCREAMING_SNAKE_CASE = Node(5) SCREAMING_SNAKE_CASE = Node(6) SCREAMING_SNAKE_CASE = Node(7) SCREAMING_SNAKE_CASE = Node(8) SCREAMING_SNAKE_CASE = Node(9) print(is_full_binary_tree(_UpperCAmelCase)) print(depth_of_tree(_UpperCAmelCase)) print('Tree is: ') display(_UpperCAmelCase) if __name__ == "__main__": main()
366
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def lowerCamelCase__ (_UpperCAmelCase): if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class _snake_case ( nn.Module ): def __init__( self , a , a) -> Union[str, Any]: super().__init__() SCREAMING_SNAKE_CASE = module SCREAMING_SNAKE_CASE = nn.Sequential( nn.Linear(module.in_features , a , bias=a) , nn.Linear(a , module.out_features , bias=a) , ) SCREAMING_SNAKE_CASE = (2.0 / (5 * min(module.in_features , module.out_features))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=a) nn.init.zeros_(self.adapter[1].weight) self.adapter.to(module.weight.device) def SCREAMING_SNAKE_CASE__ ( self , a , *a , **a) -> Any: return self.module(a , *a , **a) + self.adapter(a) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module _lowercase : Union[str, Any] = '''bigscience/bloom-1b7''' # Constant values _lowercase : str = 2.109_6595_5269_2574 _lowercase : Any = '''Hello my name is''' _lowercase : Any = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) _lowercase : Union[str, Any] = 10 def SCREAMING_SNAKE_CASE__ ( self) -> Any: # Models and tokenizer SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(self.model_name) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto') SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self.model_abit.config self.assertTrue(hasattr(a , 'quantization_config')) SCREAMING_SNAKE_CASE = config.to_dict() SCREAMING_SNAKE_CASE = config.to_diff_dict() SCREAMING_SNAKE_CASE = config.to_json_string() def SCREAMING_SNAKE_CASE__ ( self) -> Any: from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE) SCREAMING_SNAKE_CASE = get_some_linear_layer(self.model_abit) self.assertTrue(linear.weight.__class__ == Paramsabit) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a , torch.nn.Linear): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) def SCREAMING_SNAKE_CASE__ ( self) -> str: with self.assertRaises(a), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = BitsAndBytesConfig() with self.assertRaises(a): SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a , load_in_abit=a , device_map='auto' , bnb_abit_quant_type='nf4' , ) def SCREAMING_SNAKE_CASE__ ( self) -> int: with self.assertRaises(a): # Tries with `str` self.model_abit.to('cpu') with self.assertRaises(a): # Tries with a `dtype`` self.model_abit.to(torch.floataa) with self.assertRaises(a): # Tries with a `device` self.model_abit.to(torch.device('cuda:0')) with self.assertRaises(a): # Tries with a `device` self.model_abit.float() with self.assertRaises(a): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') SCREAMING_SNAKE_CASE = self.model_fpaa.to(torch.floataa) SCREAMING_SNAKE_CASE = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.to('cpu') # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE = self.model_fpaa.float() def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=a , device_map='auto') self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> Tuple: SCREAMING_SNAKE_CASE = 't5-small' SCREAMING_SNAKE_CASE = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(cls.model_name) SCREAMING_SNAKE_CASE = 'Translate in German: Hello, my dog is cute' def SCREAMING_SNAKE_CASE__ ( self) -> Dict: gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE = None # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) SCREAMING_SNAKE_CASE = modules def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit)) SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) # test with `flan-t5-small` SCREAMING_SNAKE_CASE = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a , device_map='auto') SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt').to(0) SCREAMING_SNAKE_CASE = model.generate(**a) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> str: super().setUp() # model_name SCREAMING_SNAKE_CASE = 'bigscience/bloom-560m' SCREAMING_SNAKE_CASE = 't5-small' # Different types of model SCREAMING_SNAKE_CASE = AutoModel.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Sequence classification model SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=a , device_map='auto') # CausalLM model SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a , device_map='auto') # Seq2seq model SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=a , device_map='auto') def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Dict: del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE = self.pipe(self.input_text) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS) @require_torch_multi_gpu class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> int: super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=a , device_map='balanced') # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values()) , {0, 1}) # Check that inference pass works on the model SCREAMING_SNAKE_CASE = self.tokenizer(self.input_text , return_tensors='pt') # Second real batch SCREAMING_SNAKE_CASE = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0) , max_new_tokens=10) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a) , self.EXPECTED_OUTPUTS) class _snake_case ( A__ ): def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 'facebook/opt-350m' super().setUp() def SCREAMING_SNAKE_CASE__ ( self) -> Any: if version.parse(importlib.metadata.version('bitsandbytes')) < version.parse('0.37.0'): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a) self.assertEqual(set(model.hf_device_map.values()) , {torch.cuda.current_device()}) for param in model.parameters(): SCREAMING_SNAKE_CASE = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE = param.data.to(torch.floataa) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a)): SCREAMING_SNAKE_CASE = LoRALayer(module.q_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.k_proj , rank=16) SCREAMING_SNAKE_CASE = LoRALayer(module.v_proj , rank=16) # Step 3: dummy batch SCREAMING_SNAKE_CASE = self.tokenizer('Test batch ' , return_tensors='pt').to(0) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE = model.forward(**a) out.logits.norm().backward() for module in model.modules(): if isinstance(a , a): self.assertTrue(module.adapter[1].weight.grad is not None) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) elif isinstance(a , nn.Embedding): self.assertTrue(module.weight.grad is None) class _snake_case ( A__ ): _lowercase : str = '''gpt2-xl''' _lowercase : Union[str, Any] = 3.3191_8548_5415_2187
327
0
import inspect import unittest class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> int: try: import diffusers # noqa: F401 except ImportError: assert False def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: import diffusers from diffusers.dependency_versions_table import deps SCREAMING_SNAKE_CASE = inspect.getmembers(a , inspect.isclass) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": SCREAMING_SNAKE_CASE = 'k-diffusion' elif backend == "invisible_watermark": SCREAMING_SNAKE_CASE = 'invisible-watermark' assert backend in deps, f'''{backend} is not in the deps table!'''
367
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a_ : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
327
0
from __future__ import annotations from math import pi, sqrt def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if inductance <= 0: raise ValueError('Inductance cannot be 0 or negative') elif capacitance <= 0: raise ValueError('Capacitance cannot be 0 or negative') else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance)))), ) if __name__ == "__main__": import doctest doctest.testmod()
368
import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) a_ : Dict = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None , a = None) -> Optional[int]: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'by_feature')) SCREAMING_SNAKE_CASE = os.path.abspath('examples') for item in os.listdir(a): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE = os.path.join(a , a) if os.path.isfile(a) and ".py" in item_path: with self.subTest( tested_script=a , feature_script=a , tested_section='main()' if parser_only else 'training_function()' , ): SCREAMING_SNAKE_CASE = compare_against_test( os.path.join(a , a) , a , a , a) SCREAMING_SNAKE_CASE = '\n'.join(a) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE = diff.replace(a , '') self.assertEqual(a , '') def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: self.one_complete_example('complete_nlp_example.py' , a) self.one_complete_example('complete_nlp_example.py' , a) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = os.path.abspath(os.path.join('examples' , 'cv_example.py')) SCREAMING_SNAKE_CASE = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , a , a , a) self.one_complete_example('complete_cv_example.py' , a , a , a) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class _snake_case ( A__ ): _lowercase : int = False @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> Union[str, Any]: super().setUpClass() SCREAMING_SNAKE_CASE = tempfile.mkdtemp() SCREAMING_SNAKE_CASE = os.path.join(cls._tmpdir , 'default_config.yml') write_basic_config(save_location=cls.configPath) SCREAMING_SNAKE_CASE = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def SCREAMING_SNAKE_CASE__ ( cls) -> Dict: super().tearDownClass() shutil.rmtree(cls._tmpdir) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = f''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0'))) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = f''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2'))) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0')} '''.split() SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a) self.assertNotIn('epoch 0:' , a) self.assertIn('epoch 1:' , a) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = f''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2')} '''.split() SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , a) self.assertIn('epoch 1:' , a) else: self.assertIn('epoch 0:' , a) self.assertIn('epoch 1:' , a) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}): SCREAMING_SNAKE_CASE = run_command(self._launch_args + testargs , return_stdout=a) SCREAMING_SNAKE_CASE = re.findall('({.+})' , a) SCREAMING_SNAKE_CASE = [r for r in results if 'accuracy' in r][-1] SCREAMING_SNAKE_CASE = ast.literal_eval(a) self.assertGreaterEqual(results['accuracy'] , 0.75) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'}) def SCREAMING_SNAKE_CASE__ ( self) -> Any: with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE = f''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(a , 'tracking'))) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs) def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs)
327
0
import math def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return math.pow(_UpperCAmelCase , 2) - a def lowerCamelCase__ (_UpperCAmelCase): return 2 * x def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = 2.0 while start <= a: SCREAMING_SNAKE_CASE = math.pow(_UpperCAmelCase , 2) return start def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase = 9999 , _UpperCAmelCase = 0.00_00_00_00_00_00_01): if a < 0: raise ValueError('math domain error') SCREAMING_SNAKE_CASE = get_initial_point(_UpperCAmelCase) for _ in range(_UpperCAmelCase): SCREAMING_SNAKE_CASE = value SCREAMING_SNAKE_CASE = value - fx(_UpperCAmelCase , _UpperCAmelCase) / fx_derivative(_UpperCAmelCase) if abs(prev_value - value) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
369
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self , a , a=3 , a=32 , a=3 , a=10 , a=[10, 20, 30, 40] , a=[1, 1, 2, 1] , a=True , a=True , a="relu" , a=3 , a=None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = embeddings_size SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = len(a) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> Any: SCREAMING_SNAKE_CASE = TFResNetModel(config=a) SCREAMING_SNAKE_CASE = model(a) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE__ ( self , a , a , a) -> int: SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = TFResNetForImageClassification(a) SCREAMING_SNAKE_CASE = model(a , labels=a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _snake_case ( A__ , A__ , unittest.TestCase ): _lowercase : List[Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _lowercase : Dict = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : List[str] = False _lowercase : str = False _lowercase : int = False def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = TFResNetModelTester(self) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=a , has_text_modality=a) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: return @unittest.skip(reason='ResNet does not use inputs_embeds') def SCREAMING_SNAKE_CASE__ ( self) -> int: pass @unittest.skip(reason='ResNet does not support input and output embeddings') def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: pass def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(a) SCREAMING_SNAKE_CASE = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: def check_hidden_states_output(a , a , a): SCREAMING_SNAKE_CASE = model_class(a) SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(a , a)) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(a) , expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE = layer_type SCREAMING_SNAKE_CASE = True check_hidden_states_output(a , a , a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE = True check_hidden_states_output(a , a , a) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a) @slow def SCREAMING_SNAKE_CASE__ ( self) -> str: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = TFResNetModel.from_pretrained(a) self.assertIsNotNone(a) def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_tf @require_vision class _snake_case ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=a , return_tensors='tf') # forward pass SCREAMING_SNAKE_CASE = model(**a) # verify the logits SCREAMING_SNAKE_CASE = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , a) SCREAMING_SNAKE_CASE = tf.constant([-11.10_69, -9.78_77, -8.37_77]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , a , atol=1E-4))
327
0
def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): if len(_UpperCAmelCase) != len(_UpperCAmelCase): raise ValueError('The length of profit and weight must be same.') if max_weight <= 0: raise ValueError('max_weight must greater than zero.') if any(p < 0 for p in profit): raise ValueError('Profit can not be negative.') if any(w < 0 for w in weight): raise ValueError('Weight can not be negative.') # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. SCREAMING_SNAKE_CASE = [p / w for p, w in zip(_UpperCAmelCase , _UpperCAmelCase)] # Creating a copy of the list and sorting profit/weight in ascending order SCREAMING_SNAKE_CASE = sorted(_UpperCAmelCase) # declaring useful variables SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight SCREAMING_SNAKE_CASE = sorted_profit_by_weight[length - i - 1] SCREAMING_SNAKE_CASE = profit_by_weight.index(_UpperCAmelCase) SCREAMING_SNAKE_CASE = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) a_ : List[str] = [int(x) for x in input('Input profits separated by spaces: ').split()] a_ : int = [int(x) for x in input('Input weights separated by spaces: ').split()] a_ : List[Any] = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
370
from math import isqrt def lowerCamelCase__ (_UpperCAmelCase): SCREAMING_SNAKE_CASE = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = False return [i for i in range(2 , _UpperCAmelCase) if is_prime[i]] def lowerCamelCase__ (_UpperCAmelCase = 10**8): SCREAMING_SNAKE_CASE = calculate_prime_numbers(max_number // 2) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = len(_UpperCAmelCase) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f"""{solution() = }""")
327
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a_ : Optional[int] = { 'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongT5EncoderModel', 'LongT5ForConditionalGeneration', 'LongT5Model', 'LongT5PreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = [ 'FlaxLongT5ForConditionalGeneration', 'FlaxLongT5Model', 'FlaxLongT5PreTrainedModel', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import baseaa def lowerCamelCase__ (_UpperCAmelCase): return baseaa.aaaencode(string.encode('utf-8')) def lowerCamelCase__ (_UpperCAmelCase): return baseaa.aaadecode(_UpperCAmelCase).decode('utf-8') if __name__ == "__main__": import doctest doctest.testmod()
327
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
1
def lowerCAmelCase_ ( UpperCamelCase_ = 1000000 ) -> int: UpperCamelCase_ = set(range(3 , UpperCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase_ , UpperCamelCase_ ) ) ) UpperCamelCase_ = [float(UpperCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCAmelCase = logging.get_logger(__name__) @dataclass class _UpperCamelCase : def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: Optional[Any]=6.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: List[str]="fp4" , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , **_SCREAMING_SNAKE_CASE: Dict , ) -> str: """simple docstring""" UpperCamelCase_ = load_in_abit UpperCamelCase_ = load_in_abit UpperCamelCase_ = llm_inta_threshold UpperCamelCase_ = llm_inta_skip_modules UpperCamelCase_ = llm_inta_enable_fpaa_cpu_offload UpperCamelCase_ = llm_inta_has_fpaa_weight UpperCamelCase_ = bnb_abit_quant_type UpperCamelCase_ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCamelCase_ = torch.floataa elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , torch.dtype ): UpperCamelCase_ = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def lowercase ( self: int ) -> List[Any]: """simple docstring""" if not isinstance(self.llm_inta_threshold , _SCREAMING_SNAKE_CASE ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _SCREAMING_SNAKE_CASE ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _SCREAMING_SNAKE_CASE ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , _SCREAMING_SNAKE_CASE ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , _SCREAMING_SNAKE_CASE ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , _SCREAMING_SNAKE_CASE ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def lowercase ( self: int ) -> List[Any]: """simple docstring""" return self.load_in_abit or self.load_in_abit def lowercase ( self: str ) -> Optional[int]: """simple docstring""" if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def lowercase ( cls: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ = cls(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [] for key, value in kwargs.items(): if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) to_remove.append(_SCREAMING_SNAKE_CASE ) for key in to_remove: kwargs.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if return_unused_kwargs: return config, kwargs else: return config def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, os.PathLike] ) -> Dict: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: UpperCamelCase_ = self.to_dict() UpperCamelCase_ = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" writer.write(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self: Tuple ) -> List[str]: """simple docstring""" return f'''{self.__class__.__name__} {self.to_json_string()}''' def lowercase ( self: str , _SCREAMING_SNAKE_CASE: bool = True ) -> str: """simple docstring""" if use_diff is True: UpperCamelCase_ = self.to_diff_dict() else: UpperCamelCase_ = self.to_dict() return json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" def lowercase ( self: Optional[int] ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase_ = self.to_dict() # get the default config dict UpperCamelCase_ = BitsAndBytesConfig().to_dict() UpperCamelCase_ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCamelCase_ = value return serializable_config_dict
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _UpperCAmelCase = ['bert-base-uncased', 'bert-base-cased'] _UpperCAmelCase = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _UpperCamelCase ( tf.keras.Model ): def __init__( self: str , _SCREAMING_SNAKE_CASE: Any ) -> int: """simple docstring""" super().__init__() UpperCamelCase_ = tokenizer UpperCamelCase_ = AutoConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = TFAutoModel.from_config(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int ) -> Any: """simple docstring""" UpperCamelCase_ = self.tokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.bert(**_SCREAMING_SNAKE_CASE ) return out["pooler_output"] @require_tf @require_tensorflow_text class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCamelCase_ = [ BertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCamelCase_ = [TFBertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , use_fast_bert_tokenizer=_SCREAMING_SNAKE_CASE ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCamelCase_ = [ "This is a straightforward English test sentence.", "This one has some weird characters\rto\nsee\r\nif those\u00E9break things.", "Now we're going to add some Chinese: 一 二 三 一二三", "And some much more rare Chinese: 齉 堃 齉堃", "Je vais aussi écrire en français pour tester les accents", "Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ", ] UpperCamelCase_ = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def lowercase ( self: Tuple ) -> Optional[Any]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="tf" , padding="longest" ) UpperCamelCase_ = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def lowercase ( self: str ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase_ = tf_tokenizer(self.paired_sentences ) UpperCamelCase_ = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase_ = tf.function(_SCREAMING_SNAKE_CASE ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCamelCase_ = tf.constant(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = compiled_tokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tf_tokenizer(_SCREAMING_SNAKE_CASE ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def lowercase ( self: Any ) -> str: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: UpperCamelCase_ = ModelToSave(tokenizer=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tf.convert_to_tensor(self.test_sentences ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCamelCase_ = Path(_SCREAMING_SNAKE_CASE ) / "saved.model" model.save(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tf.keras.models.load_model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = loaded_model(_SCREAMING_SNAKE_CASE ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1e-5 )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off _UpperCAmelCase = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5, 7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7, 1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1, 4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6, 1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1, 1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9, 3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1 ] _UpperCAmelCase = [ 1, 2, 7, 8, 9, 1_0, 1_4, 2_5, 2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2, 6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3, 8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7, 3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7, 7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3, 1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5, 2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5, 4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2 ] class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''whisper''' _UpperCamelCase : Optional[int] = ['''past_key_values'''] _UpperCamelCase : List[str] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _SCREAMING_SNAKE_CASE: List[str]=51865 , _SCREAMING_SNAKE_CASE: List[str]=80 , _SCREAMING_SNAKE_CASE: List[Any]=6 , _SCREAMING_SNAKE_CASE: Any=4 , _SCREAMING_SNAKE_CASE: List[str]=6 , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: int=1536 , _SCREAMING_SNAKE_CASE: str=1536 , _SCREAMING_SNAKE_CASE: Optional[int]=0.0 , _SCREAMING_SNAKE_CASE: Optional[int]=0.0 , _SCREAMING_SNAKE_CASE: Dict=50257 , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: int="gelu" , _SCREAMING_SNAKE_CASE: Dict=256 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Tuple=1500 , _SCREAMING_SNAKE_CASE: Any=448 , _SCREAMING_SNAKE_CASE: Dict=50256 , _SCREAMING_SNAKE_CASE: Any=50256 , _SCREAMING_SNAKE_CASE: Dict=50256 , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: str=[220, 50256] , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: str=256 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: List[str]=0.05 , _SCREAMING_SNAKE_CASE: Optional[int]=10 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: List[str]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=10 , _SCREAMING_SNAKE_CASE: List[str]=0 , _SCREAMING_SNAKE_CASE: str=7 , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = vocab_size UpperCamelCase_ = num_mel_bins UpperCamelCase_ = d_model UpperCamelCase_ = encoder_layers UpperCamelCase_ = encoder_attention_heads UpperCamelCase_ = decoder_layers UpperCamelCase_ = decoder_attention_heads UpperCamelCase_ = decoder_ffn_dim UpperCamelCase_ = encoder_ffn_dim UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = activation_function UpperCamelCase_ = init_std UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = decoder_layerdrop UpperCamelCase_ = use_cache UpperCamelCase_ = encoder_layers UpperCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase_ = max_source_positions UpperCamelCase_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. UpperCamelCase_ = classifier_proj_size UpperCamelCase_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase_ = apply_spec_augment UpperCamelCase_ = mask_time_prob UpperCamelCase_ = mask_time_length UpperCamelCase_ = mask_time_min_masks UpperCamelCase_ = mask_feature_prob UpperCamelCase_ = mask_feature_length UpperCamelCase_ = mask_feature_min_masks UpperCamelCase_ = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" UpperCamelCase_ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase_ = {0: "batch"} else: UpperCamelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs" ) return common_inputs def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional["TensorType"] = None , _SCREAMING_SNAKE_CASE: int = 22050 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: int = 220 , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = OrderedDict() UpperCamelCase_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = encoder_inputs["input_features"].shape[2] UpperCamelCase_ = encoder_sequence_length // 2 if self.use_past else seq_length UpperCamelCase_ = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = encoder_inputs.pop("input_features" ) UpperCamelCase_ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: UpperCamelCase_ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def lowercase ( self: Any ) -> float: """simple docstring""" return 1e-3
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _UpperCAmelCase = pytest.mark.integration _UpperCAmelCase = {'comet'} _UpperCAmelCase = importlib.util.find_spec('fairseq') is not None _UpperCAmelCase = {'code_eval'} _UpperCAmelCase = os.name == 'nt' _UpperCAmelCase = {'bertscore', 'frugalscore', 'perplexity'} _UpperCAmelCase = importlib.util.find_spec('transformers') is not None def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: @wraps(UpperCamelCase_ ) def wrapper(self , UpperCamelCase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: @wraps(UpperCamelCase_ ) def wrapper(self , UpperCamelCase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: @wraps(UpperCamelCase_ ) def wrapper(self , UpperCamelCase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @local class _UpperCamelCase ( parameterized.TestCase ): _UpperCamelCase : Any = {} _UpperCamelCase : Dict = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = "[...]" UpperCamelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) ).module_path ) UpperCamelCase_ = datasets.load.import_main_class(metric_module.__name__ , dataset=_SCREAMING_SNAKE_CASE ) # check parameters UpperCamelCase_ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_SCREAMING_SNAKE_CASE , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCamelCase_ = doctest.testmod(_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , raise_on_error=_SCREAMING_SNAKE_CASE ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = "[...]" UpperCamelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCamelCase_ = doctest.testmod(_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , raise_on_error=_SCREAMING_SNAKE_CASE ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_SCREAMING_SNAKE_CASE ): yield else: yield @contextmanager def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" def load_local_metric(_SCREAMING_SNAKE_CASE: Dict , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[Any] ): return load_metric(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with patch("datasets.load_metric" ) as mock_load_metric: UpperCamelCase_ = load_local_metric yield @classmethod def lowercase ( cls: Dict , _SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" def wrapper(_SCREAMING_SNAKE_CASE: List[Any] ): UpperCamelCase_ = contextmanager(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Any ) -> Optional[int]: """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: UpperCamelCase_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: import torch def bert_cos_score_idf(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: UpperCamelCase_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Any: def load_from_checkpoint(UpperCamelCase_ ): class _UpperCamelCase : def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[str] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> List[str]: """simple docstring""" assert len(_SCREAMING_SNAKE_CASE ) == 2 UpperCamelCase_ = [0.19, 0.92] return scores, sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: UpperCamelCase_ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: UpperCamelCase_ = load_from_checkpoint yield def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = load_metric(os.path.join("metrics" , "seqeval" ) ) UpperCamelCase_ = "ERROR" UpperCamelCase_ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
328
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
1
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : int = ['''pixel_values'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 0.9 , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: Union[int, float] = 1 / 255 , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = size if size is not None else {"shortest_edge": 224} UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = crop_pct UpperCamelCase_ = resample UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase_ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: Optional[float] = None , _SCREAMING_SNAKE_CASE: PILImageResampling = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Any , ) -> np.ndarray: """simple docstring""" UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'''size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) if crop_pct is not None: if "shortest_edge" in size: UpperCamelCase_ = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: UpperCamelCase_ = int(size["height"] / crop_pct ) else: UpperCamelCase_ = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) else: if "shortest_edge" in size: UpperCamelCase_ = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: UpperCamelCase_ = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(_SCREAMING_SNAKE_CASE ) ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> np.ndarray: """simple docstring""" UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''size must contain \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Union[int, float] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> int: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Union[float, List[float]] , _SCREAMING_SNAKE_CASE: Union[float, List[float]] , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> np.ndarray: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: PILImageResampling = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: float = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[float, List[float]]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: Any , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = crop_pct if crop_pct is not None else self.crop_pct UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , crop_pct=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase_ = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
328
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
1
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata _UpperCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class _UpperCamelCase ( tr.AbstractTransform ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str = " " ) -> str: """simple docstring""" UpperCamelCase_ = sentence_delimiter def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Any: """simple docstring""" return list(_SCREAMING_SNAKE_CASE ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = [] for sent_idx, sentence in enumerate(_SCREAMING_SNAKE_CASE ): chars.extend(self.process_string(_SCREAMING_SNAKE_CASE ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_SCREAMING_SNAKE_CASE ) - 1: chars.append(self.sentence_delimiter ) return chars _UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _UpperCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' _UpperCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Dict: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , truth_transform=_SCREAMING_SNAKE_CASE , hypothesis_transform=_SCREAMING_SNAKE_CASE , )["wer"] UpperCamelCase_ = 0 UpperCamelCase_ = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = jiwer.compute_measures( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , truth_transform=_SCREAMING_SNAKE_CASE , hypothesis_transform=_SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters _UpperCAmelCase = (7_2_0, 1_2_8_0) # Height, Width _UpperCAmelCase = (0.4, 0.6) # if height or width lower than this scale, drop it. _UpperCAmelCase = 1 / 1_0_0 _UpperCAmelCase = '' _UpperCAmelCase = '' _UpperCAmelCase = '' _UpperCAmelCase = 2_5_0 def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ , UpperCamelCase_ = get_dataset(UpperCamelCase_ , UpperCamelCase_ ) for index in range(UpperCamelCase_ ): UpperCamelCase_ = random.sample(range(len(UpperCamelCase_ ) ) , 4 ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = update_image_and_anno( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , filter_scale=UpperCamelCase_ , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase_ = random_chars(32 ) UpperCamelCase_ = path.split(os.sep )[-1].rsplit("." , 1 )[0] UpperCamelCase_ = F'''{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}''' cva.imwrite(F'''{file_root}.jpg''' , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}''' ) UpperCamelCase_ = [] for anno in new_annos: UpperCamelCase_ = anno[3] - anno[1] UpperCamelCase_ = anno[4] - anno[2] UpperCamelCase_ = anno[1] + width / 2 UpperCamelCase_ = anno[2] + height / 2 UpperCamelCase_ = F'''{anno[0]} {x_center} {y_center} {width} {height}''' annos_list.append(UpperCamelCase_ ) with open(F'''{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> tuple[list, list]: UpperCamelCase_ = [] UpperCamelCase_ = [] for label_file in glob.glob(os.path.join(UpperCamelCase_ , "*.txt" ) ): UpperCamelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(UpperCamelCase_ ) as in_file: UpperCamelCase_ = in_file.readlines() UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{label_name}.jpg''' ) UpperCamelCase_ = [] for obj_list in obj_lists: UpperCamelCase_ = obj_list.rstrip("\n" ).split(" " ) UpperCamelCase_ = float(obj[1] ) - float(obj[3] ) / 2 UpperCamelCase_ = float(obj[2] ) - float(obj[4] ) / 2 UpperCamelCase_ = float(obj[1] ) + float(obj[3] ) / 2 UpperCamelCase_ = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(UpperCamelCase_ ) labels.append(UpperCamelCase_ ) return img_paths, labels def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 0.0 , ) -> tuple[list, list, str]: UpperCamelCase_ = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) UpperCamelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase_ = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) UpperCamelCase_ = int(scale_x * output_size[1] ) UpperCamelCase_ = int(scale_y * output_size[0] ) UpperCamelCase_ = [] UpperCamelCase_ = [] for i, index in enumerate(UpperCamelCase_ ): UpperCamelCase_ = all_img_list[index] path_list.append(UpperCamelCase_ ) UpperCamelCase_ = all_annos[index] UpperCamelCase_ = cva.imread(UpperCamelCase_ ) if i == 0: # top-left UpperCamelCase_ = cva.resize(UpperCamelCase_ , (divid_point_x, divid_point_y) ) UpperCamelCase_ = img for bbox in img_annos: UpperCamelCase_ = bbox[1] * scale_x UpperCamelCase_ = bbox[2] * scale_y UpperCamelCase_ = bbox[3] * scale_x UpperCamelCase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right UpperCamelCase_ = cva.resize(UpperCamelCase_ , (output_size[1] - divid_point_x, divid_point_y) ) UpperCamelCase_ = img for bbox in img_annos: UpperCamelCase_ = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase_ = bbox[2] * scale_y UpperCamelCase_ = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase_ = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left UpperCamelCase_ = cva.resize(UpperCamelCase_ , (divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase_ = img for bbox in img_annos: UpperCamelCase_ = bbox[1] * scale_x UpperCamelCase_ = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase_ = bbox[3] * scale_x UpperCamelCase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right UpperCamelCase_ = cva.resize( UpperCamelCase_ , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) UpperCamelCase_ = img for bbox in img_annos: UpperCamelCase_ = scale_x + bbox[1] * (1 - scale_x) UpperCamelCase_ = scale_y + bbox[2] * (1 - scale_y) UpperCamelCase_ = scale_x + bbox[3] * (1 - scale_x) UpperCamelCase_ = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: UpperCamelCase_ = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: assert number_char > 1, "The number of character should greater than 1" UpperCamelCase_ = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) if __name__ == "__main__": main() print('DONE ✅')
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
import numpy # List of input, output pairs _UpperCAmelCase = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) _UpperCAmelCase = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) _UpperCAmelCase = [2, 4, 1, 5] _UpperCAmelCase = len(train_data) _UpperCAmelCase = 0.009 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="train" ) -> Optional[int]: return calculate_hypothesis_value(UpperCamelCase_ , UpperCamelCase_ ) - output( UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = 0 for i in range(len(UpperCamelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=m ) -> Dict: UpperCamelCase_ = 0 for i in range(UpperCamelCase_ ): if index == -1: summation_value += _error(UpperCamelCase_ ) else: summation_value += _error(UpperCamelCase_ ) * train_data[i][0][index] return summation_value def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = summation_of_cost_derivative(UpperCamelCase_ , UpperCamelCase_ ) / m return cost_derivative_value def lowerCAmelCase_ ( ) -> int: global parameter_vector # Tune these values to set a tolerance value for predicted output UpperCamelCase_ = 0.00_00_02 UpperCamelCase_ = 0 UpperCamelCase_ = 0 while True: j += 1 UpperCamelCase_ = [0, 0, 0, 0] for i in range(0 , len(UpperCamelCase_ ) ): UpperCamelCase_ = get_cost_derivative(i - 1 ) UpperCamelCase_ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_ , UpperCamelCase_ , atol=UpperCamelCase_ , rtol=UpperCamelCase_ , ): break UpperCamelCase_ = temp_parameter_vector print(("Number of iterations:", j) ) def lowerCAmelCase_ ( ) -> Tuple: for i in range(len(UpperCamelCase_ ) ): print(("Actual output value:", output(UpperCamelCase_ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class _UpperCamelCase ( lowerCAmelCase_ ): @slow @require_torch def lowercase ( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) UpperCamelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) UpperCamelCase_ = bertabert.config.encoder.vocab_size UpperCamelCase_ = tokenizer.sep_token_id UpperCamelCase_ = tokenizer.cls_token_id UpperCamelCase_ = 128 UpperCamelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) UpperCamelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) UpperCamelCase_ = train_dataset.select(range(32 ) ) UpperCamelCase_ = val_dataset.select(range(16 ) ) UpperCamelCase_ = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE: List[Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase_ = tokenizer(batch["article"] , padding="max_length" , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) UpperCamelCase_ = tokenizer(batch["highlights"] , padding="max_length" , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) UpperCamelCase_ = inputs.input_ids UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = outputs.input_ids UpperCamelCase_ = outputs.input_ids.copy() UpperCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCamelCase_ = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE: Any ): UpperCamelCase_ = pred.label_ids UpperCamelCase_ = pred.predictions # all unnecessary tokens are removed UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset UpperCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy="steps" , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase_ = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
328
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Any: # Load checkpoint UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" ) UpperCamelCase_ = chkpt["model"] # We have the base model one level deeper than the original XLM repository UpperCamelCase_ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase_ = v else: UpperCamelCase_ = v UpperCamelCase_ = chkpt["params"] UpperCamelCase_ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase_ , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase_ = chkpt["dico_word2id"] UpperCamelCase_ = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase_ = pytorch_dump_folder_path + "/" + CONFIG_NAME UpperCamelCase_ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + "\n" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + "\n" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
328
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0 ) -> Optional[Any]: # Format the message. if name is None: UpperCamelCase_ = None else: UpperCamelCase_ = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCamelCase_ = fmt.format(UpperCamelCase_ ) # Print and recurse (if needed). if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if msg is not None: print(UpperCamelCase_ ) for k in val.keys(): recursive_print(UpperCamelCase_ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase_ , torch.Tensor ): print(UpperCamelCase_ , ":" , val.size() ) else: print(UpperCamelCase_ , ":" , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCamelCase_ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase_ = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase_ = param.view(*UpperCamelCase_ ) UpperCamelCase_ = param.transpose(0 , 2 ) UpperCamelCase_ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase_ = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase_ = param.view(*UpperCamelCase_ ) UpperCamelCase_ = param.transpose(0 , 1 ).contiguous() UpperCamelCase_ = param.view(*UpperCamelCase_ ) return param def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: # The converted output model. UpperCamelCase_ = {} # old versions did not store training args UpperCamelCase_ = input_state_dict.get("args" , UpperCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase_ = ds_args.padded_vocab_size UpperCamelCase_ = ds_args.max_position_embeddings UpperCamelCase_ = ds_args.hidden_size UpperCamelCase_ = ds_args.num_layers UpperCamelCase_ = ds_args.num_attention_heads UpperCamelCase_ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase_ = config.n_head # The hidden_size per head. UpperCamelCase_ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase_ = input_state_dict["checkpoint_version"] else: UpperCamelCase_ = 0.0 # The model. UpperCamelCase_ = input_state_dict["model"] # The language model. UpperCamelCase_ = model["language_model"] # The embeddings. UpperCamelCase_ = lm["embedding"] # The word embeddings. UpperCamelCase_ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase_ = word_embeddings[: config.vocab_size, :] UpperCamelCase_ = word_embeddings # The position embeddings. UpperCamelCase_ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase_ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. UpperCamelCase_ = pos_embeddings # The transformer. UpperCamelCase_ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase_ = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase_ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase_ = layer_re.match(UpperCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase_ = int(m.group(1 ) ) # The name of the operation. UpperCamelCase_ = m.group(2 ) # Is it a weight or a bias? UpperCamelCase_ = m.group(3 ) # The name of the layer. UpperCamelCase_ = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase_ = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase_ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase_ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase_ = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCamelCase_ = masked_bias UpperCamelCase_ = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase_ = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase_ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase_ = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Store. No change of shape. UpperCamelCase_ = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase_ = transformer["final_layernorm.weight"] UpperCamelCase_ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase_ = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ) -> int: # Create the argument parser. UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=UpperCamelCase_ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=UpperCamelCase_ , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase_ = parser.parse_args() # Extract the basename. UpperCamelCase_ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" ) else: UpperCamelCase_ = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase_ = input_state_dict.get("args" , UpperCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase_ = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase_ = "gelu_new" else: UpperCamelCase_ = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase_ = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase_ = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=UpperCamelCase_ , summary_activation=UpperCamelCase_ , summary_proj_to_labels=UpperCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , bos_token_id=50256 , eos_token_id=50256 , ) else: UpperCamelCase_ = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase_ = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase_ = convert_megatron_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase_ , UpperCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase_ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase_ = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase_ = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: UpperCamelCase_ = "gpt2" UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) UpperCamelCase_ = type(UpperCamelCase_ ).__name__ UpperCamelCase_ = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(UpperCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(UpperCamelCase_ ) # Store the state_dict to file. UpperCamelCase_ = os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
328
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
1
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
import glob import os import random from string import ascii_lowercase, digits import cva _UpperCAmelCase = '' _UpperCAmelCase = '' _UpperCAmelCase = '' _UpperCAmelCase = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ , UpperCamelCase_ = get_dataset(UpperCamelCase_ , UpperCamelCase_ ) print("Processing..." ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = update_image_and_anno(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for index, image in enumerate(UpperCamelCase_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase_ = random_chars(32 ) UpperCamelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCamelCase_ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(UpperCamelCase_ )} with {file_name}''' ) UpperCamelCase_ = [] for anno in new_annos[index]: UpperCamelCase_ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(UpperCamelCase_ ) with open(F'''/{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> tuple[list, list]: UpperCamelCase_ = [] UpperCamelCase_ = [] for label_file in glob.glob(os.path.join(UpperCamelCase_ , "*.txt" ) ): UpperCamelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(UpperCamelCase_ ) as in_file: UpperCamelCase_ = in_file.readlines() UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{label_name}.jpg''' ) UpperCamelCase_ = [] for obj_list in obj_lists: UpperCamelCase_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase_ ) labels.append(UpperCamelCase_ ) return img_paths, labels def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 1 ) -> tuple[list, list, list]: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = [] for idx in range(len(UpperCamelCase_ ) ): UpperCamelCase_ = [] UpperCamelCase_ = img_list[idx] path_list.append(UpperCamelCase_ ) UpperCamelCase_ = anno_list[idx] UpperCamelCase_ = cva.imread(UpperCamelCase_ ) if flip_type == 1: UpperCamelCase_ = cva.flip(UpperCamelCase_ , UpperCamelCase_ ) for bbox in img_annos: UpperCamelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase_ = cva.flip(UpperCamelCase_ , UpperCamelCase_ ) for bbox in img_annos: UpperCamelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase_ ) new_imgs_list.append(UpperCamelCase_ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase_ ( UpperCamelCase_ = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" UpperCamelCase_ = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) if __name__ == "__main__": main() print('DONE ✅')
328
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
1
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _UpperCAmelCase = random.Random() if is_torch_available(): import torch def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=1.0 , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: if rng is None: UpperCamelCase_ = global_rng UpperCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCamelCase ( unittest.TestCase ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: str=7 , _SCREAMING_SNAKE_CASE: Union[str, Any]=400 , _SCREAMING_SNAKE_CASE: Any=2000 , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=16000 , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = min_seq_length UpperCamelCase_ = max_seq_length UpperCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_ = feature_size UpperCamelCase_ = padding_value UpperCamelCase_ = sampling_rate UpperCamelCase_ = return_attention_mask UpperCamelCase_ = do_normalize def lowercase ( self: List[Any] ) -> Optional[int]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: Tuple=False ) -> Dict: """simple docstring""" def _flatten(_SCREAMING_SNAKE_CASE: Tuple ): return list(itertools.chain(*_SCREAMING_SNAKE_CASE ) ) if equal_length: UpperCamelCase_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_ = [np.asarray(_SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ASTFeatureExtractor def lowercase ( self: str ) -> Dict: """simple docstring""" UpperCamelCase_ = ASTFeatureExtractionTester(self ) def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = [np.asarray(_SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase_ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCamelCase_ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test batched UpperCamelCase_ = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values UpperCamelCase_ = feat_extract(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_ = np.asarray(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values UpperCamelCase_ = feat_extract(_SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) @require_torch def lowercase ( self: Dict ) -> List[Any]: """simple docstring""" import torch UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Dict: """simple docstring""" from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase_ = ds.sort("id" ).select(range(_SCREAMING_SNAKE_CASE ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def lowercase ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on UpperCamelCase_ = self._load_datasamples(1 ) UpperCamelCase_ = ASTFeatureExtractor() UpperCamelCase_ = feature_extractor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _UpperCAmelCase = logging.getLogger(__name__) require_version('pytorch_lightning>=1.0.4') _UpperCAmelCase = { 'base': AutoModel, 'sequence-classification': AutoModelForSequenceClassification, 'question-answering': AutoModelForQuestionAnswering, 'pretraining': AutoModelForPreTraining, 'token-classification': AutoModelForTokenClassification, 'language-modeling': AutoModelWithLMHead, 'summarization': AutoModelForSeqaSeqLM, 'translation': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _UpperCAmelCase = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _UpperCAmelCase = sorted(arg_to_scheduler.keys()) _UpperCAmelCase = '{' + ', '.join(arg_to_scheduler_choices) + '}' class _UpperCamelCase ( pl.LightningModule ): def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: argparse.Namespace , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: List[Any]="base" , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Any: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = 0 UpperCamelCase_ = Path(self.hparams.output_dir ) UpperCamelCase_ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: UpperCamelCase_ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({"num_labels": num_labels} if num_labels is not None else {}) , cache_dir=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) else: UpperCamelCase_ = config UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(self.hparams , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): assert hasattr(self.config , _SCREAMING_SNAKE_CASE ), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , _SCREAMING_SNAKE_CASE , getattr(self.hparams , _SCREAMING_SNAKE_CASE ) ) if tokenizer is None: UpperCamelCase_ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=_SCREAMING_SNAKE_CASE , ) else: UpperCamelCase_ = tokenizer UpperCamelCase_ = MODEL_MODES[mode] if model is None: UpperCamelCase_ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool(".ckpt" in self.hparams.model_name_or_path ) , config=self.config , cache_dir=_SCREAMING_SNAKE_CASE , ) else: UpperCamelCase_ = model def lowercase ( self: Dict , *_SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.model_type.from_pretrained(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = arg_to_scheduler[self.hparams.lr_scheduler] UpperCamelCase_ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) UpperCamelCase_ = {"scheduler": scheduler, "interval": "step", "frequency": 1} return scheduler def lowercase ( self: List[str] ) -> str: """simple docstring""" UpperCamelCase_ = self.model UpperCamelCase_ = ["bias", "LayerNorm.weight"] UpperCamelCase_ = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters "weight_decay": self.hparams.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] if self.hparams.adafactor: UpperCamelCase_ = Adafactor( _SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , scale_parameter=_SCREAMING_SNAKE_CASE , relative_step=_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = AdamW( _SCREAMING_SNAKE_CASE , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) UpperCamelCase_ = optimizer UpperCamelCase_ = self.get_lr_scheduler() return [optimizer], [scheduler] def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any ) -> str: """simple docstring""" return self.validation_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict ) -> int: """simple docstring""" return self.validation_end(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores UpperCamelCase_ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> str: """simple docstring""" if stage == "test": UpperCamelCase_ = len(self.test_dataloader().dataset ) else: UpperCamelCase_ = self.get_dataloader("train" , self.hparams.train_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = len(self.train_dataloader().dataset ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: bool = False ) -> List[Any]: """simple docstring""" raise NotImplementedError("You must implement this for your task" ) def lowercase ( self: str ) -> Union[str, Any]: """simple docstring""" return self.train_loader def lowercase ( self: Dict ) -> str: """simple docstring""" return self.get_dataloader("dev" , self.hparams.eval_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return self.get_dataloader("test" , self.hparams.eval_batch_size , shuffle=_SCREAMING_SNAKE_CASE ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> Optional[int]: """simple docstring""" return os.path.join( self.hparams.data_dir , "cached_{}_{}_{}".format( _SCREAMING_SNAKE_CASE , list(filter(_SCREAMING_SNAKE_CASE , self.hparams.model_name_or_path.split("/" ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Dict[str, Any] ) -> None: """simple docstring""" UpperCamelCase_ = self.output_dir.joinpath("best_tfmr" ) UpperCamelCase_ = self.step_count self.model.save_pretrained(_SCREAMING_SNAKE_CASE ) self.tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Tuple ) -> int: """simple docstring""" parser.add_argument( "--model_name_or_path" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--config_name" , default="" , type=_SCREAMING_SNAKE_CASE , help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name" , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument( "--cache_dir" , default=str(Path(_SCREAMING_SNAKE_CASE ).parent / "test_run" / "cache" ) , type=_SCREAMING_SNAKE_CASE , help="Where do you want to store the pre-trained models downloaded from huggingface.co" , ) parser.add_argument( "--encoder_layerdrop" , type=_SCREAMING_SNAKE_CASE , help="Encoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--decoder_layerdrop" , type=_SCREAMING_SNAKE_CASE , help="Decoder layer dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--dropout" , type=_SCREAMING_SNAKE_CASE , help="Dropout probability (Optional). Goes into model.config" , ) parser.add_argument( "--attention_dropout" , type=_SCREAMING_SNAKE_CASE , help="Attention dropout probability (Optional). Goes into model.config" , ) parser.add_argument("--learning_rate" , default=5e-5 , type=_SCREAMING_SNAKE_CASE , help="The initial learning rate for Adam." ) parser.add_argument( "--lr_scheduler" , default="linear" , choices=_SCREAMING_SNAKE_CASE , metavar=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help="Learning rate scheduler" , ) parser.add_argument("--weight_decay" , default=0.0 , type=_SCREAMING_SNAKE_CASE , help="Weight decay if we apply some." ) parser.add_argument("--adam_epsilon" , default=1e-8 , type=_SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--warmup_steps" , default=0 , type=_SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--num_workers" , default=4 , type=_SCREAMING_SNAKE_CASE , help="kwarg passed to DataLoader" ) parser.add_argument("--num_train_epochs" , dest="max_epochs" , default=3 , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--train_batch_size" , default=32 , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--eval_batch_size" , default=32 , type=_SCREAMING_SNAKE_CASE ) parser.add_argument("--adafactor" , action="store_true" ) class _UpperCamelCase ( pl.Callback ): def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Tuple: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class _UpperCamelCase ( pl.Callback ): def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(_SCREAMING_SNAKE_CASE ) class _UpperCamelCase ( pl.Callback ): def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" UpperCamelCase_ = trainer.lr_schedulers[0]["scheduler"] UpperCamelCase_ = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule ) -> List[str]: """simple docstring""" rank_zero_info("***** Validation results *****" ) UpperCamelCase_ = trainer.callback_metrics # Log results for key in sorted(_SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule ) -> List[Any]: """simple docstring""" rank_zero_info("***** Test results *****" ) UpperCamelCase_ = trainer.callback_metrics # Log and save results to file UpperCamelCase_ = os.path.join(pl_module.hparams.output_dir , "test_results.txt" ) with open(_SCREAMING_SNAKE_CASE , "w" ) as writer: for key in sorted(_SCREAMING_SNAKE_CASE ): if key not in ["log", "progress_bar"]: rank_zero_info("{} = {}\n".format(_SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) writer.write("{} = {}\n".format(_SCREAMING_SNAKE_CASE , str(metrics[key] ) ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( "--output_dir" , default=str(Path(UpperCamelCase_ ).parent / "test_run" / "model_checkpoints" ) , type=UpperCamelCase_ , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=UpperCamelCase_ , default="O2" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_tpu_cores" , dest="tpu_cores" , type=UpperCamelCase_ ) parser.add_argument("--max_grad_norm" , dest="gradient_clip_val" , default=1.0 , type=UpperCamelCase_ , help="Max gradient norm" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_predict" , action="store_true" , help="Whether to run predictions on the test set." ) parser.add_argument( "--gradient_accumulation_steps" , dest="accumulate_grad_batches" , type=UpperCamelCase_ , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--seed" , type=UpperCamelCase_ , default=42 , help="random seed for initialization" ) parser.add_argument( "--data_dir" , default=str(Path(UpperCamelCase_ ).parent / "test_run" / "dummy-train-data" ) , type=UpperCamelCase_ , help="The input data dir. Should contain the training files for the CoNLL-2003 NER task." , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[] , UpperCamelCase_=None , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Optional[Any]: pl.seed_everything(args.seed ) # init model UpperCamelCase_ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=UpperCamelCase_ ) # add custom checkpoints if checkpoint_callback is None: UpperCamelCase_ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix="checkpoint" , monitor="val_loss" , mode="min" , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(UpperCamelCase_ ) if logging_callback is None: UpperCamelCase_ = LoggingCallback() UpperCamelCase_ = {} if args.fpaa: UpperCamelCase_ = 16 if args.gpus > 1: UpperCamelCase_ = "auto" UpperCamelCase_ = "ddp" UpperCamelCase_ = args.accumulate_grad_batches UpperCamelCase_ = None UpperCamelCase_ = "auto" UpperCamelCase_ = pl.Trainer.from_argparse_args( UpperCamelCase_ , weights_summary=UpperCamelCase_ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=UpperCamelCase_ , val_check_interval=1 , num_sanity_val_steps=2 , **UpperCamelCase_ , ) if args.do_train: trainer.fit(UpperCamelCase_ ) else: print("RAG modeling tests with new set functions successfuly executed!" ) return trainer
328
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> Any: """simple docstring""" UpperCamelCase_ = 3 UpperCamelCase_ = 250 UpperCamelCase_ = ids_tensor((batch_size, length) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.ones((batch_size, length) , device=_SCREAMING_SNAKE_CASE , dtype=torch.float ) / length return input_ids, scores def lowercase ( self: List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(5 ) UpperCamelCase_ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(9 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(10 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: int ) -> Any: """simple docstring""" UpperCamelCase_ = MaxLengthCriteria(max_length=10 ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(5 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(9 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(10 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(5 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(9 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(10 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self._get_tensors(5 ) UpperCamelCase_ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Dict ) -> List[str]: """simple docstring""" validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_SCREAMING_SNAKE_CASE ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase_ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1 )
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _UpperCAmelCase = None _UpperCAmelCase = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _UpperCAmelCase = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _UpperCamelCase : _UpperCamelCase : bool = True _UpperCamelCase : Optional[str] = None # Automatically constructed _UpperCamelCase : ClassVar[str] = "PIL.Image.Image" _UpperCamelCase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _UpperCamelCase : str = field(default='''Image''' , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __call__( self: List[Any] ) -> List[str]: """simple docstring""" return self.pa_type def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: dict , _SCREAMING_SNAKE_CASE: str=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead." ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'." ) if token_per_repo_id is None: UpperCamelCase_ = {} UpperCamelCase_ , UpperCamelCase_ = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = path.split("::" )[-1] try: UpperCamelCase_ = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase_ = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: UpperCamelCase_ = None with xopen(_SCREAMING_SNAKE_CASE , "rb" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCamelCase_ = BytesIO(f.read() ) UpperCamelCase_ = PIL.Image.open(bytes_ ) else: UpperCamelCase_ = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def lowercase ( self: List[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value("binary" ), "path": Value("string" ), } ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) UpperCamelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase_ = storage.field("bytes" ) else: UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase_ = storage.field("path" ) else: UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase_ = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase_ = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE: Tuple ): with xopen(_SCREAMING_SNAKE_CASE , "rb" ) as f: UpperCamelCase_ = f.read() return bytes_ UpperCamelCase_ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase_ = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowerCAmelCase_ ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase_ = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def lowerCAmelCase_ ( UpperCamelCase_ ) -> bytes: UpperCamelCase_ = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase_ = image.format else: UpperCamelCase_ = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(UpperCamelCase_ , format=UpperCamelCase_ ) return buffer.getvalue() def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: if hasattr(UpperCamelCase_ , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCamelCase_ )} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) UpperCamelCase_ = array.dtype UpperCamelCase_ = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER UpperCamelCase_ = dtype.kind UpperCamelCase_ = dtype.itemsize UpperCamelCase_ = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase_ = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' ) if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase_ = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase_ = dtype_byteorder + dtype_kind + str(UpperCamelCase_ ) UpperCamelCase_ = np.dtype(UpperCamelCase_ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' ) UpperCamelCase_ = PIL.Image.fromarray(array.astype(UpperCamelCase_ ) ) return {"path": None, "bytes": image_to_bytes(UpperCamelCase_ )} def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: UpperCamelCase_ , UpperCamelCase_ = first_non_null_value(UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCamelCase_ , np.ndarray ): UpperCamelCase_ = no_op_if_value_is_null(UpperCamelCase_ ) return [obj_to_image_dict_func(UpperCamelCase_ ) for obj in objs] elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = no_op_if_value_is_null(UpperCamelCase_ ) return [obj_to_image_dict_func(UpperCamelCase_ ) for obj in objs] else: return objs else: return objs
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
from typing import Any class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = data UpperCamelCase_ = None class _UpperCamelCase : def __init__( self: List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ = None def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.head while temp is not None: print(temp.data , end=" " ) UpperCamelCase_ = temp.next print() def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = Node(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.head UpperCamelCase_ = new_node def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" if node_data_a == node_data_a: return else: UpperCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: UpperCamelCase_ = node_a.next UpperCamelCase_ = self.head while node_a is not None and node_a.data != node_data_a: UpperCamelCase_ = node_a.next if node_a is None or node_a is None: return UpperCamelCase_ , UpperCamelCase_ = node_a.data, node_a.data if __name__ == "__main__": _UpperCAmelCase = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = len(UpperCamelCase_ ) for i in range(1 , UpperCamelCase_ ): UpperCamelCase_ = collection[i] UpperCamelCase_ = 0 UpperCamelCase_ = i - 1 while low <= high: UpperCamelCase_ = (low + high) // 2 if val < collection[mid]: UpperCamelCase_ = mid - 1 else: UpperCamelCase_ = mid + 1 for j in range(UpperCamelCase_ , UpperCamelCase_ , -1 ): UpperCamelCase_ = collection[j - 1] UpperCamelCase_ = val return collection if __name__ == "__main__": _UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() _UpperCAmelCase = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
328
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
1
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = 10 def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = [1, 2, 3, 4] UpperCamelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(_SCREAMING_SNAKE_CASE , self.block_size , 0 ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> str: """simple docstring""" UpperCamelCase_ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." UpperCamelCase_ , UpperCamelCase_ = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ , UpperCamelCase_ = process_story(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) UpperCamelCase_ , UpperCamelCase_ = process_story(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ["It was the best of times."] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = torch.tensor([1, 2, 3, 4] ) UpperCamelCase_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 0 ).numpy() , expected.numpy() ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 23 ).numpy() , expected.numpy() ) def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(_SCREAMING_SNAKE_CASE , 1 ).numpy() , expected.numpy() ) def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = 101 UpperCamelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase_ = compute_token_type_ids(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) np.testing.assert_array_equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: int , _SCREAMING_SNAKE_CASE: str = "▁" , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "<unk>" , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "</s>" , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "<pad>" , ) -> int: """simple docstring""" UpperCamelCase_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } UpperCamelCase_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCamelCase_ = token_dict["token"] UpperCamelCase_ = Tokenizer(Unigram() ) UpperCamelCase_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) UpperCamelCase_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) UpperCamelCase_ = decoders.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) UpperCamelCase_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, List[str]] , _SCREAMING_SNAKE_CASE: int = 8000 , _SCREAMING_SNAKE_CASE: bool = True , ) -> int: """simple docstring""" UpperCamelCase_ = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [files] self._tokenizer.train(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[Iterator[str], Iterator[Iterator[str]]] , _SCREAMING_SNAKE_CASE: int = 8000 , _SCREAMING_SNAKE_CASE: bool = True , ) -> Tuple: """simple docstring""" UpperCamelCase_ = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = json.loads(self._tokenizer.to_str() ) UpperCamelCase_ = self.special_tokens["unk"]["id"] UpperCamelCase_ = Tokenizer.from_str(json.dumps(_SCREAMING_SNAKE_CASE ) )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str]=3 , _SCREAMING_SNAKE_CASE: Union[str, Any]=7 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Optional[Any]=99 , _SCREAMING_SNAKE_CASE: List[Any]=32 , _SCREAMING_SNAKE_CASE: int=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: str=37 , _SCREAMING_SNAKE_CASE: Any="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: List[str]=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=16 , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: List[str]=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: int=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self: Any ) -> List[str]: """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = FalconModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = FalconModel(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" UpperCamelCase_ = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = FalconForCausalLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # first forward pass UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["hidden_states"][0] UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , encoder_attention_mask=_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[str] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : Any = (FalconForCausalLM,) if is_torch_available() else () _UpperCamelCase : int = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : int = False def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = FalconModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowercase ( self: str ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ , *UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: UpperCamelCase_ = alibi self.model_tester.create_and_check_model(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "single_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = FalconForCausalLM(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = input_ids.shape[0] UpperCamelCase_ = model._convert_to_rw_cache(result.past_key_values ) UpperCamelCase_ = model._convert_cache_to_standard_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for layer in range(len(_SCREAMING_SNAKE_CASE ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def lowercase ( self: Any ) -> int: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "multi_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ = FalconForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" for model_class in self.all_generative_model_classes: UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(_SCREAMING_SNAKE_CASE , "use_cache" ): return UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) if "use_cache" not in inputs: UpperCamelCase_ = True UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return UpperCamelCase_ = ( getattr(_SCREAMING_SNAKE_CASE , "decoder_layers" , _SCREAMING_SNAKE_CASE ) or getattr(_SCREAMING_SNAKE_CASE , "num_decoder_layers" , _SCREAMING_SNAKE_CASE ) or config.num_hidden_layers ) UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , "num_kv_heads" , config.num_attention_heads ) UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , "d_model" , config.hidden_size ) UpperCamelCase_ = embed_dim // num_attention_heads UpperCamelCase_ = outputs["past_key_values"] self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = inputs["input_ids"].shape for i in range(_SCREAMING_SNAKE_CASE ): if config.new_decoder_architecture: UpperCamelCase_ = config.num_attention_heads elif config.multi_query: UpperCamelCase_ = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) UpperCamelCase_ = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=19 ) UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE )[0] self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Tuple ) -> str: """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=4 ) model.generate(**_SCREAMING_SNAKE_CASE , num_beams=2 , max_new_tokens=4 ) @slow def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = FalconForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.eval() model.to(device=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer("My favorite food is" , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # Test results are the same with and without cache UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.generate(**_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , max_new_tokens=20 , use_cache=_SCREAMING_SNAKE_CASE ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase ( self: Dict ) -> int: """simple docstring""" UpperCamelCase_ = 1 UpperCamelCase_ = 3 UpperCamelCase_ = (32, 32) UpperCamelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image @property def lowercase ( self: List[Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowercase ( self: Tuple ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase ( self: Dict ) -> int: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_SCREAMING_SNAKE_CASE ) @property def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" def extract(*_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[int] ): class _UpperCamelCase : def __init__( self: Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ = torch.ones([0] ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" self.pixel_values.to(_SCREAMING_SNAKE_CASE ) return self return Out() return extract def lowercase ( self: int ) -> List[Any]: """simple docstring""" UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.dummy_cond_unet UpperCamelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = self.dummy_vae UpperCamelCase_ = self.dummy_text_encoder UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCamelCase_ = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.dummy_cond_unet UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.dummy_vae UpperCamelCase_ = self.dummy_text_encoder UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk UpperCamelCase_ = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = sd_pipe([prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) UpperCamelCase_ = output.images UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_SCREAMING_SNAKE_CASE , )[0] UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase_ = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: str ) -> Dict: """simple docstring""" UpperCamelCase_ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_SCREAMING_SNAKE_CASE ) assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert isinstance(pipe.scheduler , _SCREAMING_SNAKE_CASE ) assert pipe.safety_checker is None UpperCamelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(_SCREAMING_SNAKE_CASE ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.dummy_cond_unet UpperCamelCase_ = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.dummy_vae UpperCamelCase_ = self.dummy_text_encoder UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 UpperCamelCase_ = unet.half() UpperCamelCase_ = vae.half() UpperCamelCase_ = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase_ = StableDiffusionPipeline( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=self.dummy_extractor , ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "A painting of a squirrel eating a burger" UpperCamelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) UpperCamelCase_ = 4003660346 UpperCamelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity" UpperCamelCase_ = 2734971755 UpperCamelCase_ = 7 UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: List[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) UpperCamelCase_ = 1044355234 UpperCamelCase_ = 12 UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe( [prompt] , generator=_SCREAMING_SNAKE_CASE , guidance_scale=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase_ = output.images UpperCamelCase_ = image[0, -3:, -3:, -1] UpperCamelCase_ = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
328
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: def get_masked_lm_array(UpperCamelCase_ ): UpperCamelCase_ = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCamelCase_ = tf.train.load_variable(UpperCamelCase_ , UpperCamelCase_ ) if "kernel" in name: UpperCamelCase_ = array.transpose() return torch.from_numpy(UpperCamelCase_ ) def get_encoder_array(UpperCamelCase_ ): UpperCamelCase_ = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCamelCase_ = tf.train.load_variable(UpperCamelCase_ , UpperCamelCase_ ) if "kernel" in name: UpperCamelCase_ = array.transpose() return torch.from_numpy(UpperCamelCase_ ) def get_encoder_layer_array(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCamelCase_ = tf.train.load_variable(UpperCamelCase_ , UpperCamelCase_ ) if "kernel" in name: UpperCamelCase_ = array.transpose() return torch.from_numpy(UpperCamelCase_ ) def get_encoder_attention_layer_array(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' UpperCamelCase_ = tf.train.load_variable(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = array.reshape(UpperCamelCase_ ) if "kernel" in name: UpperCamelCase_ = array.transpose() return torch.from_numpy(UpperCamelCase_ ) print(F'''Loading model based on config from {config_path}...''' ) UpperCamelCase_ = BertConfig.from_json_file(UpperCamelCase_ ) UpperCamelCase_ = BertForMaskedLM(UpperCamelCase_ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCamelCase_ = model.bert.encoder.layer[layer_index] # Self-attention UpperCamelCase_ = layer.attention.self UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCamelCase_ = layer.attention.output UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCamelCase_ = get_encoder_attention_layer_array( UpperCamelCase_ , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_attention_layer_norm/gamma" ) UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_attention_layer_norm/beta" ) # Intermediate UpperCamelCase_ = layer.intermediate UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_intermediate_dense/kernel" ) UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_intermediate_dense/bias" ) # Output UpperCamelCase_ = layer.output UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_output_dense/kernel" ) UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_output_dense/bias" ) UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_output_layer_norm/gamma" ) UpperCamelCase_ = get_encoder_layer_array(UpperCamelCase_ , "_output_layer_norm/beta" ) # Embeddings UpperCamelCase_ = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCamelCase_ = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCamelCase_ = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCamelCase_ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCamelCase_ = model.cls.predictions.transform UpperCamelCase_ = get_masked_lm_array("dense/kernel" ) UpperCamelCase_ = get_masked_lm_array("dense/bias" ) UpperCamelCase_ = get_masked_lm_array("layer_norm/gamma" ) UpperCamelCase_ = get_masked_lm_array("layer_norm/beta" ) UpperCamelCase_ = get_masked_lm_array("embedding_table" ) # Pooling UpperCamelCase_ = BertPooler(config=UpperCamelCase_ ) UpperCamelCase_ = get_encoder_array("_pooler_layer/kernel" ) UpperCamelCase_ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(UpperCamelCase_ ) # Integration test - should load without any errors ;) UpperCamelCase_ = BertForMaskedLM.from_pretrained(UpperCamelCase_ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) _UpperCAmelCase = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
328
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _UpperCAmelCase = 0 _UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _UpperCAmelCase = tuple[int, int] class _UpperCamelCase : def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Node | None , ) -> None: """simple docstring""" UpperCamelCase_ = pos_x UpperCamelCase_ = pos_y UpperCamelCase_ = (pos_y, pos_x) UpperCamelCase_ = goal_x UpperCamelCase_ = goal_y UpperCamelCase_ = g_cost UpperCamelCase_ = parent UpperCamelCase_ = self.calculate_heuristic() UpperCamelCase_ = self.g_cost + self.h_cost def lowercase ( self: List[Any] ) -> float: """simple docstring""" UpperCamelCase_ = self.pos_x - self.goal_x UpperCamelCase_ = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_SCREAMING_SNAKE_CASE ) + abs(_SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self: List[Any] , _SCREAMING_SNAKE_CASE: Node ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: TPosition , _SCREAMING_SNAKE_CASE: TPosition ) -> Any: """simple docstring""" UpperCamelCase_ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [self.start] UpperCamelCase_ = [] UpperCamelCase_ = False def lowercase ( self: Union[str, Any] ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase_ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_SCREAMING_SNAKE_CASE ) self.closed_nodes.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_successors(_SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase_ = self.open_nodes.pop(self.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(_SCREAMING_SNAKE_CASE ) return [self.start.pos] def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Node ) -> list[Node]: """simple docstring""" UpperCamelCase_ = [] for action in delta: UpperCamelCase_ = parent.pos_x + action[1] UpperCamelCase_ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _SCREAMING_SNAKE_CASE , ) ) return successors def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Node | None ) -> list[TPosition]: """simple docstring""" UpperCamelCase_ = node UpperCamelCase_ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase_ = current_node.parent path.reverse() return path class _UpperCamelCase : def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: TPosition , _SCREAMING_SNAKE_CASE: TPosition ) -> None: """simple docstring""" UpperCamelCase_ = AStar(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AStar(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = False def lowercase ( self: int ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase_ = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase_ = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(_SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = current_bwd_node UpperCamelCase_ = current_fwd_node UpperCamelCase_ = { self.fwd_astar: self.fwd_astar.get_successors(_SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(_SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase_ = astar.open_nodes.pop( astar.open_nodes.index(_SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(_SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Node , _SCREAMING_SNAKE_CASE: Node ) -> list[TPosition]: """simple docstring""" UpperCamelCase_ = self.fwd_astar.retrace_path(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.bwd_astar.retrace_path(_SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() UpperCamelCase_ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _UpperCAmelCase = (0, 0) _UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _UpperCAmelCase = time.time() _UpperCAmelCase = AStar(init, goal) _UpperCAmelCase = a_star.search() _UpperCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') _UpperCAmelCase = time.time() _UpperCAmelCase = BidirectionalAStar(init, goal) _UpperCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
328
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[str]: require_version(deps[pkg] , UpperCamelCase_ )
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } _UpperCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = {} with open(UpperCamelCase_ , "r" ) as file: for line_number, line in enumerate(UpperCamelCase_ ): UpperCamelCase_ = line.strip() if line: UpperCamelCase_ = line.split() UpperCamelCase_ = line_number UpperCamelCase_ = words[0] UpperCamelCase_ = value return result def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: for attribute in key.split("." ): UpperCamelCase_ = getattr(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase_ ): UpperCamelCase_ = PARAM_MAPPING[full_name.split("." )[-1]] UpperCamelCase_ = "param" if weight_type is not None and weight_type != "param": UpperCamelCase_ = getattr(UpperCamelCase_ , UpperCamelCase_ ).shape elif weight_type is not None and weight_type == "param": UpperCamelCase_ = hf_pointer for attribute in hf_param_name.split("." ): UpperCamelCase_ = getattr(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = shape_pointer.shape # let's reduce dimension UpperCamelCase_ = value[0] else: UpperCamelCase_ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_ = value elif weight_type == "weight_g": UpperCamelCase_ = value elif weight_type == "weight_v": UpperCamelCase_ = value elif weight_type == "bias": UpperCamelCase_ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): UpperCamelCase_ = getattr(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = value else: UpperCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: UpperCamelCase_ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCamelCase_ ): UpperCamelCase_ = PARAM_MAPPING[full_name.split("." )[-1]] UpperCamelCase_ = "param" if weight_type is not None and weight_type != "param": UpperCamelCase_ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCamelCase_ = ".".join([key, hf_param_name] ) else: UpperCamelCase_ = key UpperCamelCase_ = value if "lm_head" in full_key else value[0] _UpperCAmelCase = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ) -> int: UpperCamelCase_ = False for key, mapped_key in MAPPING.items(): UpperCamelCase_ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase_ = True if "*" in mapped_key: UpperCamelCase_ = name.split(UpperCamelCase_ )[0].split("." )[-2] UpperCamelCase_ = mapped_key.replace("*" , UpperCamelCase_ ) if "weight_g" in name: UpperCamelCase_ = "weight_g" elif "weight_v" in name: UpperCamelCase_ = "weight_v" elif "bias" in name: UpperCamelCase_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_ = "weight" else: UpperCamelCase_ = None if hf_dict is not None: rename_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: set_recursively(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return is_used return is_used def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: UpperCamelCase_ = [] UpperCamelCase_ = fairseq_model.state_dict() UpperCamelCase_ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_ = False if "conv_layers" in name: load_conv_layer( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase_ = True else: UpperCamelCase_ = load_wavaveca_layer(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if not is_used: unused_weights.append(UpperCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = full_name.split("conv_layers." )[-1] UpperCamelCase_ = name.split("." ) UpperCamelCase_ = int(items[0] ) UpperCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase_ ) @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=False ) -> List[str]: if config_path is not None: UpperCamelCase_ = WavaVecaConfig.from_pretrained(UpperCamelCase_ ) else: UpperCamelCase_ = WavaVecaConfig() if is_seq_class: UpperCamelCase_ = read_txt_into_dict(UpperCamelCase_ ) UpperCamelCase_ = idalabel UpperCamelCase_ = WavaVecaForSequenceClassification(UpperCamelCase_ ) UpperCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) feature_extractor.save_pretrained(UpperCamelCase_ ) elif is_finetuned: if dict_path: UpperCamelCase_ = Dictionary.load(UpperCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase_ = target_dict.pad_index UpperCamelCase_ = target_dict.bos_index UpperCamelCase_ = target_dict.eos_index UpperCamelCase_ = len(target_dict.symbols ) UpperCamelCase_ = os.path.join(UpperCamelCase_ , "vocab.json" ) if not os.path.isdir(UpperCamelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCamelCase_ ) ) return os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) UpperCamelCase_ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase_ = 0 UpperCamelCase_ = 1 with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = WavaVecaCTCTokenizer( UpperCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCamelCase_ , ) UpperCamelCase_ = True if config.feat_extract_norm == "layer" else False UpperCamelCase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , ) UpperCamelCase_ = WavaVecaProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) UpperCamelCase_ = WavaVecaForCTC(UpperCamelCase_ ) else: UpperCamelCase_ = WavaVecaForPreTraining(UpperCamelCase_ ) if is_finetuned or is_seq_class: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCamelCase_ = argparse.Namespace(task="audio_pretraining" ) UpperCamelCase_ = fairseq.tasks.setup_task(UpperCamelCase_ ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCamelCase_ ) UpperCamelCase_ = model[0].eval() recursively_load_weights(UpperCamelCase_ , UpperCamelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ShapEImgaImgPipeline _UpperCamelCase : Any = ['''image'''] _UpperCamelCase : Dict = ['''image'''] _UpperCamelCase : Dict = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCamelCase : Optional[Any] = False @property def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" return 32 @property def lowercase ( self: Any ) -> Tuple: """simple docstring""" return 32 @property def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase ( self: List[str] ) -> Any: """simple docstring""" return 8 @property def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase_ = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = CLIPImageProcessor( crop_size=224 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowercase ( self: Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCamelCase_ = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } UpperCamelCase_ = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.dummy_prior UpperCamelCase_ = self.dummy_image_encoder UpperCamelCase_ = self.dummy_image_processor UpperCamelCase_ = self.dummy_renderer UpperCamelCase_ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) UpperCamelCase_ = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=0 ) -> Tuple: """simple docstring""" UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowercase ( self: List[Any] ) -> int: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = output.images[0] UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase_ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: List[Any] ) -> Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch_device == "cpu" UpperCamelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase_ = batch_size * [inputs[key]] UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCamelCase_ = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = pipe( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
from typing import Any class _UpperCamelCase : def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> str: """simple docstring""" UpperCamelCase_ = data UpperCamelCase_ = None def __repr__( self: int ) -> str: """simple docstring""" return f'''Node({self.data})''' class _UpperCamelCase : def __init__( self: Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = None def __iter__( self: Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.head while node: yield node.data UpperCamelCase_ = node.next def __len__( self: List[Any] ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self: str ) -> str: """simple docstring""" return "->".join([str(_SCREAMING_SNAKE_CASE ) for item in self] ) def __getitem__( self: Any , _SCREAMING_SNAKE_CASE: int ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) UpperCamelCase_ = self.head for _ in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = current.next UpperCamelCase_ = data def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" self.insert_nth(0 , _SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) UpperCamelCase_ = Node(_SCREAMING_SNAKE_CASE ) if self.head is None: UpperCamelCase_ = new_node elif index == 0: UpperCamelCase_ = self.head # link new_node to head UpperCamelCase_ = new_node else: UpperCamelCase_ = self.head for _ in range(index - 1 ): UpperCamelCase_ = temp.next UpperCamelCase_ = temp.next UpperCamelCase_ = new_node def lowercase ( self: Tuple ) -> None: # print every node data """simple docstring""" print(self ) def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self.delete_nth(0 ) def lowercase ( self: List[str] ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: int = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) UpperCamelCase_ = self.head # default first node if index == 0: UpperCamelCase_ = self.head.next else: UpperCamelCase_ = self.head for _ in range(index - 1 ): UpperCamelCase_ = temp.next UpperCamelCase_ = temp.next UpperCamelCase_ = temp.next.next return delete_node.data def lowercase ( self: Optional[Any] ) -> bool: """simple docstring""" return self.head is None def lowercase ( self: List[str] ) -> None: """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = self.head while current: # Store the current node's next node. UpperCamelCase_ = current.next # Make the current node's next point backwards UpperCamelCase_ = prev # Make the previous node be the current node UpperCamelCase_ = current # Make the current node the next node (to progress iteration) UpperCamelCase_ = next_node # Return prev in order to put the head at the end UpperCamelCase_ = prev def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = LinkedList() assert linked_list.is_empty() is True assert str(UpperCamelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(UpperCamelCase_ ) == i linked_list.insert_nth(UpperCamelCase_ , i + 1 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(UpperCamelCase_ ) == 9 assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase_ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(UpperCamelCase_ ) == "->".join(str(UpperCamelCase_ ) for i in range(-8 , 1 ) ) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = [ -9, 100, Node(77345112 ), "dlrow olleH", 7, 5555, 0, -1_92.5_55_55, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] UpperCamelCase_ = LinkedList() for i in test_input: linked_list.insert_tail(UpperCamelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(UpperCamelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase_ = linked_list.delete_head() assert result == -9 assert ( str(UpperCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase_ = linked_list.delete_tail() assert result == 12.2 assert ( str(UpperCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase_ = linked_list.delete_nth(10 ) assert result is None assert ( str(UpperCamelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(UpperCamelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(UpperCamelCase_ ) assert ( str(UpperCamelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(UpperCamelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCAmelCase_ ( ) -> Any: from doctest import testmod testmod() UpperCamelCase_ = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(UpperCamelCase_ ) print("\nReading/changing Node data using indexing:" ) print(F'''Element at Position 1: {linked_list[1]}''' ) UpperCamelCase_ = input("Enter New Value: " ).strip() print("New list:" ) print(UpperCamelCase_ ) print(F'''length of linked_list is : {len(UpperCamelCase_ )}''' ) if __name__ == "__main__": main()
328
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
1
_UpperCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCAmelCase = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: assert len(str(UpperCamelCase_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase_ = year // 100 UpperCamelCase_ = (5 * (century % 4) + 2) % 7 UpperCamelCase_ = year % 100 UpperCamelCase_ = centurian % 12 UpperCamelCase_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
328
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''roformer''' def __init__( self: int , _SCREAMING_SNAKE_CASE: List[str]=50000 , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: int=12 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: Optional[Any]=3072 , _SCREAMING_SNAKE_CASE: Dict="gelu" , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: Any=0 , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Optional[int]=True , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size if embedding_size is None else embedding_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = rotary_value UpperCamelCase_ = use_cache class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase_ = {0: "batch", 1: "sequence"} UpperCamelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
328
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: UpperCamelCase_ = credit_card_number UpperCamelCase_ = 0 UpperCamelCase_ = len(UpperCamelCase_ ) - 2 for i in range(UpperCamelCase_ , -1 , -2 ): # double the value of every second digit UpperCamelCase_ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 UpperCamelCase_ = cc_number[:i] + str(UpperCamelCase_ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(UpperCamelCase_ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: UpperCamelCase_ = F'''{credit_card_number} is an invalid credit card number because''' if not credit_card_number.isdigit(): print(F'''{error_message} it has nonnumerical characters.''' ) return False if not 13 <= len(UpperCamelCase_ ) <= 16: print(F'''{error_message} of its length.''' ) return False if not validate_initial_digits(UpperCamelCase_ ): print(F'''{error_message} of its first two digits.''' ) return False if not luhn_validation(UpperCamelCase_ ): print(F'''{error_message} it fails the Luhn check.''' ) return False print(F'''{credit_card_number} is a valid credit card number.''' ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('4111111111111111') validate_credit_card_number('32323')
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Tuple , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Optional[Any]=None ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = {} if top_k is not None: UpperCamelCase_ = top_k return {}, {}, postprocess_params def __call__( self: Any , _SCREAMING_SNAKE_CASE: Union[str, List[str], "Image.Image", List["Image.Image"]] , **_SCREAMING_SNAKE_CASE: int ) -> Any: """simple docstring""" return super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = load_image(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.model(**_SCREAMING_SNAKE_CASE ) return model_outputs def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str=5 ) -> Any: """simple docstring""" if top_k > self.model.config.num_labels: UpperCamelCase_ = self.model.config.num_labels if self.framework == "pt": UpperCamelCase_ = model_outputs.logits.softmax(-1 )[0] UpperCamelCase_ , UpperCamelCase_ = probs.topk(_SCREAMING_SNAKE_CASE ) elif self.framework == "tf": UpperCamelCase_ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCamelCase_ = tf.math.top_k(_SCREAMING_SNAKE_CASE , k=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCamelCase_ = scores.tolist() UpperCamelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )]
328
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: str ) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[List[List[str]]] , _SCREAMING_SNAKE_CASE: List[List[str]] , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_SCREAMING_SNAKE_CASE , hypotheses=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE ) }
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
from PIL import Image def lowerCAmelCase_ ( UpperCamelCase_ ) -> Image: UpperCamelCase_ , UpperCamelCase_ = image.size UpperCamelCase_ = 0 UpperCamelCase_ = image.load() for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): UpperCamelCase_ = pixels[j, i] mean += pixel mean //= width * height for j in range(UpperCamelCase_ ): for i in range(UpperCamelCase_ ): UpperCamelCase_ = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCAmelCase = mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
328
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
1
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: if "model" in orig_key: UpperCamelCase_ = orig_key.replace("model." , "" ) if "norm1" in orig_key: UpperCamelCase_ = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: UpperCamelCase_ = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: UpperCamelCase_ = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: UpperCamelCase_ = orig_key.split("." )[0].split("_" )[-1] UpperCamelCase_ = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: UpperCamelCase_ = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: UpperCamelCase_ = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: UpperCamelCase_ = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: UpperCamelCase_ = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: UpperCamelCase_ = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: UpperCamelCase_ = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: UpperCamelCase_ = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: UpperCamelCase_ = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: UpperCamelCase_ = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: UpperCamelCase_ = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: UpperCamelCase_ = "yoso." + orig_key return orig_key def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: for key in orig_state_dict.copy().keys(): UpperCamelCase_ = orig_state_dict.pop(UpperCamelCase_ ) if ("pooler" in key) or ("sen_class" in key): continue else: UpperCamelCase_ = val UpperCamelCase_ = orig_state_dict["cls.predictions.decoder.bias"] UpperCamelCase_ = torch.arange(UpperCamelCase_ ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" )["model_state_dict"] UpperCamelCase_ = YosoConfig.from_json_file(UpperCamelCase_ ) UpperCamelCase_ = YosoForMaskedLM(UpperCamelCase_ ) UpperCamelCase_ = convert_checkpoint_helper(config.max_position_embeddings , UpperCamelCase_ ) print(model.load_state_dict(UpperCamelCase_ ) ) model.eval() model.save_pretrained(UpperCamelCase_ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCAmelCase = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : def __init__( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Tuple=32 , _SCREAMING_SNAKE_CASE: Any=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=10 , _SCREAMING_SNAKE_CASE: str=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE: int=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: List[str]="relu" , _SCREAMING_SNAKE_CASE: List[Any]=3 , _SCREAMING_SNAKE_CASE: int=None , ) -> int: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = embeddings_size UpperCamelCase_ = hidden_sizes UpperCamelCase_ = depths UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_act UpperCamelCase_ = num_labels UpperCamelCase_ = scope UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase ( self: Dict ) -> int: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = TFResNetModel(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = TFResNetForImageClassification(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _UpperCamelCase : Union[str, Any] = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) _UpperCamelCase : Optional[int] = False _UpperCamelCase : List[str] = False _UpperCamelCase : int = False _UpperCamelCase : str = False _UpperCamelCase : List[str] = False def lowercase ( self: str ) -> str: """simple docstring""" UpperCamelCase_ = TFResNetModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase ( self: List[Any] ) -> str: """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase ( self: Any ) -> Any: """simple docstring""" pass def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str ): UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase_ = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase_ = layer_type UpperCamelCase_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = TFResNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ) -> str: UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase ( self: str ) -> List[str]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="tf" ) # forward pass UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> None: UpperCamelCase_ = generate_pascal_triangle(UpperCamelCase_ ) for row_idx in range(UpperCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowerCAmelCase_ ( UpperCamelCase_ ) -> list[list[int]]: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCamelCase_ = [] for current_row_idx in range(UpperCamelCase_ ): UpperCamelCase_ = populate_current_row(UpperCamelCase_ , UpperCamelCase_ ) triangle.append(UpperCamelCase_ ) return triangle def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: UpperCamelCase_ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase_ , UpperCamelCase_ = 1, 1 for current_col_idx in range(1 , UpperCamelCase_ ): calculate_current_element( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return current_row def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> None: UpperCamelCase_ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase_ = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase_ = above_to_left_elt + above_to_right_elt def lowerCAmelCase_ ( UpperCamelCase_ ) -> list[list[int]]: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCamelCase_ = [[1]] for row_index in range(1 , UpperCamelCase_ ): UpperCamelCase_ = [0] + result[-1] + [0] UpperCamelCase_ = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase_ = sum(divmod(UpperCamelCase_ , 2 ) ) UpperCamelCase_ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase_ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase_ = row_first_half + row_second_half result.append(UpperCamelCase_ ) return result def lowerCAmelCase_ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase_ , UpperCamelCase_ ) -> None: UpperCamelCase_ = F'''{func.__name__}({value})''' UpperCamelCase_ = timeit(F'''__main__.{call}''' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase_ , UpperCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
import os import sys import unittest _UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase = os.path.join(git_repo_path, 'src', 'diffusers') class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ = find_backend(" if not is_torch_available():" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCamelCase_ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCamelCase_ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "torch_and_transformers_and_onnx" ) def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _SCREAMING_SNAKE_CASE ) self.assertIn("torch_and_transformers" , _SCREAMING_SNAKE_CASE ) self.assertIn("flax_and_transformers" , _SCREAMING_SNAKE_CASE ) self.assertIn("torch_and_transformers_and_onnx" , _SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "\nCONSTANT = None\n" ) UpperCamelCase_ = create_dummy_object("function" , "'torch'" ) self.assertEqual( _SCREAMING_SNAKE_CASE , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCamelCase_ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCamelCase_ = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCamelCase_ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _SCREAMING_SNAKE_CASE )
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCamelCase : str = '''convnextv2''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: str=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: List[Any]=1e-12 , _SCREAMING_SNAKE_CASE: List[str]=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=224 , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Dict: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = num_stages UpperCamelCase_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase_ = [3, 3, 9, 3] if depths is None else depths UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_path_rate UpperCamelCase_ = image_size UpperCamelCase_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase_ , UpperCamelCase_ = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
328
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
1
import string def lowerCAmelCase_ ( UpperCamelCase_ ) -> None: for key in range(len(string.ascii_uppercase ) ): UpperCamelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase_ = string.ascii_uppercase.find(UpperCamelCase_ ) UpperCamelCase_ = num - key if num < 0: UpperCamelCase_ = num + len(string.ascii_uppercase ) UpperCamelCase_ = translated + string.ascii_uppercase[num] else: UpperCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = input("Encrypted message: " ) UpperCamelCase_ = message.upper() decrypt(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Any = LEDTokenizer _UpperCamelCase : List[Any] = LEDTokenizerFast _UpperCamelCase : List[Any] = True def lowercase ( self: List[Any] ) -> Any: """simple docstring""" super().setUp() UpperCamelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase_ = {"unk_token": "<unk>"} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Any , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Tuple: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , **_SCREAMING_SNAKE_CASE: Any ) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def lowercase ( self: Any ) -> List[Any]: """simple docstring""" return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase_ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIn("input_ids" , _SCREAMING_SNAKE_CASE ) self.assertIn("attention_mask" , _SCREAMING_SNAKE_CASE ) self.assertNotIn("labels" , _SCREAMING_SNAKE_CASE ) self.assertNotIn("decoder_attention_mask" , _SCREAMING_SNAKE_CASE ) @require_torch def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = ["A long paragraph for summarization."] UpperCamelCase_ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase_ = tokenizer(text_target=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) UpperCamelCase_ = inputs["input_ids"] UpperCamelCase_ = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase_ = ["Summary of the text.", "Another summary."] UpperCamelCase_ = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [[0] * len(_SCREAMING_SNAKE_CASE ) for x in encoded_output["input_ids"]] UpperCamelCase_ = tokenizer.pad(_SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs["global_attention_mask"] , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> int: """simple docstring""" pass def lowercase ( self: str ) -> Union[str, Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "A, <mask> AllenNLP sentence." UpperCamelCase_ = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
from datetime import datetime import requests def lowerCAmelCase_ ( UpperCamelCase_ ) -> bytes: UpperCamelCase_ = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" UpperCamelCase_ = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(UpperCamelCase_ ).content if __name__ == "__main__": _UpperCAmelCase = input('Enter Video/IGTV url: ').strip() _UpperCAmelCase = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f'''Done. Video saved to disk as {file_name}.''')
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCAmelCase = 'scheduler_config.json' class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = 1 _UpperCamelCase : List[Any] = 2 _UpperCamelCase : Any = 3 _UpperCamelCase : str = 4 _UpperCamelCase : Dict = 5 @dataclass class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : jnp.ndarray class _UpperCamelCase : _UpperCamelCase : str = SCHEDULER_CONFIG_NAME _UpperCamelCase : Dict = ['''dtype'''] _UpperCamelCase : int = [] _UpperCamelCase : Optional[int] = True @classmethod def lowercase ( cls: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict[str, Any] = None , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: List[str]=False , **_SCREAMING_SNAKE_CASE: Any , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = cls.load_config( pretrained_model_name_or_path=_SCREAMING_SNAKE_CASE , subfolder=_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ , UpperCamelCase_ = cls.from_config(_SCREAMING_SNAKE_CASE , return_unused_kwargs=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , "create_state" ) and getattr(_SCREAMING_SNAKE_CASE , "has_state" , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, os.PathLike] , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: str ) -> List[Any]: """simple docstring""" self.save_config(save_directory=_SCREAMING_SNAKE_CASE , push_to_hub=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def lowercase ( self: Dict ) -> List[str]: """simple docstring""" return self._get_compatibles() @classmethod def lowercase ( cls: Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_ = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase_ = importlib.import_module(__name__.split("." )[0] ) UpperCamelCase_ = [ getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for c in compatible_classes_str if hasattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] return compatible_classes def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> jnp.ndarray: assert len(UpperCamelCase_ ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(UpperCamelCase_ ) - x.ndim) ) , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=0.9_99 , UpperCamelCase_=jnp.floataa ) -> jnp.ndarray: def alpha_bar(UpperCamelCase_ ): return math.cos((time_step + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 UpperCamelCase_ = [] for i in range(UpperCamelCase_ ): UpperCamelCase_ = i / num_diffusion_timesteps UpperCamelCase_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(UpperCamelCase_ ) / alpha_bar(UpperCamelCase_ ) , UpperCamelCase_ ) ) return jnp.array(UpperCamelCase_ , dtype=UpperCamelCase_ ) @flax.struct.dataclass class _UpperCamelCase : _UpperCamelCase : jnp.ndarray _UpperCamelCase : jnp.ndarray _UpperCamelCase : jnp.ndarray @classmethod def lowercase ( cls: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = scheduler.config if config.trained_betas is not None: UpperCamelCase_ = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase_ = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase_ = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase_ = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCamelCase_ = 1.0 - betas UpperCamelCase_ = jnp.cumprod(_SCREAMING_SNAKE_CASE , axis=0 ) return cls( alphas=_SCREAMING_SNAKE_CASE , betas=_SCREAMING_SNAKE_CASE , alphas_cumprod=_SCREAMING_SNAKE_CASE , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = state.alphas_cumprod UpperCamelCase_ = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase_ = sqrt_alpha_prod.flatten() UpperCamelCase_ = broadcast_to_shape_from_left(UpperCamelCase_ , original_samples.shape ) UpperCamelCase_ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase_ = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase_ = broadcast_to_shape_from_left(UpperCamelCase_ , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = get_sqrt_alpha_prod(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ , UpperCamelCase_ = get_sqrt_alpha_prod(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
from __future__ import annotations _UpperCAmelCase = '#' class _UpperCamelCase : def __init__( self: Dict ) -> None: """simple docstring""" UpperCamelCase_ = {} def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> None: """simple docstring""" UpperCamelCase_ = self._trie for char in text: if char not in trie: UpperCamelCase_ = {} UpperCamelCase_ = trie[char] UpperCamelCase_ = True def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> tuple | list: """simple docstring""" UpperCamelCase_ = self._trie for char in prefix: if char in trie: UpperCamelCase_ = trie[char] else: return [] return self._elements(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: dict ) -> tuple: """simple docstring""" UpperCamelCase_ = [] for c, v in d.items(): UpperCamelCase_ = [" "] if c == END else [(c + s) for s in self._elements(_SCREAMING_SNAKE_CASE )] result.extend(_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Trie() _UpperCAmelCase = ('depart', 'detergent', 'daring', 'dog', 'deer', 'deal') for word in words: trie.insert_word(word) def lowerCAmelCase_ ( UpperCamelCase_ ) -> tuple: UpperCamelCase_ = trie.find_word(UpperCamelCase_ ) return tuple(string + word for word in suffixes ) def lowerCAmelCase_ ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
328
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
1
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _UpperCAmelCase = '\\n\n' _UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' _UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: List[str] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int = 16 , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Any]=None ) -> Optional[int]: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase_ = "cuda" else: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase_ = model.config.max_length - 1 else: UpperCamelCase_ = model.config.max_length UpperCamelCase_ = tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors="pt" , return_attention_mask=_SCREAMING_SNAKE_CASE , ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = encodings["input_ids"] UpperCamelCase_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase_ = [] UpperCamelCase_ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = min(start_index + batch_size , len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = encoded_texts[start_index:end_index] UpperCamelCase_ = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 ) UpperCamelCase_ = encoded_batch with torch.no_grad(): UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ).logits UpperCamelCase_ = out_logits[..., :-1, :].contiguous() UpperCamelCase_ = labels[..., 1:].contiguous() UpperCamelCase_ = attn_mask[..., 1:].contiguous() UpperCamelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_SCREAMING_SNAKE_CASE )}
328
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
1
from statistics import mean, stdev def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 3 ) -> list: UpperCamelCase_ = min(UpperCamelCase_ ) UpperCamelCase_ = max(UpperCamelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , UpperCamelCase_ ) for x in data] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 3 ) -> list: UpperCamelCase_ = mean(UpperCamelCase_ ) UpperCamelCase_ = stdev(UpperCamelCase_ ) # standardize data return [round((x - mu) / (sigma) , UpperCamelCase_ ) for x in data]
328
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
1
from __future__ import annotations from collections.abc import Callable _UpperCAmelCase = list[list[float | int]] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Matrix: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = [[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for row in range(UpperCamelCase_ ): for col in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[row][col] UpperCamelCase_ = vector[row][0] UpperCamelCase_ = 0 UpperCamelCase_ = 0 while row < size and col < size: # pivoting UpperCamelCase_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase_ , UpperCamelCase_ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCamelCase_ , UpperCamelCase_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = augmented[rowa][col] / augmented[row][col] UpperCamelCase_ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCamelCase_ ): for row in range(UpperCamelCase_ ): UpperCamelCase_ = augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase_ , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCamelCase_ ) ] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Callable[[int], int]: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = [[0 for _ in range(UpperCamelCase_ )] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = [[0] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for x_val, y_val in enumerate(UpperCamelCase_ ): for col in range(UpperCamelCase_ ): UpperCamelCase_ = (x_val + 1) ** (size - col - 1) UpperCamelCase_ = y_val UpperCamelCase_ = solve(UpperCamelCase_ , UpperCamelCase_ ) def interpolated_func(UpperCamelCase_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase_ ) ) return interpolated_func def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( UpperCamelCase_ = question_function , UpperCamelCase_ = 10 ) -> int: UpperCamelCase_ = [func(UpperCamelCase_ ) for x_val in range(1 , order + 1 )] UpperCamelCase_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCamelCase_ = 0 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for poly in polynomials: UpperCamelCase_ = 1 while func(UpperCamelCase_ ) == poly(UpperCamelCase_ ): x_val += 1 ret += poly(UpperCamelCase_ ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = ['''flax''', '''transformers'''] def __init__( self: int , *_SCREAMING_SNAKE_CASE: Tuple , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> Any: """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase ( cls: Any , *_SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase ( cls: int , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> str: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = ['''flax''', '''transformers'''] def __init__( self: Dict , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase ( cls: Optional[int] , *_SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: List[Any] ) -> str: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase ( cls: Any , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: Dict ) -> List[str]: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase_ ): _UpperCamelCase : List[str] = ['''flax''', '''transformers'''] def __init__( self: Optional[int] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase ( cls: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Dict , **_SCREAMING_SNAKE_CASE: Dict ) -> Dict: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase ( cls: List[Any] , *_SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: str ) -> Optional[int]: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase_ ): _UpperCamelCase : Optional[int] = ['''flax''', '''transformers'''] def __init__( self: List[str] , *_SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["flax", "transformers"] ) @classmethod def lowercase ( cls: Tuple , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" requires_backends(cls , ["flax", "transformers"] ) @classmethod def lowercase ( cls: List[str] , *_SCREAMING_SNAKE_CASE: Optional[int] , **_SCREAMING_SNAKE_CASE: List[Any] ) -> List[str]: """simple docstring""" requires_backends(cls , ["flax", "transformers"] )
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path _UpperCAmelCase = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) _UpperCAmelCase = [ord(letter) for letter in string.ascii_lowercase] _UpperCAmelCase = {ord(char) for char in VALID_CHARS} _UpperCAmelCase = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str | None: UpperCamelCase_ = "" UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase_ ) , UpperCamelCase_ ): UpperCamelCase_ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase_ ) return decoded def lowerCAmelCase_ ( UpperCamelCase_ ) -> list[str]: UpperCamelCase_ = [] for key in product(UpperCamelCase_ , repeat=3 ): UpperCamelCase_ = try_key(UpperCamelCase_ , UpperCamelCase_ ) if encoded is not None: possibles.append(UpperCamelCase_ ) return possibles def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def lowerCAmelCase_ ( UpperCamelCase_ = "p059_cipher.txt" ) -> int: UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = Path(UpperCamelCase_ ).parent.joinpath(UpperCamelCase_ ).read_text(encoding="utf-8" ) UpperCamelCase_ = [int(UpperCamelCase_ ) for number in data.strip().split("," )] UpperCamelCase_ = filter_valid_chars(UpperCamelCase_ ) for common_word in COMMON_WORDS: UpperCamelCase_ = filter_common_word(UpperCamelCase_ , UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: break UpperCamelCase_ = possibles[0] return sum(ord(UpperCamelCase_ ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
# flake8: noqa # Lint as: python3 _UpperCAmelCase = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
328
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
1
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py _UpperCAmelCase = 'src/diffusers' # Matches is_xxx_available() _UpperCAmelCase = re.compile(r'is\_([a-z_]*)_available\(\)') # Matches from xxx import bla _UpperCAmelCase = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') _UpperCAmelCase = '\n{0} = None\n' _UpperCAmelCase = '\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n' _UpperCAmelCase = '\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: UpperCamelCase_ = _re_backend.findall(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 0: return None return "_and_".join(UpperCamelCase_ ) def lowerCAmelCase_ ( ) -> Tuple: with open(os.path.join(UpperCamelCase_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase_ = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase_ = 0 UpperCamelCase_ = {} # Go through the end of the file while line_index < len(UpperCamelCase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase_ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCamelCase_ = [] # Until we unindent, add backend objects to the list while line_index < len(UpperCamelCase_ ) and len(lines[line_index] ) > 1: UpperCamelCase_ = lines[line_index] UpperCamelCase_ = _re_single_line_import.search(UpperCamelCase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(UpperCamelCase_ ) > 0: UpperCamelCase_ = objects else: line_index += 1 return backend_specific_objects def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if name.isupper(): return DUMMY_CONSTANT.format(UpperCamelCase_ ) elif name.islower(): return DUMMY_FUNCTION.format(UpperCamelCase_ , UpperCamelCase_ ) else: return DUMMY_CLASS.format(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_=None ) -> Union[str, Any]: if backend_specific_objects is None: UpperCamelCase_ = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase_ = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase_ = "[" + ", ".join(F'''"{b}"''' for b in backend.split("_and_" ) ) + "]" UpperCamelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(UpperCamelCase_ , UpperCamelCase_ ) for o in objects] ) UpperCamelCase_ = dummy_file return dummy_files def lowerCAmelCase_ ( UpperCamelCase_=False ) -> int: UpperCamelCase_ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase_ = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCamelCase_ = os.path.join(UpperCamelCase_ , "utils" ) UpperCamelCase_ = { backend: os.path.join(UpperCamelCase_ , F'''dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py''' ) for backend in dummy_files.keys() } UpperCamelCase_ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F'''Updating diffusers.utils.dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " F'''diffusers.utils.dummy_{short_names.get(UpperCamelCase_ , UpperCamelCase_ )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCAmelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
328
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = [] UpperCamelCase_ = set({"(", "[", "{"} ) UpperCamelCase_ = set({")", "]", "}"} ) UpperCamelCase_ = {"{": "}", "[": "]", "(": ")"} for i in range(len(UpperCamelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCamelCase_ ) == 0 or (len(UpperCamelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCamelCase_ ) == 0 def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = input("Enter sequence of brackets: " ) if is_balanced(UpperCamelCase_ ): print(UpperCamelCase_ , "is balanced" ) else: print(UpperCamelCase_ , "is not balanced" ) if __name__ == "__main__": main()
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} _UpperCAmelCase = { 'vocab_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json' ), }, 'merges_file': { 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt', 'allenai/longformer-large-4096': ( 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt' ), }, } _UpperCAmelCase = { 'allenai/longformer-base-4096': 4_0_9_6, 'allenai/longformer-large-4096': 4_0_9_6, 'allenai/longformer-large-4096-finetuned-triviaqa': 4_0_9_6, 'allenai/longformer-base-4096-extra.pos.embd.only': 4_0_9_6, 'allenai/longformer-large-4096-extra.pos.embd.only': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ) -> List[Any]: UpperCamelCase_ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCamelCase_ = bs[:] UpperCamelCase_ = 0 for b in range(2**8 ): if b not in bs: bs.append(UpperCamelCase_ ) cs.append(2**8 + n ) n += 1 UpperCamelCase_ = [chr(UpperCamelCase_ ) for n in cs] return dict(zip(UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: UpperCamelCase_ = set() UpperCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_ = char return pairs class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Any = VOCAB_FILES_NAMES _UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: str="replace" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<s>" , _SCREAMING_SNAKE_CASE: Dict="</s>" , _SCREAMING_SNAKE_CASE: List[str]="</s>" , _SCREAMING_SNAKE_CASE: Optional[Any]="<s>" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<unk>" , _SCREAMING_SNAKE_CASE: Dict="<pad>" , _SCREAMING_SNAKE_CASE: Any="<mask>" , _SCREAMING_SNAKE_CASE: List[str]=False , **_SCREAMING_SNAKE_CASE: Optional[int] , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else unk_token UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: UpperCamelCase_ = json.load(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} UpperCamelCase_ = errors # how to handle errors in decoding UpperCamelCase_ = bytes_to_unicode() UpperCamelCase_ = {v: k for k, v in self.byte_encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: UpperCamelCase_ = merges_handle.read().split("\n" )[1:-1] UpperCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = {} UpperCamelCase_ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase_ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowercase ( self: Dict ) -> Tuple: """simple docstring""" return len(self.encoder ) def lowercase ( self: str ) -> List[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Dict: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: UpperCamelCase_ = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_ , UpperCamelCase_ = bigram UpperCamelCase_ = [] UpperCamelCase_ = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: UpperCamelCase_ = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_ = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = " ".join(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = word return word def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = [] for token in re.findall(self.pat , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) return bpe_tokens def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] ) -> Optional[int]: """simple docstring""" return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.decoder.get(_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any] ) -> int: """simple docstring""" UpperCamelCase_ = "".join(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + "\n" ) UpperCamelCase_ = 0 with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) UpperCamelCase_ = token_index writer.write(" ".join(_SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return vocab_file, merge_file def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_SCREAMING_SNAKE_CASE ) > 0 and not text[0].isspace()): UpperCamelCase_ = " " + text return (text, kwargs)
328
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
1
def lowerCAmelCase_ ( UpperCamelCase_ = 4000000 ) -> int: UpperCamelCase_ = [] UpperCamelCase_ , UpperCamelCase_ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCamelCase_ ) UpperCamelCase_ , UpperCamelCase_ = b, a + b return sum(UpperCamelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = 5_0 # max width of layer names _UpperCAmelCase = 7_0 # max width of quantizer names def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=UpperCamelCase_ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=UpperCamelCase_ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=UpperCamelCase_ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=UpperCamelCase_ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=UpperCamelCase_ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=UpperCamelCase_ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: if args.calibrator == "max": UpperCamelCase_ = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCamelCase_ = "histogram" elif args.calibrator == "mse": UpperCamelCase_ = "histogram" else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) UpperCamelCase_ = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCamelCase_ ) UpperCamelCase_ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False , UpperCamelCase_=False ) -> Any: logger.info("Configuring Model for Quantization" ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCamelCase_ , ["embeddings"] , which="weight" , _disabled=UpperCamelCase_ ) if args.quant_disable: set_quantizer_by_name(UpperCamelCase_ , [""] , _disabled=UpperCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCamelCase_ , args.quant_disable_keyword , _disabled=UpperCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCamelCase_ , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=UpperCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCamelCase_ , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=UpperCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(UpperCamelCase_ ) if args.fuse_qkv: fuse_qkv(UpperCamelCase_ , UpperCamelCase_ ) if args.clip_gelu: clip_gelu(UpperCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: def fusea(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): for mod in [qq, qk, qv]: if not hasattr(UpperCamelCase_ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCamelCase_ = qq._amax.detach().item() UpperCamelCase_ = qk._amax.detach().item() UpperCamelCase_ = qv._amax.detach().item() UpperCamelCase_ = max(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) qq._amax.fill_(UpperCamelCase_ ) qk._amax.fill_(UpperCamelCase_ ) qv._amax.fill_(UpperCamelCase_ ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCamelCase_ ) UpperCamelCase_ = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCamelCase_ = mod.weight.shape[0] UpperCamelCase_ = mod._weight_quantizer._amax.detach() UpperCamelCase_ = torch.ones(UpperCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCamelCase_ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCamelCase_ = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCamelCase_ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCamelCase_ , keepdims=UpperCamelCase_ ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) UpperCamelCase_ = amax def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=25 , UpperCamelCase_=180 , UpperCamelCase_=None ) -> Dict: if ignore is None: UpperCamelCase_ = [] elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = [ignore] UpperCamelCase_ = 0 for name, mod in model.named_modules(): if not hasattr(UpperCamelCase_ , "weight" ): continue UpperCamelCase_ = max(UpperCamelCase_ , len(UpperCamelCase_ ) ) for name, mod in model.named_modules(): UpperCamelCase_ = getattr(UpperCamelCase_ , "_input_quantizer" , UpperCamelCase_ ) UpperCamelCase_ = getattr(UpperCamelCase_ , "_weight_quantizer" , UpperCamelCase_ ) if not hasattr(UpperCamelCase_ , "weight" ): continue if type(UpperCamelCase_ ) in ignore: continue if [True for s in ignore if type(UpperCamelCase_ ) is str and s in name]: continue UpperCamelCase_ = F'''Act:{input_q.extra_repr()}''' UpperCamelCase_ = F'''Wgt:{weight_q.extra_repr()}''' UpperCamelCase_ = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(UpperCamelCase_ ) <= line_width: logger.info(UpperCamelCase_ ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = 0 for name, mod in model.named_modules(): if isinstance(UpperCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: UpperCamelCase_ = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if quantizer_mod is not None: assert hasattr(UpperCamelCase_ , UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: logger.warning(F'''{name} has no {quantizer}''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="both" , **UpperCamelCase_ ) -> int: UpperCamelCase_ = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(UpperCamelCase_ , UpperCamelCase_ , "_input_quantizer" , UpperCamelCase_ , UpperCamelCase_ ) if which in ["weight", "both"]: set_quantizer(UpperCamelCase_ , UpperCamelCase_ , "_weight_quantizer" , UpperCamelCase_ , UpperCamelCase_ ) logger.info(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , "_input_quantizer" ) or hasattr(UpperCamelCase_ , "_weight_quantizer" ): for n in names: if re.search(UpperCamelCase_ , UpperCamelCase_ ): set_quantizers(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) elif name.endswith("_quantizer" ): for n in names: if re.search(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info(UpperCamelCase_ )
328
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def lowerCAmelCase_ ( UpperCamelCase_ = 100 ) -> int: UpperCamelCase_ = 1 UpperCamelCase_ = 2 for i in range(2 , max_n + 1 ): UpperCamelCase_ = pre_numerator UpperCamelCase_ = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase_ = cur_numerator UpperCamelCase_ = e_cont * pre_numerator + temp return sum_digits(UpperCamelCase_ ) if __name__ == "__main__": print(f'''{solution() = }''')
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
def lowerCAmelCase_ ( UpperCamelCase_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase_ = set() # Replace all the whitespace in our sentence UpperCamelCase_ = input_str.replace(" " , "" ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(UpperCamelCase_ ) == 26 def lowerCAmelCase_ ( UpperCamelCase_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: UpperCamelCase_ = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase_ = True elif char.isupper(): UpperCamelCase_ = True return all(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def lowerCAmelCase_ ( ) -> None: from timeit import timeit UpperCamelCase_ = "from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest" print(timeit("is_pangram()" , setup=UpperCamelCase_ ) ) print(timeit("is_pangram_faster()" , setup=UpperCamelCase_ ) ) print(timeit("is_pangram_fastest()" , setup=UpperCamelCase_ ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
from collections.abc import Generator from math import sin def lowerCAmelCase_ ( UpperCamelCase_ ) -> bytes: if len(UpperCamelCase_ ) != 32: raise ValueError("Input must be of length 32" ) UpperCamelCase_ = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase_ ( UpperCamelCase_ ) -> bytes: if i < 0: raise ValueError("Input must be non-negative" ) UpperCamelCase_ = format(UpperCamelCase_ , "08x" )[-8:] UpperCamelCase_ = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowerCAmelCase_ ( UpperCamelCase_ ) -> bytes: UpperCamelCase_ = b"" for char in message: bit_string += format(UpperCamelCase_ , "08b" ).encode("utf-8" ) UpperCamelCase_ = format(len(UpperCamelCase_ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(UpperCamelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowerCAmelCase_ ( UpperCamelCase_ ) -> Generator[list[int], None, None]: if len(UpperCamelCase_ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(UpperCamelCase_ ) , 512 ): UpperCamelCase_ = bit_string[pos : pos + 512] UpperCamelCase_ = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: if i < 0: raise ValueError("Input must be non-negative" ) UpperCamelCase_ = format(UpperCamelCase_ , "032b" ) UpperCamelCase_ = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(UpperCamelCase_ , 2 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return (a + b) % 2**32 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase_ ( UpperCamelCase_ ) -> bytes: UpperCamelCase_ = preprocess(UpperCamelCase_ ) UpperCamelCase_ = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase_ = 0x67_45_23_01 UpperCamelCase_ = 0xef_cd_ab_89 UpperCamelCase_ = 0x98_ba_dc_fe UpperCamelCase_ = 0x10_32_54_76 UpperCamelCase_ = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(UpperCamelCase_ ): UpperCamelCase_ = aa UpperCamelCase_ = ba UpperCamelCase_ = ca UpperCamelCase_ = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase_ = d ^ (b & (c ^ d)) UpperCamelCase_ = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase_ = c ^ (d & (b ^ c)) UpperCamelCase_ = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = (3 * i + 5) % 16 else: UpperCamelCase_ = c ^ (b | not_aa(UpperCamelCase_ )) UpperCamelCase_ = (7 * i) % 16 UpperCamelCase_ = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase_ = d UpperCamelCase_ = c UpperCamelCase_ = b UpperCamelCase_ = sum_aa(UpperCamelCase_ , left_rotate_aa(UpperCamelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase_ = sum_aa(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = sum_aa(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = sum_aa(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = sum_aa(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) + reformat_hex(UpperCamelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
from __future__ import annotations from collections.abc import Callable def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 100 , ) -> float: UpperCamelCase_ = x_start UpperCamelCase_ = fnc(UpperCamelCase_ ) UpperCamelCase_ = 0.0 for _ in range(UpperCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area UpperCamelCase_ = (x_end - x_start) / steps + xa UpperCamelCase_ = fnc(UpperCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step UpperCamelCase_ = xa UpperCamelCase_ = fxa return area if __name__ == "__main__": def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') _UpperCAmelCase = 1_0 while i <= 1_0_0_0_0_0: print(f'''with {i} steps: {trapezoidal_area(f, -5, 5, i)}''') i *= 1_0
328
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: assert column_title.isupper() UpperCamelCase_ = 0 UpperCamelCase_ = len(UpperCamelCase_ ) - 1 UpperCamelCase_ = 0 while index >= 0: UpperCamelCase_ = (ord(column_title[index] ) - 64) * pow(26 , UpperCamelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return 1 if input_a == input_a else 0 def lowerCAmelCase_ ( ) -> None: assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _UpperCamelCase : def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int]=99 , _SCREAMING_SNAKE_CASE: List[str]=13 , _SCREAMING_SNAKE_CASE: Dict=7 , _SCREAMING_SNAKE_CASE: List[Any]=9 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: List[Any]=32 , _SCREAMING_SNAKE_CASE: Union[str, Any]=5 , _SCREAMING_SNAKE_CASE: str=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=37 , _SCREAMING_SNAKE_CASE: Union[str, Any]=8 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Any=0.0_02 , _SCREAMING_SNAKE_CASE: List[Any]=1 , _SCREAMING_SNAKE_CASE: Dict=0 , _SCREAMING_SNAKE_CASE: int=0 , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , ) -> List[str]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = encoder_seq_length UpperCamelCase_ = decoder_seq_length # For common tests UpperCamelCase_ = self.decoder_seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_attention_mask UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = d_ff UpperCamelCase_ = relative_attention_num_buckets UpperCamelCase_ = dropout_rate UpperCamelCase_ = initializer_factor UpperCamelCase_ = eos_token_id UpperCamelCase_ = pad_token_id UpperCamelCase_ = decoder_start_token_id UpperCamelCase_ = None UpperCamelCase_ = decoder_layers def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" return TaConfig.from_pretrained("google/umt5-base" ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: List[str]=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: UpperCamelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if decoder_head_mask is None: UpperCamelCase_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) if cross_attn_head_mask is None: UpperCamelCase_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_SCREAMING_SNAKE_CASE ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ = self.get_config() UpperCamelCase_ = config.num_attention_heads UpperCamelCase_ = self.prepare_inputs_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return config, input_dict def lowercase ( self: List[str] ) -> Any: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase ( self: Tuple ) -> Any: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , ) -> Tuple: """simple docstring""" UpperCamelCase_ = UMTaModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model( input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , decoder_attention_mask=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = model(input_ids=_SCREAMING_SNAKE_CASE , decoder_input_ids=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = result.last_hidden_state UpperCamelCase_ = result.past_key_values UpperCamelCase_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_SCREAMING_SNAKE_CASE ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = UMTaModel(config=_SCREAMING_SNAKE_CASE ).get_decoder().to(_SCREAMING_SNAKE_CASE ).eval() # first forward pass UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , use_cache=_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) + 1 ) UpperCamelCase_ , UpperCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE )["last_hidden_state"] UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , past_key_values=_SCREAMING_SNAKE_CASE )["last_hidden_state"] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = UMTaModel(config=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ).half().eval() UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE )["last_hidden_state"] self.parent.assertFalse(torch.isnan(_SCREAMING_SNAKE_CASE ).any().item() ) @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : int = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _UpperCamelCase : int = (UMTaForConditionalGeneration,) if is_torch_available() else () _UpperCamelCase : List[str] = ( { '''conversational''': UMTaForConditionalGeneration, '''feature-extraction''': UMTaModel, '''summarization''': UMTaForConditionalGeneration, '''text2text-generation''': UMTaForConditionalGeneration, '''translation''': UMTaForConditionalGeneration, '''question-answering''': UMTaForQuestionAnswering, } if is_torch_available() else {} ) _UpperCamelCase : Dict = True _UpperCamelCase : List[str] = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Tuple = True _UpperCamelCase : Dict = True # The small UMT5 model needs higher percentages for CPU/MP tests _UpperCamelCase : Dict = [0.8, 0.9] def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def lowercase ( self: str ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = UMTaModel(config_and_inputs[0] ).to(_SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _SCREAMING_SNAKE_CASE , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_SCREAMING_SNAKE_CASE , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] ) -> str: """simple docstring""" UpperCamelCase_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = config_and_inputs[0] UpperCamelCase_ = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ), } for attn_name, (name, mask) in zip(_SCREAMING_SNAKE_CASE , head_masking.items() ): UpperCamelCase_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase_ = torch.ones( config.num_decoder_layers , config.num_heads , device=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=_SCREAMING_SNAKE_CASE , return_dict_in_generate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _UpperCamelCase ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def lowercase ( self: List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=_SCREAMING_SNAKE_CASE , legacy=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt" , padding=_SCREAMING_SNAKE_CASE ).input_ids # fmt: off UpperCamelCase_ = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.generate(input_ids.to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput _UpperCAmelCase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[str] , *_SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , **_SCREAMING_SNAKE_CASE: List[Any] ) -> List[str]: """simple docstring""" super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = eval_examples UpperCamelCase_ = post_process_function UpperCamelCase_ = quant_trainer_args UpperCamelCase_ = 128 # default number of calibration samples def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> Any: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError("Trainer: calibration requires an calib_dataset." ) UpperCamelCase_ = calib_dataset if calib_dataset is not None else self.calib_dataset UpperCamelCase_ = self._remove_unused_columns(_SCREAMING_SNAKE_CASE , description="Calibration" ) return DataLoader( _SCREAMING_SNAKE_CASE , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str=None ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.train_dataset if calib_dataset is None else calib_dataset UpperCamelCase_ = self.get_calib_dataloader(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args , calib=_SCREAMING_SNAKE_CASE ) model.eval() quant_trainer.enable_calibration(_SCREAMING_SNAKE_CASE ) logger.info("***** Running calibration *****" ) logger.info(f''' Num examples = {self.calib_num}''' ) logger.info(f''' Batch size = {calib_dataloader.batch_size}''' ) for step, inputs in enumerate(_SCREAMING_SNAKE_CASE ): # Prediction step UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.prediction_step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prediction_loss_only=_SCREAMING_SNAKE_CASE ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) UpperCamelCase_ = model def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: str = "eval" ) -> int: """simple docstring""" UpperCamelCase_ = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase_ = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase_ = self.compute_metrics UpperCamelCase_ = None UpperCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCamelCase_ = eval_loop( _SCREAMING_SNAKE_CASE , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase_ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: UpperCamelCase_ = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions ) UpperCamelCase_ = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCamelCase_ = metrics.pop(_SCREAMING_SNAKE_CASE ) self.log(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase_ = self.callback_handler.on_evaluate(self.args , self.state , self.control , _SCREAMING_SNAKE_CASE ) return metrics def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: str = "test" ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_test_dataloader(_SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase_ = self.compute_metrics UpperCamelCase_ = None UpperCamelCase_ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCamelCase_ = eval_loop( _SCREAMING_SNAKE_CASE , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase_ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase_ = self.post_process_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , output.predictions , "predict" ) UpperCamelCase_ = self.compute_metrics(_SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCamelCase_ = metrics.pop(_SCREAMING_SNAKE_CASE ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[str]="./" ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.eval_dataset UpperCamelCase_ = self.get_eval_dataloader(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = next(iter(_SCREAMING_SNAKE_CASE ) ) # saving device - to make it consistent UpperCamelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) # convert to tuple UpperCamelCase_ = tuple(v.to(_SCREAMING_SNAKE_CASE ) for k, v in batch.items() ) logger.info("Converting model to be onnx compatible" ) from pytorch_quantization.nn import TensorQuantizer UpperCamelCase_ = True UpperCamelCase_ = self.model.to(_SCREAMING_SNAKE_CASE ) model.eval() model.float() UpperCamelCase_ = model.module if hasattr(_SCREAMING_SNAKE_CASE , "module" ) else model quant_trainer.configure_model(_SCREAMING_SNAKE_CASE , self.quant_trainer_args ) UpperCamelCase_ = os.path.join(_SCREAMING_SNAKE_CASE , "model.onnx" ) logger.info(f'''exporting model to {output_model_file}''' ) UpperCamelCase_ = {0: "batch_size", 1: "seq_len"} torch.onnx.export( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , export_params=_SCREAMING_SNAKE_CASE , opset_version=13 , do_constant_folding=_SCREAMING_SNAKE_CASE , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={ "input_ids": axes, "attention_mask": axes, "token_type_ids": axes, "output_start_logits": axes, "output_end_logits": axes, } , verbose=_SCREAMING_SNAKE_CASE , ) logger.info("onnx export finished" )
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _UpperCAmelCase = 'Create a default config file for Accelerate with only a few flags set.' def lowerCAmelCase_ ( UpperCamelCase_="no" , UpperCamelCase_ = default_json_config_file , UpperCamelCase_ = False ) -> Union[str, Any]: UpperCamelCase_ = Path(UpperCamelCase_ ) path.parent.mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCamelCase_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCamelCase_ = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() UpperCamelCase_ = num_gpus UpperCamelCase_ = False if num_gpus > 1: UpperCamelCase_ = "MULTI_GPU" else: UpperCamelCase_ = "NO" elif is_xpu_available() and use_xpu: UpperCamelCase_ = torch.xpu.device_count() UpperCamelCase_ = num_xpus UpperCamelCase_ = False if num_xpus > 1: UpperCamelCase_ = "MULTI_XPU" else: UpperCamelCase_ = "NO" elif is_npu_available(): UpperCamelCase_ = torch.npu.device_count() UpperCamelCase_ = num_npus UpperCamelCase_ = False if num_npus > 1: UpperCamelCase_ = "MULTI_NPU" else: UpperCamelCase_ = "NO" else: UpperCamelCase_ = 0 UpperCamelCase_ = True UpperCamelCase_ = 1 UpperCamelCase_ = "NO" UpperCamelCase_ = ClusterConfig(**UpperCamelCase_ ) config.to_json_file(UpperCamelCase_ ) return path def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = parser.add_parser("default" , parents=UpperCamelCase_ , help=UpperCamelCase_ , formatter_class=UpperCamelCase_ ) parser.add_argument( "--config_file" , default=UpperCamelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=UpperCamelCase_ , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=UpperCamelCase_ ) return parser def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
328
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class _UpperCamelCase ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = GenerationConfig.from_pretrained(_SCREAMING_SNAKE_CASE , config_name=_SCREAMING_SNAKE_CASE ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _SCREAMING_SNAKE_CASE ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> Any: """simple docstring""" UpperCamelCase_ = AutoConfig.from_pretrained("gpt2" ) UpperCamelCase_ = GenerationConfig.from_model_config(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = GenerationConfig() UpperCamelCase_ = { "max_new_tokens": 1024, "foo": "bar", } UpperCamelCase_ = copy.deepcopy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = generation_config.update(**_SCREAMING_SNAKE_CASE ) # update_kwargs was not modified (no side effects) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_SCREAMING_SNAKE_CASE , {"foo": "bar"} ) def lowercase ( self: Optional[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = GenerationConfig() UpperCamelCase_ = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = GenerationConfig.from_pretrained(_SCREAMING_SNAKE_CASE ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) UpperCamelCase_ = GenerationConfig.from_model_config(_SCREAMING_SNAKE_CASE ) assert not hasattr(_SCREAMING_SNAKE_CASE , "foo" ) # no new kwargs should be initialized if from config def lowercase ( self: List[Any] ) -> str: """simple docstring""" UpperCamelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _SCREAMING_SNAKE_CASE ) self.assertEqual(default_config.num_beams , 1 ) UpperCamelCase_ = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _SCREAMING_SNAKE_CASE ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = GenerationConfig.from_pretrained(_SCREAMING_SNAKE_CASE , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _SCREAMING_SNAKE_CASE ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class _UpperCamelCase ( unittest.TestCase ): @classmethod def lowercase ( cls: int ) -> List[Any]: """simple docstring""" UpperCamelCase_ = TOKEN HfFolder.save_token(_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: List[Any] ) -> str: """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) UpperCamelCase_ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="test-generation-config" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCamelCase_ = GenerationConfig.from_pretrained(f'''{USER}/test-generation-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ = GenerationConfig( do_sample=_SCREAMING_SNAKE_CASE , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) UpperCamelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _SCREAMING_SNAKE_CASE , repo_id="valid_org/test-generation-config-org" , push_to_hub=_SCREAMING_SNAKE_CASE , use_auth_token=self._token ) UpperCamelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_SCREAMING_SNAKE_CASE , getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
328
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: UpperCamelCase_ = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) UpperCamelCase_ = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , UpperCamelCase_ ) if matches: UpperCamelCase_ = float(matches[1] ) UpperCamelCase_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCamelCase_ = 1001 UpperCamelCase_ = "imagenet-1k-id2label.json" UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = json.load(open(hf_hub_download(UpperCamelCase_ , UpperCamelCase_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(UpperCamelCase_ ) + 1: v for k, v in idalabel.items()} UpperCamelCase_ = "background" UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase_ = Image.open(requests.get(UpperCamelCase_ , stream=UpperCamelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> Any: UpperCamelCase_ = get_mobilenet_va_config(UpperCamelCase_ ) # Load 🤗 model UpperCamelCase_ = MobileNetVaForImageClassification(UpperCamelCase_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCamelCase_ = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) UpperCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCamelCase_ = model(**UpperCamelCase_ ) UpperCamelCase_ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": UpperCamelCase_ = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": UpperCamelCase_ = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: UpperCamelCase_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , UpperCamelCase_ , atol=1e-4 ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: print("Pushing to the hub..." ) UpperCamelCase_ = "google/" + model_name image_processor.push_to_hub(UpperCamelCase_ ) model.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _UpperCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
328
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
1
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True ) -> Optional[int]: model.train() UpperCamelCase_ = model(UpperCamelCase_ ) UpperCamelCase_ = F.mse_loss(UpperCamelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=False ) -> int: set_seed(42 ) UpperCamelCase_ = RegressionModel() UpperCamelCase_ = deepcopy(UpperCamelCase_ ) UpperCamelCase_ = RegressionDataset(length=80 ) UpperCamelCase_ = DataLoader(UpperCamelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: UpperCamelCase_ = AdamW(params=model.parameters() , lr=1e-3 ) UpperCamelCase_ = AdamW(params=ddp_model.parameters() , lr=1e-3 ) UpperCamelCase_ = LambdaLR(UpperCamelCase_ , lr_lambda=lambda UpperCamelCase_ : epoch**0.65 ) UpperCamelCase_ = LambdaLR(UpperCamelCase_ , lr_lambda=lambda UpperCamelCase_ : epoch**0.65 ) # Make a copy of `model` if sched: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ ) # Use a single batch UpperCamelCase_ , UpperCamelCase_ = next(iter(UpperCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: # Sync grads step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase_ = ddp_input[torch.randperm(len(UpperCamelCase_ ) )] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: # Test on distributed setup that context manager behaves properly UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ ) # Use a single batch UpperCamelCase_ , UpperCamelCase_ = next(iter(UpperCamelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: # Sync grads step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase_ = ddp_input[torch.randperm(len(UpperCamelCase_ ) )] def lowerCAmelCase_ ( UpperCamelCase_=False , UpperCamelCase_=False ) -> Tuple: UpperCamelCase_ = Accelerator( split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ ) for iteration, batch in enumerate(UpperCamelCase_ ): UpperCamelCase_ , UpperCamelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) UpperCamelCase_ = ddp_input[torch.randperm(len(UpperCamelCase_ ) )] GradientState._reset_state() def lowerCAmelCase_ ( UpperCamelCase_=False , UpperCamelCase_=False ) -> List[str]: UpperCamelCase_ = Accelerator( split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = get_training_setup(UpperCamelCase_ , UpperCamelCase_ ) for iteration, batch in enumerate(UpperCamelCase_ ): UpperCamelCase_ , UpperCamelCase_ = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase_ , UpperCamelCase_ = accelerator.gather((ddp_input, ddp_target) ) UpperCamelCase_ , UpperCamelCase_ = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(UpperCamelCase_ ): step_model(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' UpperCamelCase_ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase_ )) if accelerator.num_processes > 1: check_model_parameters(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = Accelerator() UpperCamelCase_ = RegressionDataset(length=80 ) UpperCamelCase_ = DataLoader(UpperCamelCase_ , batch_size=16 ) UpperCamelCase_ = RegressionDataset(length=96 ) UpperCamelCase_ = DataLoader(UpperCamelCase_ , batch_size=16 ) UpperCamelCase_ , UpperCamelCase_ = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(UpperCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase_ ) if iteration < len(UpperCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(UpperCamelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase_ ) if batch_num < len(UpperCamelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase_ ( ) -> Any: UpperCamelCase_ = Accelerator() UpperCamelCase_ = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(UpperCamelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(UpperCamelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(UpperCamelCase_ , UpperCamelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _UpperCAmelCase = datasets.utils.logging.get_logger(__name__) _UpperCAmelCase = ['names', 'prefix'] _UpperCAmelCase = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _UpperCAmelCase = ['encoding_errors', 'on_bad_lines'] _UpperCAmelCase = ['date_format'] @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): _UpperCamelCase : str = "," _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[Union[int, List[int], str]] = "infer" _UpperCamelCase : Optional[List[str]] = None _UpperCamelCase : Optional[List[str]] = None _UpperCamelCase : Optional[Union[int, str, List[int], List[str]]] = None _UpperCamelCase : Optional[Union[List[int], List[str]]] = None _UpperCamelCase : Optional[str] = None _UpperCamelCase : bool = True _UpperCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None _UpperCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None _UpperCamelCase : Optional[list] = None _UpperCamelCase : Optional[list] = None _UpperCamelCase : bool = False _UpperCamelCase : Optional[Union[int, List[int]]] = None _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[Union[str, List[str]]] = None _UpperCamelCase : bool = True _UpperCamelCase : bool = True _UpperCamelCase : bool = False _UpperCamelCase : bool = True _UpperCamelCase : Optional[str] = None _UpperCamelCase : str = "." _UpperCamelCase : Optional[str] = None _UpperCamelCase : str = '"' _UpperCamelCase : int = 0 _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[str] = None _UpperCamelCase : bool = True _UpperCamelCase : bool = True _UpperCamelCase : int = 0 _UpperCamelCase : bool = True _UpperCamelCase : bool = False _UpperCamelCase : Optional[str] = None _UpperCamelCase : int = 1_0_0_0_0 _UpperCamelCase : Optional[datasets.Features] = None _UpperCamelCase : Optional[str] = "strict" _UpperCamelCase : Literal["error", "warn", "skip"] = "error" _UpperCamelCase : Optional[str] = None def lowercase ( self: List[str] ) -> Any: """simple docstring""" if self.delimiter is not None: UpperCamelCase_ = self.delimiter if self.column_names is not None: UpperCamelCase_ = self.column_names @property def lowercase ( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _SCREAMING_SNAKE_CASE ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class _UpperCamelCase ( datasets.ArrowBasedBuilder ): _UpperCamelCase : int = CsvConfig def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Any: """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_SCREAMING_SNAKE_CASE , (str, list, tuple) ): UpperCamelCase_ = data_files if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [files] UpperCamelCase_ = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCamelCase_ = [] for split_name, files in data_files.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [files] UpperCamelCase_ = [dl_manager.iter_files(_SCREAMING_SNAKE_CASE ) for file in files] splits.append(datasets.SplitGenerator(name=_SCREAMING_SNAKE_CASE , gen_kwargs={"files": files} ) ) return splits def lowercase ( self: int , _SCREAMING_SNAKE_CASE: pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: UpperCamelCase_ = self.config.features.arrow_schema if all(not require_storage_cast(_SCREAMING_SNAKE_CASE ) for feature in self.config.features.values() ): # cheaper cast UpperCamelCase_ = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_SCREAMING_SNAKE_CASE ) else: # more expensive cast; allows str <-> int/float or str to Audio for example UpperCamelCase_ = table_cast(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return pa_table def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str UpperCamelCase_ = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_SCREAMING_SNAKE_CASE ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = pd.read_csv(_SCREAMING_SNAKE_CASE , iterator=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = pa.Table.from_pandas(_SCREAMING_SNAKE_CASE ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_SCREAMING_SNAKE_CASE ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_SCREAMING_SNAKE_CASE )}: {e}''' ) raise
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase_ ) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = field(default='''audio-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _UpperCamelCase : ClassVar[Features] = Features({'''audio''': Audio()} ) _UpperCamelCase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _UpperCamelCase : str = "audio" _UpperCamelCase : str = "labels" def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Dict ) -> Tuple: """simple docstring""" if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) UpperCamelCase_ = copy.deepcopy(self ) UpperCamelCase_ = self.label_schema.copy() UpperCamelCase_ = features[self.label_column] UpperCamelCase_ = label_schema return task_template @property def lowercase ( self: Tuple ) -> Dict[str, str]: """simple docstring""" return { self.audio_column: "audio", self.label_column: "labels", }
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''bert''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=30522 , _SCREAMING_SNAKE_CASE: Union[str, Any]=768 , _SCREAMING_SNAKE_CASE: Tuple=12 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=3072 , _SCREAMING_SNAKE_CASE: Tuple="gelu" , _SCREAMING_SNAKE_CASE: Optional[int]=0.1 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=2 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: List[Any]=0 , _SCREAMING_SNAKE_CASE: str="absolute" , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
328
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
1
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: if not (isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ )): raise ValueError("longest_common_substring() takes two strings for inputs" ) UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] UpperCamelCase_ = 0 UpperCamelCase_ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: UpperCamelCase_ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: UpperCamelCase_ = i UpperCamelCase_ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
328
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCAmelCase = { 'vocab_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json' ), }, 'merges_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt', 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt' ), }, 'tokenizer_file': { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json', 'roberta-base-openai-detector': ( 'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json' ), 'roberta-large-openai-detector': ( 'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json' ), }, } _UpperCAmelCase = { 'roberta-base': 5_1_2, 'roberta-large': 5_1_2, 'roberta-large-mnli': 5_1_2, 'distilroberta-base': 5_1_2, 'roberta-base-openai-detector': 5_1_2, 'roberta-large-openai-detector': 5_1_2, } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = ['''input_ids''', '''attention_mask'''] _UpperCamelCase : str = RobertaTokenizer def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Optional[int]="replace" , _SCREAMING_SNAKE_CASE: Union[str, Any]="<s>" , _SCREAMING_SNAKE_CASE: int="</s>" , _SCREAMING_SNAKE_CASE: List[str]="</s>" , _SCREAMING_SNAKE_CASE: str="<s>" , _SCREAMING_SNAKE_CASE: Dict="<unk>" , _SCREAMING_SNAKE_CASE: Tuple="<pad>" , _SCREAMING_SNAKE_CASE: str="<mask>" , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: str=True , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Any: """simple docstring""" super().__init__( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , errors=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , trim_offsets=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) UpperCamelCase_ = add_prefix_space UpperCamelCase_ = pre_tok_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = add_prefix_space UpperCamelCase_ = "post_processor" UpperCamelCase_ = getattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase_ = tuple(state["sep"] ) if "cls" in state: UpperCamelCase_ = tuple(state["cls"] ) UpperCamelCase_ = False if state.get("add_prefix_space" , _SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase_ = add_prefix_space UpperCamelCase_ = True if state.get("trim_offsets" , _SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase_ = trim_offsets UpperCamelCase_ = True if changes_to_apply: UpperCamelCase_ = getattr(_SCREAMING_SNAKE_CASE , state.pop("type" ) ) UpperCamelCase_ = component_class(**_SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @property def lowercase ( self: int ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else value UpperCamelCase_ = value def lowercase ( self: Union[str, Any] , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[str] ) -> BatchEncoding: """simple docstring""" UpperCamelCase_ = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> BatchEncoding: """simple docstring""" UpperCamelCase_ = kwargs.get("is_split_into_words" , _SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase_ = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
328
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
1
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(UpperCamelCase_ , n - 1 , UpperCamelCase_ ) * a) % mod else: UpperCamelCase_ = binary_exponentiation(UpperCamelCase_ , n / 2 , UpperCamelCase_ ) return (b * b) % mod # a prime number _UpperCAmelCase = 7_0_1 _UpperCAmelCase = 1_0_0_0_0_0_0_0_0_0 _UpperCAmelCase = 1_0 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: int , _SCREAMING_SNAKE_CASE: WhisperForConditionalGeneration , _SCREAMING_SNAKE_CASE: WhisperProcessor , _SCREAMING_SNAKE_CASE: AutoencoderKL , _SCREAMING_SNAKE_CASE: CLIPTextModel , _SCREAMING_SNAKE_CASE: CLIPTokenizer , _SCREAMING_SNAKE_CASE: UNetaDConditionModel , _SCREAMING_SNAKE_CASE: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _SCREAMING_SNAKE_CASE: StableDiffusionSafetyChecker , _SCREAMING_SNAKE_CASE: CLIPImageProcessor , ) -> int: """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=_SCREAMING_SNAKE_CASE , speech_processor=_SCREAMING_SNAKE_CASE , vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Union[str, int]] = "auto" ) -> int: """simple docstring""" if slice_size == "auto": UpperCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] ) -> Any: """simple docstring""" self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int=16000 , _SCREAMING_SNAKE_CASE: int = 512 , _SCREAMING_SNAKE_CASE: int = 512 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: float = 7.5 , _SCREAMING_SNAKE_CASE: Optional[Union[str, List[str]]] = None , _SCREAMING_SNAKE_CASE: Optional[int] = 1 , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: Optional[torch.Generator] = None , _SCREAMING_SNAKE_CASE: Optional[torch.FloatTensor] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _SCREAMING_SNAKE_CASE: int = 1 , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.speech_processor.feature_extractor( _SCREAMING_SNAKE_CASE , return_tensors="pt" , sampling_rate=_SCREAMING_SNAKE_CASE ).input_features.to(self.device ) UpperCamelCase_ = self.speech_model.generate(_SCREAMING_SNAKE_CASE , max_length=480000 ) UpperCamelCase_ = self.speech_processor.tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE , normalize=_SCREAMING_SNAKE_CASE )[ 0 ] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_SCREAMING_SNAKE_CASE )}.''' ) # get prompt text embeddings UpperCamelCase_ = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) UpperCamelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = text_embeddings.shape UpperCamelCase_ = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCamelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase_ = 42 if negative_prompt is None: UpperCamelCase_ = [""] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=''' f''' {type(_SCREAMING_SNAKE_CASE )}.''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' " the batch size of `prompt`." ) else: UpperCamelCase_ = negative_prompt UpperCamelCase_ = text_input_ids.shape[-1] UpperCamelCase_ = self.tokenizer( _SCREAMING_SNAKE_CASE , padding="max_length" , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" , ) UpperCamelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase_ = uncond_embeddings.shape[1] UpperCamelCase_ = uncond_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCamelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCamelCase_ = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device="cpu" , dtype=_SCREAMING_SNAKE_CASE ).to( self.device ) else: UpperCamelCase_ = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCamelCase_ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCamelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ = {} if accepts_eta: UpperCamelCase_ = eta for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE ).sample # perform guidance if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = 1 / 0.1_82_15 * latents UpperCamelCase_ = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE )
328
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
1
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
import os from datetime import datetime as dt from github import Github _UpperCAmelCase = [ 'good first issue', 'feature request', 'wip', ] def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = Github(os.environ["GITHUB_TOKEN"] ) UpperCamelCase_ = g.get_repo("huggingface/accelerate" ) UpperCamelCase_ = repo.get_issues(state="open" ) for issue in open_issues: UpperCamelCase_ = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCamelCase_ : i.created_at , reverse=UpperCamelCase_ ) UpperCamelCase_ = comments[0] if len(UpperCamelCase_ ) > 0 else None UpperCamelCase_ = dt.utcnow() UpperCamelCase_ = (current_time - issue.updated_at).days UpperCamelCase_ = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
328
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCamelCase : _UpperCamelCase : int _UpperCamelCase : int class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: int ) -> Dict: """simple docstring""" UpperCamelCase_ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] UpperCamelCase_ = size def __getitem__( self: Dict , _SCREAMING_SNAKE_CASE: int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def lowercase ( self: Tuple ) -> str: """simple docstring""" return self._size def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> int | None: """simple docstring""" UpperCamelCase_ = deque([start_vertex] ) UpperCamelCase_ = [None] * self.size UpperCamelCase_ = 0 while queue: UpperCamelCase_ = queue.popleft() UpperCamelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCamelCase_ = current_distance + edge.weight UpperCamelCase_ = distances[edge.destination_vertex] if ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and new_distance >= dest_vertex_distance ): continue UpperCamelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
from copy import deepcopy class _UpperCamelCase : def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: list[int] | None = None , _SCREAMING_SNAKE_CASE: int | None = None ) -> None: """simple docstring""" if arr is None and size is not None: UpperCamelCase_ = size UpperCamelCase_ = [0] * size elif arr is not None: self.init(_SCREAMING_SNAKE_CASE ) else: raise ValueError("Either arr or size must be specified" ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: list[int] ) -> None: """simple docstring""" UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = deepcopy(_SCREAMING_SNAKE_CASE ) for i in range(1 , self.size ): UpperCamelCase_ = self.next_(_SCREAMING_SNAKE_CASE ) if j < self.size: self.tree[j] += self.tree[i] def lowercase ( self: Any ) -> list[int]: """simple docstring""" UpperCamelCase_ = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): UpperCamelCase_ = self.next_(_SCREAMING_SNAKE_CASE ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" return index + (index & (-index)) @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" return index - (index & (-index)) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> None: """simple docstring""" if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value UpperCamelCase_ = self.next_(_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> None: """simple docstring""" self.add(_SCREAMING_SNAKE_CASE , value - self.get(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" if right == 0: return 0 UpperCamelCase_ = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] UpperCamelCase_ = self.prev(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" return self.prefix(_SCREAMING_SNAKE_CASE ) - self.prefix(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" return self.query(_SCREAMING_SNAKE_CASE , index + 1 ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" value -= self.tree[0] if value < 0: return -1 UpperCamelCase_ = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 UpperCamelCase_ = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file UpperCamelCase_ = TapasConfig.from_json_file(UpperCamelCase_ ) # set absolute/relative position embeddings parameter UpperCamelCase_ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": UpperCamelCase_ = TapasForQuestionAnswering(config=UpperCamelCase_ ) elif task == "WTQ": # run_task_main.py hparams UpperCamelCase_ = 4 UpperCamelCase_ = True # hparam_utils.py hparams UpperCamelCase_ = 0.66_46_94 UpperCamelCase_ = 0.20_79_51 UpperCamelCase_ = 0.12_11_94 UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = False UpperCamelCase_ = 0.0_35_25_13 UpperCamelCase_ = TapasForQuestionAnswering(config=UpperCamelCase_ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams UpperCamelCase_ = 4 UpperCamelCase_ = False # hparam_utils.py hparams UpperCamelCase_ = 36.45_19 UpperCamelCase_ = 0.90_34_21 UpperCamelCase_ = 2_22.0_88 UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = 0.76_31_41 UpperCamelCase_ = TapasForQuestionAnswering(config=UpperCamelCase_ ) elif task == "TABFACT": UpperCamelCase_ = TapasForSequenceClassification(config=UpperCamelCase_ ) elif task == "MLM": UpperCamelCase_ = TapasForMaskedLM(config=UpperCamelCase_ ) elif task == "INTERMEDIATE_PRETRAINING": UpperCamelCase_ = TapasModel(config=UpperCamelCase_ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCamelCase_ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) UpperCamelCase_ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(UpperCamelCase_ ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase : def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]=13 , _SCREAMING_SNAKE_CASE: Optional[int]=30 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=3 , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: Optional[int]=32 , _SCREAMING_SNAKE_CASE: int=5 , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=37 , _SCREAMING_SNAKE_CASE: Dict="gelu" , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Any=10 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: int=3 , _SCREAMING_SNAKE_CASE: str=0.6 , _SCREAMING_SNAKE_CASE: Optional[Any]=None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = mask_ratio UpperCamelCase_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ = (image_size // patch_size) ** 2 UpperCamelCase_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase ( self: str ) -> Tuple: """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ = 1 UpperCamelCase_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[int] = False def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = ViTMAEModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" pass def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def lowercase ( self: int ) -> Tuple: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> str: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = outputs[0].cpu().numpy() UpperCamelCase_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans UpperCamelCase_ = after_outputs[0].cpu().numpy() UpperCamelCase_ = 0 UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowercase ( self: int ) -> Dict: """simple docstring""" pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowercase ( self: str ) -> List[str]: """simple docstring""" pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowercase ( self: Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" pass @slow def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase ( self: str ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowercase ( self: List[Any] ) -> str: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ = ViTMAEConfig() UpperCamelCase_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits UpperCamelCase_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) )
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = CpmAntTokenizer _UpperCamelCase : List[Any] = False def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" super().setUp() UpperCamelCase_ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) UpperCamelCase_ = "今天天气真好!" UpperCamelCase_ = ["今天", "天气", "真", "好", "!"] UpperCamelCase_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "今天天气真好!" UpperCamelCase_ = [tokenizer.bos_token] + tokens UpperCamelCase_ = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
328
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
1