code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : int = '''mctct''' def __init__( self: int , _SCREAMING_SNAKE_CASE: Optional[Any]=8065 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: Optional[int]=36 , _SCREAMING_SNAKE_CASE: Optional[int]=6144 , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: str=384 , _SCREAMING_SNAKE_CASE: Union[str, Any]=920 , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Dict=0.3 , _SCREAMING_SNAKE_CASE: str="relu" , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: Any=0.3 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.3 , _SCREAMING_SNAKE_CASE: List[str]=1 , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: List[str]=1 , _SCREAMING_SNAKE_CASE: Tuple=0.3 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Optional[int]=(7,) , _SCREAMING_SNAKE_CASE: List[str]=(3,) , _SCREAMING_SNAKE_CASE: Tuple=80 , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Any="sum" , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = intermediate_size UpperCamelCase_ = num_attention_heads UpperCamelCase_ = attention_head_dim UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = layerdrop UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_range UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = eos_token_id UpperCamelCase_ = conv_glu_dim UpperCamelCase_ = conv_dropout UpperCamelCase_ = num_conv_layers UpperCamelCase_ = input_feat_per_channel UpperCamelCase_ = input_channels UpperCamelCase_ = conv_channels UpperCamelCase_ = ctc_loss_reduction UpperCamelCase_ = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase_ = list(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = list(_SCREAMING_SNAKE_CASE ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
328
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
1
from __future__ import annotations from collections import deque class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: list[str] ) -> Any: """simple docstring""" UpperCamelCase_ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(_SCREAMING_SNAKE_CASE ) self.set_fail_transitions() def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> None: """simple docstring""" UpperCamelCase_ = 0 for character in keyword: UpperCamelCase_ = self.find_next_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCamelCase_ = len(self.adlist ) - 1 else: UpperCamelCase_ = next_state self.adlist[current_state]["output"].append(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> None: """simple docstring""" UpperCamelCase_ = deque() for node in self.adlist[0]["next_states"]: q.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = 0 while q: UpperCamelCase_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.adlist[r]["fail_state"] while ( self.find_next_state(_SCREAMING_SNAKE_CASE , self.adlist[child]["value"] ) is None and state != 0 ): UpperCamelCase_ = self.adlist[state]["fail_state"] UpperCamelCase_ = self.find_next_state( _SCREAMING_SNAKE_CASE , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCamelCase_ = 0 UpperCamelCase_ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> dict[str, list[int]]: """simple docstring""" UpperCamelCase_ = {} # returns a dict with keywords and list of its occurrences UpperCamelCase_ = 0 for i in range(len(_SCREAMING_SNAKE_CASE ) ): while ( self.find_next_state(_SCREAMING_SNAKE_CASE , string[i] ) is None and current_state != 0 ): UpperCamelCase_ = self.adlist[current_state]["fail_state"] UpperCamelCase_ = self.find_next_state(_SCREAMING_SNAKE_CASE , string[i] ) if next_state is None: UpperCamelCase_ = 0 else: UpperCamelCase_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCamelCase_ = [] result[key].append(i - len(_SCREAMING_SNAKE_CASE ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
_UpperCAmelCase = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _UpperCAmelCase = [None] * 1_0_0_0_0_0_0_0 _UpperCAmelCase = True _UpperCAmelCase = False def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCamelCase_ = chain(next_number(UpperCamelCase_ ) ) UpperCamelCase_ = number_chain while number < 10000000: UpperCamelCase_ = number_chain number *= 10 return number_chain def lowerCAmelCase_ ( UpperCamelCase_ = 10000000 ) -> int: for i in range(1 , UpperCamelCase_ ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() print(f'''{solution() = }''')
328
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = filter(lambda UpperCamelCase_ : p.requires_grad , model.parameters() ) UpperCamelCase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _UpperCAmelCase = logging.getLogger(__name__) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: if metric == "rouge2": UpperCamelCase_ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCamelCase_ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCamelCase_ = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) UpperCamelCase_ = ModelCheckpoint( dirpath=UpperCamelCase_ , filename=UpperCamelCase_ , monitor=F'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=UpperCamelCase_ , verbose=UpperCamelCase_ , ) class _UpperCamelCase ( pl.Callback ): def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE ) @rank_zero_only def lowercase ( self: int , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str=True ) -> None: """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCamelCase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCamelCase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCamelCase_ = od / "test_results.txt" UpperCamelCase_ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCamelCase_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "a+" ) as writer: for key in sorted(_SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase_ = metrics[key] if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCamelCase_ = val.item() UpperCamelCase_ = f'''{key}: {val:.6f}\n''' writer.write(_SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: UpperCamelCase_ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_SCREAMING_SNAKE_CASE ) @rank_zero_only def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Any: """simple docstring""" try: UpperCamelCase_ = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase_ = pl_module.model.num_parameters() UpperCamelCase_ = count_trainable_parameters(_SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule ) -> Tuple: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "test" ) @rank_zero_only def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _UpperCAmelCase = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
328
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json', 'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json', 'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json', 'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''mobilenet_v2''' def __init__( self: Dict , _SCREAMING_SNAKE_CASE: Optional[int]=3 , _SCREAMING_SNAKE_CASE: Tuple=224 , _SCREAMING_SNAKE_CASE: List[str]=1.0 , _SCREAMING_SNAKE_CASE: Optional[int]=8 , _SCREAMING_SNAKE_CASE: Dict=8 , _SCREAMING_SNAKE_CASE: Optional[Any]=6 , _SCREAMING_SNAKE_CASE: Tuple=32 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str="relu6" , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Optional[int]=0.8 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.02 , _SCREAMING_SNAKE_CASE: Tuple=0.0_01 , _SCREAMING_SNAKE_CASE: int=255 , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = depth_multiplier UpperCamelCase_ = depth_divisible_by UpperCamelCase_ = min_depth UpperCamelCase_ = expand_ratio UpperCamelCase_ = output_stride UpperCamelCase_ = first_layer_is_expansion UpperCamelCase_ = finegrained_output UpperCamelCase_ = hidden_act UpperCamelCase_ = tf_padding UpperCamelCase_ = classifier_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = semantic_loss_ignore_index class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Any = version.parse('''1.11''' ) @property def lowercase ( self: Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def lowercase ( self: Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def lowercase ( self: Optional[int] ) -> float: """simple docstring""" return 1e-4
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: require_version(deps[pkg] , UpperCamelCase_ )
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCAmelCase = data_utils.TransfoXLTokenizer _UpperCAmelCase = data_utils.TransfoXLCorpus _UpperCAmelCase = data_utils _UpperCAmelCase = data_utils def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCamelCase_ , "rb" ) as fp: UpperCamelCase_ = pickle.load(UpperCamelCase_ , encoding="latin1" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_ = corpus.vocab.__dict__ torch.save(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = corpus.__dict__ corpus_dict_no_vocab.pop("vocab" , UpperCamelCase_ ) UpperCamelCase_ = pytorch_dump_folder_path + "/" + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_ = os.path.abspath(UpperCamelCase_ ) UpperCamelCase_ = os.path.abspath(UpperCamelCase_ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_ = TransfoXLConfig() else: UpperCamelCase_ = TransfoXLConfig.from_json_file(UpperCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_ = TransfoXLLMHeadModel(UpperCamelCase_ ) UpperCamelCase_ = load_tf_weights_in_transfo_xl(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save pytorch-model UpperCamelCase_ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCamelCase_ )}''' ) torch.save(model.state_dict() , UpperCamelCase_ ) print(F'''Save configuration file to {os.path.abspath(UpperCamelCase_ )}''' ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCAmelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
import os import pytest from attr import dataclass _UpperCAmelCase = 'us-east-1' # defaults region @dataclass class _UpperCamelCase : _UpperCamelCase : str _UpperCamelCase : Any = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _UpperCamelCase : List[str] = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 1_6, '''per_device_eval_batch_size''': 1_6, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_0_0, '''save_steps''': 5_5_0_0, } _UpperCamelCase : Tuple = {**hyperparameters, '''max_steps''': 1_0_0_0} @property def lowercase ( self: Tuple ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def lowercase ( self: int ) -> str: """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowercase ( self: Dict ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: UpperCamelCase_ = SageMakerTestEnvironment(framework=request.cls.framework )
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
from collections import namedtuple import requests from lxml import html # type: ignore _UpperCAmelCase = namedtuple('covid_data', 'cases deaths recovered') def lowerCAmelCase_ ( UpperCamelCase_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: UpperCamelCase_ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(UpperCamelCase_ ).content ).xpath(UpperCamelCase_ ) ) _UpperCAmelCase = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
328
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = ['model.decoder.embed_positions.weights'] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Any: if "emb" in name: UpperCamelCase_ = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCamelCase_ = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCamelCase_ = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCamelCase_ = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCamelCase_ = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCamelCase_ = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCamelCase_ = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCamelCase_ = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCamelCase_ = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCamelCase_ = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCamelCase_ = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple[Dict, Dict]: UpperCamelCase_ = list(state_dict.keys() ) UpperCamelCase_ = {} for key in keys: UpperCamelCase_ = state_dict.pop(UpperCamelCase_ ) UpperCamelCase_ = rename_keys(UpperCamelCase_ ) if "in_proj_weight" in key: # split fused qkv proj UpperCamelCase_ = val[:hidden_size, :] UpperCamelCase_ = val[hidden_size : 2 * hidden_size, :] UpperCamelCase_ = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCamelCase_ = val else: UpperCamelCase_ = val return state_dict, enc_dec_proj_state_dict def lowerCAmelCase_ ( UpperCamelCase_ ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values UpperCamelCase_ = 1024 UpperCamelCase_ = 24 UpperCamelCase_ = 16 elif checkpoint == "medium": UpperCamelCase_ = 1536 UpperCamelCase_ = 48 UpperCamelCase_ = 24 elif checkpoint == "large": UpperCamelCase_ = 2048 UpperCamelCase_ = 48 UpperCamelCase_ = 32 else: raise ValueError(F'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' ) UpperCamelCase_ = MusicgenDecoderConfig( hidden_size=UpperCamelCase_ , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase_ , num_attention_heads=UpperCamelCase_ , ) return config @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_="cpu" ) -> str: UpperCamelCase_ = MusicGen.get_pretrained(UpperCamelCase_ , device=UpperCamelCase_ ) UpperCamelCase_ = decoder_config_from_checkpoint(UpperCamelCase_ ) UpperCamelCase_ = fairseq_model.lm.state_dict() UpperCamelCase_ , UpperCamelCase_ = rename_state_dict( UpperCamelCase_ , hidden_size=decoder_config.hidden_size ) UpperCamelCase_ = TaEncoderModel.from_pretrained("t5-base" ) UpperCamelCase_ = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCamelCase_ = MusicgenForCausalLM(UpperCamelCase_ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCamelCase_ , UpperCamelCase_ = decoder.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ValueError(F'''Missing key(s) in state_dict: {missing_keys}''' ) if len(UpperCamelCase_ ) > 0: raise ValueError(F'''Unexpected key(s) in state_dict: {unexpected_keys}''' ) # init the composite model UpperCamelCase_ = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase_ , audio_encoder=UpperCamelCase_ , decoder=UpperCamelCase_ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(UpperCamelCase_ ) # check we can do a forward pass UpperCamelCase_ = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCamelCase_ = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCamelCase_ = model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCamelCase_ = AutoTokenizer.from_pretrained("t5-base" ) UpperCamelCase_ = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCamelCase_ = MusicgenProcessor(feature_extractor=UpperCamelCase_ , tokenizer=UpperCamelCase_ ) # set the appropriate bos/pad token ids UpperCamelCase_ = 2048 UpperCamelCase_ = 2048 # set other default generation config params UpperCamelCase_ = int(30 * audio_encoder.config.frame_rate ) UpperCamelCase_ = True UpperCamelCase_ = 3.0 if pytorch_dump_folder is not None: Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) logger.info(F'''Saving model {checkpoint} to {pytorch_dump_folder}''' ) model.save_pretrained(UpperCamelCase_ ) processor.save_pretrained(UpperCamelCase_ ) if repo_id: logger.info(F'''Pushing model {checkpoint} to {repo_id}''' ) model.push_to_hub(UpperCamelCase_ ) processor.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint', default='small', type=str, help='Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.', ) parser.add_argument( '--pytorch_dump_folder', required=True, default=None, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) parser.add_argument( '--device', default='cpu', type=str, help='Torch device to run the conversion, either cpu or cuda.' ) _UpperCAmelCase = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
328
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
1
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params _UpperCAmelCase = getLogger(__name__) _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 8 , UpperCamelCase_ = DEFAULT_DEVICE , UpperCamelCase_=False , UpperCamelCase_="summarization" , UpperCamelCase_=None , **UpperCamelCase_ , ) -> Dict: UpperCamelCase_ = Path(UpperCamelCase_ ).open("w" , encoding="utf-8" ) UpperCamelCase_ = str(UpperCamelCase_ ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained(UpperCamelCase_ ).to(UpperCamelCase_ ) if fpaa: UpperCamelCase_ = model.half() UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. UpperCamelCase_ = time.time() # update config with task specific params use_task_specific_params(UpperCamelCase_ , UpperCamelCase_ ) if prefix is None: UpperCamelCase_ = prefix or getattr(model.config , "prefix" , "" ) or "" for examples_chunk in tqdm(list(chunks(UpperCamelCase_ , UpperCamelCase_ ) ) ): UpperCamelCase_ = [prefix + text for text in examples_chunk] UpperCamelCase_ = tokenizer(UpperCamelCase_ , return_tensors="pt" , truncation=UpperCamelCase_ , padding="longest" ).to(UpperCamelCase_ ) UpperCamelCase_ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **UpperCamelCase_ , ) UpperCamelCase_ = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) for hypothesis in dec: fout.write(hypothesis + "\n" ) fout.flush() fout.close() UpperCamelCase_ = int(time.time() - start_time ) # seconds UpperCamelCase_ = len(UpperCamelCase_ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def lowerCAmelCase_ ( ) -> List[Any]: return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" ) def lowerCAmelCase_ ( UpperCamelCase_=True ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("model_name" , type=UpperCamelCase_ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("input_path" , type=UpperCamelCase_ , help="like cnn_dm/test.source" ) parser.add_argument("save_path" , type=UpperCamelCase_ , help="where to save summaries" ) parser.add_argument("--reference_path" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="like cnn_dm/test.target" ) parser.add_argument("--score_path" , type=UpperCamelCase_ , required=UpperCamelCase_ , default="metrics.json" , help="where to save metrics" ) parser.add_argument("--device" , type=UpperCamelCase_ , required=UpperCamelCase_ , default=UpperCamelCase_ , help="cuda, cuda:1, cpu etc." ) parser.add_argument( "--prefix" , type=UpperCamelCase_ , required=UpperCamelCase_ , default=UpperCamelCase_ , help="will be added to the begininng of src examples" ) parser.add_argument("--task" , type=UpperCamelCase_ , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=UpperCamelCase_ , default=8 , required=UpperCamelCase_ , help="batch size" ) parser.add_argument( "--n_obs" , type=UpperCamelCase_ , default=-1 , required=UpperCamelCase_ , help="How many observations. Defaults to all." ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--dump-args" , action="store_true" , help="print the custom hparams with the results" ) parser.add_argument( "--info" , nargs="?" , type=UpperCamelCase_ , const=datetime_now() , help=( "use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g." " lang=en-ru. If no value is passed, the current datetime string will be used." ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate UpperCamelCase_ , UpperCamelCase_ = parser.parse_known_args() UpperCamelCase_ = parse_numeric_n_bool_cl_kwargs(UpperCamelCase_ ) if parsed_args and verbose: print(F'''parsed the following generate kwargs: {parsed_args}''' ) UpperCamelCase_ = [" " + x.rstrip() if "t5" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: UpperCamelCase_ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=UpperCamelCase_ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(F'''score_path {args.score_path} will be overwritten unless you type ctrl-c.''' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError("Can't mix --fp16 and --device cpu" ) UpperCamelCase_ = generate_summaries_or_translations( UpperCamelCase_ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **UpperCamelCase_ , ) if args.reference_path is None: return {} # Compute scores UpperCamelCase_ = calculate_bleu if "translation" in args.task else calculate_rouge UpperCamelCase_ = [x.rstrip() for x in open(args.save_path ).readlines()] UpperCamelCase_ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(UpperCamelCase_ )] UpperCamelCase_ = score_fn(UpperCamelCase_ , UpperCamelCase_ ) scores.update(UpperCamelCase_ ) if args.dump_args: scores.update(UpperCamelCase_ ) if args.info: UpperCamelCase_ = args.info if verbose: print(UpperCamelCase_ ) if args.score_path is not None: json.dump(UpperCamelCase_ , open(args.score_path , "w" ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
328
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
1
from abc import ABC, abstractmethod from typing import List, Optional class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: int ) -> Optional[Any]: """simple docstring""" self.test() def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = 0 UpperCamelCase_ = False while not completed: if counter == 1: self.reset() UpperCamelCase_ = self.advance() if not self.does_advance(_SCREAMING_SNAKE_CASE ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.update(_SCREAMING_SNAKE_CASE ) counter += 1 if counter > 10000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowercase ( self: Tuple ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: int ) -> List[str]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Tuple=False ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[int] ) -> Union[str, Any]: """simple docstring""" super(_SCREAMING_SNAKE_CASE , self ).__init__() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase_ = token_ids UpperCamelCase_ = len(self.token_ids ) UpperCamelCase_ = -1 # the index of the currently fulfilled step UpperCamelCase_ = False def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False if self.does_advance(_SCREAMING_SNAKE_CASE ): self.fulfilled_idx += 1 UpperCamelCase_ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase_ = True UpperCamelCase_ = completed else: # failed to make progress. UpperCamelCase_ = True self.reset() return stepped, completed, reset def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = False UpperCamelCase_ = 0 def lowercase ( self: str ) -> List[str]: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int=False ) -> List[Any]: """simple docstring""" UpperCamelCase_ = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase_ = self.seqlen UpperCamelCase_ = self.fulfilled_idx UpperCamelCase_ = self.completed return new_constraint class _UpperCamelCase : def __init__( self: int , _SCREAMING_SNAKE_CASE: List[List[int]] , _SCREAMING_SNAKE_CASE: Tuple=True ) -> List[Any]: """simple docstring""" UpperCamelCase_ = max([len(_SCREAMING_SNAKE_CASE ) for one in nested_token_ids] ) UpperCamelCase_ = {} for token_ids in nested_token_ids: UpperCamelCase_ = root for tidx, token_id in enumerate(_SCREAMING_SNAKE_CASE ): if token_id not in level: UpperCamelCase_ = {} UpperCamelCase_ = level[token_id] if no_subsets and self.has_subsets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f''' {nested_token_ids}.''' ) UpperCamelCase_ = root def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.trie for current_token in current_seq: UpperCamelCase_ = start[current_token] UpperCamelCase_ = list(start.keys() ) return next_tokens def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ = self.next_tokens(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) == 0 def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = list(root.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 1 else: return sum([self.count_leaves(_SCREAMING_SNAKE_CASE ) for nn in next_nodes] ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.count_leaves(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) != leaf_count class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[List[int]] ) -> Dict: """simple docstring""" super(_SCREAMING_SNAKE_CASE , self ).__init__() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase_ = DisjunctiveTrie(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nested_token_ids UpperCamelCase_ = self.trie.max_height UpperCamelCase_ = [] UpperCamelCase_ = False def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.trie.next_tokens(self.current_seq ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None else: return token_list def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase ( self: int , _SCREAMING_SNAKE_CASE: int ) -> Optional[int]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False if self.does_advance(_SCREAMING_SNAKE_CASE ): self.current_seq.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = True else: UpperCamelCase_ = True self.reset() UpperCamelCase_ = self.trie.reached_leaf(self.current_seq ) UpperCamelCase_ = completed return stepped, completed, reset def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = False UpperCamelCase_ = [] def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]=False ) -> List[str]: """simple docstring""" UpperCamelCase_ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase_ = self.seqlen UpperCamelCase_ = self.current_seq UpperCamelCase_ = self.completed return new_constraint class _UpperCamelCase : def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Constraint] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = constraints # max # of steps required to fulfill a given constraint UpperCamelCase_ = max([c.seqlen for c in constraints] ) UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = False self.init_state() def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = None UpperCamelCase_ = [constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) for constraint in self.constraints] def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase ( self: List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase_ = constraint.advance() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.append(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.extend(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = self.inprogress_constraint.advance() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.append(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.extend(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None else: return token_list def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[List[int]] ) -> Union[str, Any]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase_ , UpperCamelCase_ = self.add(_SCREAMING_SNAKE_CASE ) # the entire list of constraints are fulfilled if self.completed: break def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: int ) -> Optional[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase_ , UpperCamelCase_ = False, False if self.completed: UpperCamelCase_ = True UpperCamelCase_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.inprogress_constraint.update(_SCREAMING_SNAKE_CASE ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase_ = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = pending_constraint.update(_SCREAMING_SNAKE_CASE ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = None if not complete and stepped: UpperCamelCase_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Tuple=True ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase_ = [ constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase_ = self.inprogress_constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( unittest.TestCase ): def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]=7 , _SCREAMING_SNAKE_CASE: str=3 , _SCREAMING_SNAKE_CASE: Optional[int]=18 , _SCREAMING_SNAKE_CASE: Optional[int]=30 , _SCREAMING_SNAKE_CASE: Dict=400 , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: Tuple=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE: Optional[Any]=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = size if size is not None else {"shortest_edge": 18} UpperCamelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : str = LevitImageProcessor if is_vision_available() else None def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = LevitImageProcessingTester(self ) @property def lowercase ( self: List[str] ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Dict ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_center_crop" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "size" ) ) def lowercase ( self: Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" pass def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
328
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _UpperCAmelCase = { 'n_samples': 6_4, 'horizon': 3_2, 'num_inference_steps': 2_0, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": _UpperCAmelCase = 'hopper-medium-v2' _UpperCAmelCase = gym.make(env_name) _UpperCAmelCase = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) _UpperCAmelCase = env.reset() _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 1_0_0_0 _UpperCAmelCase = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _UpperCAmelCase = pipeline(obs, planning_horizon=3_2) # execute action in environment _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = env.step(denorm_actions) _UpperCAmelCase = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _UpperCAmelCase = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
328
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
1
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase_ ( UpperCamelCase_ = 8 ) -> str: UpperCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(UpperCamelCase_ ) UpperCamelCase_ = i // 3 UpperCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCamelCase_ = ( chars_incl + random(UpperCamelCase_ , quotient + remainder ) + random(UpperCamelCase_ , UpperCamelCase_ ) + random(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = list(UpperCamelCase_ ) shuffle(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: return "".join(secrets.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: pass # Put your code here... def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: pass # Put your code here... def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Any: pass # Put your code here... def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 8 ) -> bool: if len(UpperCamelCase_ ) < min_length: # Your Password must be at least 8 characters long return False UpperCamelCase_ = any(char in ascii_uppercase for char in password ) UpperCamelCase_ = any(char in ascii_lowercase for char in password ) UpperCamelCase_ = any(char in digits for char in password ) UpperCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = int(input("Please indicate the max length of your password: " ).strip() ) UpperCamelCase_ = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(UpperCamelCase_ ) ) print( "Alternative Password generated:" , alternative_password_generator(UpperCamelCase_ , UpperCamelCase_ ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
328
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
1
from __future__ import annotations _UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> tuple[list[list[int]], list[list[int]]]: UpperCamelCase_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase_ ) ) ] # the reference grid UpperCamelCase_ = 1 UpperCamelCase_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase_ ) ) ] # the action grid UpperCamelCase_ = init[0] UpperCamelCase_ = init[1] UpperCamelCase_ = 0 UpperCamelCase_ = g + heuristic[x][y] # cost from starting cell to destination cell UpperCamelCase_ = [[f, g, x, y]] UpperCamelCase_ = False # flag that is set when search is complete UpperCamelCase_ = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase_ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCamelCase_ = cell.pop() UpperCamelCase_ = next_cell[2] UpperCamelCase_ = next_cell[3] UpperCamelCase_ = next_cell[1] if x == goal[0] and y == goal[1]: UpperCamelCase_ = True else: for i in range(len(UpperCamelCase_ ) ): # to try out different valid actions UpperCamelCase_ = x + DIRECTIONS[i][0] UpperCamelCase_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCamelCase_ = g + cost UpperCamelCase_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCamelCase_ = 1 UpperCamelCase_ = i UpperCamelCase_ = [] UpperCamelCase_ = goal[0] UpperCamelCase_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCamelCase_ = x - DIRECTIONS[action[x][y]][0] UpperCamelCase_ = y - DIRECTIONS[action[x][y]][1] UpperCamelCase_ = xa UpperCamelCase_ = ya invpath.append([x, y] ) UpperCamelCase_ = [] for i in range(len(UpperCamelCase_ ) ): path.append(invpath[len(UpperCamelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": _UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] _UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] _UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal _UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _UpperCAmelCase = 9_9 _UpperCAmelCase , _UpperCAmelCase = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
328
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
1
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
1
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''mask2former''' _UpperCamelCase : str = ['''swin'''] _UpperCamelCase : List[Any] = {'''hidden_size''': '''hidden_dim'''} def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[Dict] = None , _SCREAMING_SNAKE_CASE: int = 256 , _SCREAMING_SNAKE_CASE: int = 256 , _SCREAMING_SNAKE_CASE: int = 256 , _SCREAMING_SNAKE_CASE: int = 1024 , _SCREAMING_SNAKE_CASE: str = "relu" , _SCREAMING_SNAKE_CASE: int = 6 , _SCREAMING_SNAKE_CASE: int = 10 , _SCREAMING_SNAKE_CASE: int = 8 , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 255 , _SCREAMING_SNAKE_CASE: int = 100 , _SCREAMING_SNAKE_CASE: float = 0.1 , _SCREAMING_SNAKE_CASE: float = 2.0 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: float = 5.0 , _SCREAMING_SNAKE_CASE: int = 12544 , _SCREAMING_SNAKE_CASE: float = 3.0 , _SCREAMING_SNAKE_CASE: float = 0.75 , _SCREAMING_SNAKE_CASE: float = 0.02 , _SCREAMING_SNAKE_CASE: float = 1.0 , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: List[int] = [4, 8, 16, 32] , _SCREAMING_SNAKE_CASE: bool = None , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> Dict: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) UpperCamelCase_ = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = backbone_config.pop("model_type" ) UpperCamelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_ = config_class.from_dict(_SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) UpperCamelCase_ = backbone_config UpperCamelCase_ = feature_size UpperCamelCase_ = mask_feature_size UpperCamelCase_ = hidden_dim UpperCamelCase_ = encoder_feedforward_dim UpperCamelCase_ = activation_function UpperCamelCase_ = encoder_layers UpperCamelCase_ = decoder_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = dim_feedforward UpperCamelCase_ = pre_norm UpperCamelCase_ = enforce_input_projection UpperCamelCase_ = common_stride UpperCamelCase_ = ignore_value UpperCamelCase_ = num_queries UpperCamelCase_ = no_object_weight UpperCamelCase_ = class_weight UpperCamelCase_ = mask_weight UpperCamelCase_ = dice_weight UpperCamelCase_ = train_num_points UpperCamelCase_ = oversample_ratio UpperCamelCase_ = importance_sample_ratio UpperCamelCase_ = init_std UpperCamelCase_ = init_xavier_std UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = feature_strides UpperCamelCase_ = output_auxiliary_logits UpperCamelCase_ = decoder_layers super().__init__(**_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: Union[str, Any] , _SCREAMING_SNAKE_CASE: PretrainedConfig , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" return cls( backbone_config=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def lowercase ( self: List[Any] ) -> Dict[str, any]: """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.backbone_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
328
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
1
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset _UpperCAmelCase = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) _UpperCAmelCase = dataset.iloc[:, 1:2].values _UpperCAmelCase = dataset.iloc[:, 2].values _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = train_test_split(X, y, test_size=0.2, random_state=0) _UpperCAmelCase = PolynomialFeatures(degree=4) _UpperCAmelCase = poly_reg.fit_transform(X) _UpperCAmelCase = LinearRegression() pol_reg.fit(X_poly, y) def lowerCAmelCase_ ( ) -> Dict: plt.scatter(UpperCamelCase_ , UpperCamelCase_ , color="red" ) plt.plot(UpperCamelCase_ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase_ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
328
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = tempfile.mkdtemp() UpperCamelCase_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCamelCase_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], "image_std": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase_ = os.path.join(self.tmpdirname , _SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: str , **_SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Optional[int] ) -> int: """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[Any] , **_SCREAMING_SNAKE_CASE: Any ) -> Union[str, Any]: """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_ = [Image.fromarray(np.moveaxis(_SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self: Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase_ = self.get_image_processor(do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple ) -> int: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="np" ) UpperCamelCase_ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "lower newer" UpperCamelCase_ = processor(text=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer(_SCREAMING_SNAKE_CASE , padding="max_length" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "lower newer" UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(_SCREAMING_SNAKE_CASE ): processor() def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_ = processor.batch_decode(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = AlignProcessor(tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "lower newer" UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = processor(text=_SCREAMING_SNAKE_CASE , images=_SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
328
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
1
from math import factorial def lowerCAmelCase_ ( UpperCamelCase_ = 100 ) -> int: return sum(int(UpperCamelCase_ ) for x in str(factorial(UpperCamelCase_ ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
328
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
1
def lowerCAmelCase_ ( UpperCamelCase_ = 100 ) -> int: UpperCamelCase_ = set() UpperCamelCase_ = 0 UpperCamelCase_ = n + 1 # maximum limit for a in range(2 , UpperCamelCase_ ): for b in range(2 , UpperCamelCase_ ): UpperCamelCase_ = a**b # calculates the current power collect_powers.add(UpperCamelCase_ ) # adds the result to the set return len(UpperCamelCase_ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
328
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = '''blenderbot-small''' _UpperCamelCase : Union[str, Any] = ['''past_key_values'''] _UpperCamelCase : Dict = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: int , _SCREAMING_SNAKE_CASE: Any=50265 , _SCREAMING_SNAKE_CASE: int=512 , _SCREAMING_SNAKE_CASE: Optional[int]=8 , _SCREAMING_SNAKE_CASE: Tuple=2048 , _SCREAMING_SNAKE_CASE: Any=16 , _SCREAMING_SNAKE_CASE: Any=8 , _SCREAMING_SNAKE_CASE: List[Any]=2048 , _SCREAMING_SNAKE_CASE: str=16 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: Any=0.0 , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: int="gelu" , _SCREAMING_SNAKE_CASE: Tuple=512 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: int=1 , _SCREAMING_SNAKE_CASE: Any=2 , _SCREAMING_SNAKE_CASE: Optional[Any]=2 , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> int: """simple docstring""" UpperCamelCase_ = vocab_size UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = d_model UpperCamelCase_ = encoder_ffn_dim UpperCamelCase_ = encoder_layers UpperCamelCase_ = encoder_attention_heads UpperCamelCase_ = decoder_ffn_dim UpperCamelCase_ = decoder_layers UpperCamelCase_ = decoder_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = activation_function UpperCamelCase_ = init_std UpperCamelCase_ = encoder_layerdrop UpperCamelCase_ = decoder_layerdrop UpperCamelCase_ = use_cache UpperCamelCase_ = encoder_layers UpperCamelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , forced_eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase_ = {0: "batch"} UpperCamelCase_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: UpperCamelCase_ = {0: "batch", 1: "decoder_sequence"} UpperCamelCase_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: UpperCamelCase_ , UpperCamelCase_ = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} else: UpperCamelCase_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowercase ( self: str ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = super().outputs else: UpperCamelCase_ = super(_SCREAMING_SNAKE_CASE , self ).outputs if self.use_past: UpperCamelCase_ , UpperCamelCase_ = self.num_layers for i in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} UpperCamelCase_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Generate decoder inputs UpperCamelCase_ = seq_length if not self.use_past else 1 UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {f'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase_ = dict(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase_ , UpperCamelCase_ = common_inputs["input_ids"].shape UpperCamelCase_ = common_inputs["decoder_input_ids"].shape[1] UpperCamelCase_ , UpperCamelCase_ = self.num_attention_heads UpperCamelCase_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_ = decoder_seq_length + 3 UpperCamelCase_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCamelCase_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase_ , UpperCamelCase_ = self.num_layers UpperCamelCase_ = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) - min_num_layers UpperCamelCase_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(_SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append( ( torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE ), ) ) # TODO: test this. UpperCamelCase_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): common_inputs["past_key_values"].append((torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) ) return common_inputs def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch UpperCamelCase_ , UpperCamelCase_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values UpperCamelCase_ = seqlen + 2 UpperCamelCase_ , UpperCamelCase_ = self.num_layers UpperCamelCase_ , UpperCamelCase_ = self.num_attention_heads UpperCamelCase_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase_ = common_inputs["attention_mask"].dtype UpperCamelCase_ = torch.cat( [common_inputs["attention_mask"], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) UpperCamelCase_ = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(_SCREAMING_SNAKE_CASE ) ] return common_inputs def lowercase ( self: int , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" UpperCamelCase_ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase_ = tokenizer.num_special_tokens_to_add(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = compute_effective_axis_dimension( _SCREAMING_SNAKE_CASE , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_SCREAMING_SNAKE_CASE ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase_ = dict(tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) ) return common_inputs def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: int = -1 , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) elif self.task == "causal-lm": UpperCamelCase_ = self._generate_dummy_inputs_for_causal_lm( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) return common_inputs def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int ) -> Any: """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase_ = super()._flatten_past_key_values_(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = super(_SCREAMING_SNAKE_CASE , self )._flatten_past_key_values_( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
328
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=UpperCamelCase_ , default=UpperCamelCase_ , required=UpperCamelCase_ , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=UpperCamelCase_ , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=UpperCamelCase_ , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=UpperCamelCase_ , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=UpperCamelCase_ , default=0 , help="cuda_id." , ) UpperCamelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if not len(UpperCamelCase_ ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) UpperCamelCase_ , UpperCamelCase_ = imgs[0].size UpperCamelCase_ = Image.new("RGB" , size=(cols * w, rows * h) ) UpperCamelCase_ , UpperCamelCase_ = grid.size for i, img in enumerate(UpperCamelCase_ ): grid.paste(UpperCamelCase_ , box=(i % cols * w, i // cols * h) ) return grid def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="robotic cat with wings" , UpperCamelCase_=7.5 , UpperCamelCase_=50 , UpperCamelCase_=1 , UpperCamelCase_=42 , ) -> Any: UpperCamelCase_ = torch.Generator(pipeline.device ).manual_seed(UpperCamelCase_ ) UpperCamelCase_ = pipeline( UpperCamelCase_ , guidance_scale=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ , generator=UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ , ).images UpperCamelCase_ = int(math.sqrt(UpperCamelCase_ ) ) UpperCamelCase_ = image_grid(UpperCamelCase_ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _UpperCAmelCase = parse_args() # Load models and create wrapper for stable diffusion _UpperCAmelCase = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') _UpperCAmelCase = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') _UpperCAmelCase = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') _UpperCAmelCase = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') _UpperCAmelCase = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _UpperCAmelCase = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): _UpperCAmelCase = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: _UpperCAmelCase = unet.to(torch.device('cuda', args.cuda_id)) _UpperCAmelCase = pipeline.to(unet.device) _UpperCAmelCase , _UpperCAmelCase = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) _UpperCAmelCase = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
328
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
1
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
1
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } _UpperCAmelCase = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } _UpperCAmelCase = '</w>' _UpperCAmelCase = '@@ ' def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = set() UpperCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_ = char return pairs # Speech2Text2 has no max input length _UpperCAmelCase = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask'''] def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any]="<s>" , _SCREAMING_SNAKE_CASE: int="<pad>" , _SCREAMING_SNAKE_CASE: Optional[int]="</s>" , _SCREAMING_SNAKE_CASE: Dict="<unk>" , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Optional[Any]=None , **_SCREAMING_SNAKE_CASE: str , ) -> str: """simple docstring""" super().__init__( unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = do_lower_case with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: UpperCamelCase_ = json.load(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) UpperCamelCase_ = None UpperCamelCase_ = None else: with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: UpperCamelCase_ = merges_handle.read().split("\n" )[:-1] UpperCamelCase_ = [tuple(merge.split()[:2] ) for merge in merges] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = {} @property def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" return len(self.decoder ) def lowercase ( self: str ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: UpperCamelCase_ = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_ , UpperCamelCase_ = bigram UpperCamelCase_ = [] UpperCamelCase_ = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: UpperCamelCase_ = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_ = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = " ".join(_SCREAMING_SNAKE_CASE ) if word == "\n " + BPE_TOKEN_MERGES: UpperCamelCase_ = "\n" + BPE_TOKEN_MERGES if word.endswith(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = word.replace(_SCREAMING_SNAKE_CASE , "" ) UpperCamelCase_ = word.replace(" " , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = word return word def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: UpperCamelCase_ = text.lower() UpperCamelCase_ = text.split() UpperCamelCase_ = [] for token in text: if token: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" UpperCamelCase_ = self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) return result def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> str: """simple docstring""" UpperCamelCase_ = " ".join(_SCREAMING_SNAKE_CASE ) # make sure @@ tokens are concatenated UpperCamelCase_ = "".join(string.split(_SCREAMING_SNAKE_CASE ) ) return string def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + "\n" ) UpperCamelCase_ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) UpperCamelCase_ = token_index writer.write(" ".join(_SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return (vocab_file, merges_file)
328
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
1
def lowerCAmelCase_ ( UpperCamelCase_ = 50 ) -> int: UpperCamelCase_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
328
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
1
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase : _UpperCamelCase : str _UpperCamelCase : str = None @staticmethod def lowercase ( ) -> Optional[int]: """simple docstring""" raise NotImplementedError def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Optional[int] ) -> Tuple: """simple docstring""" raise NotImplementedError def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> str: """simple docstring""" raise NotImplementedError def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def lowercase ( cls: Union[str, Any] ) -> int: """simple docstring""" return f'''`pip install {cls.pip_package or cls.name}`''' class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Any = '''optuna''' @staticmethod def lowercase ( ) -> str: """simple docstring""" return is_optuna_available() def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: int ) -> List[str]: """simple docstring""" return run_hp_search_optuna(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: int ) -> Optional[Any]: """simple docstring""" return default_hp_space_optuna(_SCREAMING_SNAKE_CASE ) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Tuple = '''ray''' _UpperCamelCase : Union[str, Any] = '''\'ray[tune]\'''' @staticmethod def lowercase ( ) -> Dict: """simple docstring""" return is_ray_available() def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return run_hp_search_ray(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Tuple: """simple docstring""" return default_hp_space_ray(_SCREAMING_SNAKE_CASE ) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : List[str] = '''sigopt''' @staticmethod def lowercase ( ) -> Dict: """simple docstring""" return is_sigopt_available() def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Optional[Any] ) -> int: """simple docstring""" return run_hp_search_sigopt(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Any ) -> Optional[int]: """simple docstring""" return default_hp_space_sigopt(_SCREAMING_SNAKE_CASE ) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = '''wandb''' @staticmethod def lowercase ( ) -> Union[str, Any]: """simple docstring""" return is_wandb_available() def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Any ) -> Dict: """simple docstring""" return run_hp_search_wandb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Any: """simple docstring""" return default_hp_space_wandb(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def lowerCAmelCase_ ( ) -> str: UpperCamelCase_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(UpperCamelCase_ ) > 0: UpperCamelCase_ = available_backends[0].name if len(UpperCamelCase_ ) > 1: logger.info( F'''{len(UpperCamelCase_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( F''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
328
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
1
import pytest _UpperCAmelCase = '__dummy_dataset1__' _UpperCAmelCase = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def lowerCAmelCase_ ( ) -> Union[str, Any]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowerCAmelCase_ ( ) -> Dict: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = dataset_loading_script_name UpperCamelCase_ = tmp_path / "datasets" / script_name script_dir.mkdir(parents=UpperCamelCase_ ) UpperCamelCase_ = script_dir / F'''{script_name}.py''' with open(UpperCamelCase_ , "w" ) as f: f.write(UpperCamelCase_ ) return str(UpperCamelCase_ )
328
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCamelCase : @staticmethod def lowercase ( *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: Tuple ) -> Tuple: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCamelCase ( unittest.TestCase ): _UpperCamelCase : Optional[int] = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = ObjectDetectionPipeline(model=__a , image_processor=__a ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) import datasets UpperCamelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) UpperCamelCase_ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] UpperCamelCase_ = object_detector(__a , threshold=0.0 ) self.assertEqual(len(__a ) , len(__a ) ) for outputs in batch_outputs: self.assertGreater(len(__a ) , 0 ) for detected_object in outputs: self.assertEqual( __a , { "score": ANY(__a ), "label": ANY(__a ), "box": {"xmin": ANY(__a ), "ymin": ANY(__a ), "xmax": ANY(__a ), "ymax": ANY(__a )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def lowercase ( self: Any ) -> List[str]: """simple docstring""" pass @require_torch def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = 'hf-internal-testing/tiny-detr-mobilenetsv3' UpperCamelCase_ = AutoModelForObjectDetection.from_pretrained(__a ) UpperCamelCase_ = AutoFeatureExtractor.from_pretrained(__a ) UpperCamelCase_ = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) UpperCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) UpperCamelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = 'facebook/detr-resnet-50' UpperCamelCase_ = AutoModelForObjectDetection.from_pretrained(__a ) UpperCamelCase_ = AutoFeatureExtractor.from_pretrained(__a ) UpperCamelCase_ = ObjectDetectionPipeline(model=__a , feature_extractor=__a ) UpperCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) UpperCamelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = 'facebook/detr-resnet-50' UpperCamelCase_ = pipeline("object-detection" , model=__a ) UpperCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) UpperCamelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ = 0.99_85 UpperCamelCase_ = 'facebook/detr-resnet-50' UpperCamelCase_ = pipeline("object-detection" , model=__a ) UpperCamelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=__a ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def lowercase ( self: List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = 'Narsil/layoutlmv3-finetuned-funsd' UpperCamelCase_ = 0.99_93 UpperCamelCase_ = pipeline("object-detection" , model=__a , threshold=__a ) UpperCamelCase_ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(__a , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=1 ) -> List[str]: if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=0 ) -> Union[str, Any]: UpperCamelCase_ = [] for old_item in old_list: UpperCamelCase_ = old_item.replace("in_layers.0" , "norm1" ) UpperCamelCase_ = new_item.replace("in_layers.2" , "conv1" ) UpperCamelCase_ = new_item.replace("out_layers.0" , "norm2" ) UpperCamelCase_ = new_item.replace("out_layers.3" , "conv2" ) UpperCamelCase_ = new_item.replace("emb_layers.1" , "time_emb_proj" ) UpperCamelCase_ = new_item.replace("skip_connection" , "conv_shortcut" ) UpperCamelCase_ = shave_segments(lowercase__ , n_shave_prefix_segments=lowercase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=0 ) -> Optional[Any]: UpperCamelCase_ = [] for old_item in old_list: UpperCamelCase_ = old_item UpperCamelCase_ = new_item.replace("norm.weight" , "group_norm.weight" ) UpperCamelCase_ = new_item.replace("norm.bias" , "group_norm.bias" ) UpperCamelCase_ = new_item.replace("proj_out.weight" , "proj_attn.weight" ) UpperCamelCase_ = new_item.replace("proj_out.bias" , "proj_attn.bias" ) UpperCamelCase_ = shave_segments(lowercase__ , n_shave_prefix_segments=lowercase__ ) mapping.append({"old": old_item, "new": new_item} ) return mapping def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[int]: assert isinstance(lowercase__ , lowercase__ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): UpperCamelCase_ = old_checkpoint[path] UpperCamelCase_ = old_tensor.shape[0] // 3 UpperCamelCase_ = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) UpperCamelCase_ = old_tensor.shape[0] // config["""num_head_channels"""] // 3 UpperCamelCase_ = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) UpperCamelCase_ = old_tensor.split(channels // num_heads , dim=1 ) UpperCamelCase_ = query.reshape(lowercase__ ) UpperCamelCase_ = key.reshape(lowercase__ ) UpperCamelCase_ = value.reshape(lowercase__ ) for path in paths: UpperCamelCase_ = path["""new"""] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here UpperCamelCase_ = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) UpperCamelCase_ = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) UpperCamelCase_ = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: UpperCamelCase_ = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: UpperCamelCase_ = old_checkpoint[path["""old"""]][:, :, 0] else: UpperCamelCase_ = old_checkpoint[path["""old"""]] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = {} UpperCamelCase_ = checkpoint["""time_embed.0.weight"""] UpperCamelCase_ = checkpoint["""time_embed.0.bias"""] UpperCamelCase_ = checkpoint["""time_embed.2.weight"""] UpperCamelCase_ = checkpoint["""time_embed.2.bias"""] UpperCamelCase_ = checkpoint["""input_blocks.0.0.weight"""] UpperCamelCase_ = checkpoint["""input_blocks.0.0.bias"""] UpperCamelCase_ = checkpoint["""out.0.weight"""] UpperCamelCase_ = checkpoint["""out.0.bias"""] UpperCamelCase_ = checkpoint["""out.2.weight"""] UpperCamelCase_ = checkpoint["""out.2.bias"""] # Retrieves the keys for the input blocks only UpperCamelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) UpperCamelCase_ = { layer_id: [key for key in checkpoint if F'''input_blocks.{layer_id}''' in key] for layer_id in range(lowercase__ ) } # Retrieves the keys for the middle blocks only UpperCamelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) UpperCamelCase_ = { layer_id: [key for key in checkpoint if F'''middle_block.{layer_id}''' in key] for layer_id in range(lowercase__ ) } # Retrieves the keys for the output blocks only UpperCamelCase_ = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) UpperCamelCase_ = { layer_id: [key for key in checkpoint if F'''output_blocks.{layer_id}''' in key] for layer_id in range(lowercase__ ) } for i in range(1 , lowercase__ ): UpperCamelCase_ = (i - 1) // (config["""num_res_blocks"""] + 1) UpperCamelCase_ = (i - 1) % (config["""num_res_blocks"""] + 1) UpperCamelCase_ = [key for key in input_blocks[i] if F'''input_blocks.{i}.0''' in key] UpperCamelCase_ = [key for key in input_blocks[i] if F'''input_blocks.{i}.1''' in key] if F'''input_blocks.{i}.0.op.weight''' in checkpoint: UpperCamelCase_ = checkpoint[ F'''input_blocks.{i}.0.op.weight''' ] UpperCamelCase_ = checkpoint[ F'''input_blocks.{i}.0.op.bias''' ] continue UpperCamelCase_ = renew_resnet_paths(lowercase__ ) UpperCamelCase_ = {"""old""": F'''input_blocks.{i}.0''', """new""": F'''down_blocks.{block_id}.resnets.{layer_in_block_id}'''} UpperCamelCase_ = {"""old""": """resnets.2.op""", """new""": """downsamplers.0.op"""} assign_to_checkpoint( lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path, resnet_op] , config=lowercase__ ) if len(lowercase__ ): UpperCamelCase_ = renew_attention_paths(lowercase__ ) UpperCamelCase_ = { """old""": F'''input_blocks.{i}.1''', """new""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCamelCase_ = { F'''input_blocks.{i}.1.qkv.bias''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''input_blocks.{i}.1.qkv.weight''': { """key""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , attention_paths_to_split=lowercase__ , config=lowercase__ , ) UpperCamelCase_ = middle_blocks[0] UpperCamelCase_ = middle_blocks[1] UpperCamelCase_ = middle_blocks[2] UpperCamelCase_ = renew_resnet_paths(lowercase__ ) assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , config=lowercase__ ) UpperCamelCase_ = renew_resnet_paths(lowercase__ ) assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , config=lowercase__ ) UpperCamelCase_ = renew_attention_paths(lowercase__ ) UpperCamelCase_ = { """middle_block.1.qkv.bias""": { """key""": """mid_block.attentions.0.key.bias""", """query""": """mid_block.attentions.0.query.bias""", """value""": """mid_block.attentions.0.value.bias""", }, """middle_block.1.qkv.weight""": { """key""": """mid_block.attentions.0.key.weight""", """query""": """mid_block.attentions.0.query.weight""", """value""": """mid_block.attentions.0.value.weight""", }, } assign_to_checkpoint( lowercase__ , lowercase__ , lowercase__ , attention_paths_to_split=lowercase__ , config=lowercase__ ) for i in range(lowercase__ ): UpperCamelCase_ = i // (config["""num_res_blocks"""] + 1) UpperCamelCase_ = i % (config["""num_res_blocks"""] + 1) UpperCamelCase_ = [shave_segments(lowercase__ , 2 ) for name in output_blocks[i]] UpperCamelCase_ = {} for layer in output_block_layers: UpperCamelCase_ = layer.split("." )[0], shave_segments(lowercase__ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowercase__ ) else: UpperCamelCase_ = [layer_name] if len(lowercase__ ) > 1: UpperCamelCase_ = [key for key in output_blocks[i] if F'''output_blocks.{i}.0''' in key] UpperCamelCase_ = [key for key in output_blocks[i] if F'''output_blocks.{i}.1''' in key] UpperCamelCase_ = renew_resnet_paths(lowercase__ ) UpperCamelCase_ = renew_resnet_paths(lowercase__ ) UpperCamelCase_ = {"""old""": F'''output_blocks.{i}.0''', """new""": F'''up_blocks.{block_id}.resnets.{layer_in_block_id}'''} assign_to_checkpoint(lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , config=lowercase__ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): UpperCamelCase_ = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) UpperCamelCase_ = checkpoint[ F'''output_blocks.{i}.{index}.conv.weight''' ] UpperCamelCase_ = checkpoint[ F'''output_blocks.{i}.{index}.conv.bias''' ] # Clear attentions as they have been attributed above. if len(lowercase__ ) == 2: UpperCamelCase_ = [] if len(lowercase__ ): UpperCamelCase_ = renew_attention_paths(lowercase__ ) UpperCamelCase_ = { """old""": F'''output_blocks.{i}.1''', """new""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}''', } UpperCamelCase_ = { F'''output_blocks.{i}.1.qkv.bias''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias''', }, F'''output_blocks.{i}.1.qkv.weight''': { """key""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight''', """query""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight''', """value""": F'''up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight''', }, } assign_to_checkpoint( lowercase__ , lowercase__ , lowercase__ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=lowercase__ , ) else: UpperCamelCase_ = renew_resnet_paths(lowercase__ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: UpperCamelCase_ = """.""".join(["output_blocks", str(lowercase__ ), path["old"]] ) UpperCamelCase_ = """.""".join(["up_blocks", str(lowercase__ ), "resnets", str(lowercase__ ), path["new"]] ) UpperCamelCase_ = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: _UpperCAmelCase = json.loads(f.read()) _UpperCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] _UpperCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: _UpperCAmelCase = DDPMScheduler.from_config('/'.join(args.checkpoint_path.split('/')[:-1])) _UpperCAmelCase = VQModel.from_pretrained('/'.join(args.checkpoint_path.split('/')[:-1])) _UpperCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return number | (1 << position) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return number & ~(1 << position) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return number ^ (1 << position) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> bool: return ((number >> position) & 1) == 1 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0
def lowerCAmelCase_ ( UpperCamelCase_ = 1000000 ) -> int: UpperCamelCase_ = set(range(3 , __lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , __lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , __lowerCAmelCase , __lowerCAmelCase ) ) ) UpperCamelCase_ = [float(__lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(__lowerCAmelCase , limit + 1 , __lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = False if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } _UpperCAmelCase = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } _UpperCAmelCase = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: _UpperCAmelCase = reader.read() _UpperCAmelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): _UpperCAmelCase = UNetaDModel(**config) else: _UpperCAmelCase = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel _UpperCAmelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _UpperCAmelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _UpperCAmelCase = config[key] del config[key] _UpperCAmelCase = [k.replace('UNetRes', '') for k in config['down_block_types']] _UpperCAmelCase = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: _UpperCAmelCase = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) _UpperCAmelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue _UpperCAmelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: _UpperCAmelCase = param_value _UpperCAmelCase = True if not has_changed: _UpperCAmelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
354
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
0
"""simple docstring""" import argparse import struct import unittest class _UpperCamelCase : def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: bytes ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = data # Initialize hash values UpperCamelCase_ = [ 0X6A09E667, 0XBB67AE85, 0X3C6EF372, 0XA54FF53A, 0X510E527F, 0X9B05688C, 0X1F83D9AB, 0X5BE0CD19, ] # Initialize round constants UpperCamelCase_ = [ 0X428A2F98, 0X71374491, 0XB5C0FBCF, 0XE9B5DBA5, 0X3956C25B, 0X59F111F1, 0X923F82A4, 0XAB1C5ED5, 0XD807AA98, 0X12835B01, 0X243185BE, 0X550C7DC3, 0X72BE5D74, 0X80DEB1FE, 0X9BDC06A7, 0XC19BF174, 0XE49B69C1, 0XEFBE4786, 0X0FC19DC6, 0X240CA1CC, 0X2DE92C6F, 0X4A7484AA, 0X5CB0A9DC, 0X76F988DA, 0X983E5152, 0XA831C66D, 0XB00327C8, 0XBF597FC7, 0XC6E00BF3, 0XD5A79147, 0X06CA6351, 0X14292967, 0X27B70A85, 0X2E1B2138, 0X4D2C6DFC, 0X53380D13, 0X650A7354, 0X766A0ABB, 0X81C2C92E, 0X92722C85, 0XA2BFE8A1, 0XA81A664B, 0XC24B8B70, 0XC76C51A3, 0XD192E819, 0XD6990624, 0XF40E3585, 0X106AA070, 0X19A4C116, 0X1E376C08, 0X2748774C, 0X34B0BCB5, 0X391C0CB3, 0X4ED8AA4A, 0X5B9CCA4F, 0X682E6FF3, 0X748F82EE, 0X78A5636F, 0X84C87814, 0X8CC70208, 0X90BEFFFA, 0XA4506CEB, 0XBEF9A3F7, 0XC67178F2, ] UpperCamelCase_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: bytes ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = B'\x80' + (B'\x00' * (63 - (len(_a ) + 8) % 64)) UpperCamelCase_ = struct.pack(">Q" , (len(_a ) * 8) ) return data + padding + big_endian_integer def lowercase ( self: Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase_ = list(struct.unpack(">16L" , _a ) ) # add 48 0-ed integers words += [0] * 48 UpperCamelCase_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCamelCase_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCamelCase_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression UpperCamelCase_ = self.ror(_a , 6 ) ^ self.ror(_a , 11 ) ^ self.ror(_a , 25 ) UpperCamelCase_ = (e & f) ^ ((~e & 0XFFFFFFFF) & g) UpperCamelCase_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 UpperCamelCase_ = self.ror(_a , 2 ) ^ self.ror(_a , 13 ) ^ self.ror(_a , 22 ) UpperCamelCase_ = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase_ = (sa + maj) % 0X100000000 UpperCamelCase_ = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) UpperCamelCase_ = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase_ = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] UpperCamelCase_ = ''.join([hex(_a )[2:].zfill(8 ) for value in self.hashes] ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> List[Any]: """simple docstring""" return 0XFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" import hashlib UpperCamelCase_ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(_a ).hash , hashlib.shaaaa(_a ).hexdigest() ) def lowerCAmelCase_ ( ) -> Optional[Any]: import doctest doctest.testmod() UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = bytes(__a , "utf-8" ) print(SHAaaa(__a ).hash ) if __name__ == "__main__": main()
355
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging _UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCamelCase ( lowerCamelCase__ ): _UpperCamelCase : List[Any] = ['pixel_values'] def __init__( self: int , _SCREAMING_SNAKE_CASE: Dict = True , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: Optional[Any] = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: int = True , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: List[str] = True , _SCREAMING_SNAKE_CASE: Tuple = 1 / 255 , _SCREAMING_SNAKE_CASE: int = True , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Union[str, Any] = None , _SCREAMING_SNAKE_CASE: Tuple = True , **_SCREAMING_SNAKE_CASE: Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = size if size is not None else {"shortest_edge": 224} UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE , param_name="crop_size" ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase_ = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase_ = do_convert_rgb def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE: List[str] = None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase_ = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=_SCREAMING_SNAKE_CASE ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Tuple = None , **_SCREAMING_SNAKE_CASE: Optional[int] , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> List[Any]: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] = None , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Dict = None , _SCREAMING_SNAKE_CASE: Optional[Any] = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Any = None , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: List[Any] = None , _SCREAMING_SNAKE_CASE: Any = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="size" , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase_ = crop_size if crop_size is not None else self.crop_size UpperCamelCase_ = get_size_dict(_SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = image_mean if image_mean is not None else self.image_mean UpperCamelCase_ = image_std if image_std is not None else self.image_std UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase_ = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase_ = [self.center_crop(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase_ = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase_ = {"pixel_values": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
356
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
0
from __future__ import annotations from collections.abc import Callable _UpperCAmelCase = list[list[float | int]] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Matrix: UpperCamelCase_ = len(__A ) UpperCamelCase_ = [[0 for _ in range(size + 1 )] for _ in range(__A )] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for row in range(__A ): for col in range(__A ): UpperCamelCase_ = matrix[row][col] UpperCamelCase_ = vector[row][0] UpperCamelCase_ = 0 UpperCamelCase_ = 0 while row < size and col < size: # pivoting UpperCamelCase_ = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__A , __A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCamelCase_ , UpperCamelCase_ = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __A ): UpperCamelCase_ = augmented[rowa][col] / augmented[row][col] UpperCamelCase_ = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __A ): for row in range(__A ): UpperCamelCase_ = augmented[row][col] / augmented[col][col] for cola in range(__A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__A ) ] def lowerCAmelCase_ ( UpperCamelCase_ ) -> Callable[[int], int]: UpperCamelCase_ = len(__A ) UpperCamelCase_ = [[0 for _ in range(__A )] for _ in range(__A )] UpperCamelCase_ = [[0] for _ in range(__A )] UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for x_val, y_val in enumerate(__A ): for col in range(__A ): UpperCamelCase_ = (x_val + 1) ** (size - col - 1) UpperCamelCase_ = y_val UpperCamelCase_ = solve(__A , __A ) def interpolated_func(UpperCamelCase_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__A ) ) return interpolated_func def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowerCAmelCase_ ( UpperCamelCase_ = question_function , UpperCamelCase_ = 10 ) -> int: UpperCamelCase_ = [func(__A ) for x_val in range(1 , order + 1 )] UpperCamelCase_ = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCamelCase_ = 0 UpperCamelCase_ = 42 UpperCamelCase_ = 42 for poly in polynomials: UpperCamelCase_ = 1 while func(__A ) == poly(__A ): x_val += 1 ret += poly(__A ) return ret if __name__ == "__main__": print(f'''{solution() = }''')
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
"""simple docstring""" import pytest import datasets # Import fixture modules as plugins _UpperCAmelCase = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=lowerCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = tmp_path_factory.getbasetemp() / """cache""" UpperCamelCase_ = test_hf_cache_home / """datasets""" UpperCamelCase_ = test_hf_cache_home / """metrics""" UpperCamelCase_ = test_hf_cache_home / """modules""" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(lowerCamelCase_ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(lowerCamelCase_ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(lowerCamelCase_ ) ) UpperCamelCase_ = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(lowerCamelCase_ ) ) UpperCamelCase_ = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(lowerCamelCase_ ) ) @pytest.fixture(autouse=lowerCamelCase_ , scope="session" ) def lowerCAmelCase_ ( ) -> Union[str, Any]: datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , lowerCamelCase_ ) @pytest.fixture def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , lowerCamelCase_ )
358
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCamelCase ( __A ): _UpperCamelCase : Union[str, Any] = 'bert' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str]=30522 , _SCREAMING_SNAKE_CASE: Dict=768 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: Any=3072 , _SCREAMING_SNAKE_CASE: Union[str, Any]="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: str=512 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: List[str]=0 , _SCREAMING_SNAKE_CASE: Dict="absolute" , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: int=None , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=__lowercase , **__lowercase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout class _UpperCamelCase ( __A ): @property def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _UpperCamelCase ( unittest.TestCase ): def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any]=7 , _SCREAMING_SNAKE_CASE: Optional[int]=3 , _SCREAMING_SNAKE_CASE: Union[str, Any]=18 , _SCREAMING_SNAKE_CASE: Tuple=30 , _SCREAMING_SNAKE_CASE: Optional[Any]=400 , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: List[Any]=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , _SCREAMING_SNAKE_CASE: Dict=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , _SCREAMING_SNAKE_CASE: Optional[int]=True , ) -> List[str]: """simple docstring""" UpperCamelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCamelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_convert_rgb def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: List[Any]=False , _SCREAMING_SNAKE_CASE: Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCamelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCamelCase_ = [] for i in range(self.batch_size ): UpperCamelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCamelCase_ = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCamelCase_ = [torch.from_numpy(snake_case__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class _UpperCamelCase ( A_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case__ ) @property def lowercase ( self: Tuple ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def lowercase ( self: str ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" pass def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: int ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class _UpperCamelCase ( A_ , unittest.TestCase ): _UpperCamelCase : int = ChineseCLIPImageProcessor if is_vision_available() else None def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case__ ) UpperCamelCase_ = 3 @property def lowercase ( self: str ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Dict ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" pass def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
import heapq import sys import numpy as np _UpperCAmelCase = tuple[int, int] class _UpperCamelCase : def __init__( self: Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = set() def lowercase ( self: Tuple ) -> str: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("inf" ) def lowercase ( self: Any ) -> Tuple: """simple docstring""" return len(self.elements ) == 0 def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> Any: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_a ) else: # update # print("update", item) UpperCamelCase_ = [] ((UpperCamelCase_) , (UpperCamelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCamelCase_) , (UpperCamelCase_)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(_a ) UpperCamelCase_ = [] ((UpperCamelCase_) , (UpperCamelCase_)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCamelCase_) , (UpperCamelCase_)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.elements[0][1] def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" ((UpperCamelCase_) , (UpperCamelCase_)) = heapq.heappop(self.elements ) self.set.remove(_a ) return (priority, item) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: # euclidean distance UpperCamelCase_ = np.array(lowerCAmelCase__ ) UpperCamelCase_ = np.array(lowerCAmelCase__ ) return np.linalg.norm(a - b ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # integer division by time variable return consistent_heuristic(lowerCAmelCase__ , lowerCAmelCase__ ) // t def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Dict: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = g_function[start] + Wa * heuristics[i](lowerCAmelCase__ , lowerCAmelCase__ ) return ans def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = np.chararray((n, n) ) for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): UpperCamelCase_ = "*" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (j, (n - 1) - i) in blocks: UpperCamelCase_ = "#" UpperCamelCase_ = "-" UpperCamelCase_ = back_pointer[goal] while x != start: ((UpperCamelCase_) , (UpperCamelCase_)) = x # print(x) UpperCamelCase_ = "-" UpperCamelCase_ = back_pointer[x] UpperCamelCase_ = "-" for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) UpperCamelCase_ = back_pointer[goal] while x != start: print(lowerCAmelCase__ , end=" " ) UpperCamelCase_ = back_pointer[x] print(lowerCAmelCase__ ) sys.exit() def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Tuple: for itera in range(lowerCAmelCase__ ): open_list[itera].remove_element(lowerCAmelCase__ ) # print("s", s) # print("j", j) ((UpperCamelCase_) , (UpperCamelCase_)) = s UpperCamelCase_ = (x - 1, y) UpperCamelCase_ = (x + 1, y) UpperCamelCase_ = (x, y + 1) UpperCamelCase_ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowerCAmelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowerCAmelCase__ ) UpperCamelCase_ = -1 UpperCamelCase_ = float("inf" ) if valid(lowerCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1: UpperCamelCase_ = g_function[s] + 1 UpperCamelCase_ = s if neighbours not in close_list_anchor: open_list[0].put(lowerCAmelCase__ , key(lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , lowerCAmelCase__ ): if key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) <= Wa * key( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ ): open_list[j].put( lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowerCAmelCase_ ( ) -> List[Any]: UpperCamelCase_ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list _UpperCAmelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} _UpperCAmelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (1_0, 1), (1_1, 1), (1_2, 1), (1_3, 1), (1_4, 1), (1_5, 1), (1_6, 1), (1_7, 1), (1_8, 1), (1_9, 1), ] _UpperCAmelCase = make_common_ground() _UpperCAmelCase = blocks_blk # hyper parameters _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = 2_0 _UpperCAmelCase = 3 # one consistent and two other inconsistent # start and end destination _UpperCAmelCase = (0, 0) _UpperCAmelCase = (n - 1, n - 1) _UpperCAmelCase = 1 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Any: UpperCamelCase_ = {start: 0, goal: float("inf" )} UpperCamelCase_ = {start: -1, goal: -1} UpperCamelCase_ = [] UpperCamelCase_ = set() for i in range(lowerCAmelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(lowerCAmelCase__ , key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ) UpperCamelCase_ = [] UpperCamelCase_ = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , lowerCAmelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCamelCase_ , UpperCamelCase_ = open_list[i].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_inad.append(lowerCAmelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: UpperCamelCase_ = open_list[0].top_show() visited.add(lowerCAmelCase__ ) expand_state( lowerCAmelCase__ , 0 , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) close_list_anchor.append(lowerCAmelCase__ ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowerCAmelCase__ ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCamelCase_ = str(bin(lowercase__ ) )[2:] # remove the leading "0b" UpperCamelCase_ = str(bin(lowercase__ ) )[2:] # remove the leading "0b" UpperCamelCase_ = max(len(lowercase__ ) , len(lowercase__ ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(lowercase__ ) , b_binary.zfill(lowercase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = """""" for i in table: res += inp[i - 1] return res def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: return data[1:] + data[0] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = """""" for i in range(len(_lowerCamelCase ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = int("0b" + data[0] + data[-1] , 2 ) UpperCamelCase_ = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = message[:4] UpperCamelCase_ = message[4:] UpperCamelCase_ = apply_table(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ = xor(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ = apply_sbox(_lowerCamelCase , temp[:4] ) # noqa: E741 UpperCamelCase_ = apply_sbox(_lowerCamelCase , temp[4:] ) UpperCamelCase_ = """0""" * (2 - len(_lowerCamelCase )) + l # noqa: E741 UpperCamelCase_ = """0""" * (2 - len(_lowerCamelCase )) + r UpperCamelCase_ = apply_table(l + r , _lowerCamelCase ) UpperCamelCase_ = xor(_lowerCamelCase , _lowerCamelCase ) return temp + right if __name__ == "__main__": _UpperCAmelCase = input('Enter 10 bit key: ') _UpperCAmelCase = input('Enter 8 bit message: ') _UpperCAmelCase = [6, 3, 7, 4, 8, 5, 1_0, 9] _UpperCAmelCase = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] _UpperCAmelCase = [2, 4, 3, 1] _UpperCAmelCase = [2, 6, 3, 1, 4, 8, 5, 7] _UpperCAmelCase = [4, 1, 3, 5, 7, 2, 8, 6] _UpperCAmelCase = [4, 1, 2, 3, 2, 3, 4, 1] _UpperCAmelCase = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _UpperCAmelCase = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _UpperCAmelCase = apply_table(key, paa_table) _UpperCAmelCase = temp[:5] _UpperCAmelCase = temp[5:] _UpperCAmelCase = left_shift(left) _UpperCAmelCase = left_shift(right) _UpperCAmelCase = apply_table(left + right, pa_table) _UpperCAmelCase = left_shift(left) _UpperCAmelCase = left_shift(right) _UpperCAmelCase = left_shift(left) _UpperCAmelCase = left_shift(right) _UpperCAmelCase = apply_table(left + right, pa_table) # encryption _UpperCAmelCase = apply_table(message, IP) _UpperCAmelCase = function(expansion, sa, sa, keya, temp) _UpperCAmelCase = temp[4:] + temp[:4] _UpperCAmelCase = function(expansion, sa, sa, keya, temp) _UpperCAmelCase = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption _UpperCAmelCase = apply_table(CT, IP) _UpperCAmelCase = function(expansion, sa, sa, keya, temp) _UpperCAmelCase = temp[4:] + temp[:4] _UpperCAmelCase = function(expansion, sa, sa, keya, temp) _UpperCAmelCase = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = 0 while b > 0: if b & 1: UpperCamelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
364
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
0
class _UpperCamelCase : def __init__( self: Optional[Any] ) -> None: """simple docstring""" UpperCamelCase_ = {} # Mapping from char to TrieNode UpperCamelCase_ = False def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> None: """simple docstring""" for word in words: self.insert(_a ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Any ) -> None: """simple docstring""" UpperCamelCase_ = self for char in word: if char not in curr.nodes: UpperCamelCase_ = TrieNode() UpperCamelCase_ = curr.nodes[char] UpperCamelCase_ = True def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] ) -> bool: """simple docstring""" UpperCamelCase_ = self for char in word: if char not in curr.nodes: return False UpperCamelCase_ = curr.nodes[char] return curr.is_leaf def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> None: """simple docstring""" def _delete(_SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple ) -> bool: if index == len(_a ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase_ = False return len(curr.nodes ) == 0 UpperCamelCase_ = word[index] UpperCamelCase_ = curr.nodes.get(_a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase_ = _delete(_a , _a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _a , 0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> None: if node.is_leaf: print(__a , end=" " ) for key, value in node.nodes.items(): print_words(__a , word + key ) def lowerCAmelCase_ ( ) -> bool: UpperCamelCase_ = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase_ = TrieNode() root.insert_many(__a ) # print_words(root, "") assert all(root.find(__a ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> None: print(str(__a ) , "works!" if passes else "doesn\'t work :(" ) def lowerCAmelCase_ ( ) -> None: assert test_trie() def lowerCAmelCase_ ( ) -> None: print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor _UpperCAmelCase = random.Random() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=1.0 , UpperCamelCase_=None , UpperCamelCase_=None ) -> List[str]: if rng is None: UpperCamelCase_ = global_rng UpperCamelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict=7 , _SCREAMING_SNAKE_CASE: int=400 , _SCREAMING_SNAKE_CASE: List[Any]=2000 , _SCREAMING_SNAKE_CASE: List[str]=24 , _SCREAMING_SNAKE_CASE: Tuple=24 , _SCREAMING_SNAKE_CASE: Dict=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=16000 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , ) -> int: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = min_seq_length UpperCamelCase_ = max_seq_length UpperCamelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase_ = feature_size UpperCamelCase_ = num_mel_bins UpperCamelCase_ = padding_value UpperCamelCase_ = sampling_rate UpperCamelCase_ = return_attention_mask UpperCamelCase_ = do_normalize def lowercase ( self: int ) -> int: """simple docstring""" return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: Any=False ) -> int: """simple docstring""" def _flatten(_SCREAMING_SNAKE_CASE: str ): return list(itertools.chain(*__UpperCAmelCase ) ) if equal_length: UpperCamelCase_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase_ = [np.asarray(__UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = SpeechaTextFeatureExtractionTester(self ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" self.assertTrue(np.all(np.mean(__UpperCAmelCase , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__UpperCAmelCase , axis=0 ) - 1 ) < 1e-3 ) ) def lowercase ( self: List[Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = [np.asarray(__UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size UpperCamelCase_ = feature_extractor(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input UpperCamelCase_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features UpperCamelCase_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test batched UpperCamelCase_ = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features UpperCamelCase_ = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase_ = np.asarray(__UpperCAmelCase ) UpperCamelCase_ = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features UpperCamelCase_ = feature_extractor(__UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertTrue(np.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def lowercase ( self: List[str] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = ["""longest""", """max_length""", """do_not_pad"""] UpperCamelCase_ = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase_ = feature_extractor( __UpperCAmelCase , padding=__UpperCAmelCase , max_length=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = ["""longest""", """max_length""", """do_not_pad"""] UpperCamelCase_ = [None, 16, None] for max_length, padding in zip(__UpperCAmelCase , __UpperCAmelCase ): UpperCamelCase_ = feature_extractor( __UpperCAmelCase , max_length=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = [np.sum(__UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = feature_extractor( __UpperCAmelCase , padding="max_length" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase , ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def lowercase ( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = feature_extractor( __UpperCAmelCase , padding="longest" , max_length=4 , truncation=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase , ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) UpperCamelCase_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase_ = feature_extractor( __UpperCAmelCase , padding="longest" , max_length=16 , truncation=__UpperCAmelCase , return_tensors="np" , return_attention_mask=__UpperCAmelCase , ) UpperCamelCase_ = inputs.input_features UpperCamelCase_ = inputs.attention_mask UpperCamelCase_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def lowercase ( self: Optional[Any] ) -> Any: """simple docstring""" import torch UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = np.random.rand(100 , 32 ).astype(np.floataa ) UpperCamelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) UpperCamelCase_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Optional[int] ) -> int: """simple docstring""" from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase_ = ds.sort("id" ).select(range(__UpperCAmelCase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" UpperCamelCase_ = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ] ) # fmt: on UpperCamelCase_ = self._load_datasamples(1 ) UpperCamelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase_ = feature_extractor(__UpperCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , __UpperCAmelCase , atol=1e-4 ) )
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
import os from collections.abc import Iterator def lowerCAmelCase_ ( UpperCamelCase_ = "." ) -> Tuple: for dir_path, dir_names, filenames in os.walk(a_ ): UpperCamelCase_ = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(a_ )[1] in (".py", ".ipynb"): yield os.path.join(a_ , a_ ).lstrip("./" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: return F'''{i * " "}*''' if i else "\n##" def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(a_ ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(a_ )} {new_part.replace("_" , " " ).title()}''' ) return new_path def lowerCAmelCase_ ( UpperCamelCase_ = "." ) -> List[Any]: UpperCamelCase_ = "" for filepath in sorted(good_file_paths(a_ ) ): UpperCamelCase_ = os.path.split(a_ ) if filepath != old_path: UpperCamelCase_ = print_path(a_ , a_ ) UpperCamelCase_ = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCamelCase_ = F'''{filepath}/{filename}'''.replace(" " , "%20" ) UpperCamelCase_ = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F'''{md_prefix(a_ )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('.')
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> List[Any]: if config_name_or_path is None: UpperCamelCase_ = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: UpperCamelCase_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: UpperCamelCase_ = question_encoder_name_or_path UpperCamelCase_ = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. UpperCamelCase_ = RagConfig.from_pretrained(_UpperCamelCase ) UpperCamelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) UpperCamelCase_ = AutoConfig.from_pretrained(_UpperCamelCase ) UpperCamelCase_ = gen_config UpperCamelCase_ = question_encoder_config UpperCamelCase_ = model_class.from_pretrained_question_encoder_generator( _UpperCamelCase , _UpperCamelCase , config=_UpperCamelCase ) rag_model.save_pretrained(_UpperCamelCase ) # Sanity check. model_class.from_pretrained(_UpperCamelCase ) # Save tokenizers. UpperCamelCase_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) UpperCamelCase_ = AutoTokenizer.from_pretrained(_UpperCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
368
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
0
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = int(np.ceil((x_end - xa) / step_size ) ) UpperCamelCase_ = np.zeros((n + 1,) ) UpperCamelCase_ = ya UpperCamelCase_ = xa for k in range(a__ ): UpperCamelCase_ = y[k] + step_size * ode_func(a__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _UpperCAmelCase = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _UpperCAmelCase = { 'vocab_file': { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt', }, 'tokenizer_file': { 'unc-nlp/lxmert-base-uncased': ( 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json' ), }, } _UpperCAmelCase = { 'unc-nlp/lxmert-base-uncased': 5_1_2, } _UpperCAmelCase = { 'unc-nlp/lxmert-base-uncased': {'do_lower_case': True}, } class _UpperCamelCase ( __UpperCamelCase ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = LxmertTokenizer def __init__( self: int , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Optional[int]="[UNK]" , _SCREAMING_SNAKE_CASE: str="[SEP]" , _SCREAMING_SNAKE_CASE: List[str]="[PAD]" , _SCREAMING_SNAKE_CASE: Optional[Any]="[CLS]" , _SCREAMING_SNAKE_CASE: List[str]="[MASK]" , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: Any=None , **_SCREAMING_SNAKE_CASE: Optional[int] , ) -> Dict: """simple docstring""" super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) UpperCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _lowerCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , _lowerCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _lowerCAmelCase ) != tokenize_chinese_chars ): UpperCamelCase_ = getattr(_lowerCAmelCase , normalizer_state.pop("type" ) ) UpperCamelCase_ = do_lower_case UpperCamelCase_ = strip_accents UpperCamelCase_ = tokenize_chinese_chars UpperCamelCase_ = normalizer_class(**_lowerCAmelCase ) UpperCamelCase_ = do_lower_case def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any=None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> List[str]: """simple docstring""" UpperCamelCase_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
370
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _UpperCamelCase ( _UpperCAmelCase ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any]=13 , _SCREAMING_SNAKE_CASE: List[str]=7 , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: int=99 , _SCREAMING_SNAKE_CASE: Any=32 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: List[str]=4 , _SCREAMING_SNAKE_CASE: Optional[int]=64 , _SCREAMING_SNAKE_CASE: Tuple="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=512 , _SCREAMING_SNAKE_CASE: List[Any]=16 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: Any=3 , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Tuple=2 , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: Tuple=2 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: str=1 , ) -> List[str]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope UpperCamelCase_ = q_groups UpperCamelCase_ = k_groups UpperCamelCase_ = v_groups UpperCamelCase_ = post_attention_groups UpperCamelCase_ = intermediate_groups UpperCamelCase_ = output_groups def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = SqueezeBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_ = model(lowercase_ , lowercase_ ) UpperCamelCase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ = SqueezeBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = SqueezeBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_ = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int ) -> Dict: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = SqueezeBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = SqueezeBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" UpperCamelCase_ = self.num_choices UpperCamelCase_ = SqueezeBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self: int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() (UpperCamelCase_) = config_and_inputs UpperCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _UpperCamelCase : Optional[Any] = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[Any] = True _UpperCamelCase : List[str] = False def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = SqueezeBertModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=lowercase_ , dim=37 ) def lowercase ( self: Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: Optional[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase_ ) def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase_ ) def lowercase ( self: Optional[Any] ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase_ ) def lowercase ( self: Dict ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase_ ) def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase_ ) def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase_ ) @slow def lowercase ( self: Dict ) -> List[Any]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = SqueezeBertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_sentencepiece @require_tokenizers @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) UpperCamelCase_ = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) UpperCamelCase_ = model(lowercase_ )[0] UpperCamelCase_ = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase_ ) UpperCamelCase_ = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-4 ) )
371
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
0
from __future__ import annotations def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: if len(__a ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(__a ) or left < -len(__a ) or right >= len(__a ) or right < -len(__a ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] UpperCamelCase_ = (left + right) >> 1 # the middle UpperCamelCase_ = find_max(__a , __a , __a ) # find max in range[left, mid] UpperCamelCase_ = find_max(__a , mid + 1 , __a ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCamelCase_ = FileLock(str(tmpdir / "foo.lock" ) ) UpperCamelCase_ = 0.01 with locka.acquire(): with pytest.raises(__lowerCamelCase ): UpperCamelCase_ = time.time() locka.acquire(__lowerCamelCase ) assert time.time() - _start > timeout def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[int]: UpperCamelCase_ = "a" * 1000 + ".lock" UpperCamelCase_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__lowerCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCamelCase_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCamelCase ): locka.acquire(0 )
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class _UpperCamelCase ( __snake_case ): _UpperCamelCase : Tuple = '''canine''' def __init__( self: str , _SCREAMING_SNAKE_CASE: List[str]=768 , _SCREAMING_SNAKE_CASE: List[Any]=12 , _SCREAMING_SNAKE_CASE: int=12 , _SCREAMING_SNAKE_CASE: Optional[Any]=3072 , _SCREAMING_SNAKE_CASE: Any="gelu" , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: str=0.1 , _SCREAMING_SNAKE_CASE: str=16384 , _SCREAMING_SNAKE_CASE: Union[str, Any]=16 , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: List[Any]=0 , _SCREAMING_SNAKE_CASE: List[str]=0XE000 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0XE001 , _SCREAMING_SNAKE_CASE: Optional[int]=4 , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: str=8 , _SCREAMING_SNAKE_CASE: Union[str, Any]=16384 , _SCREAMING_SNAKE_CASE: Optional[Any]=128 , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = type_vocab_size UpperCamelCase_ = layer_norm_eps # Character config: UpperCamelCase_ = downsampling_rate UpperCamelCase_ = upsampling_kernel_size UpperCamelCase_ = num_hash_functions UpperCamelCase_ = num_hash_buckets UpperCamelCase_ = local_transformer_stride
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0
def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: if len(_A ) < 2: return collection def circle_sort_util(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> bool: UpperCamelCase_ = False if low == high: return swapped UpperCamelCase_ = low UpperCamelCase_ = high while left < right: if collection[left] > collection[right]: UpperCamelCase_ = ( collection[right], collection[left], ) UpperCamelCase_ = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCamelCase_ = ( collection[right + 1], collection[left], ) UpperCamelCase_ = True UpperCamelCase_ = low + int((high - low) / 2 ) UpperCamelCase_ = circle_sort_util(_A , _A , _A ) UpperCamelCase_ = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap UpperCamelCase_ = True while is_not_sorted is True: UpperCamelCase_ = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": _UpperCAmelCase = input('Enter numbers separated by a comma:\n').strip() _UpperCAmelCase = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _UpperCAmelCase = 6_3_7_8_1_3_7.0 _UpperCAmelCase = 6_3_5_6_7_5_2.3_1_4_2_4_5 _UpperCAmelCase = 6_3_7_8_1_3_7 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> float: UpperCamelCase_ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCamelCase_ = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) ) UpperCamelCase_ = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCamelCase_ = haversine_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCamelCase_ = (b_lata + b_lata) / 2 UpperCamelCase_ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCamelCase_ = (sin(UpperCamelCase_ ) ** 2) * (cos(UpperCamelCase_ ) ** 2) UpperCamelCase_ = cos(sigma / 2 ) ** 2 UpperCamelCase_ = (sigma - sin(UpperCamelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCamelCase_ = (cos(UpperCamelCase_ ) ** 2) * (sin(UpperCamelCase_ ) ** 2) UpperCamelCase_ = sin(sigma / 2 ) ** 2 UpperCamelCase_ = (sigma + sin(UpperCamelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
354
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCamelCase : def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: Any=10 , _SCREAMING_SNAKE_CASE: Tuple=3 , _SCREAMING_SNAKE_CASE: str=32 * 8 , _SCREAMING_SNAKE_CASE: Optional[int]=32 * 8 , _SCREAMING_SNAKE_CASE: Optional[int]=4 , _SCREAMING_SNAKE_CASE: Optional[int]=64 , ) -> int: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = is_training UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = num_queries UpperCamelCase_ = num_channels UpperCamelCase_ = min_size UpperCamelCase_ = max_size UpperCamelCase_ = num_labels UpperCamelCase_ = hidden_dim UpperCamelCase_ = hidden_dim def lowercase ( self: Optional[int] ) -> Tuple: """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() UpperCamelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() UpperCamelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) UpperCamelCase_ = self.num_queries UpperCamelCase_ = self.num_labels UpperCamelCase_ = [1, 1, 1, 1] UpperCamelCase_ = self.num_channels UpperCamelCase_ = 64 UpperCamelCase_ = 128 UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim UpperCamelCase_ = self.hidden_dim return config def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = output.encoder_hidden_states UpperCamelCase_ = output.pixel_decoder_hidden_states UpperCamelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) , config.decoder_layers ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[str]=False ) -> List[str]: """simple docstring""" with torch.no_grad(): UpperCamelCase_ = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase_ = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = model(SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE: Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCamelCase_ = model(pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = model( pixel_values=SCREAMING_SNAKE_CASE_ , pixel_mask=SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCamelCase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase : int = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _UpperCamelCase : List[Any] = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _UpperCamelCase : List[Any] = False _UpperCamelCase : Any = False _UpperCamelCase : int = False _UpperCamelCase : Any = False def lowercase ( self: Dict ) -> Dict: """simple docstring""" UpperCamelCase_ = MaskaFormerModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowercase ( self: Dict ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowercase ( self: Any ) -> Tuple: """simple docstring""" pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowercase ( self: List[Any] ) -> Dict: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) @slow def lowercase ( self: str ) -> Any: """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCamelCase_ = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = (self.model_tester.min_size,) * 2 UpperCamelCase_ = { """pixel_values""": torch.randn((2, 3, *size) , device=SCREAMING_SNAKE_CASE_ ), """mask_labels""": torch.randn((2, 10, *size) , device=SCREAMING_SNAKE_CASE_ ), """class_labels""": torch.zeros(2 , 10 , device=SCREAMING_SNAKE_CASE_ ).long(), } UpperCamelCase_ = self.model_tester.get_config() UpperCamelCase_ = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ ) def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def lowercase ( self: str ) -> str: """simple docstring""" if not self.model_tester.is_training: return UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase_ = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.all_model_classes[1] UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase_ = model(SCREAMING_SNAKE_CASE_ , mask_labels=SCREAMING_SNAKE_CASE_ , class_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCamelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _UpperCAmelCase = 1e-4 def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase ( self: Optional[int] ) -> str: """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase ( self: int ) -> int: """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = torch.tensor( [[-0.27_90, -1.07_17, -1.16_68], [-0.51_28, -0.31_28, -0.49_87], [-0.58_32, 0.19_71, -0.01_97]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase_ = torch.tensor( [[0.89_73, 1.18_47, 1.17_76], [1.19_34, 1.50_40, 1.51_28], [1.11_53, 1.44_86, 1.49_51]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase_ = torch.tensor( [[2.11_52, 1.70_00, -0.86_03], [1.58_08, 1.80_04, -0.93_53], [1.60_43, 1.74_95, -0.59_99]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_ , (1, 3, 384, 384) ) with torch.no_grad(): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits UpperCamelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCamelCase_ = [ [-8.78_39, -9.00_56, -8.81_21], [-7.41_04, -7.03_13, -6.54_01], [-6.61_05, -6.34_27, -6.46_75], ] UpperCamelCase_ = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits UpperCamelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCamelCase_ = torch.tensor( [ [1.83_24, -8.08_35, -4.19_22], [0.84_50, -9.00_50, -3.60_53], [0.30_45, -7.72_93, -3.02_75], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ ) ) def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) UpperCamelCase_ = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""mask_labels"""]] UpperCamelCase_ = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
355
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( __UpperCamelCase ): def lowercase ( self: List[str] ) -> Any: """simple docstring""" UpperCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "num_attention_heads" ) ) class _UpperCamelCase : def __init__( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: int=13 , _SCREAMING_SNAKE_CASE: str=64 , _SCREAMING_SNAKE_CASE: Any=3 , _SCREAMING_SNAKE_CASE: List[Any]=3 , _SCREAMING_SNAKE_CASE: Tuple=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=16 , _SCREAMING_SNAKE_CASE: Dict=[128, 256, 384] , _SCREAMING_SNAKE_CASE: Optional[int]=[4, 6, 8] , _SCREAMING_SNAKE_CASE: Dict=[2, 3, 4] , _SCREAMING_SNAKE_CASE: Optional[Any]=[16, 16, 16] , _SCREAMING_SNAKE_CASE: Tuple=0 , _SCREAMING_SNAKE_CASE: str=[2, 2, 2] , _SCREAMING_SNAKE_CASE: Optional[Any]=[2, 2, 2] , _SCREAMING_SNAKE_CASE: Tuple=0.02 , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=2 , ) -> Dict: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = num_channels UpperCamelCase_ = kernel_size UpperCamelCase_ = stride UpperCamelCase_ = padding UpperCamelCase_ = hidden_sizes UpperCamelCase_ = num_attention_heads UpperCamelCase_ = depths UpperCamelCase_ = key_dim UpperCamelCase_ = drop_path_rate UpperCamelCase_ = patch_size UpperCamelCase_ = attention_ratio UpperCamelCase_ = mlp_ratio UpperCamelCase_ = initializer_range UpperCamelCase_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = num_labels UpperCamelCase_ = initializer_range def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase ( self: Any ) -> int: """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = LevitModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = (self.image_size, self.image_size) UpperCamelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) UpperCamelCase_ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> str: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = LevitForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self: int ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): _UpperCamelCase : List[str] = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) _UpperCamelCase : List[str] = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) _UpperCamelCase : Dict = False _UpperCamelCase : List[Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Union[str, Any] = False def lowercase ( self: Dict ) -> str: """simple docstring""" UpperCamelCase_ = LevitModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" pass @unittest.skip(reason="Levit does not output attentions" ) def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" pass def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] ) -> int: """simple docstring""" def check_hidden_states_output(_SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: str ): UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = outputs.hidden_states UpperCamelCase_ = len(self.model_tester.depths ) + 1 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = (self.model_tester.image_size, self.model_tester.image_size) UpperCamelCase_ = image_size[0], image_size[1] for _ in range(4 ): UpperCamelCase_ = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) UpperCamelCase_ = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase_ = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self: List[Any] ) -> List[str]: """simple docstring""" pass def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> List[str]: """simple docstring""" UpperCamelCase_ = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> List[Any]: """simple docstring""" if not self.model_tester.is_training: return UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_SCREAMING_SNAKE_CASE ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def lowercase ( self: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase_ = False UpperCamelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(_SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_SCREAMING_SNAKE_CASE ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type["title"]}''' ): UpperCamelCase_ = problem_type["""title"""] UpperCamelCase_ = problem_type["""num_labels"""] UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if problem_type["num_labels"] > 1: UpperCamelCase_ = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) UpperCamelCase_ = inputs["""labels"""].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_SCREAMING_SNAKE_CASE ) as warning_list: UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowercase ( self: Union[str, Any] ) -> List[Any]: """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = LevitModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase ( self: Any ) -> Tuple: """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
356
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> Any: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} UpperCamelCase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' UpperCamelCase_ = requests.get(A__ , headers=A__ ).json() UpperCamelCase_ = {} try: job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) UpperCamelCase_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): UpperCamelCase_ = requests.get(url + F'''&page={i + 2}''' , headers=A__ ).json() job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} UpperCamelCase_ = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' UpperCamelCase_ = requests.get(A__ , headers=A__ ).json() UpperCamelCase_ = {} try: artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) UpperCamelCase_ = math.ceil((result["total_count"] - 100) / 100 ) for i in range(A__ ): UpperCamelCase_ = requests.get(url + F'''&page={i + 2}''' , headers=A__ ).json() artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = None if token is not None: UpperCamelCase_ = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} UpperCamelCase_ = requests.get(A__ , headers=A__ , allow_redirects=A__ ) UpperCamelCase_ = result.headers["Location"] UpperCamelCase_ = requests.get(A__ , allow_redirects=A__ ) UpperCamelCase_ = os.path.join(A__ , F'''{artifact_name}.zip''' ) with open(A__ , "wb" ) as fp: fp.write(response.content ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> Dict: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = None with zipfile.ZipFile(A__ ) as z: for filename in z.namelist(): if not os.path.isdir(A__ ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(A__ ) as f: for line in f: UpperCamelCase_ = line.decode("UTF-8" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase_ = line[: line.index(": " )] UpperCamelCase_ = line[line.index(": " ) + len(": " ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("FAILED " ): # `test` is the test method that failed UpperCamelCase_ = line[len("FAILED " ) :] failed_tests.append(A__ ) elif filename == "job_name.txt": UpperCamelCase_ = line if len(A__ ) != len(A__ ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(A__ )} for `errors` ''' F'''and {len(A__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' " problem." ) UpperCamelCase_ = None if job_name and job_links: UpperCamelCase_ = job_links.get(A__ , A__ ) # A list with elements of the form (line of error, error, failed test) UpperCamelCase_ = [x + [y] + [job_link] for x, y in zip(A__ , A__ )] return result def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> int: UpperCamelCase_ = [] UpperCamelCase_ = [os.path.join(A__ , A__ ) for p in os.listdir(A__ ) if p.endswith(".zip" )] for p in paths: errors.extend(get_errors_from_single_artifact(A__ , job_links=A__ ) ) return errors def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: UpperCamelCase_ = Counter() counter.update([x[1] for x in logs] ) UpperCamelCase_ = counter.most_common() UpperCamelCase_ = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase_ = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase_ = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=A__ ) ) return r def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = test.split("::" )[0] if test.startswith("tests/models/" ): UpperCamelCase_ = test.split("/" )[2] else: UpperCamelCase_ = None return test def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_=None ) -> List[Any]: UpperCamelCase_ = [(x[0], x[1], get_model(x[2] )) for x in logs] UpperCamelCase_ = [x for x in logs if x[2] is not None] UpperCamelCase_ = {x[2] for x in logs} UpperCamelCase_ = {} for test in tests: UpperCamelCase_ = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) UpperCamelCase_ = counter.most_common() UpperCamelCase_ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase_ = sum(error_counts.values() ) if n_errors > 0: UpperCamelCase_ = {"count": n_errors, "errors": error_counts} UpperCamelCase_ = dict(sorted(r.items() , key=lambda UpperCamelCase_ : item[1]["count"] , reverse=A__ ) ) return r def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = "| no. | error | status |" UpperCamelCase_ = "|-:|:-|:-|" UpperCamelCase_ = [header, sep] for error in reduced_by_error: UpperCamelCase_ = reduced_by_error[error]["count"] UpperCamelCase_ = F'''| {count} | {error[:100]} | |''' lines.append(A__ ) return "\n".join(A__ ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Any: UpperCamelCase_ = "| model | no. of errors | major error | count |" UpperCamelCase_ = "|-:|-:|-:|-:|" UpperCamelCase_ = [header, sep] for model in reduced_by_model: UpperCamelCase_ = reduced_by_model[model]["count"] UpperCamelCase_ , UpperCamelCase_ = list(reduced_by_model[model]["errors"].items() )[0] UpperCamelCase_ = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(A__ ) return "\n".join(A__ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') _UpperCAmelCase = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _UpperCAmelCase = get_job_links(args.workflow_run_id, token=args.token) _UpperCAmelCase = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _UpperCAmelCase = k.find(' / ') _UpperCAmelCase = k[index + len(' / ') :] _UpperCAmelCase = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _UpperCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _UpperCAmelCase = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _UpperCAmelCase = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _UpperCAmelCase = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _UpperCAmelCase = reduce_by_error(errors) _UpperCAmelCase = reduce_by_model(errors) _UpperCAmelCase = make_github_table(reduced_by_error) _UpperCAmelCase = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase = { 'configuration_roformer': ['ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoFormerConfig', 'RoFormerOnnxConfig'], 'tokenization_roformer': ['RoFormerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['RoFormerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoFormerForCausalLM', 'RoFormerForMaskedLM', 'RoFormerForMultipleChoice', 'RoFormerForQuestionAnswering', 'RoFormerForSequenceClassification', 'RoFormerForTokenClassification', 'RoFormerLayer', 'RoFormerModel', 'RoFormerPreTrainedModel', 'load_tf_weights_in_roformer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRoFormerForCausalLM', 'TFRoFormerForMaskedLM', 'TFRoFormerForMultipleChoice', 'TFRoFormerForQuestionAnswering', 'TFRoFormerForSequenceClassification', 'TFRoFormerForTokenClassification', 'TFRoFormerLayer', 'TFRoFormerModel', 'TFRoFormerPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxRoFormerForMaskedLM', 'FlaxRoFormerForMultipleChoice', 'FlaxRoFormerForQuestionAnswering', 'FlaxRoFormerForSequenceClassification', 'FlaxRoFormerForTokenClassification', 'FlaxRoFormerModel', 'FlaxRoFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
358
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase = imread(r'digital_image_processing/image_data/lena_small.jpg') _UpperCAmelCase = cvtColor(img, COLOR_BGR2GRAY) def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = cn.convert_to_negative(_UpperCamelCase ) # assert negative_img array for at least one True assert negative_img.any() def lowerCAmelCase_ ( ) -> List[Any]: with Image.open("digital_image_processing/image_data/lena_small.jpg" ) as img: # Work around assertion for response assert str(cc.change_contrast(_UpperCamelCase , 110 ) ).startswith( "<PIL.Image.Image image mode=RGB size=100x100 at" ) def lowerCAmelCase_ ( ) -> List[Any]: UpperCamelCase_ = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCAmelCase_ ( ) -> Any: UpperCamelCase_ = imread("digital_image_processing/image_data/lena_small.jpg" , 0 ) # assert ambiguous array for all == True assert canny_img.all() UpperCamelCase_ = canny.canny(_UpperCamelCase ) # assert canny array for at least one True assert canny_array.any() def lowerCAmelCase_ ( ) -> Any: assert gg.gaussian_filter(_UpperCamelCase , 5 , sigma=0.9 ).all() def lowerCAmelCase_ ( ) -> int: UpperCamelCase_ = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) UpperCamelCase_ = conv.img_convolve(_UpperCamelCase , _UpperCamelCase ).astype(_UpperCamelCase ) assert res.any() def lowerCAmelCase_ ( ) -> List[Any]: assert med.median_filter(_UpperCamelCase , 3 ).any() def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase_ , UpperCamelCase_ = sob.sobel_filter(_UpperCamelCase ) assert grad.any() and theta.any() def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = sp.make_sepia(_UpperCamelCase , 20 ) assert sepia.all() def lowerCAmelCase_ ( UpperCamelCase_ = "digital_image_processing/image_data/lena_small.jpg" ) -> str: UpperCamelCase_ = bs.Burkes(imread(_UpperCamelCase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCAmelCase_ ( UpperCamelCase_ = "digital_image_processing/image_data/lena_small.jpg" , ) -> Dict: UpperCamelCase_ = rs.NearestNeighbour(imread(_UpperCamelCase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase_ = "digital_image_processing/image_data/lena.jpg" # Reading the image and converting it to grayscale. UpperCamelCase_ = imread(_UpperCamelCase , 0 ) # Test for get_neighbors_pixel function() return not None UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = image[x_coordinate][y_coordinate] UpperCamelCase_ = lbp.get_neighbors_pixel( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image UpperCamelCase_ = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): UpperCamelCase_ = lbp.local_binary_value(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) assert lbp_image.any()
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = IFInpaintingPipeline _UpperCamelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} _UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _UpperCamelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'} def lowercase ( self: str ) -> Dict: """simple docstring""" return self._get_dummy_components() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int=0 ) -> List[str]: """simple docstring""" if str(__lowerCAmelCase ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(__lowerCAmelCase ) else: UpperCamelCase_ = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: List[str] ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: List[str] ) -> Any: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" self._test_save_load_local() def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') _UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": _UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) _UpperCAmelCase = 'roberta' elif args.model_type == "gpt2": _UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) _UpperCAmelCase = 'transformer' _UpperCAmelCase = model.state_dict() _UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _UpperCAmelCase = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _UpperCAmelCase = f'''{prefix}.embeddings.{w}.weight''' _UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: _UpperCAmelCase = f'''{prefix}.embeddings.LayerNorm.{w}''' _UpperCAmelCase = state_dict[param_name] # Transformer Blocks # _UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 1_1]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] _UpperCAmelCase = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _UpperCAmelCase = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f'''lm_head.dense.{w}'''] _UpperCAmelCase = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _UpperCAmelCase = state_dict[f'''{prefix}.ln_f.{w}'''] _UpperCAmelCase = state_dict['lm_head.weight'] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: UpperCamelCase_ = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict[str, str]: UpperCamelCase_ = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key UpperCamelCase_ = remove_duplicates(key.upper() ) UpperCamelCase_ = len(lowercase_ ) # First fill cipher with key characters UpperCamelCase_ = {alphabet[i]: char for i, char in enumerate(lowercase_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(lowercase_ ) , 26 ): UpperCamelCase_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 UpperCamelCase_ = alphabet[i - offset] UpperCamelCase_ = char return cipher_alphabet def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: return "".join(cipher_map.get(lowercase_ , lowercase_ ) for ch in message.upper() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(lowercase_ , lowercase_ ) for ch in message.upper() ) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = input("Enter message to encode or decode: " ).strip() UpperCamelCase_ = input("Enter keyword: " ).strip() UpperCamelCase_ = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: UpperCamelCase_ = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) UpperCamelCase_ = create_cipher_map(lowercase_ ) print(func(lowercase_ , lowercase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass(frozen=lowerCAmelCase_ ) class _UpperCamelCase : _UpperCamelCase : str _UpperCamelCase : str _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[str] = None @dataclass(frozen=lowerCAmelCase_ ) class _UpperCamelCase : _UpperCamelCase : List[int] _UpperCamelCase : Optional[List[int]] = None _UpperCamelCase : Optional[List[int]] = None _UpperCamelCase : Optional[Union[int, float]] = None _UpperCamelCase : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : List[InputFeatures] def __init__( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: bool = False , ) -> Tuple: """simple docstring""" UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = os.path.join( _a , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(_a ) , _a , ) , ) UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase_ = cached_features_file + ".lock" with FileLock(_a ): if os.path.exists(_a ) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''' ) UpperCamelCase_ = torch.load(_a ) else: logger.info(f'''Creating features from dataset file at {data_dir}''' ) UpperCamelCase_ = ( processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) ) logger.info("Training examples: %s" , len(_a ) ) UpperCamelCase_ = hans_convert_examples_to_features(_a , _a , _a , _a ) logger.info("Saving features into cached file %s" , _a ) torch.save(self.features , _a ) def __len__( self: Union[str, Any] ) -> Tuple: """simple docstring""" return len(self.features ) def __getitem__( self: int , _SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" return self.features[i] def lowercase ( self: str ) -> Any: """simple docstring""" return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCamelCase : _UpperCamelCase : List[InputFeatures] def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: PreTrainedTokenizer , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[int] = 128 , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: bool = False , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = hans_processors[task]() UpperCamelCase_ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase_ , UpperCamelCase_ = label_list[2], label_list[1] UpperCamelCase_ = label_list UpperCamelCase_ = processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a ) UpperCamelCase_ = hans_convert_examples_to_features(_a , _a , _a , _a ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d of %d" % (ex_index, len(_a )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) UpperCamelCase_ = tf.data.Dataset.from_generator( _a , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.dataset def __len__( self: int ) -> Optional[Any]: """simple docstring""" return len(self.features ) def __getitem__( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple ) -> Dict: """simple docstring""" return self.features[i] def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" return self.label_list class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> Union[str, Any]: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_a , "heuristics_train_set.txt" ) ) , "train" ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Any: """simple docstring""" return self._create_examples(self._read_tsv(os.path.join(_a , "heuristics_evaluation_set.txt" ) ) , "dev" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return ["contradiction", "entailment", "neutral"] def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = [] for i, line in enumerate(_a ): if i == 0: continue UpperCamelCase_ = "%s-%s" % (set_type, line[0]) UpperCamelCase_ = line[5] UpperCamelCase_ = line[6] UpperCamelCase_ = line[7][2:] if line[7].startswith("ex" ) else line[7] UpperCamelCase_ = line[0] examples.append(InputExample(guid=_a , text_a=_a , text_b=_a , label=_a , pairID=_a ) ) return examples def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Any: UpperCamelCase_ = {label: i for i, label in enumerate(UpperCamelCase__ )} UpperCamelCase_ = [] for ex_index, example in tqdm.tqdm(enumerate(UpperCamelCase__ ) , desc="convert examples to features" ): if ex_index % 10000 == 0: logger.info("Writing example %d" % (ex_index) ) UpperCamelCase_ = tokenizer( example.text_a , example.text_b , add_special_tokens=UpperCamelCase__ , max_length=UpperCamelCase__ , padding="max_length" , truncation=UpperCamelCase__ , return_overflowing_tokens=UpperCamelCase__ , ) UpperCamelCase_ = label_map[example.label] if example.label in label_map else 0 UpperCamelCase_ = int(example.pairID ) features.append(InputFeatures(**UpperCamelCase__ , label=UpperCamelCase__ , pairID=UpperCamelCase__ ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F'''guid: {example}''' ) logger.info(F'''features: {features[i]}''' ) return features _UpperCAmelCase = { 'hans': 3, } _UpperCAmelCase = { 'hans': HansProcessor, }
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = TextToVideoSDPipeline _UpperCamelCase : str = TEXT_TO_IMAGE_PARAMS _UpperCamelCase : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. _UpperCamelCase : List[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def lowercase ( self: str ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase_ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , clip_sample=_SCREAMING_SNAKE_CASE , set_alpha_to_one=_SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) UpperCamelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCamelCase_ = CLIPTextModel(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCamelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int=0 ) -> Optional[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowercase ( self: Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = TextToVideoSDPipeline(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "np" UpperCamelCase_ = sd_pipe(**_SCREAMING_SNAKE_CASE ).frames UpperCamelCase_ = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) UpperCamelCase_ = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Tuple ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowercase ( self: str ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowercase ( self: List[str] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" pass def lowercase ( self: Tuple ) -> Any: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) UpperCamelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) UpperCamelCase_ = pipe.to("cuda" ) UpperCamelCase_ = "Spiderman is surfing" UpperCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="pt" ).frames UpperCamelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def lowercase ( self: str ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) UpperCamelCase_ = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) UpperCamelCase_ = pipe.to("cuda" ) UpperCamelCase_ = "Spiderman is surfing" UpperCamelCase_ = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type="pt" ).frames UpperCamelCase_ = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
364
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _UpperCAmelCase = HfArgumentParser(InitializationArguments) _UpperCAmelCase = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _UpperCAmelCase = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) _UpperCAmelCase = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _UpperCAmelCase = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) _UpperCAmelCase = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) _UpperCAmelCase = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) _UpperCAmelCase = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) _UpperCAmelCase = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) _UpperCAmelCase = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) _UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) _UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) _UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) _UpperCAmelCase = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) _UpperCAmelCase = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Dict = FLAX_MODEL_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModel) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_PRETRAINING_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : List[Any] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Tuple = FLAX_MODEL_FOR_MASKED_LM_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : str = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _UpperCAmelCase = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : List[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : List[str] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _UpperCAmelCase = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : int = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Dict = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING _UpperCAmelCase = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : int = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _UpperCAmelCase = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Union[str, Any] = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING _UpperCAmelCase = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class _UpperCamelCase ( _BaseAutoModelClass ): _UpperCamelCase : Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING _UpperCAmelCase = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
def lowerCAmelCase_ ( UpperCamelCase_ = 1000 ) -> int: UpperCamelCase_ = 2**power UpperCamelCase_ = str(UpperCamelCase__ ) UpperCamelCase_ = list(UpperCamelCase__ ) UpperCamelCase_ = 0 for i in list_num: sum_of_num += int(UpperCamelCase__ ) return sum_of_num if __name__ == "__main__": _UpperCAmelCase = int(input('Enter the power of 2: ').strip()) print('2 ^ ', power, ' = ', 2**power) _UpperCAmelCase = solution(power) print('Sum of the digits is: ', result)
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return number | (1 << position) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return number & ~(1 << position) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return number ^ (1 << position) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> bool: return ((number >> position) & 1) == 1 def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
368
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
0
"""simple docstring""" import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = MobileNetVaConfig(layer_norm_eps=0.0_01 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) UpperCamelCase_ = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$" , _snake_case ) if matches: UpperCamelCase_ = float(matches[1] ) UpperCamelCase_ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCamelCase_ = 1001 UpperCamelCase_ = "imagenet-1k-id2label.json" UpperCamelCase_ = "huggingface/label-files" UpperCamelCase_ = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) UpperCamelCase_ = {int(_snake_case ) + 1: v for k, v in idalabel.items()} UpperCamelCase_ = "background" UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> str: UpperCamelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase_ = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ) -> Optional[int]: UpperCamelCase_ = get_mobilenet_va_config(_snake_case ) # Load 🤗 model UpperCamelCase_ = MobileNetVaForImageClassification(_snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_snake_case , _snake_case , _snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCamelCase_ = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) UpperCamelCase_ = image_processor(images=prepare_img() , return_tensors="pt" ) UpperCamelCase_ = model(**_snake_case ) UpperCamelCase_ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": UpperCamelCase_ = torch.tensor([-4.17_39, -1.12_33, 3.12_05] ) elif model_name == "mobilenet_v1_0.75_192": UpperCamelCase_ = torch.tensor([-3.94_40, -2.31_41, -0.33_33] ) else: UpperCamelCase_ = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("Pushing to the hub..." ) UpperCamelCase_ = "google/" + model_name image_processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _UpperCAmelCase = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = tf.data.AUTOTUNE def lowerCAmelCase_ ( ): UpperCamelCase_ = argparse.ArgumentParser(description="Train a masked language model on TPU." ) parser.add_argument( "--pretrained_model_config" , type=UpperCamelCase_ , default="roberta-base" , help="The model config to use. Note that we don't copy the model's weights, only the config!" , ) parser.add_argument( "--tokenizer" , type=UpperCamelCase_ , default="unigram-tokenizer-wikitext" , help="The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model's vocab size." , ) parser.add_argument( "--per_replica_batch_size" , type=UpperCamelCase_ , default=8 , help="Batch size per TPU core." , ) parser.add_argument( "--no_tpu" , action="store_true" , help="If set, run on CPU and don't try to initialize a TPU. Useful for debugging on non-TPU instances." , ) parser.add_argument( "--tpu_name" , type=UpperCamelCase_ , help="Name of TPU resource to initialize. Should be blank on Colab, and 'local' on TPU VMs." , default="local" , ) parser.add_argument( "--tpu_zone" , type=UpperCamelCase_ , help="Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes." , ) parser.add_argument( "--gcp_project" , type=UpperCamelCase_ , help="Google cloud project name. Only used for non-Colab TPU nodes." ) parser.add_argument( "--bfloat16" , action="store_true" , help="Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU." , ) parser.add_argument( "--train_dataset" , type=UpperCamelCase_ , help="Path to training dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--shuffle_buffer_size" , type=UpperCamelCase_ , default=2**18 , help="Size of the shuffle buffer (in samples)" , ) parser.add_argument( "--eval_dataset" , type=UpperCamelCase_ , help="Path to evaluation dataset to load. If the path begins with `gs://`" " then the dataset will be loaded from a Google Cloud Storage bucket." , ) parser.add_argument( "--num_epochs" , type=UpperCamelCase_ , default=1 , help="Number of epochs to train for." , ) parser.add_argument( "--learning_rate" , type=UpperCamelCase_ , default=1e-4 , help="Learning rate to use for training." , ) parser.add_argument( "--weight_decay_rate" , type=UpperCamelCase_ , default=1e-3 , help="Weight decay rate to use for training." , ) parser.add_argument( "--max_length" , type=UpperCamelCase_ , default=512 , help="Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py" , ) parser.add_argument( "--mlm_probability" , type=UpperCamelCase_ , default=0.15 , help="Fraction of tokens to mask during training." , ) parser.add_argument("--output_dir" , type=UpperCamelCase_ , required=UpperCamelCase_ , help="Path to save model checkpoints to." ) parser.add_argument("--hub_model_id" , type=UpperCamelCase_ , help="Model ID to upload to on the Hugging Face Hub." ) UpperCamelCase_ = parser.parse_args() return args def lowerCAmelCase_ ( UpperCamelCase_ ): try: if args.tpu_name: UpperCamelCase_ = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: UpperCamelCase_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( "Couldn't connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or " "--gcp_project. When running on a TPU VM, use --tpu_name local." ) tf.config.experimental_connect_to_cluster(UpperCamelCase_ ) tf.tpu.experimental.initialize_tpu_system(UpperCamelCase_ ) return tpu def lowerCAmelCase_ ( UpperCamelCase_ ): UpperCamelCase_ = 0 for file in file_list: UpperCamelCase_ = file.split("/" )[-1] UpperCamelCase_ = re.search(r"-\d+-(\d+)\.tfrecord" , UpperCamelCase_ ).group(1 ) UpperCamelCase_ = int(UpperCamelCase_ ) num_samples += sample_count return num_samples def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): UpperCamelCase_ = count_samples(UpperCamelCase_ ) UpperCamelCase_ = tf.data.Dataset.from_tensor_slices(UpperCamelCase_ ) if shuffle: UpperCamelCase_ = dataset.shuffle(len(UpperCamelCase_ ) ) UpperCamelCase_ = tf.data.TFRecordDataset(UpperCamelCase_ , num_parallel_reads=UpperCamelCase_ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here UpperCamelCase_ = dataset.apply(tf.data.experimental.assert_cardinality(UpperCamelCase_ ) ) UpperCamelCase_ = dataset.map(UpperCamelCase_ , num_parallel_calls=UpperCamelCase_ ) if shuffle: assert shuffle_buffer_size is not None UpperCamelCase_ = dataset.shuffle(args.shuffle_buffer_size ) UpperCamelCase_ = dataset.batch(UpperCamelCase_ , drop_remainder=UpperCamelCase_ ) UpperCamelCase_ = dataset.map(UpperCamelCase_ , num_parallel_calls=UpperCamelCase_ ) UpperCamelCase_ = dataset.prefetch(UpperCamelCase_ ) return dataset def lowerCAmelCase_ ( UpperCamelCase_ ): if not args.no_tpu: UpperCamelCase_ = initialize_tpu(UpperCamelCase_ ) UpperCamelCase_ = tf.distribute.TPUStrategy(UpperCamelCase_ ) else: UpperCamelCase_ = tf.distribute.OneDeviceStrategy(device="/gpu:0" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("mixed_bfloat16" ) UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tokenizer ) UpperCamelCase_ = AutoConfig.from_pretrained(args.pretrained_model_config ) UpperCamelCase_ = tokenizer.vocab_size UpperCamelCase_ = tf.io.gfile.glob(os.path.join(args.train_dataset , "*.tfrecord" ) ) if not training_records: raise ValueError(F'''No .tfrecord files found in {args.train_dataset}.''' ) UpperCamelCase_ = tf.io.gfile.glob(os.path.join(args.eval_dataset , "*.tfrecord" ) ) if not eval_records: raise ValueError(F'''No .tfrecord files found in {args.eval_dataset}.''' ) UpperCamelCase_ = count_samples(UpperCamelCase_ ) UpperCamelCase_ = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) UpperCamelCase_ = steps_per_epoch * args.num_epochs with strategy.scope(): UpperCamelCase_ = TFAutoModelForMaskedLM.from_config(UpperCamelCase_ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built UpperCamelCase_ = create_optimizer( num_train_steps=UpperCamelCase_ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=UpperCamelCase_ , metrics=["accuracy"] ) def decode_fn(UpperCamelCase_ ): UpperCamelCase_ = { "input_ids": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), "attention_mask": tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(UpperCamelCase_ , UpperCamelCase_ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. UpperCamelCase_ = DataCollatorForLanguageModeling( tokenizer=UpperCamelCase_ , mlm_probability=args.mlm_probability , mlm=UpperCamelCase_ , return_tensors="tf" ) def mask_with_collator(UpperCamelCase_ ): # TF really needs an isin() function UpperCamelCase_ = ( ~tf.cast(batch["attention_mask"] , tf.bool ) | (batch["input_ids"] == tokenizer.cls_token_id) | (batch["input_ids"] == tokenizer.sep_token_id) ) UpperCamelCase_ = data_collator.tf_mask_tokens( batch["input_ids"] , vocab_size=len(UpperCamelCase_ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=UpperCamelCase_ , ) return batch UpperCamelCase_ = args.per_replica_batch_size * strategy.num_replicas_in_sync UpperCamelCase_ = prepare_dataset( UpperCamelCase_ , decode_fn=UpperCamelCase_ , mask_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ , shuffle=UpperCamelCase_ , shuffle_buffer_size=args.shuffle_buffer_size , ) UpperCamelCase_ = prepare_dataset( UpperCamelCase_ , decode_fn=UpperCamelCase_ , mask_fn=UpperCamelCase_ , batch_size=UpperCamelCase_ , shuffle=UpperCamelCase_ , ) UpperCamelCase_ = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=UpperCamelCase_ ) ) model.fit( UpperCamelCase_ , validation_data=UpperCamelCase_ , epochs=args.num_epochs , callbacks=UpperCamelCase_ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _UpperCAmelCase = parse_args() main(args)
370
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _UpperCamelCase ( _a ): _UpperCamelCase : Dict = '''realm''' def __init__( self: str , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: List[Any]=768 , _SCREAMING_SNAKE_CASE: List[Any]=128 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Tuple=12 , _SCREAMING_SNAKE_CASE: Any=8 , _SCREAMING_SNAKE_CASE: str=3072 , _SCREAMING_SNAKE_CASE: Optional[Any]="gelu_new" , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: List[str]=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Dict=2 , _SCREAMING_SNAKE_CASE: Tuple=0.02 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1e-12 , _SCREAMING_SNAKE_CASE: int=256 , _SCREAMING_SNAKE_CASE: List[Any]=10 , _SCREAMING_SNAKE_CASE: int=1e-3 , _SCREAMING_SNAKE_CASE: Tuple=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=320 , _SCREAMING_SNAKE_CASE: int=13353718 , _SCREAMING_SNAKE_CASE: Optional[int]=5000 , _SCREAMING_SNAKE_CASE: Optional[int]=1 , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: List[str]=2 , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) # Common config UpperCamelCase_ = vocab_size UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = hidden_size UpperCamelCase_ = retriever_proj_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = num_candidates UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = initializer_range UpperCamelCase_ = type_vocab_size UpperCamelCase_ = layer_norm_eps # Reader config UpperCamelCase_ = span_hidden_size UpperCamelCase_ = max_span_width UpperCamelCase_ = reader_layer_norm_eps UpperCamelCase_ = reader_beam_size UpperCamelCase_ = reader_seq_len # Retrieval config UpperCamelCase_ = num_block_records UpperCamelCase_ = searcher_beam_size
371
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
0
import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn.grep_linear': 'encoder.layers.*.attention.gru_rel_pos_linear', 'self_attn.relative_attention_bias': 'encoder.layers.*.attention.rel_attn_embed', 'self_attn.grep_a': 'encoder.layers.*.attention.gru_rel_pos_const', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } _UpperCAmelCase = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: for attribute in key.split("." ): UpperCamelCase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: UpperCamelCase_ = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: UpperCamelCase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase_ = value elif weight_type == "weight_g": UpperCamelCase_ = value elif weight_type == "weight_v": UpperCamelCase_ = value elif weight_type == "bias": UpperCamelCase_ = value else: UpperCamelCase_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = [] UpperCamelCase_ = fairseq_model.state_dict() UpperCamelCase_ = hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase_ = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase_ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCamelCase_ = True if "*" in mapped_key: UpperCamelCase_ = name.split(__lowerCAmelCase )[0].split("." )[-2] UpperCamelCase_ = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: UpperCamelCase_ = '''weight_g''' elif "weight_v" in name: UpperCamelCase_ = '''weight_v''' elif "bias" in name and "relative_attention_bias" not in name: UpperCamelCase_ = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase_ = '''weight''' else: UpperCamelCase_ = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: UpperCamelCase_ = full_name.split("conv_layers." )[-1] UpperCamelCase_ = name.split("." ) UpperCamelCase_ = int(items[0] ) UpperCamelCase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> Dict: UpperCamelCase_ = torch.load(__lowerCAmelCase ) UpperCamelCase_ = WavLMConfigOrig(checkpoint["cfg"] ) UpperCamelCase_ = WavLMOrig(__lowerCAmelCase ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: UpperCamelCase_ = WavLMConfig.from_pretrained(__lowerCAmelCase ) else: UpperCamelCase_ = WavLMConfig() UpperCamelCase_ = WavLMModel(__lowerCAmelCase ) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase ) hf_wavlm.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') _UpperCAmelCase = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
from heapq import heappop, heappush import numpy as np def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> tuple[float | int, list[tuple[int, int]]]: UpperCamelCase_ = grid.shape UpperCamelCase_ = [-1, 1, 0, 0] UpperCamelCase_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] UpperCamelCase_ = [(0, source)], set() UpperCamelCase_ = np.full((rows, cols) , np.inf ) UpperCamelCase_ = 0 UpperCamelCase_ = np.empty((rows, cols) , dtype=_UpperCAmelCase ) UpperCamelCase_ = None while queue: (UpperCamelCase_) = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: UpperCamelCase_ = [] while (x, y) != source: path.append((x, y) ) UpperCamelCase_ = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): UpperCamelCase_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: UpperCamelCase_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) UpperCamelCase_ = dist + 1 UpperCamelCase_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
"""simple docstring""" import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _UpperCAmelCase = sys.version_info >= (3, 1_0) def lowerCAmelCase_ ( UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: return field(default_factory=lambda: default , metadata=UpperCamelCase_ ) @dataclass class _UpperCamelCase : _UpperCamelCase : int _UpperCamelCase : float _UpperCamelCase : str _UpperCamelCase : bool @dataclass class _UpperCamelCase : _UpperCamelCase : int = 4_2 _UpperCamelCase : str = field(default='''toto''' , metadata={'''help''': '''help message'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : bool = False _UpperCamelCase : bool = True _UpperCamelCase : Optional[bool] = None class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = """titi""" _UpperCamelCase : Dict = """toto""" class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Any = """titi""" _UpperCamelCase : Optional[Any] = """toto""" _UpperCamelCase : int = 4_2 @dataclass class _UpperCamelCase : _UpperCamelCase : BasicEnum = "toto" def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = BasicEnum(self.foo ) @dataclass class _UpperCamelCase : _UpperCamelCase : MixedTypeEnum = "toto" def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = MixedTypeEnum(self.foo ) @dataclass class _UpperCamelCase : _UpperCamelCase : Optional[int] = None _UpperCamelCase : Optional[float] = field(default=lowerCAmelCase_ , metadata={'''help''': '''help message'''} ) _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[List[str]] = list_field(default=[] ) _UpperCamelCase : Optional[List[int]] = list_field(default=[] ) @dataclass class _UpperCamelCase : _UpperCamelCase : List[int] = list_field(default=[] ) _UpperCamelCase : List[int] = list_field(default=[1, 2, 3] ) _UpperCamelCase : List[str] = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) _UpperCamelCase : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCamelCase : _UpperCamelCase : List[int] = field() _UpperCamelCase : str = field() _UpperCamelCase : BasicEnum = field() def lowercase ( self: Any ) -> Any: """simple docstring""" UpperCamelCase_ = BasicEnum(self.required_enum ) @dataclass class _UpperCamelCase : _UpperCamelCase : int _UpperCamelCase : "BasicEnum" = field() _UpperCamelCase : "Optional[bool]" = None _UpperCamelCase : "str" = field(default='''toto''' , metadata={'''help''': '''help message'''} ) _UpperCamelCase : "List[str]" = list_field(default=['''Hallo''', '''Bonjour''', '''Hello'''] ) if is_python_no_less_than_3_10: @dataclass class _UpperCamelCase : _UpperCamelCase : bool = False _UpperCamelCase : bool = True _UpperCamelCase : bool | None = None @dataclass class _UpperCamelCase : _UpperCamelCase : int | None = None _UpperCamelCase : float | None = field(default=lowerCAmelCase_ , metadata={'''help''': '''help message'''} ) _UpperCamelCase : str | None = None _UpperCamelCase : list[str] | None = list_field(default=[] ) _UpperCamelCase : list[int] | None = list_field(default=[] ) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Any: """simple docstring""" self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): UpperCamelCase_ = {k: v for k, v in vars(__SCREAMING_SNAKE_CASE ).items() if k != "container"} UpperCamelCase_ = {k: v for k, v in vars(__SCREAMING_SNAKE_CASE ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , __SCREAMING_SNAKE_CASE ) and yy.get("choices" , __SCREAMING_SNAKE_CASE ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](__SCREAMING_SNAKE_CASE ) , yy["type"](__SCREAMING_SNAKE_CASE ) ) del xx["type"], yy["type"] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument("--bar" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument("--baz" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument("--flag" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , const=__SCREAMING_SNAKE_CASE , nargs="?" ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] ((UpperCamelCase_ ) , ) = parser.parse_args_into_dataclasses(__SCREAMING_SNAKE_CASE , look_for_args_file=__SCREAMING_SNAKE_CASE ) self.assertFalse(example.flag ) def lowercase ( self: str ) -> str: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=42 , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--baz" , default="toto" , type=__SCREAMING_SNAKE_CASE , help="help message" ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , const=__SCREAMING_SNAKE_CASE , nargs="?" ) expected.add_argument("--baz" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , const=__SCREAMING_SNAKE_CASE , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=__SCREAMING_SNAKE_CASE , dest="baz" ) expected.add_argument("--opt" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(__SCREAMING_SNAKE_CASE ) for dataclass_type in dataclass_types: UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , opt=__SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 42] , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) UpperCamelCase_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) UpperCamelCase_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) UpperCamelCase_ = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowercase ( self: Any ) -> List[Any]: """simple docstring""" @dataclass class _UpperCamelCase : _UpperCamelCase : Literal["titi", "toto", 4_2] = "toto" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 42) , type=make_choice_type_function(["titi", "toto", 42] ) , ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) UpperCamelCase_ = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) UpperCamelCase_ = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 42 ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual( __SCREAMING_SNAKE_CASE , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) UpperCamelCase_ = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def lowercase ( self: int ) -> List[str]: """simple docstring""" UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--bar" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE , help="help message" ) expected.add_argument("--baz" , default=__SCREAMING_SNAKE_CASE , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--ces" , nargs="+" , default=[] , type=__SCREAMING_SNAKE_CASE ) expected.add_argument("--des" , nargs="+" , default=[] , type=__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(__SCREAMING_SNAKE_CASE ) for dataclass_type in dataclass_types: UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_args([] ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=__SCREAMING_SNAKE_CASE , bar=__SCREAMING_SNAKE_CASE , baz=__SCREAMING_SNAKE_CASE , ces=[] , des=[] ) ) UpperCamelCase_ = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(__SCREAMING_SNAKE_CASE , Namespace(foo=12 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def lowercase ( self: Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument("--required_str" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__SCREAMING_SNAKE_CASE , ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = argparse.ArgumentParser() expected.add_argument("--foo" , type=__SCREAMING_SNAKE_CASE , required=__SCREAMING_SNAKE_CASE ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=__SCREAMING_SNAKE_CASE , ) expected.add_argument("--opt" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE ) expected.add_argument("--baz" , default="toto" , type=__SCREAMING_SNAKE_CASE , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=__SCREAMING_SNAKE_CASE ) self.argparsersEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict ) -> List[Any]: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } UpperCamelCase_ = parser.parse_dict(__SCREAMING_SNAKE_CASE )[0] UpperCamelCase_ = BasicExample(**__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, "extra": 42, } self.assertRaises(__SCREAMING_SNAKE_CASE , parser.parse_dict , __SCREAMING_SNAKE_CASE , allow_extra_keys=__SCREAMING_SNAKE_CASE ) def lowercase ( self: Any ) -> int: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , "temp_json" ) os.mkdir(__SCREAMING_SNAKE_CASE ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] UpperCamelCase_ = BasicExample(**__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "foo": 12, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase_ = os.path.join(__SCREAMING_SNAKE_CASE , "temp_yaml" ) os.mkdir(__SCREAMING_SNAKE_CASE ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase_ = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] UpperCamelCase_ = BasicExample(**__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple ) -> str: """simple docstring""" UpperCamelCase_ = HfArgumentParser(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( snake_case_ ): _UpperCamelCase : Optional[Any] = ['''input_features'''] def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: str=80 , _SCREAMING_SNAKE_CASE: List[Any]=16000 , _SCREAMING_SNAKE_CASE: Tuple=160 , _SCREAMING_SNAKE_CASE: int=30 , _SCREAMING_SNAKE_CASE: Optional[Any]=400 , _SCREAMING_SNAKE_CASE: str=0.0 , _SCREAMING_SNAKE_CASE: int=False , **_SCREAMING_SNAKE_CASE: int , ) -> Union[str, Any]: """simple docstring""" super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = n_fft UpperCamelCase_ = hop_length UpperCamelCase_ = chunk_length UpperCamelCase_ = chunk_length * sampling_rate UpperCamelCase_ = self.n_samples // hop_length UpperCamelCase_ = sampling_rate UpperCamelCase_ = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=_SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> np.ndarray: """simple docstring""" UpperCamelCase_ = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) UpperCamelCase_ = log_spec[:, :-1] UpperCamelCase_ = np.maximum(_SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase_ = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase ( _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[int] = 0.0 ) -> List[np.ndarray]: """simple docstring""" if attention_mask is not None: UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase_ = [] for vector, length in zip(_SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase_ = padding_value normed_input_values.append(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: int , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Dict = True , _SCREAMING_SNAKE_CASE: str = None , _SCREAMING_SNAKE_CASE: List[str] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: List[Any] = "max_length" , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: str = None , _SCREAMING_SNAKE_CASE: List[Any] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) UpperCamelCase_ = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase_ = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase_ = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase_ = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase_ = [np.asarray([raw_speech] ).T] UpperCamelCase_ = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding UpperCamelCase_ = self.pad( _SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase_ = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) UpperCamelCase_ = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format UpperCamelCase_ = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) UpperCamelCase_ = [self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase_ = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase_ = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase_ = padded_inputs.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return padded_inputs def lowercase ( self: Union[str, Any] ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
354
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
0
"""simple docstring""" from math import factorial, radians def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 18 , UpperCamelCase_ = 10 ) -> float: UpperCamelCase_ = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians UpperCamelCase_ = radians(_A ) UpperCamelCase_ = angle_in_radians UpperCamelCase_ = 3 UpperCamelCase_ = -1 for _ in range(_A ): result += (b * (angle_in_radians**a)) / factorial(_A ) UpperCamelCase_ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(_A , _A ) if __name__ == "__main__": __import__('doctest').testmod()
355
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class _UpperCamelCase ( snake_case_ ): _UpperCamelCase : int = '''lilt''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int=30522 , _SCREAMING_SNAKE_CASE: List[str]=768 , _SCREAMING_SNAKE_CASE: Optional[int]=12 , _SCREAMING_SNAKE_CASE: Any=12 , _SCREAMING_SNAKE_CASE: Dict=3072 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: List[Any]=0.1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=512 , _SCREAMING_SNAKE_CASE: Dict=2 , _SCREAMING_SNAKE_CASE: Tuple=0.02 , _SCREAMING_SNAKE_CASE: Optional[int]=1e-12 , _SCREAMING_SNAKE_CASE: str=0 , _SCREAMING_SNAKE_CASE: List[Any]="absolute" , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=4 , _SCREAMING_SNAKE_CASE: Tuple=1024 , **_SCREAMING_SNAKE_CASE: int , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = classifier_dropout UpperCamelCase_ = channel_shrink_ratio UpperCamelCase_ = max_ad_position_embeddings
356
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
0
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( __lowerCAmelCase , unittest.TestCase ): _UpperCamelCase : List[str] = FunnelTokenizer _UpperCamelCase : List[str] = FunnelTokenizerFast _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Dict = True def lowercase ( self: Any ) -> str: """simple docstring""" super().setUp() UpperCamelCase_ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase ( self: List[Any] , **_SCREAMING_SNAKE_CASE: Any ) -> int: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase ( self: str , **_SCREAMING_SNAKE_CASE: str ) -> Optional[int]: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = '''UNwant\u00E9d,running''' UpperCamelCase_ = '''unwanted, running''' return input_text, output_text def lowercase ( self: List[Any] ) -> int: """simple docstring""" UpperCamelCase_ = self.tokenizer_class(self.vocab_file ) UpperCamelCase_ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [7, 4, 5, 10, 8, 9] ) def lowercase ( self: int ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: UpperCamelCase_ = tokenizer("UNwant\u00E9d,running" ) UpperCamelCase_ = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) UpperCamelCase_ = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
"""simple docstring""" _UpperCAmelCase = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = set() # keep track of all the paths to be checked UpperCamelCase_ = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase_ = queue.pop(0 ) # get the last node from the path UpperCamelCase_ = path[-1] if node not in explored: UpperCamelCase_ = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase_ = list(A__ ) new_path.append(A__ ) queue.append(A__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A__ ) # in case there's no path between the 2 nodes return [] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase_ = [start] UpperCamelCase_ = set(A__ ) # Keep tab on distances from `start` node. UpperCamelCase_ = {start: 0, target: -1} while queue: UpperCamelCase_ = queue.pop(0 ) if node == target: UpperCamelCase_ = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A__ ) queue.append(A__ ) UpperCamelCase_ = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
358
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1024 ) -> str: UpperCamelCase_ = [], [] UpperCamelCase_ = list(zip(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCamelCase_ = sorted_examples[0] def is_too_big(UpperCamelCase_ ): return tok(_UpperCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCamelCase_ = new_src + ' ' + src UpperCamelCase_ = new_tgt + ' ' + tgt if is_too_big(_UpperCAmelCase ) or is_too_big(_UpperCAmelCase ): # cant fit, finalize example finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) UpperCamelCase_ = src, tgt else: # can fit, keep adding UpperCamelCase_ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) return finished_src, finished_tgt def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = Path(_UpperCAmelCase ) save_path.mkdir(exist_ok=_UpperCAmelCase ) for split in ["train"]: UpperCamelCase_ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' UpperCamelCase_ = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] UpperCamelCase_ = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] UpperCamelCase_ = pack_examples(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) print(F'''packed {split} split from {len(_UpperCAmelCase )} examples -> {len(_UpperCAmelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("w" ).write("\n".join(_UpperCAmelCase ) ) Path(save_path / F'''{split}.target''' ).open("w" ).write("\n".join(_UpperCAmelCase ) ) for split in ["val", "test"]: UpperCamelCase_ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.source''' ) shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.target''' ) def lowerCAmelCase_ ( ) -> int: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=_UpperCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=_UpperCAmelCase , default=128 ) parser.add_argument("--data_dir" , type=_UpperCAmelCase ) parser.add_argument("--save_path" , type=_UpperCAmelCase ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_UpperCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Union[str, Any]=13 , _SCREAMING_SNAKE_CASE: Dict=7 , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: int=False , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: int=99 , _SCREAMING_SNAKE_CASE: Any=32 , _SCREAMING_SNAKE_CASE: Dict=5 , _SCREAMING_SNAKE_CASE: str=4 , _SCREAMING_SNAKE_CASE: List[Any]=37 , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE: int=512 , _SCREAMING_SNAKE_CASE: List[Any]=16 , _SCREAMING_SNAKE_CASE: Tuple=2 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.02 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: str=4 , _SCREAMING_SNAKE_CASE: Optional[int]=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = LlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple , ) -> str: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = LlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) UpperCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Any , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict , ) -> Any: """simple docstring""" UpperCamelCase_ = True UpperCamelCase_ = True UpperCamelCase_ = LlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass UpperCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) UpperCamelCase_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and UpperCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ = torch.cat([input_mask, next_mask] , dim=-1 ) UpperCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] UpperCamelCase_ = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )["hidden_states"][0] # select random slice UpperCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ( UpperCamelCase_ ) , ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): _UpperCamelCase : Tuple = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _UpperCamelCase : Optional[int] = (LlamaForCausalLM,) if is_torch_available() else () _UpperCamelCase : Optional[Any] = ( { '''feature-extraction''': LlamaModel, '''text-classification''': LlamaForSequenceClassification, '''text-generation''': LlamaForCausalLM, '''zero-shot''': LlamaForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : int = False _UpperCamelCase : List[str] = False def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = LlamaModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: str ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase_ = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "single_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase_ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase_ = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = 3 UpperCamelCase_ = "multi_label_classification" UpperCamelCase_ = input_dict["input_ids"] UpperCamelCase_ = input_ids.ne(1 ).to(__UpperCamelCase ) UpperCamelCase_ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase_ = LlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() UpperCamelCase_ = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("LLaMA buffers include complex numbers, which breaks this test" ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([("linear",), ("dynamic",)] ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase_ = ids_tensor([1, 10] , config.vocab_size ) UpperCamelCase_ = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase_ = LlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() UpperCamelCase_ = original_model(__UpperCamelCase ).last_hidden_state UpperCamelCase_ = original_model(__UpperCamelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights UpperCamelCase_ = {"type": scaling_type, "factor": 10.0} UpperCamelCase_ = LlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() UpperCamelCase_ = scaled_model(__UpperCamelCase ).last_hidden_state UpperCamelCase_ = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) @require_torch class _UpperCamelCase ( unittest.TestCase ): @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf" , device_map="auto" ) UpperCamelCase_ = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 UpperCamelCase_ = torch.tensor([[-6.65_50, -4.12_27, -4.98_59, -3.24_06, 0.82_62, -3.00_33, 1.29_64, -3.36_99]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase_ = torch.tensor([-12.8281, -7.44_53, -0.46_39, -8.06_25, -7.25_00, -8.00_00, -6.48_83, -7.76_95, -7.84_38, -7.03_12, -6.21_88, -7.13_28, -1.84_96, 1.99_61, -8.62_50, -6.72_27, -12.8281, -6.94_92, -7.07_42, -7.78_52, -7.58_20, -7.90_62, -6.93_75, -7.98_05, -8.34_38, -8.15_62, -8.04_69, -7.62_50, -7.74_22, -7.33_98,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-hf" , device_map="auto" ) UpperCamelCase_ = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 UpperCamelCase_ = torch.tensor([[-2.06_22, -1.27_94, -1.16_38, -0.97_88, -1.46_03, -1.02_38, -1.78_93, -1.44_11]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase_ = torch.tensor([-8.14_06, -8.05_47, 2.74_61, -1.23_44, -0.14_48, -1.82_62, -1.00_20, -1.81_54, -1.68_95, -1.85_16, -2.35_74, -0.92_77, 3.75_98, 6.57_42, -1.29_98, -0.11_77, -8.14_06, -2.96_88, -2.91_99, -3.16_99, -3.52_54, -2.35_55, -2.79_88, -3.41_41, -2.82_62, -4.51_95, -3.33_79, -3.31_64, -2.78_32, -3.02_73] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Logits are not exactly the same, once we fix the instabalities somehow, will update!" ) @slow def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-13b-chat-hf" , device_map="auto" ) UpperCamelCase_ = model(torch.tensor(__UpperCamelCase ) ) # Expected mean on dim = -1 UpperCamelCase_ = torch.tensor([[-0.85_62, -1.85_20, -0.75_51, -0.41_62, -1.51_61, -1.20_38, -2.48_23, -2.32_54]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # slicing logits[0, 0, 0:30] # fmt: off UpperCamelCase_ = torch.tensor([-2.22_27, 4.88_28, 0.90_23, -0.45_78, -0.78_71, -0.10_33, -0.62_21, -0.57_86, -0.78_03, -1.06_74, -1.29_20, -0.15_70, 0.80_08, 2.07_23, -0.94_97, 0.27_71, -2.22_27, -0.76_12, -1.43_46, -1.20_61, -1.64_26, -0.30_00, -0.71_39, -1.19_34, -1.86_91, -1.69_73, -1.59_47, -1.27_05, -0.35_23, -0.55_13] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) @unittest.skip( "Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test" ) @slow def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = [1, 306, 4658, 278, 6593, 310, 2834, 338] UpperCamelCase_ = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-70b-hf" , device_map="auto" ) UpperCamelCase_ = model(torch.tensor(__UpperCamelCase ) ) UpperCamelCase_ = torch.tensor( [[-4.23_27, -3.33_60, -4.66_65, -4.76_31, -1.81_80, -3.41_70, -1.42_11, -3.18_10]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCamelCase , atol=1e-2 , rtol=1e-2 ) # fmt: off UpperCamelCase_ = torch.tensor([-9.49_22, -3.95_51, 1.79_98, -5.67_58, -5.10_55, -5.89_84, -4.83_20, -6.80_86, -6.53_91, -5.61_72, -5.58_20, -5.53_52, 1.78_81, 3.62_89, -6.51_17, -3.47_85, -9.50_00, -6.03_52, -6.81_25, -6.01_95, -6.68_36, -5.47_27, -6.28_12, -6.03_91, -7.33_98, -7.42_97, -7.48_44, -6.58_20, -5.87_89, -5.53_12] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCamelCase , atol=1e-5 , rtol=1e-5 ) @unittest.skip("Model is curently gated" ) @slow def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = "Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi" UpperCamelCase_ = "Simply put, the theory of relativity states that " UpperCamelCase_ = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-13b-chat-hf" ) UpperCamelCase_ = tokenizer.encode(__UpperCamelCase , return_tensors="pt" ) UpperCamelCase_ = LlamaForCausalLM.from_pretrained( "meta-llama/Llama-2-13b-chat-hf" , device_map="sequential" , use_safetensors=__UpperCamelCase ) # greedy generation outputs UpperCamelCase_ = model.generate(__UpperCamelCase , max_new_tokens=64 , top_p=__UpperCamelCase , temperature=1 , do_sample=__UpperCamelCase ) UpperCamelCase_ = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: return math.pow(UpperCamelCase_ , 2 ) - a def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return 2 * x def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = 2.0 while start <= a: UpperCamelCase_ = math.pow(UpperCamelCase_ , 2 ) return start def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 9999 , UpperCamelCase_ = 0.00_00_00_00_00_00_01 ) -> List[Any]: if a < 0: raise ValueError("math domain error" ) UpperCamelCase_ = get_initial_point(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ): UpperCamelCase_ = value UpperCamelCase_ = value - fx(UpperCamelCase_ , UpperCamelCase_ ) / fx_derivative(UpperCamelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
"""simple docstring""" import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class _UpperCamelCase ( UpperCamelCase_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = RoFormerTokenizer _UpperCamelCase : List[Any] = RoFormerTokenizerFast _UpperCamelCase : Tuple = True _UpperCamelCase : Dict = True def lowercase ( self: List[Any] ) -> List[Any]: """simple docstring""" super().setUp() def lowercase ( self: Union[str, Any] , **_SCREAMING_SNAKE_CASE: List[str] ) -> Optional[Any]: """simple docstring""" return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **_a ) def lowercase ( self: List[str] , **_SCREAMING_SNAKE_CASE: int ) -> List[Any]: """simple docstring""" return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **_a ) def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = """永和服装饰品有限公司,今天天气非常好""" UpperCamelCase_ = """永和 服装 饰品 有限公司 , 今 天 天 气 非常 好""" return input_text, output_text def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_chinese_input_output_texts() UpperCamelCase_ = tokenizer.tokenize(_a ) self.assertListEqual(_a , output_text.split() ) UpperCamelCase_ = tokens + [tokenizer.unk_token] UpperCamelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.get_rust_tokenizer() UpperCamelCase_ = self.get_chinese_input_output_texts() UpperCamelCase_ = tokenizer.tokenize(_a ) self.assertListEqual(_a , output_text.split() ) UpperCamelCase_ = tokens + [tokenizer.unk_token] UpperCamelCase_ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" pass def lowercase ( self: List[str] ) -> List[Any]: """simple docstring""" pass def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" pass
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
import datasets from .evaluate import evaluate _UpperCAmelCase = '\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n' _UpperCAmelCase = '\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n' _UpperCAmelCase = '\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric("cuad")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": { "id": datasets.Value("string" ), "prediction_text": datasets.features.Sequence(datasets.Value("string" ) ), }, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://www.atticusprojectai.org/cuad"] , reference_urls=["https://www.atticusprojectai.org/cuad"] , ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Dict: """simple docstring""" UpperCamelCase_ = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCamelCase_ = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCamelCase_ = evaluate(dataset=__SCREAMING_SNAKE_CASE , predictions=__SCREAMING_SNAKE_CASE ) return score
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0
import argparse import struct import unittest class _UpperCamelCase : def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: bytes ) -> None: """simple docstring""" UpperCamelCase_ = data # Initialize hash values UpperCamelCase_ = [ 0X6A09E667, 0XBB67AE85, 0X3C6EF372, 0XA54FF53A, 0X510E527F, 0X9B05688C, 0X1F83D9AB, 0X5BE0CD19, ] # Initialize round constants UpperCamelCase_ = [ 0X428A2F98, 0X71374491, 0XB5C0FBCF, 0XE9B5DBA5, 0X3956C25B, 0X59F111F1, 0X923F82A4, 0XAB1C5ED5, 0XD807AA98, 0X12835B01, 0X243185BE, 0X550C7DC3, 0X72BE5D74, 0X80DEB1FE, 0X9BDC06A7, 0XC19BF174, 0XE49B69C1, 0XEFBE4786, 0X0FC19DC6, 0X240CA1CC, 0X2DE92C6F, 0X4A7484AA, 0X5CB0A9DC, 0X76F988DA, 0X983E5152, 0XA831C66D, 0XB00327C8, 0XBF597FC7, 0XC6E00BF3, 0XD5A79147, 0X06CA6351, 0X14292967, 0X27B70A85, 0X2E1B2138, 0X4D2C6DFC, 0X53380D13, 0X650A7354, 0X766A0ABB, 0X81C2C92E, 0X92722C85, 0XA2BFE8A1, 0XA81A664B, 0XC24B8B70, 0XC76C51A3, 0XD192E819, 0XD6990624, 0XF40E3585, 0X106AA070, 0X19A4C116, 0X1E376C08, 0X2748774C, 0X34B0BCB5, 0X391C0CB3, 0X4ED8AA4A, 0X5B9CCA4F, 0X682E6FF3, 0X748F82EE, 0X78A5636F, 0X84C87814, 0X8CC70208, 0X90BEFFFA, 0XA4506CEB, 0XBEF9A3F7, 0XC67178F2, ] UpperCamelCase_ = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowercase ( _SCREAMING_SNAKE_CASE: bytes ) -> bytes: """simple docstring""" UpperCamelCase_ = b"\x80" + (b"\x00" * (63 - (len(_SCREAMING_SNAKE_CASE ) + 8) % 64)) UpperCamelCase_ = struct.pack(">Q" , (len(_SCREAMING_SNAKE_CASE ) * 8) ) return data + padding + big_endian_integer def lowercase ( self: Tuple ) -> None: """simple docstring""" UpperCamelCase_ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase_ = list(struct.unpack(">16L" , _SCREAMING_SNAKE_CASE ) ) # add 48 0-ed integers words += [0] * 48 UpperCamelCase_ = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase_ = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCamelCase_ = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCamelCase_ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100000000 # Compression UpperCamelCase_ = self.ror(_SCREAMING_SNAKE_CASE , 6 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 11 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 25 ) UpperCamelCase_ = (e & f) ^ ((~e & 0XFFFFFFFF) & g) UpperCamelCase_ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100000000 UpperCamelCase_ = self.ror(_SCREAMING_SNAKE_CASE , 2 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 13 ) ^ self.ror(_SCREAMING_SNAKE_CASE , 22 ) UpperCamelCase_ = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase_ = (sa + maj) % 0X100000000 UpperCamelCase_ = ( g, f, e, ((d + tempa) % 0X100000000), c, b, a, ((tempa + tempa) % 0X100000000), ) UpperCamelCase_ = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase_ = [ ((element + mutated_hash_values[index]) % 0X100000000) for index, element in enumerate(self.hashes ) ] UpperCamelCase_ = "".join([hex(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for value in self.hashes] ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" return 0XFFFFFFFF & (value << (32 - rotations)) | (value >> rotations) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Tuple ) -> None: """simple docstring""" import hashlib UpperCamelCase_ = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(_SCREAMING_SNAKE_CASE ).hash , hashlib.shaaaa(_SCREAMING_SNAKE_CASE ).hexdigest() ) def lowerCAmelCase_ ( ) -> None: import doctest doctest.testmod() UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = bytes(__snake_case , "utf-8" ) print(SHAaaa(__snake_case ).hash ) if __name__ == "__main__": main()
364
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ = tempfile.mkdtemp() # fmt: off UpperCamelCase_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCamelCase_ = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } UpperCamelCase_ = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self: List[str] , **_SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowercase ( self: Any , **_SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase_ = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCamelCase_ = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) UpperCamelCase_ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = image_processor(lowerCamelCase_ , return_tensors="np" ) UpperCamelCase_ = processor(images=lowerCamelCase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase_ = """lower newer""" UpperCamelCase_ = processor(text=lowerCamelCase_ ) UpperCamelCase_ = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self: List[str] ) -> str: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase_ = """lower newer""" UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase_ ): processor() def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase_ = processor.batch_decode(lowerCamelCase_ ) UpperCamelCase_ = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = self.get_image_processor() UpperCamelCase_ = self.get_tokenizer() UpperCamelCase_ = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) UpperCamelCase_ = """lower newer""" UpperCamelCase_ = self.prepare_image_inputs() UpperCamelCase_ = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Tuple = GPTSanJapaneseTokenizer _UpperCamelCase : List[Any] = False _UpperCamelCase : List[Any] = {"""do_clean_text""": False, """add_prefix_space""": False} def lowercase ( self: str ) -> List[Any]: """simple docstring""" super().setUp() # fmt: off UpperCamelCase_ = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCamelCase_ = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCamelCase_ = {"unk_token": "<unk>"} UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(_lowercase ) ) def lowercase ( self: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Dict ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_lowercase ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCamelCase_ = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.get_input_output_texts(_lowercase ) UpperCamelCase_ = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) UpperCamelCase_ = tokenizer.decode(_lowercase , clean_up_tokenization_spaces=_lowercase ) return text, ids def lowercase ( self: Any ) -> Any: """simple docstring""" pass # TODO add if relevant def lowercase ( self: Tuple ) -> Optional[int]: """simple docstring""" pass # TODO add if relevant def lowercase ( self: int ) -> Dict: """simple docstring""" pass # TODO add if relevant def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() # Testing tokenization UpperCamelCase_ = "こんにちは、世界。 こんばんは、㔺界。" UpperCamelCase_ = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCamelCase_ = tokenizer.tokenize(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Testing conversion to ids without special tokens UpperCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) # Testing conversion to ids with special tokens UpperCamelCase_ = tokens + [tokenizer.unk_token] UpperCamelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCamelCase_ = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , _lowercase ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_tokenizer() # Testing tokenization UpperCamelCase_ = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCamelCase_ = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCamelCase_ = tokenizer.encode(_lowercase ) UpperCamelCase_ = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , _lowercase ) @slow def lowercase ( self: str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase_ = "こんにちは、世界。" UpperCamelCase_ = "こんばんは、㔺界。😀" UpperCamelCase_ = "こんにちは、世界。こんばんは、世界。😀" UpperCamelCase_ = tokenizer.encode(prefix_text + input_text ) UpperCamelCase_ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCamelCase_ = tokenizer.encode(_lowercase , prefix_text=_lowercase ) UpperCamelCase_ = tokenizer.decode(_lowercase ) UpperCamelCase_ = tokenizer.decode(_lowercase ) UpperCamelCase_ = tokenizer.decode(_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) @slow def lowercase ( self: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCamelCase_ = "こんにちは、世界。" UpperCamelCase_ = "こんばんは、㔺界。😀" UpperCamelCase_ = len(tokenizer.encode(_lowercase ) ) - 2 UpperCamelCase_ = len(tokenizer.encode(_lowercase ) ) - 2 UpperCamelCase_ = [1] + [0] * (len_prefix + len_text + 1) UpperCamelCase_ = [1] * (len_prefix + len_text + 1) + [0] UpperCamelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCamelCase_ = tokenizer(prefix_text + input_text ).token_type_ids UpperCamelCase_ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCamelCase_ = tokenizer(_lowercase , prefix_text=_lowercase ).token_type_ids self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) self.assertListEqual(_lowercase , _lowercase ) @slow def lowercase ( self: str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase_ = tokenizer.encode("あンいワ" ) UpperCamelCase_ = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCamelCase_ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(_lowercase ) , tokenizer.decode(_lowercase ) ) self.assertEqual(tokenizer.decode(_lowercase ) , tokenizer.decode(_lowercase ) ) self.assertNotEqual(_lowercase , _lowercase ) self.assertNotEqual(_lowercase , _lowercase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowercase ( self: int ) -> Any: """simple docstring""" UpperCamelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCamelCase_ = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCamelCase_ = tokenizer(_lowercase , padding=_lowercase ) UpperCamelCase_ = tokenizer.batch_encode_plus(_lowercase , padding=_lowercase ) # fmt: off UpperCamelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] UpperCamelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCamelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _lowercase ) self.assertListEqual(x_token.token_type_ids , _lowercase ) self.assertListEqual(x_token.attention_mask , _lowercase ) self.assertListEqual(x_token_a.input_ids , _lowercase ) self.assertListEqual(x_token_a.token_type_ids , _lowercase ) self.assertListEqual(x_token_a.attention_mask , _lowercase ) def lowercase ( self: Optional[int] ) -> Dict: """simple docstring""" pass def lowercase ( self: List[str] ) -> Any: """simple docstring""" pass
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = False ) -> List[Any]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) UpperCamelCase_ = input_str.split("_" ) UpperCamelCase_ = 0 if use_pascal else 1 UpperCamelCase_ = words[start_index:] UpperCamelCase_ = [word[0].upper() + word[1:] for word in words_to_capitalize] UpperCamelCase_ = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
from __future__ import annotations def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> list[int]: UpperCamelCase_ = 0 UpperCamelCase_ = len(UpperCamelCase_ ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase_ = i + 1 else: UpperCamelCase_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f'''{two_pointer([2, 7, 1_1, 1_5], 9) = }''')
368
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) UpperCamelCase_ = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCamelCase_ = tokenizer("Hello there" , return_tensors="np" ).input_ids UpperCamelCase_ = tokenizer("Hi I am" , return_tensors="np" ).input_ids UpperCamelCase_ = shift_tokens_right(lowercase_ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase_ = model(lowercase_ , decoder_input_ids=lowercase_ ).logits UpperCamelCase_ = optax.softmax_cross_entropy(lowercase_ , onehot(lowercase_ , logits.shape[-1] ) ).mean() UpperCamelCase_ = -(labels.shape[-1] * loss.item()) UpperCamelCase_ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowerCAmelCase_ ( UpperCamelCase_ ): UpperCamelCase_ = filter(lambda UpperCamelCase_ : p.requires_grad , model.parameters() ) UpperCamelCase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params _UpperCAmelCase = logging.getLogger(__name__) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): if metric == "rouge2": UpperCamelCase_ = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": UpperCamelCase_ = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": UpperCamelCase_ = "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) UpperCamelCase_ = ModelCheckpoint( dirpath=_lowerCamelCase , filename=_lowerCamelCase , monitor=F'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): return EarlyStopping( monitor=F'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=_lowerCamelCase , verbose=_lowerCamelCase , ) class _UpperCamelCase ( pl.Callback ): def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = {f'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_SCREAMING_SNAKE_CASE ) @rank_zero_only def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str=True ) -> List[Any]: """simple docstring""" logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCamelCase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results UpperCamelCase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCamelCase_ = od / "test_results.txt" UpperCamelCase_ = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCamelCase_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) generations_file.parent.mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) with open(_SCREAMING_SNAKE_CASE , "a+" ) as writer: for key in sorted(_SCREAMING_SNAKE_CASE ): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase_ = metrics[key] if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): UpperCamelCase_ = val.item() UpperCamelCase_ = f'''{key}: {val:.6f}\n''' writer.write(_SCREAMING_SNAKE_CASE ) if not save_generations: return if "preds" in metrics: UpperCamelCase_ = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(_SCREAMING_SNAKE_CASE ) @rank_zero_only def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: int ) -> Optional[int]: """simple docstring""" try: UpperCamelCase_ = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase_ = pl_module.model.num_parameters() UpperCamelCase_ = count_trainable_parameters(_SCREAMING_SNAKE_CASE ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: pl.LightningModule ) -> Dict: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "test" ) @rank_zero_only def lowercase ( self: int , _SCREAMING_SNAKE_CASE: pl.Trainer , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[int]: """simple docstring""" save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
370
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Any=13 , _SCREAMING_SNAKE_CASE: List[Any]=7 , _SCREAMING_SNAKE_CASE: List[Any]=True , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Dict=False , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=99 , _SCREAMING_SNAKE_CASE: str=32 , _SCREAMING_SNAKE_CASE: str=5 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: Optional[int]=64 , _SCREAMING_SNAKE_CASE: str="gelu" , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: Tuple=512 , _SCREAMING_SNAKE_CASE: Union[str, Any]=16 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: List[str]=0.02 , _SCREAMING_SNAKE_CASE: Union[str, Any]=3 , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: Optional[int]=2 , _SCREAMING_SNAKE_CASE: List[Any]=2 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: Dict=4 , _SCREAMING_SNAKE_CASE: int=1 , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope UpperCamelCase_ = q_groups UpperCamelCase_ = k_groups UpperCamelCase_ = v_groups UpperCamelCase_ = post_attention_groups UpperCamelCase_ = intermediate_groups UpperCamelCase_ = output_groups def lowercase ( self: Any ) -> Dict: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = SqueezeBertModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = SqueezeBertForMaskedLM(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] ) -> List[str]: """simple docstring""" UpperCamelCase_ = SqueezeBertForQuestionAnswering(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , start_positions=_SCREAMING_SNAKE_CASE , end_positions=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = SqueezeBertForSequenceClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> Dict: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = SqueezeBertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str ) -> Dict: """simple docstring""" UpperCamelCase_ = self.num_choices UpperCamelCase_ = SqueezeBertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase_ = model( _SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() (UpperCamelCase_) = config_and_inputs UpperCamelCase_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) _UpperCamelCase : str = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Any = False _UpperCamelCase : List[Any] = True _UpperCamelCase : int = False def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = SqueezeBertModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , dim=37 ) def lowercase ( self: Dict ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def lowercase ( self: List[Any] ) -> Optional[int]: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = SqueezeBertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_sentencepiece @require_tokenizers @require_torch class _UpperCamelCase ( unittest.TestCase ): @slow def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) UpperCamelCase_ = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE )[0] UpperCamelCase_ = torch.Size((1, 3) ) self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
371
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class _UpperCamelCase ( unittest.TestCase ): def __init__( self: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any]=7 , _SCREAMING_SNAKE_CASE: Any=3 , _SCREAMING_SNAKE_CASE: List[str]=30 , _SCREAMING_SNAKE_CASE: Optional[Any]=400 , _SCREAMING_SNAKE_CASE: str=True , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Optional[Any]=1 / 255 , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: str=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE: List[Any]=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE: Optional[Any]=True , ) -> int: """simple docstring""" UpperCamelCase_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_rescale UpperCamelCase_ = rescale_factor UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std UpperCamelCase_ = do_pad def lowercase ( self: int ) -> List[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: List[Any]=False ) -> List[Any]: """simple docstring""" if not batched: UpperCamelCase_ = image_inputs[0] if isinstance(_SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase_ , UpperCamelCase_ = image.size else: UpperCamelCase_ , UpperCamelCase_ = image.shape[1], image.shape[2] if w < h: UpperCamelCase_ = int(self.size["shortest_edge"] * h / w ) UpperCamelCase_ = self.size["shortest_edge"] elif w > h: UpperCamelCase_ = self.size["shortest_edge"] UpperCamelCase_ = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase_ = self.size["shortest_edge"] UpperCamelCase_ = self.size["shortest_edge"] else: UpperCamelCase_ = [] for image in image_inputs: UpperCamelCase_ , UpperCamelCase_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _UpperCamelCase ( a_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DetrImageProcessor if is_vision_available() else None def lowercase ( self: str ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = DetrImageProcessingTester(self ) @property def lowercase ( self: Dict ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_rescale" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "rescale_factor" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_pad" ) ) def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , _SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> Union[str, Any]: """simple docstring""" pass def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self: Tuple ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values UpperCamelCase_ , UpperCamelCase_ = self.image_processor_tester.get_expected_values(_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase ( self: Tuple ) -> Any: """simple docstring""" UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"image_id": 39769, "annotations": target} # encode them UpperCamelCase_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) UpperCamelCase_ = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _SCREAMING_SNAKE_CASE ) ) # verify orig_size UpperCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _SCREAMING_SNAKE_CASE ) ) @slow def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCamelCase_ = json.loads(f.read() ) UpperCamelCase_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} UpperCamelCase_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCamelCase_ = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) UpperCamelCase_ = image_processing(images=_SCREAMING_SNAKE_CASE , annotations=_SCREAMING_SNAKE_CASE , masks_path=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # verify pixel values UpperCamelCase_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor([0.27_96, 0.31_38, 0.34_81] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase_ = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , _SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , _SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , _SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , _SCREAMING_SNAKE_CASE ) ) # verify masks UpperCamelCase_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , _SCREAMING_SNAKE_CASE ) # verify orig_size UpperCamelCase_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , _SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , _SCREAMING_SNAKE_CASE ) )
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _UpperCAmelCase = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _UpperCAmelCase = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _UpperCAmelCase = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] = 1 , _SCREAMING_SNAKE_CASE: str = 4 , ) -> Optional[Any]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_snake_case , hypotheses=_snake_case , min_len=_snake_case , max_len=_snake_case ) }
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } _UpperCAmelCase = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } _UpperCAmelCase = { 'vinai/phobert-base': 2_5_6, 'vinai/phobert-large': 2_5_6, } def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: UpperCamelCase_ = set() UpperCamelCase_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase_ = char UpperCamelCase_ = set(UpperCamelCase__ ) return pairs class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]="<s>" , _SCREAMING_SNAKE_CASE: int="</s>" , _SCREAMING_SNAKE_CASE: Tuple="</s>" , _SCREAMING_SNAKE_CASE: Optional[Any]="<s>" , _SCREAMING_SNAKE_CASE: Optional[int]="<unk>" , _SCREAMING_SNAKE_CASE: Dict="<pad>" , _SCREAMING_SNAKE_CASE: Any="<mask>" , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> Any: """simple docstring""" super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = merges_file UpperCamelCase_ = {} UpperCamelCase_ = 0 UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = 3 self.add_from_file(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: UpperCamelCase_ = merges_handle.read().split("\n" )[:-1] UpperCamelCase_ = [tuple(merge.split()[:-1] ) for merge in merges] UpperCamelCase_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase_ = {} def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple = None , _SCREAMING_SNAKE_CASE: Optional[int] = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Any = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" return len(self.encoder ) def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> List[Any]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: UpperCamelCase_ = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase_ = bigram UpperCamelCase_ = [] UpperCamelCase_ = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: UpperCamelCase_ = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase_ = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase_ = tuple(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: UpperCamelCase_ = get_pairs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = '''@@ '''.join(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = word[:-4] UpperCamelCase_ = word return word def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = re.findall(R"\S+\n?" , _SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> Optional[Any]: """simple docstring""" return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = ''' '''.join(_SCREAMING_SNAKE_CASE ).replace("@@ " , "" ).strip() return out_string def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , _SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Any: """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as fd: self.add_from_file(_SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return UpperCamelCase_ = f.readlines() for lineTmp in lines: UpperCamelCase_ = lineTmp.strip() UpperCamelCase_ = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected \'<token> <cnt>\'" ) UpperCamelCase_ = line[:idx] UpperCamelCase_ = len(self.encoder )
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0