code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def lowerCAmelCase_ ( UpperCamelCase_ = 50 ) -> int: UpperCamelCase_ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0 ) -> Optional[Any]: # Format the message. if name is None: UpperCamelCase_ = None else: UpperCamelCase_ = "." * max(0 , spaces - 2 ) + "# {:" + str(50 - spaces ) + "s}" UpperCamelCase_ = fmt.format(UpperCamelCase_ ) # Print and recurse (if needed). if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if msg is not None: print(UpperCamelCase_ ) for k in val.keys(): recursive_print(UpperCamelCase_ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase_ , torch.Tensor ): print(UpperCamelCase_ , ":" , val.size() ) else: print(UpperCamelCase_ , ":" , UpperCamelCase_ ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCamelCase_ = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase_ = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase_ = param.view(*UpperCamelCase_ ) UpperCamelCase_ = param.transpose(0 , 2 ) UpperCamelCase_ = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase_ = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase_ = param.view(*UpperCamelCase_ ) UpperCamelCase_ = param.transpose(0 , 1 ).contiguous() UpperCamelCase_ = param.view(*UpperCamelCase_ ) return param def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: # The converted output model. UpperCamelCase_ = {} # old versions did not store training args UpperCamelCase_ = input_state_dict.get("args" , UpperCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase_ = ds_args.padded_vocab_size UpperCamelCase_ = ds_args.max_position_embeddings UpperCamelCase_ = ds_args.hidden_size UpperCamelCase_ = ds_args.num_layers UpperCamelCase_ = ds_args.num_attention_heads UpperCamelCase_ = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase_ = config.n_head # The hidden_size per head. UpperCamelCase_ = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase_ = input_state_dict["checkpoint_version"] else: UpperCamelCase_ = 0.0 # The model. UpperCamelCase_ = input_state_dict["model"] # The language model. UpperCamelCase_ = model["language_model"] # The embeddings. UpperCamelCase_ = lm["embedding"] # The word embeddings. UpperCamelCase_ = embeddings["word_embeddings"]["weight"] # Truncate the embedding table to vocab_size rows. UpperCamelCase_ = word_embeddings[: config.vocab_size, :] UpperCamelCase_ = word_embeddings # The position embeddings. UpperCamelCase_ = embeddings["position_embeddings"]["weight"] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase_ = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( F'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. UpperCamelCase_ = pos_embeddings # The transformer. UpperCamelCase_ = lm["transformer"] if "transformer" in lm.keys() else lm["encoder"] # The regex to extract layer names. UpperCamelCase_ = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)" ) # The simple map of names for "automated" rules. UpperCamelCase_ = { "attention.dense": ".attn.c_proj.", "self_attention.dense": ".attn.c_proj.", "mlp.dense_h_to_4h": ".mlp.c_fc.", "mlp.dense_4h_to_h": ".mlp.c_proj.", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase_ = layer_re.match(UpperCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase_ = int(m.group(1 ) ) # The name of the operation. UpperCamelCase_ = m.group(2 ) # Is it a weight or a bias? UpperCamelCase_ = m.group(3 ) # The name of the layer. UpperCamelCase_ = F'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("layernorm" ): UpperCamelCase_ = "ln_1" if op_name.startswith("input" ) else "ln_2" UpperCamelCase_ = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase_ = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase_ = torch.tensor(-1e4 , dtype=torch.floataa ) UpperCamelCase_ = masked_bias UpperCamelCase_ = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase_ = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase_ = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase_ = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Store. No change of shape. UpperCamelCase_ = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase_ = megatron_to_transformers[op_name] UpperCamelCase_ = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase_ = transformer["final_layernorm.weight"] UpperCamelCase_ = transformer["final_layernorm.bias"] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase_ = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ) -> int: # Create the argument parser. UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--print-checkpoint-structure" , action="store_true" ) parser.add_argument( "path_to_checkpoint" , type=UpperCamelCase_ , help="Path to the checkpoint file (.zip archive or direct .pt file)" , ) parser.add_argument( "--config_file" , default="" , type=UpperCamelCase_ , help="An optional config json file describing the pre-trained model." , ) UpperCamelCase_ = parser.parse_args() # Extract the basename. UpperCamelCase_ = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(F'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(".zip" ): with zipfile.ZipFile(args.path_to_checkpoint , "r" ) as checkpoint: with checkpoint.open("release/mp_rank_00/model_optim_rng.pt" ) as pytorch_dict: UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" ) else: UpperCamelCase_ = torch.load(args.path_to_checkpoint , map_location="cpu" ) UpperCamelCase_ = input_state_dict.get("args" , UpperCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase_ = "gelu_fast" elif ds_args.openai_gelu: UpperCamelCase_ = "gelu_new" else: UpperCamelCase_ = "gelu" else: # in the very early days this used to be "gelu_new" UpperCamelCase_ = "gelu_new" # Spell out all parameters in case the defaults change. UpperCamelCase_ = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1e-5 , initializer_range=0.02 , summary_type="cls_index" , summary_use_proj=UpperCamelCase_ , summary_activation=UpperCamelCase_ , summary_proj_to_labels=UpperCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , bos_token_id=50256 , eos_token_id=50256 , ) else: UpperCamelCase_ = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase_ = ["GPT2LMHeadModel"] # Convert. print("Converting" ) UpperCamelCase_ = convert_megatron_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase_ , UpperCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase_ = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase_ = "gpt2" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase_ = ds_args.tokenizer_name_or_path else: raise ValueError(F'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: UpperCamelCase_ = "gpt2" UpperCamelCase_ = AutoTokenizer.from_pretrained(UpperCamelCase_ ) UpperCamelCase_ = type(UpperCamelCase_ ).__name__ UpperCamelCase_ = tokenizer_class # Store the config to file. print("Saving config" ) config.save_pretrained(UpperCamelCase_ ) # Save tokenizer based on args print(F'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(UpperCamelCase_ ) # Store the state_dict to file. UpperCamelCase_ = os.path.join(UpperCamelCase_ , "pytorch_model.bin" ) print(F'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''roformer''' def __init__( self: int , _SCREAMING_SNAKE_CASE: List[str]=50000 , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: int=12 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: Optional[Any]=3072 , _SCREAMING_SNAKE_CASE: Dict="gelu" , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Dict=0.1 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: Any=0 , _SCREAMING_SNAKE_CASE: str=False , _SCREAMING_SNAKE_CASE: Optional[int]=True , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> str: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size if embedding_size is None else embedding_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = rotary_value UpperCamelCase_ = use_cache class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Tuple ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase_ = {0: "batch", 1: "sequence"} UpperCamelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> int: if index == number_of_items: return 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = knapsack(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , index + 1 ) if weights[index] <= max_weight: UpperCamelCase_ = values[index] + knapsack( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , max_weight - weights[index] , index + 1 ) return max(UpperCamelCase_ , UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
368
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
0
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _UpperCamelCase : _UpperCamelCase : int _UpperCamelCase : int class _UpperCamelCase : def __init__( self: Dict , _SCREAMING_SNAKE_CASE: int ) -> Dict: """simple docstring""" UpperCamelCase_ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] UpperCamelCase_ = size def __getitem__( self: Dict , _SCREAMING_SNAKE_CASE: int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def lowercase ( self: Tuple ) -> str: """simple docstring""" return self._size def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int ) -> int | None: """simple docstring""" UpperCamelCase_ = deque([start_vertex] ) UpperCamelCase_ = [None] * self.size UpperCamelCase_ = 0 while queue: UpperCamelCase_ = queue.popleft() UpperCamelCase_ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCamelCase_ = current_distance + edge.weight UpperCamelCase_ = distances[edge.destination_vertex] if ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and new_distance >= dest_vertex_distance ): continue UpperCamelCase_ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ): for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ): UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ): UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ): UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
370
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
0
from functools import reduce _UpperCAmelCase = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def lowerCAmelCase_ ( UpperCamelCase_ = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda UpperCamelCase_ , UpperCamelCase_ : str(int(UpperCamelCase_ ) * int(UpperCamelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(UpperCamelCase_ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCAmelCase_ ( UpperCamelCase_ = 8 ) -> str: UpperCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(UpperCamelCase_ ) UpperCamelCase_ = i // 3 UpperCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCamelCase_ = ( chars_incl + random(UpperCamelCase_ , quotient + remainder ) + random(UpperCamelCase_ , UpperCamelCase_ ) + random(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = list(UpperCamelCase_ ) shuffle(UpperCamelCase_ ) return "".join(UpperCamelCase_ ) # random is a generalised function for letters, characters and numbers def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: return "".join(secrets.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: pass # Put your code here... def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> int: pass # Put your code here... def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Any: pass # Put your code here... def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 8 ) -> bool: if len(UpperCamelCase_ ) < min_length: # Your Password must be at least 8 characters long return False UpperCamelCase_ = any(char in ascii_uppercase for char in password ) UpperCamelCase_ = any(char in ascii_lowercase for char in password ) UpperCamelCase_ = any(char in digits for char in password ) UpperCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = int(input("Please indicate the max length of your password: " ).strip() ) UpperCamelCase_ = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(UpperCamelCase_ ) ) print( "Alternative Password generated:" , alternative_password_generator(UpperCamelCase_ , UpperCamelCase_ ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCAmelCase = { 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['ConditionalDetrFeatureExtractor'] _UpperCAmelCase = ['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0
import os import sys import unittest _UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase = os.path.join(git_repo_path, 'src', 'diffusers') class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ = find_backend(" if not is_torch_available():" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") UpperCamelCase_ = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") UpperCamelCase_ = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "torch_and_transformers_and_onnx" ) def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _SCREAMING_SNAKE_CASE ) self.assertIn("torch_and_transformers" , _SCREAMING_SNAKE_CASE ) self.assertIn("flax_and_transformers" , _SCREAMING_SNAKE_CASE ) self.assertIn("torch_and_transformers_and_onnx" , _SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase_ = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "\nCONSTANT = None\n" ) UpperCamelCase_ = create_dummy_object("function" , "'torch'" ) self.assertEqual( _SCREAMING_SNAKE_CASE , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) UpperCamelCase_ = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" UpperCamelCase_ = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" UpperCamelCase_ = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _SCREAMING_SNAKE_CASE )
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _UpperCAmelCase = 'Create a default config file for Accelerate with only a few flags set.' def lowerCAmelCase_ ( UpperCamelCase_="no" , UpperCamelCase_ = default_json_config_file , UpperCamelCase_ = False ) -> Union[str, Any]: UpperCamelCase_ = Path(UpperCamelCase_ ) path.parent.mkdir(parents=UpperCamelCase_ , exist_ok=UpperCamelCase_ ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCamelCase_ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCamelCase_ = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): UpperCamelCase_ = torch.cuda.device_count() UpperCamelCase_ = num_gpus UpperCamelCase_ = False if num_gpus > 1: UpperCamelCase_ = "MULTI_GPU" else: UpperCamelCase_ = "NO" elif is_xpu_available() and use_xpu: UpperCamelCase_ = torch.xpu.device_count() UpperCamelCase_ = num_xpus UpperCamelCase_ = False if num_xpus > 1: UpperCamelCase_ = "MULTI_XPU" else: UpperCamelCase_ = "NO" elif is_npu_available(): UpperCamelCase_ = torch.npu.device_count() UpperCamelCase_ = num_npus UpperCamelCase_ = False if num_npus > 1: UpperCamelCase_ = "MULTI_NPU" else: UpperCamelCase_ = "NO" else: UpperCamelCase_ = 0 UpperCamelCase_ = True UpperCamelCase_ = 1 UpperCamelCase_ = "NO" UpperCamelCase_ = ClusterConfig(**UpperCamelCase_ ) config.to_json_file(UpperCamelCase_ ) return path def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: UpperCamelCase_ = parser.add_parser("default" , parents=UpperCamelCase_ , help=UpperCamelCase_ , formatter_class=UpperCamelCase_ ) parser.add_argument( "--config_file" , default=UpperCamelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=UpperCamelCase_ , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=UpperCamelCase_ ) return parser def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
354
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
0
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _UpperCamelCase ( tf.keras.layers.Layer ): def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: Dict[str, int] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: int = None , _SCREAMING_SNAKE_CASE: int = None ) -> str: """simple docstring""" super().__init__() UpperCamelCase_ = pad_token_id UpperCamelCase_ = max_length UpperCamelCase_ = vocab UpperCamelCase_ = merges UpperCamelCase_ = BytePairTokenizer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , sequence_length=_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: Any , _SCREAMING_SNAKE_CASE: GPTaTokenizer , *_SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ = [" ".join(_SCREAMING_SNAKE_CASE ) for m in tokenizer.bpe_ranks.keys()] UpperCamelCase_ = tokenizer.get_vocab() return cls(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: int , _SCREAMING_SNAKE_CASE: Union[str, os.PathLike] , *_SCREAMING_SNAKE_CASE: List[Any] , **_SCREAMING_SNAKE_CASE: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = GPTaTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return cls.from_tokenizer(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @classmethod def lowercase ( cls: int , _SCREAMING_SNAKE_CASE: Any ) -> List[str]: """simple docstring""" return cls(**_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict ) -> Dict: """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int = None ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.tf_tokenizer(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = tf.ones_like(_SCREAMING_SNAKE_CASE ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCamelCase_ = max_length if max_length is not None else self.max_length if max_length is not None: UpperCamelCase_ , UpperCamelCase_ = pad_model_inputs( _SCREAMING_SNAKE_CASE , max_seq_length=_SCREAMING_SNAKE_CASE , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
355
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } _UpperCAmelCase = { 'albert-base-v1': 5_1_2, 'albert-large-v1': 5_1_2, 'albert-xlarge-v1': 5_1_2, 'albert-xxlarge-v1': 5_1_2, 'albert-base-v2': 5_1_2, 'albert-large-v2': 5_1_2, 'albert-xlarge-v2': 5_1_2, 'albert-xxlarge-v2': 5_1_2, } _UpperCAmelCase = '▁' class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self: str , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: List[Any]="[CLS]" , _SCREAMING_SNAKE_CASE: Tuple="[SEP]" , _SCREAMING_SNAKE_CASE: List[Any]="<unk>" , _SCREAMING_SNAKE_CASE: str="[SEP]" , _SCREAMING_SNAKE_CASE: Any="<pad>" , _SCREAMING_SNAKE_CASE: Dict="[CLS]" , _SCREAMING_SNAKE_CASE: Any="[MASK]" , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: List[str] , ) -> None: """simple docstring""" UpperCamelCase_ = ( AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE , normalized=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token ) UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = do_lower_case UpperCamelCase_ = remove_space UpperCamelCase_ = keep_accents UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def lowercase ( self: int ) -> List[str]: """simple docstring""" return len(self.sp_model ) def lowercase ( self: Dict ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> str: """simple docstring""" if self.remove_space: UpperCamelCase_ = " ".join(inputs.strip().split() ) else: UpperCamelCase_ = inputs UpperCamelCase_ = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: UpperCamelCase_ = unicodedata.normalize("NFKD" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = "".join([c for c in outputs if not unicodedata.combining(_SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: UpperCamelCase_ = outputs.lower() return outputs def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" UpperCamelCase_ = self.preprocess_text(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [] for piece in pieces: if len(_SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): UpperCamelCase_ = self.sp_model.EncodeAsPieces(piece[:-1].replace(_SCREAMING_SNAKE_CASE , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase_ = cur_pieces[1:] else: UpperCamelCase_ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_SCREAMING_SNAKE_CASE ) else: new_pieces.append(_SCREAMING_SNAKE_CASE ) return new_pieces def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any] ) -> List[Any]: """simple docstring""" return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> List[str]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" UpperCamelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = True UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[int] , _SCREAMING_SNAKE_CASE: Optional[List[int]] = None ) -> List[int]: """simple docstring""" UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
356
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[int] = ['''image_processor'''] _UpperCamelCase : str = '''SamImageProcessor''' def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.image_processor UpperCamelCase_ = -10 UpperCamelCase_ = self.image_processor.size["longest_edge"] def __call__( self: str , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: List[str]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> BatchEncoding: """simple docstring""" UpperCamelCase_ = self.image_processor( _SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # pop arguments that are not used in the foward but used nevertheless UpperCamelCase_ = encoding_image_processor["original_sizes"] if hasattr(_SCREAMING_SNAKE_CASE , "numpy" ): # Checks if Torch or TF tensor UpperCamelCase_ = original_sizes.numpy() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self._check_and_preprocess_points( input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = self._normalize_and_convert( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , input_points=_SCREAMING_SNAKE_CASE , input_labels=_SCREAMING_SNAKE_CASE , input_boxes=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , ) return encoding_image_processor def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Tuple="pt" , ) -> str: """simple docstring""" if input_points is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] ) for point in input_points ] else: UpperCamelCase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for point, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCamelCase_ , UpperCamelCase_ = self._pad_points_and_labels(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE ) if input_labels is not None: UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , original_sizes[0] , is_bounding_box=_SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: UpperCamelCase_ = [ self._normalize_coordinates(self.target_size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , is_bounding_box=_SCREAMING_SNAKE_CASE ) for box, original_size in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ] UpperCamelCase_ = np.array(_SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default UpperCamelCase_ = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCamelCase_ = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default UpperCamelCase_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase_ = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCamelCase_ = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase_ = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCamelCase_ = tf.convert_to_tensor(_SCREAMING_SNAKE_CASE ) # point batch size of 1 by default UpperCamelCase_ = tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = max([point.shape[0] for point in input_points] ) UpperCamelCase_ = [] for i, point in enumerate(_SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: UpperCamelCase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCamelCase_ = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = processed_input_points return input_points, input_labels def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple=False ) -> np.ndarray: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = original_size UpperCamelCase_ , UpperCamelCase_ = self.image_processor._get_preprocess_shape(_SCREAMING_SNAKE_CASE , longest_edge=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = deepcopy(_SCREAMING_SNAKE_CASE ).astype(_SCREAMING_SNAKE_CASE ) if is_bounding_box: UpperCamelCase_ = coords.reshape(-1 , 2 , 2 ) UpperCamelCase_ = coords[..., 0] * (new_w / old_w) UpperCamelCase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCamelCase_ = coords.reshape(-1 , 4 ) return coords def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[Any]=None , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Any=None , ) -> Any: """simple docstring""" if input_points is not None: if hasattr(_SCREAMING_SNAKE_CASE , "numpy" ): # Checks for TF or Torch tensor UpperCamelCase_ = input_points.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0] , _SCREAMING_SNAKE_CASE ): raise ValueError("Input points must be a list of list of floating points." ) UpperCamelCase_ = [np.array(_SCREAMING_SNAKE_CASE ) for input_point in input_points] else: UpperCamelCase_ = None if input_labels is not None: if hasattr(_SCREAMING_SNAKE_CASE , "numpy" ): UpperCamelCase_ = input_labels.numpy().tolist() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0] , _SCREAMING_SNAKE_CASE ): raise ValueError("Input labels must be a list of list integers." ) UpperCamelCase_ = [np.array(_SCREAMING_SNAKE_CASE ) for label in input_labels] else: UpperCamelCase_ = None if input_boxes is not None: if hasattr(_SCREAMING_SNAKE_CASE , "numpy" ): UpperCamelCase_ = input_boxes.numpy().tolist() if ( not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0] , _SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0] , _SCREAMING_SNAKE_CASE ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) UpperCamelCase_ = [np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: UpperCamelCase_ = None return input_points, input_labels, input_boxes @property def lowercase ( self: List[str] ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(_SCREAMING_SNAKE_CASE ) ) def lowercase ( self: Union[str, Any] , *_SCREAMING_SNAKE_CASE: Optional[Any] , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> str: """simple docstring""" return self.image_processor.post_process_masks(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva _UpperCAmelCase = '' _UpperCAmelCase = '' _UpperCAmelCase = '' _UpperCAmelCase = 1 # (0 is vertical, 1 is horizontal) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ , UpperCamelCase_ = get_dataset(UpperCamelCase_ , UpperCamelCase_ ) print("Processing..." ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = update_image_and_anno(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) for index, image in enumerate(UpperCamelCase_ ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' UpperCamelCase_ = random_chars(32 ) UpperCamelCase_ = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] UpperCamelCase_ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , UpperCamelCase_ , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(UpperCamelCase_ )} with {file_name}''' ) UpperCamelCase_ = [] for anno in new_annos[index]: UpperCamelCase_ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(UpperCamelCase_ ) with open(F'''/{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> tuple[list, list]: UpperCamelCase_ = [] UpperCamelCase_ = [] for label_file in glob.glob(os.path.join(UpperCamelCase_ , "*.txt" ) ): UpperCamelCase_ = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(UpperCamelCase_ ) as in_file: UpperCamelCase_ = in_file.readlines() UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{label_name}.jpg''' ) UpperCamelCase_ = [] for obj_list in obj_lists: UpperCamelCase_ = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(UpperCamelCase_ ) labels.append(UpperCamelCase_ ) return img_paths, labels def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = 1 ) -> tuple[list, list, list]: UpperCamelCase_ = [] UpperCamelCase_ = [] UpperCamelCase_ = [] for idx in range(len(UpperCamelCase_ ) ): UpperCamelCase_ = [] UpperCamelCase_ = img_list[idx] path_list.append(UpperCamelCase_ ) UpperCamelCase_ = anno_list[idx] UpperCamelCase_ = cva.imread(UpperCamelCase_ ) if flip_type == 1: UpperCamelCase_ = cva.flip(UpperCamelCase_ , UpperCamelCase_ ) for bbox in img_annos: UpperCamelCase_ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: UpperCamelCase_ = cva.flip(UpperCamelCase_ , UpperCamelCase_ ) for bbox in img_annos: UpperCamelCase_ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(UpperCamelCase_ ) new_imgs_list.append(UpperCamelCase_ ) return new_imgs_list, new_annos_lists, path_list def lowerCAmelCase_ ( UpperCamelCase_ = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" UpperCamelCase_ = ascii_lowercase + digits return "".join(random.choice(UpperCamelCase_ ) for _ in range(UpperCamelCase_ ) ) if __name__ == "__main__": main() print('DONE ✅')
358
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCAmelCase = None _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Union[str, Any] = PegasusTokenizer _UpperCamelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Dict=None , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: List[str]="</s>" , _SCREAMING_SNAKE_CASE: int="<unk>" , _SCREAMING_SNAKE_CASE: str="<mask_2>" , _SCREAMING_SNAKE_CASE: Dict="<mask_1>" , _SCREAMING_SNAKE_CASE: List[Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> int: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = vocab_file UpperCamelCase_ = False if not self.vocab_file else True def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: int , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Union[str, Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Any: # Load checkpoint UpperCamelCase_ = torch.load(UpperCamelCase_ , map_location="cpu" ) UpperCamelCase_ = chkpt["model"] # We have the base model one level deeper than the original XLM repository UpperCamelCase_ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase_ = v else: UpperCamelCase_ = v UpperCamelCase_ = chkpt["params"] UpperCamelCase_ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase_ , (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase_ = chkpt["dico_word2id"] UpperCamelCase_ = {s + "</w>" if s.find("@@" ) == -1 and i > 13 else s.replace("@@" , "" ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase_ = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCamelCase_ = pytorch_dump_folder_path + "/" + CONFIG_NAME UpperCamelCase_ = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["vocab_file"] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + "\n" ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(UpperCamelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(UpperCamelCase_ , indent=2 ) + "\n" ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCAmelCase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
from collections import namedtuple import requests from lxml import html # type: ignore _UpperCAmelCase = namedtuple('covid_data', 'cases deaths recovered') def lowerCAmelCase_ ( UpperCamelCase_ = "https://www.worldometers.info/coronavirus/" ) -> covid_data: UpperCamelCase_ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(UpperCamelCase_ ).content ).xpath(UpperCamelCase_ ) ) _UpperCAmelCase = 'Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}' print(fmt.format(*covid_stats()))
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/config.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/config.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/config.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/config.json', 'bert-base-multilingual-uncased': 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json', 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/config.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/config.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json' ), 'bert-base-cased-finetuned-mrpc': 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json', 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json', 'bert-base-german-dbmdz-uncased': 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json', 'cl-tohoku/bert-base-japanese': 'https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json', 'cl-tohoku/bert-base-japanese-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json' ), 'cl-tohoku/bert-base-japanese-char-whole-word-masking': ( 'https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json' ), 'wietsedv/bert-base-dutch-cased': 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json', # See all BERT models at https://huggingface.co/models?filter=bert } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Union[str, Any] = '''bert''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any]=30522 , _SCREAMING_SNAKE_CASE: Union[str, Any]=768 , _SCREAMING_SNAKE_CASE: Tuple=12 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=3072 , _SCREAMING_SNAKE_CASE: Tuple="gelu" , _SCREAMING_SNAKE_CASE: Optional[int]=0.1 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=512 , _SCREAMING_SNAKE_CASE: Optional[Any]=2 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: str=1e-12 , _SCREAMING_SNAKE_CASE: List[Any]=0 , _SCREAMING_SNAKE_CASE: str="absolute" , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: int , ) -> int: """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout class _UpperCamelCase ( lowerCAmelCase_ ): @property def lowercase ( self: Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['MobileViTFeatureExtractor'] _UpperCAmelCase = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCamelCase : def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[int]=13 , _SCREAMING_SNAKE_CASE: Optional[int]=30 , _SCREAMING_SNAKE_CASE: Union[str, Any]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=3 , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: Optional[int]=32 , _SCREAMING_SNAKE_CASE: int=5 , _SCREAMING_SNAKE_CASE: List[Any]=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=37 , _SCREAMING_SNAKE_CASE: Dict="gelu" , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Any=10 , _SCREAMING_SNAKE_CASE: List[Any]=0.02 , _SCREAMING_SNAKE_CASE: int=3 , _SCREAMING_SNAKE_CASE: str=0.6 , _SCREAMING_SNAKE_CASE: Optional[Any]=None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = is_training UpperCamelCase_ = use_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = type_sequence_label_size UpperCamelCase_ = initializer_range UpperCamelCase_ = mask_ratio UpperCamelCase_ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase_ = (image_size // patch_size) ** 2 UpperCamelCase_ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowercase ( self: str ) -> Tuple: """simple docstring""" UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = (self.image_size // self.patch_size) ** 2 UpperCamelCase_ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase_ = 1 UpperCamelCase_ = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = config_and_inputs UpperCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _UpperCamelCase : Union[str, Any] = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Union[str, Any] = False _UpperCamelCase : Optional[int] = False def lowercase ( self: Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = ViTMAEModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" pass def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def lowercase ( self: int ) -> Tuple: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_ = [*signature.parameters.keys()] UpperCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: int ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[Any]: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCamelCase_ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase_ = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: str ) -> str: """simple docstring""" UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = outputs[0].cpu().numpy() UpperCamelCase_ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCamelCase_ = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans UpperCamelCase_ = after_outputs[0].cpu().numpy() UpperCamelCase_ = 0 UpperCamelCase_ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowercase ( self: int ) -> Dict: """simple docstring""" pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowercase ( self: str ) -> List[str]: """simple docstring""" pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowercase ( self: Optional[Any] ) -> List[str]: """simple docstring""" pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" pass @slow def lowercase ( self: Optional[int] ) -> List[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase_ = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): @cached_property def lowercase ( self: str ) -> Optional[int]: """simple docstring""" return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowercase ( self: List[Any] ) -> str: """simple docstring""" np.random.seed(2 ) UpperCamelCase_ = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.default_image_processor UpperCamelCase_ = prepare_img() UpperCamelCase_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase_ = ViTMAEConfig() UpperCamelCase_ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase_ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCamelCase_ = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits UpperCamelCase_ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) )
364
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = ShapEImgaImgPipeline _UpperCamelCase : Any = ['''image'''] _UpperCamelCase : Dict = ['''image'''] _UpperCamelCase : Dict = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _UpperCamelCase : Optional[Any] = False @property def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" return 32 @property def lowercase ( self: Any ) -> Tuple: """simple docstring""" return 32 @property def lowercase ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def lowercase ( self: List[str] ) -> Any: """simple docstring""" return 8 @property def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) UpperCamelCase_ = CLIPVisionModel(_SCREAMING_SNAKE_CASE ) return model @property def lowercase ( self: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = CLIPImageProcessor( crop_size=224 , do_center_crop=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor @property def lowercase ( self: Optional[int] ) -> str: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCamelCase_ = PriorTransformer(**_SCREAMING_SNAKE_CASE ) return model @property def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } UpperCamelCase_ = ShapERenderer(**_SCREAMING_SNAKE_CASE ) return model def lowercase ( self: Dict ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.dummy_prior UpperCamelCase_ = self.dummy_image_encoder UpperCamelCase_ = self.dummy_image_processor UpperCamelCase_ = self.dummy_renderer UpperCamelCase_ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=_SCREAMING_SNAKE_CASE , clip_sample=_SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) UpperCamelCase_ = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any]=0 ) -> Tuple: """simple docstring""" UpperCamelCase_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowercase ( self: List[Any] ) -> int: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = output.images[0] UpperCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase_ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self: List[Any] ) -> Optional[Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase ( self: Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch_device == "cpu" UpperCamelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_SCREAMING_SNAKE_CASE , relax_max_difference=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: int ) -> str: """simple docstring""" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = 1 UpperCamelCase_ = 2 UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase_ = batch_size * [inputs[key]] UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE , num_images_per_prompt=_SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: List[Any] ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) UpperCamelCase_ = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) UpperCamelCase_ = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(0 ) UpperCamelCase_ = pipe( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'facebook/convnextv2-tiny-1k-224': 'https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCamelCase : str = '''convnextv2''' def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: str=3 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: List[str]="gelu" , _SCREAMING_SNAKE_CASE: Dict=0.02 , _SCREAMING_SNAKE_CASE: List[Any]=1e-12 , _SCREAMING_SNAKE_CASE: List[str]=0.0 , _SCREAMING_SNAKE_CASE: Union[str, Any]=224 , _SCREAMING_SNAKE_CASE: Any=None , _SCREAMING_SNAKE_CASE: str=None , **_SCREAMING_SNAKE_CASE: Tuple , ) -> Dict: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = num_stages UpperCamelCase_ = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes UpperCamelCase_ = [3, 3, 9, 3] if depths is None else depths UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_path_rate UpperCamelCase_ = image_size UpperCamelCase_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] UpperCamelCase_ , UpperCamelCase_ = get_aligned_output_features_output_indices( out_features=_SCREAMING_SNAKE_CASE , out_indices=_SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
_UpperCAmelCase = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
import string def lowerCAmelCase_ ( UpperCamelCase_ ) -> None: for key in range(len(string.ascii_uppercase ) ): UpperCamelCase_ = "" for symbol in message: if symbol in string.ascii_uppercase: UpperCamelCase_ = string.ascii_uppercase.find(UpperCamelCase_ ) UpperCamelCase_ = num - key if num < 0: UpperCamelCase_ = num + len(string.ascii_uppercase ) UpperCamelCase_ = translated + string.ascii_uppercase[num] else: UpperCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = input("Encrypted message: " ) UpperCamelCase_ = message.upper() decrypt(UpperCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
368
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata _UpperCAmelCase = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class _UpperCamelCase ( tr.AbstractTransform ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str = " " ) -> str: """simple docstring""" UpperCamelCase_ = sentence_delimiter def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Any: """simple docstring""" return list(_SCREAMING_SNAKE_CASE ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ = [] for sent_idx, sentence in enumerate(_SCREAMING_SNAKE_CASE ): chars.extend(self.process_string(_SCREAMING_SNAKE_CASE ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_SCREAMING_SNAKE_CASE ) - 1: chars.append(self.sentence_delimiter ) return chars _UpperCAmelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: _UpperCAmelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) _UpperCAmelCase = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' _UpperCAmelCase = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' _UpperCAmelCase = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[Any] ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Dict: """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , truth_transform=_SCREAMING_SNAKE_CASE , hypothesis_transform=_SCREAMING_SNAKE_CASE , )["wer"] UpperCamelCase_ = 0 UpperCamelCase_ = 0 for prediction, reference in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = jiwer.compute_measures( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , truth_transform=_SCREAMING_SNAKE_CASE , hypothesis_transform=_SCREAMING_SNAKE_CASE , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
import unittest import numpy as np def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , ): UpperCamelCase_ = np.shape(UpperCamelCase_ ) UpperCamelCase_ = np.shape(UpperCamelCase_ ) UpperCamelCase_ = np.shape(UpperCamelCase_ ) if shape_a[0] != shape_b[0]: UpperCamelCase_ = ( "Expected the same number of rows for A and B. " F'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(UpperCamelCase_ ) if shape_b[1] != shape_c[1]: UpperCamelCase_ = ( "Expected the same number of columns for B and C. " F'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(UpperCamelCase_ ) UpperCamelCase_ = pseudo_inv if a_inv is None: try: UpperCamelCase_ = np.linalg.inv(UpperCamelCase_ ) except np.linalg.LinAlgError: raise ValueError( "Input matrix A is not invertible. Cannot compute Schur complement." ) return mat_c - mat_b.T @ a_inv @ mat_b class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> None: """simple docstring""" UpperCamelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_ = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_ = np.array([[2, 1], [6, 3]] ) UpperCamelCase_ = schur_complement(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.block([[a, b], [b.T, c]] ) UpperCamelCase_ = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE , det_a * det_s ) def lowercase ( self: Optional[int] ) -> None: """simple docstring""" UpperCamelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_ = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_ = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] ) -> None: """simple docstring""" UpperCamelCase_ = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase_ = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase_ = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
370
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCamelCase ( unittest.TestCase ): def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]=7 , _SCREAMING_SNAKE_CASE: str=3 , _SCREAMING_SNAKE_CASE: Optional[int]=18 , _SCREAMING_SNAKE_CASE: Optional[int]=30 , _SCREAMING_SNAKE_CASE: Dict=400 , _SCREAMING_SNAKE_CASE: Optional[Any]=True , _SCREAMING_SNAKE_CASE: str=None , _SCREAMING_SNAKE_CASE: Optional[int]=True , _SCREAMING_SNAKE_CASE: Optional[int]=None , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: Tuple=[0.5, 0.5, 0.5] , _SCREAMING_SNAKE_CASE: Optional[Any]=[0.5, 0.5, 0.5] , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = size if size is not None else {"shortest_edge": 18} UpperCamelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = do_center_crop UpperCamelCase_ = crop_size UpperCamelCase_ = do_normalize UpperCamelCase_ = image_mean UpperCamelCase_ = image_std def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : str = LevitImageProcessor if is_vision_available() else None def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = LevitImageProcessingTester(self ) @property def lowercase ( self: List[str] ) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase ( self: Dict ) -> Dict: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_center_crop" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "size" ) ) def lowercase ( self: Optional[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowercase ( self: Tuple ) -> Tuple: """simple docstring""" pass def lowercase ( self: Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase ( self: Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
371
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
0
import os import pytest from attr import dataclass _UpperCAmelCase = 'us-east-1' # defaults region @dataclass class _UpperCamelCase : _UpperCamelCase : str _UpperCamelCase : Any = '''arn:aws:iam::558105141721:role/sagemaker_execution_role''' _UpperCamelCase : List[str] = { '''task_name''': '''mnli''', '''per_device_train_batch_size''': 1_6, '''per_device_eval_batch_size''': 1_6, '''do_train''': True, '''do_eval''': True, '''do_predict''': True, '''output_dir''': '''/opt/ml/model''', '''overwrite_output_dir''': True, '''max_steps''': 5_0_0, '''save_steps''': 5_5_0_0, } _UpperCamelCase : Tuple = {**hyperparameters, '''max_steps''': 1_0_0_0} @property def lowercase ( self: Tuple ) -> str: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return f'''{self.framework}-transfromers-test''' @property def lowercase ( self: int ) -> str: """simple docstring""" return f'''./tests/sagemaker/scripts/{self.framework}''' @property def lowercase ( self: Dict ) -> str: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: UpperCamelCase_ = SageMakerTestEnvironment(framework=request.cls.framework )
350
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCAmelCase = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCAmelCase = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCAmelCase = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: return float((preds == labels).mean() ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_="binary" ) -> Tuple: UpperCamelCase_ = simple_accuracy(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average=UpperCamelCase_ ) ) return { "accuracy": acc, "f1": fa, } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: UpperCamelCase_ = {} for id_pred, label in zip(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = F'''{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}''' UpperCamelCase_ = id_pred["prediction"] if question_id in question_map: question_map[question_id].append((pred, label) ) else: UpperCamelCase_ = [(pred, label)] UpperCamelCase_ , UpperCamelCase_ = [], [] for question, preds_labels in question_map.items(): UpperCamelCase_ , UpperCamelCase_ = zip(*UpperCamelCase_ ) UpperCamelCase_ = fa_score(y_true=UpperCamelCase_ , y_pred=UpperCamelCase_ , average="macro" ) fas.append(UpperCamelCase_ ) UpperCamelCase_ = int(sum(pred == label for pred, label in preds_labels ) == len(UpperCamelCase_ ) ) ems.append(UpperCamelCase_ ) UpperCamelCase_ = float(sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) ) UpperCamelCase_ = sum(UpperCamelCase_ ) / len(UpperCamelCase_ ) UpperCamelCase_ = float(fa_score(y_true=UpperCamelCase_ , y_pred=[id_pred["prediction"] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: Optional[int] ) -> Optional[int]: """simple docstring""" if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format="numpy" if not self.config_name == "record" and not self.config_name == "multirc" else None , ) def lowercase ( self: List[Any] ) -> int: """simple docstring""" if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "prediction_text": datasets.Value("string" ), }, "references": { "idx": { "passage": datasets.Value("int64" ), "query": datasets.Value("int64" ), }, "answers": datasets.Sequence(datasets.Value("string" ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("int64" ), "paragraph": datasets.Value("int64" ), "question": datasets.Value("int64" ), }, "prediction": datasets.Value("int64" ), }, "references": datasets.Value("int64" ), } else: return { "predictions": datasets.Value("int64" ), "references": datasets.Value("int64" ), } def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Dict: """simple docstring""" if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} elif self.config_name == "cb": return acc_and_fa(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , fa_avg="macro" ) elif self.config_name == "record": UpperCamelCase_ = [ { "qas": [ {"id": ref["idx"]["query"], "answers": [{"text": ans} for ans in ref["answers"]]} for ref in references ] } ] UpperCamelCase_ = {pred["idx"]["query"]: pred["prediction_text"] for pred in predictions} return evaluate_record(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )[0] elif self.config_name == "multirc": return evaluate_multirc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )} else: raise KeyError( "You should supply a configuration name selected in " "[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]" )
328
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
351
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = '''mgp-str''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[int]=[32, 128] , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=3 , _SCREAMING_SNAKE_CASE: Optional[int]=27 , _SCREAMING_SNAKE_CASE: Tuple=38 , _SCREAMING_SNAKE_CASE: Tuple=50257 , _SCREAMING_SNAKE_CASE: List[Any]=30522 , _SCREAMING_SNAKE_CASE: Optional[Any]=768 , _SCREAMING_SNAKE_CASE: Dict=12 , _SCREAMING_SNAKE_CASE: List[str]=12 , _SCREAMING_SNAKE_CASE: Dict=4.0 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Tuple=0.0 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: List[str]=False , _SCREAMING_SNAKE_CASE: int=0.02 , **_SCREAMING_SNAKE_CASE: Any , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = image_size UpperCamelCase_ = patch_size UpperCamelCase_ = num_channels UpperCamelCase_ = max_token_length UpperCamelCase_ = num_character_labels UpperCamelCase_ = num_bpe_labels UpperCamelCase_ = num_wordpiece_labels UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = mlp_ratio UpperCamelCase_ = distilled UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = drop_rate UpperCamelCase_ = qkv_bias UpperCamelCase_ = attn_drop_rate UpperCamelCase_ = drop_path_rate UpperCamelCase_ = output_aa_attentions UpperCamelCase_ = initializer_range
328
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
352
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=lowerCAmelCase_ , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=lowerCAmelCase_ , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(UpperCamelCase_ , os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) ) def lowerCAmelCase_ ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() check_output_dir(UpperCamelCase_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(UpperCamelCase_ , UpperCamelCase_ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(UpperCamelCase_ , UpperCamelCase_ , getattr(UpperCamelCase_ , UpperCamelCase_ ) ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=".ckpt" in model_args.model_name_or_path , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(UpperCamelCase_ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: UpperCamelCase_ = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(UpperCamelCase_ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase_ = tokenizer.lang_code_to_id[data_args.tgt_lang] else: UpperCamelCase_ = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(UpperCamelCase_ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) UpperCamelCase_ = SeqaSeqDataset # Get datasets UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="train" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_train else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="val" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) UpperCamelCase_ = ( dataset_class( UpperCamelCase_ , type_path="test" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or "" , ) if training_args.do_predict else None ) # Initialize our Trainer UpperCamelCase_ = ( build_compute_metrics_fn(data_args.task , UpperCamelCase_ ) if training_args.predict_with_generate else None ) UpperCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase_ , args=UpperCamelCase_ , data_args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , data_collator=SeqaSeqDataCollator( UpperCamelCase_ , UpperCamelCase_ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=UpperCamelCase_ , tokenizer=UpperCamelCase_ , ) UpperCamelCase_ = {} # Training if training_args.do_train: logger.info("*** Train ***" ) UpperCamelCase_ = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) UpperCamelCase_ = train_result.metrics UpperCamelCase_ = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , "trainer_state.json" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate(metric_key_prefix="val" ) UpperCamelCase_ = data_args.n_val UpperCamelCase_ = round(metrics["val_loss"] , 4 ) if trainer.is_world_process_zero(): handle_metrics("val" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.do_predict: logger.info("*** Predict ***" ) UpperCamelCase_ = trainer.predict(test_dataset=UpperCamelCase_ , metric_key_prefix="test" ) UpperCamelCase_ = test_output.metrics UpperCamelCase_ = data_args.n_test if trainer.is_world_process_zero(): UpperCamelCase_ = round(metrics["test_loss"] , 4 ) handle_metrics("test" , UpperCamelCase_ , training_args.output_dir ) all_metrics.update(UpperCamelCase_ ) if training_args.predict_with_generate: UpperCamelCase_ = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) UpperCamelCase_ = lmap(str.strip , UpperCamelCase_ ) write_txt_file(UpperCamelCase_ , os.path.join(training_args.output_dir , "test_generations.txt" ) ) if trainer.is_world_process_zero(): save_json(UpperCamelCase_ , os.path.join(training_args.output_dir , "all_results.json" ) ) return all_metrics def lowerCAmelCase_ ( UpperCamelCase_ ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
328
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class _UpperCamelCase ( datasets.BeamBasedBuilder ): def lowercase ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple ) -> Dict: """simple docstring""" return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Dict ) -> int: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) class _UpperCamelCase ( datasets.BeamBasedBuilder ): def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=_SCREAMING_SNAKE_CASE , ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Tuple ) -> Any: """simple docstring""" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> Union[str, Any]: """simple docstring""" import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( ) -> str: return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def lowerCAmelCase_ ( ) -> Optional[Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class _UpperCamelCase ( lowerCAmelCase_ ): @require_beam def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def lowercase ( self: Dict ) -> Union[str, Any]: """simple docstring""" import apache_beam as beam UpperCamelCase_ = beam.io.parquetio.WriteToParquet UpperCamelCase_ = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: UpperCamelCase_ = partial(_SCREAMING_SNAKE_CASE , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertTrue( os.path.exists( os.path.join( _SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train-00000-of-00002.arrow''' ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _SCREAMING_SNAKE_CASE ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = DummyBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def lowercase ( self: int ) -> Dict: """simple docstring""" UpperCamelCase_ = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase_ = NestedBeamDataset(cache_dir=_SCREAMING_SNAKE_CASE , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , f'''{builder.name}-train.arrow''' ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) UpperCamelCase_ = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _SCREAMING_SNAKE_CASE ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _SCREAMING_SNAKE_CASE ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
353
def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = int(UpperCamelCase_ ) if n_element < 1: UpperCamelCase_ = ValueError("a should be a positive number" ) raise my_error UpperCamelCase_ = [1] UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = (0, 0, 0) UpperCamelCase_ = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _UpperCAmelCase = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _UpperCAmelCase = hamming(int(n)) print('-----------------------------------------------------') print(f'''The list with nth numbers is: {hamming_numbers}''') print('-----------------------------------------------------')
328
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
354
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline _UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''} _UpperCamelCase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} ) _UpperCamelCase : List[Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} def lowercase ( self: List[str] ) -> Any: """simple docstring""" return self._get_superresolution_dummy_components() def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[int]=0 ) -> List[Any]: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = floats_tensor((1, 3, 16, 16) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase ( self: int ) -> Tuple: """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase ( self: Dict ) -> Any: """simple docstring""" self._test_save_load_local() def lowercase ( self: Any ) -> Dict: """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
328
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
355
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _UpperCAmelCase = {'UserAgent': UserAgent().random} def lowerCAmelCase_ ( UpperCamelCase_ ) -> dict: UpperCamelCase_ = script.contents[0] UpperCamelCase_ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _UpperCamelCase : def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ = self.get_json() def lowercase ( self: Union[str, Any] ) -> dict: """simple docstring""" UpperCamelCase_ = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text UpperCamelCase_ = BeautifulSoup(_SCREAMING_SNAKE_CASE , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: Tuple ) -> str: """simple docstring""" return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: List[Any] ) -> str: """simple docstring""" return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["username"] @property def lowercase ( self: int ) -> str: """simple docstring""" return self.user_data["full_name"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["biography"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["business_email"] @property def lowercase ( self: List[Any] ) -> str: """simple docstring""" return self.user_data["external_url"] @property def lowercase ( self: List[Any] ) -> int: """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_follow"]["count"] @property def lowercase ( self: List[str] ) -> int: """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowercase ( self: List[str] ) -> str: """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def lowercase ( self: Optional[int] ) -> bool: """simple docstring""" return self.user_data["is_verified"] @property def lowercase ( self: List[str] ) -> bool: """simple docstring""" return self.user_data["is_private"] def lowerCAmelCase_ ( UpperCamelCase_ = "github" ) -> None: import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase_ = InstagramUser(UpperCamelCase_ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , UpperCamelCase_ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = InstagramUser('github') print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
328
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
356
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _UpperCAmelCase = False _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = 'ybelkada/fonts' def lowerCAmelCase_ ( ) -> Dict: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F'''You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ''' "Pix2StructImageProcessor. Please upgrade torch." ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: requires_backends(UpperCamelCase_ , ["torch"] ) _check_torch_version() UpperCamelCase_ = image_tensor.unsqueeze(0 ) UpperCamelCase_ = torch.nn.functional.unfold(UpperCamelCase_ , (patch_height, patch_width) , stride=(patch_height, patch_width) ) UpperCamelCase_ = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , UpperCamelCase_ , UpperCamelCase_ , -1 ) UpperCamelCase_ = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ = 36 , UpperCamelCase_ = "black" , UpperCamelCase_ = "white" , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = 5 , UpperCamelCase_ = None , UpperCamelCase_ = None , ) -> Image.Image: requires_backends(UpperCamelCase_ , "vision" ) # Add new lines so that each line is no more than 80 characters. UpperCamelCase_ = textwrap.TextWrapper(width=80 ) UpperCamelCase_ = wrapper.wrap(text=UpperCamelCase_ ) UpperCamelCase_ = "\n".join(UpperCamelCase_ ) if font_bytes is not None and font_path is None: UpperCamelCase_ = io.BytesIO(UpperCamelCase_ ) elif font_path is not None: UpperCamelCase_ = font_path else: UpperCamelCase_ = hf_hub_download(UpperCamelCase_ , "Arial.TTF" ) UpperCamelCase_ = ImageFont.truetype(UpperCamelCase_ , encoding="UTF-8" , size=UpperCamelCase_ ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. UpperCamelCase_ = ImageDraw.Draw(Image.new("RGB" , (1, 1) , UpperCamelCase_ ) ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = temp_draw.textbbox((0, 0) , UpperCamelCase_ , UpperCamelCase_ ) # Create the actual image with a bit of padding around the text. UpperCamelCase_ = text_width + left_padding + right_padding UpperCamelCase_ = text_height + top_padding + bottom_padding UpperCamelCase_ = Image.new("RGB" , (image_width, image_height) , UpperCamelCase_ ) UpperCamelCase_ = ImageDraw.Draw(UpperCamelCase_ ) draw.text(xy=(left_padding, top_padding) , text=UpperCamelCase_ , fill=UpperCamelCase_ , font=UpperCamelCase_ ) return image def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) -> Union[str, Any]: requires_backends(UpperCamelCase_ , "vision" ) # Convert to PIL image if necessary UpperCamelCase_ = to_pil_image(UpperCamelCase_ ) UpperCamelCase_ = render_text(UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ = max(header_image.width , image.width ) UpperCamelCase_ = int(image.height * (new_width / image.width) ) UpperCamelCase_ = int(header_image.height * (new_width / header_image.width) ) UpperCamelCase_ = Image.new("RGB" , (new_width, new_height + new_header_height) , "white" ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary UpperCamelCase_ = to_numpy_array(UpperCamelCase_ ) if infer_channel_dimension_format(UpperCamelCase_ ) == ChannelDimension.LAST: UpperCamelCase_ = to_channel_dimension_format(UpperCamelCase_ , ChannelDimension.LAST ) return new_image class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : str = ['''flattened_patches'''] def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Dict[str, int] = None , _SCREAMING_SNAKE_CASE: int = 2048 , _SCREAMING_SNAKE_CASE: bool = False , **_SCREAMING_SNAKE_CASE: Optional[Any] , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patch_size if patch_size is not None else {"height": 16, "width": 16} UpperCamelCase_ = do_normalize UpperCamelCase_ = do_convert_rgb UpperCamelCase_ = max_patches UpperCamelCase_ = is_vqa def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: dict , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> np.ndarray: """simple docstring""" requires_backends(self.extract_flattened_patches , "torch" ) _check_torch_version() # convert to torch UpperCamelCase_ = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , ChannelDimension.FIRST ) UpperCamelCase_ = torch.from_numpy(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ , UpperCamelCase_ = patch_size["height"], patch_size["width"] UpperCamelCase_ , UpperCamelCase_ = get_image_size(_SCREAMING_SNAKE_CASE ) # maximize scale s.t. UpperCamelCase_ = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) UpperCamelCase_ = max(min(math.floor(scale * image_height / patch_height ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(min(math.floor(scale * image_width / patch_width ) , _SCREAMING_SNAKE_CASE ) , 1 ) UpperCamelCase_ = max(num_feasible_rows * patch_height , 1 ) UpperCamelCase_ = max(num_feasible_cols * patch_width , 1 ) UpperCamelCase_ = torch.nn.functional.interpolate( image.unsqueeze(0 ) , size=(resized_height, resized_width) , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE , antialias=_SCREAMING_SNAKE_CASE , ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] UpperCamelCase_ = torch_extract_patches(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patches.shape UpperCamelCase_ = patches_shape[1] UpperCamelCase_ = patches_shape[2] UpperCamelCase_ = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] UpperCamelCase_ = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([rows, 1] ).repeat(1 , _SCREAMING_SNAKE_CASE ).reshape([rows * columns, 1] ) UpperCamelCase_ = torch.arange(_SCREAMING_SNAKE_CASE ).reshape([1, columns] ).repeat(_SCREAMING_SNAKE_CASE , 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] UpperCamelCase_ = row_ids.to(torch.floataa ) UpperCamelCase_ = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.cat([row_ids, col_ids, patches] , -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] UpperCamelCase_ = torch.nn.functional.pad(_SCREAMING_SNAKE_CASE , [0, 0, 0, max_patches - (rows * columns)] ).float() UpperCamelCase_ = to_numpy_array(_SCREAMING_SNAKE_CASE ) return result def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: np.ndarray , _SCREAMING_SNAKE_CASE: Optional[Union[str, ChannelDimension]] = None , **_SCREAMING_SNAKE_CASE: List[str] ) -> np.ndarray: """simple docstring""" if image.dtype == np.uinta: UpperCamelCase_ = image.astype(np.floataa ) # take mean across the whole `image` UpperCamelCase_ = np.mean(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = np.std(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(_SCREAMING_SNAKE_CASE , 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: ImageInput , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = None , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[int] = None , _SCREAMING_SNAKE_CASE: Optional[Dict[str, int]] = None , _SCREAMING_SNAKE_CASE: Optional[Union[str, TensorType]] = None , _SCREAMING_SNAKE_CASE: ChannelDimension = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE: List[Any] , ) -> ImageInput: """simple docstring""" UpperCamelCase_ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase_ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase_ = patch_size if patch_size is not None else self.patch_size UpperCamelCase_ = max_patches if max_patches is not None else self.max_patches UpperCamelCase_ = self.is_vqa if kwargs.get("data_format" , _SCREAMING_SNAKE_CASE ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) UpperCamelCase_ = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase_ = [convert_to_rgb(_SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) UpperCamelCase_ = kwargs.pop("font_bytes" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = kwargs.pop("font_path" , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [header_text] * len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [ render_header(_SCREAMING_SNAKE_CASE , header_text[i] , font_bytes=_SCREAMING_SNAKE_CASE , font_path=_SCREAMING_SNAKE_CASE ) for i, image in enumerate(_SCREAMING_SNAKE_CASE ) ] if do_normalize: UpperCamelCase_ = [self.normalize(image=_SCREAMING_SNAKE_CASE ) for image in images] # convert to torch tensor and permute UpperCamelCase_ = [ self.extract_flattened_patches(image=_SCREAMING_SNAKE_CASE , max_patches=_SCREAMING_SNAKE_CASE , patch_size=_SCREAMING_SNAKE_CASE ) for image in images ] # create attention mask in numpy UpperCamelCase_ = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] UpperCamelCase_ = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks} , tensor_type=_SCREAMING_SNAKE_CASE ) return encoded_outputs
328
0
_UpperCAmelCase = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCAmelCase = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] _UpperCAmelCase = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> str: assert len(str(UpperCamelCase_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase_ = year // 100 UpperCamelCase_ = (5 * (century % 4) + 2) % 7 UpperCamelCase_ = year % 100 UpperCamelCase_ = centurian % 12 UpperCamelCase_ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase_ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase_ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
357
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: Any , _SCREAMING_SNAKE_CASE: int = 768 , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Union[str, torch.device]] = None , _SCREAMING_SNAKE_CASE: Optional[torch.dtype] = None , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
328
0
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: UpperCamelCase_ = int(UpperCamelCase_ ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = t // 3600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=300 ) -> str: # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def lowerCAmelCase_ ( UpperCamelCase_ ) -> Any: UpperCamelCase_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCamelCase_ = F'''{elt:.6f}''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else str(UpperCamelCase_ ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _UpperCamelCase : _UpperCamelCase : int = 5 _UpperCamelCase : int = 0.2 def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[str] = None , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional["NotebookTrainingTracker"] = None , _SCREAMING_SNAKE_CASE: int = 300 , ) -> int: """simple docstring""" UpperCamelCase_ = total UpperCamelCase_ = "" if prefix is None else prefix UpperCamelCase_ = leave UpperCamelCase_ = parent UpperCamelCase_ = width UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: bool = False , _SCREAMING_SNAKE_CASE: str = None ) -> List[str]: """simple docstring""" UpperCamelCase_ = value if comment is not None: UpperCamelCase_ = comment if self.last_value is None: UpperCamelCase_ = UpperCamelCase_ = time.time() UpperCamelCase_ = UpperCamelCase_ = value UpperCamelCase_ = UpperCamelCase_ = None UpperCamelCase_ = self.warmup UpperCamelCase_ = 1 self.update_bar(_SCREAMING_SNAKE_CASE ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCamelCase_ = time.time() UpperCamelCase_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCamelCase_ = self.elapsed_time / (value - self.start_value) else: UpperCamelCase_ = None if value >= self.total: UpperCamelCase_ = self.total UpperCamelCase_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCamelCase_ = self.average_time_per_item * (self.total - value) self.update_bar(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = value UpperCamelCase_ = current_time if self.average_time_per_item is None: UpperCamelCase_ = 1 else: UpperCamelCase_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[str]: """simple docstring""" UpperCamelCase_ = " " * (len(str(self.total ) ) - len(str(_SCREAMING_SNAKE_CASE ) )) + str(_SCREAMING_SNAKE_CASE ) if self.elapsed_time is None: UpperCamelCase_ = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: UpperCamelCase_ = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: UpperCamelCase_ = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def lowercase ( self: Dict ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCamelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=_SCREAMING_SNAKE_CASE ) else: self.output.update(disp.HTML(self.html_code ) ) def lowercase ( self: List[Any] ) -> Optional[int]: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=None ) -> Tuple: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = None if column_names is None else [column_names] UpperCamelCase_ = None def lowercase ( self: List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCamelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=_SCREAMING_SNAKE_CASE ) else: self.output.update(disp.HTML(self.html_code ) ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int ) -> List[str]: """simple docstring""" if self.inner_table is None: UpperCamelCase_ = [list(values.keys() ), list(values.values() )] else: UpperCamelCase_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = columns self.inner_table.append([values[c] for c in columns] ) def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: List[Any]=300 ) -> Any: """simple docstring""" UpperCamelCase_ = NotebookProgressBar(_SCREAMING_SNAKE_CASE , prefix=_SCREAMING_SNAKE_CASE , parent=self , width=_SCREAMING_SNAKE_CASE ) return self.child_bar def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = None self.display() class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = False def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Union[str, Any] , **_SCREAMING_SNAKE_CASE: Dict ) -> Dict: """simple docstring""" UpperCamelCase_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) UpperCamelCase_ = NotebookTrainingTracker(state.max_steps , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: int , **_SCREAMING_SNAKE_CASE: List[Any] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) UpperCamelCase_ = False def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int]=None , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> List[Any]: """simple docstring""" if not has_length(_SCREAMING_SNAKE_CASE ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCamelCase_ = self.training_tracker.add_child(len(_SCREAMING_SNAKE_CASE ) ) else: UpperCamelCase_ = NotebookProgressBar(len(_SCREAMING_SNAKE_CASE ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Any , **_SCREAMING_SNAKE_CASE: Tuple ) -> Tuple: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() UpperCamelCase_ = None def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: List[str]=None , **_SCREAMING_SNAKE_CASE: List[str] ) -> List[Any]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCamelCase_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCamelCase_ = state.global_step self.training_tracker.write_line(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any]=None , **_SCREAMING_SNAKE_CASE: List[Any] ) -> str: """simple docstring""" if self.training_tracker is not None: UpperCamelCase_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: UpperCamelCase_ = log["loss"] break if self.first_column == "Epoch": UpperCamelCase_ = int(state.epoch ) else: UpperCamelCase_ = state.global_step UpperCamelCase_ = "eval" for k in metrics: if k.endswith("_loss" ): UpperCamelCase_ = re.sub(R"\_loss$" , "" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = metrics.pop("total_flos" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = metrics.pop("epoch" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = metrics.pop(f'''{metric_key_prefix}_runtime''' , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , _SCREAMING_SNAKE_CASE ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': UpperCamelCase_ = v else: UpperCamelCase_ = k.split("_" ) UpperCamelCase_ = " ".join([part.capitalize() for part in splits[1:]] ) UpperCamelCase_ = v self.training_tracker.write_line(_SCREAMING_SNAKE_CASE ) self.training_tracker.remove_child() UpperCamelCase_ = None # Evaluation takes a long time so we should force the next update. UpperCamelCase_ = True def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: List[str] ) -> List[Any]: """simple docstring""" self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = None
358
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _UpperCAmelCase = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() def lowerCAmelCase_ ( ) -> Optional[int]: UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase_ = parser.parse_args() return args.f def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_="eval" ) -> Any: UpperCamelCase_ = os.path.join(UpperCamelCase_ , F'''{split}_results.json''' ) if os.path.exists(UpperCamelCase_ ): with open(UpperCamelCase_ , "r" ) as f: return json.load(UpperCamelCase_ ) raise ValueError(F'''can\'t find {path}''' ) _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) @slow def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 100 ) @slow def lowercase ( self: Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def lowercase ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.42 ) @slow def lowercase ( self: str ) -> int: """simple docstring""" UpperCamelCase_ = 7 if get_gpu_count() > 1 else 2 UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.get_auto_remove_tmp_dir() UpperCamelCase_ = f''' run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 '''.split() with patch.object(_SCREAMING_SNAKE_CASE , "argv" , _SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase_ = get_results(_SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
328
0
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _UpperCAmelCase = pytest.mark.integration _UpperCAmelCase = {'comet'} _UpperCAmelCase = importlib.util.find_spec('fairseq') is not None _UpperCAmelCase = {'code_eval'} _UpperCAmelCase = os.name == 'nt' _UpperCAmelCase = {'bertscore', 'frugalscore', 'perplexity'} _UpperCAmelCase = importlib.util.find_spec('transformers') is not None def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: @wraps(UpperCamelCase_ ) def wrapper(self , UpperCamelCase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: @wraps(UpperCamelCase_ ) def wrapper(self , UpperCamelCase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: @wraps(UpperCamelCase_ ) def wrapper(self , UpperCamelCase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , UpperCamelCase_ ) return wrapper def lowerCAmelCase_ ( ) -> Optional[Any]: UpperCamelCase_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) @local class _UpperCamelCase ( parameterized.TestCase ): _UpperCamelCase : Any = {} _UpperCamelCase : Dict = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = "[...]" UpperCamelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) ).module_path ) UpperCamelCase_ = datasets.load.import_main_class(metric_module.__name__ , dataset=_SCREAMING_SNAKE_CASE ) # check parameters UpperCamelCase_ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_SCREAMING_SNAKE_CASE , metric_module.__name__ ): with self.use_local_metrics(): try: UpperCamelCase_ = doctest.testmod(_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , raise_on_error=_SCREAMING_SNAKE_CASE ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = "[...]" UpperCamelCase_ = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) ).module_path ) # run doctest with self.use_local_metrics(): UpperCamelCase_ = doctest.testmod(_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , raise_on_error=_SCREAMING_SNAKE_CASE ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_SCREAMING_SNAKE_CASE ): yield else: yield @contextmanager def lowercase ( self: Union[str, Any] ) -> Any: """simple docstring""" def load_local_metric(_SCREAMING_SNAKE_CASE: Dict , *_SCREAMING_SNAKE_CASE: List[str] , **_SCREAMING_SNAKE_CASE: List[Any] ): return load_metric(os.path.join("metrics" , _SCREAMING_SNAKE_CASE ) , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with patch("datasets.load_metric" ) as mock_load_metric: UpperCamelCase_ = load_local_metric yield @classmethod def lowercase ( cls: Dict , _SCREAMING_SNAKE_CASE: int ) -> Union[str, Any]: """simple docstring""" def wrapper(_SCREAMING_SNAKE_CASE: List[Any] ): UpperCamelCase_ = contextmanager(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class _UpperCamelCase ( lowerCAmelCase_ ): def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Any ) -> Optional[int]: """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: UpperCamelCase_ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[str]: import torch def bert_cos_score_idf(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: UpperCamelCase_ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> Any: def load_from_checkpoint(UpperCamelCase_ ): class _UpperCamelCase : def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: List[str] , *_SCREAMING_SNAKE_CASE: str , **_SCREAMING_SNAKE_CASE: Union[str, Any] ) -> List[str]: """simple docstring""" assert len(_SCREAMING_SNAKE_CASE ) == 2 UpperCamelCase_ = [0.19, 0.92] return scores, sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: UpperCamelCase_ = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: UpperCamelCase_ = load_from_checkpoint yield def lowerCAmelCase_ ( ) -> Union[str, Any]: UpperCamelCase_ = load_metric(os.path.join("metrics" , "seqeval" ) ) UpperCamelCase_ = "ERROR" UpperCamelCase_ = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(UpperCamelCase_ , match=re.escape(UpperCamelCase_ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase_ )
359
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: for param in module.parameters(): UpperCamelCase_ = False def lowerCAmelCase_ ( ) -> Dict: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: UpperCamelCase_ = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def lowerCAmelCase_ ( ) -> List[str]: UpperCamelCase_ = datetime.now() UpperCamelCase_ = current_time.strftime("%H:%M:%S" ) return timestamp
328
0
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
360
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase = '▁' _UpperCAmelCase = {'vocab_file': 'spiece.model'} _UpperCAmelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } _UpperCAmelCase = { 'google/pegasus-xsum': 5_1_2, } _UpperCAmelCase = logging.get_logger(__name__) class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: str="<pad>" , _SCREAMING_SNAKE_CASE: Optional[Any]="</s>" , _SCREAMING_SNAKE_CASE: Any="<unk>" , _SCREAMING_SNAKE_CASE: int="<mask_2>" , _SCREAMING_SNAKE_CASE: List[Any]="<mask_1>" , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Optional[int]=103 , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Any]] = None , **_SCREAMING_SNAKE_CASE: Dict , ) -> None: """simple docstring""" UpperCamelCase_ = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) , self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCamelCase_ = additional_special_tokens_extended else: UpperCamelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 , self.offset )] UpperCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token_sent=_SCREAMING_SNAKE_CASE , offset=_SCREAMING_SNAKE_CASE , additional_special_tokens=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = mask_token_sent UpperCamelCase_ = vocab_file UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # add special tokens to encoder dict UpperCamelCase_ = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ = {v: k for k, v in self.encoder.items()} @property def lowercase ( self: Dict ) -> int: """simple docstring""" return len(self.sp_model ) + self.offset def lowercase ( self: int ) -> Dict[str, int]: """simple docstring""" UpperCamelCase_ = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Optional[int] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.__dict__.copy() UpperCamelCase_ = None return state def __setstate__( self: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCamelCase_ = {} UpperCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> int: """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ = self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) return sp_id + self.offset def lowercase ( self: str , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ = self.sp_model.IdToPiece(index - self.offset ) return token def lowercase ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token UpperCamelCase_ = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]=False ) -> Union[str, Any]: """simple docstring""" return 1 def lowercase ( self: int , _SCREAMING_SNAKE_CASE: str ) -> str: """simple docstring""" UpperCamelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: List , _SCREAMING_SNAKE_CASE: Optional[List] = None , _SCREAMING_SNAKE_CASE: bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: List[Any]=None ) -> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase ( self: str , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase_ = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , "wb" ) as fi: UpperCamelCase_ = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
328
0
def lowerCAmelCase_ ( UpperCamelCase_ ) -> Tuple: UpperCamelCase_ = [] UpperCamelCase_ = set({"(", "[", "{"} ) UpperCamelCase_ = set({")", "]", "}"} ) UpperCamelCase_ = {"{": "}", "[": "]", "(": ")"} for i in range(len(UpperCamelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCamelCase_ ) == 0 or (len(UpperCamelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCamelCase_ ) == 0 def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = input("Enter sequence of brackets: " ) if is_balanced(UpperCamelCase_ ): print(UpperCamelCase_ , "is balanced" ) else: print(UpperCamelCase_ , "is not balanced" ) if __name__ == "__main__": main()
361
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCAmelCase = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
328
0
"""simple docstring""" import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _UpperCAmelCase = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] _UpperCAmelCase = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] _UpperCAmelCase = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) _UpperCAmelCase = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) _UpperCAmelCase = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: for tf_name, hf_name in patterns: UpperCamelCase_ = k.replace(UpperCamelCase_ , UpperCamelCase_ ) return k def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> BigBirdPegasusForConditionalGeneration: UpperCamelCase_ = BigBirdPegasusConfig(**UpperCamelCase_ ) UpperCamelCase_ = BigBirdPegasusForConditionalGeneration(UpperCamelCase_ ) UpperCamelCase_ = torch_model.state_dict() UpperCamelCase_ = {} # separating decoder weights UpperCamelCase_ = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} UpperCamelCase_ = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): UpperCamelCase_ = [k.endswith(UpperCamelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCamelCase_ ): continue UpperCamelCase_ = DECODER_PATTERNS UpperCamelCase_ = rename_state_dict_key(UpperCamelCase_ , UpperCamelCase_ ) if new_k not in state_dict: raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): UpperCamelCase_ = v.T UpperCamelCase_ = torch.from_numpy(UpperCamelCase_ ) assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): UpperCamelCase_ = [k.endswith(UpperCamelCase_ ) for ending in KEYS_TO_IGNORE] if any(UpperCamelCase_ ): continue UpperCamelCase_ = REMAINING_PATTERNS UpperCamelCase_ = rename_state_dict_key(UpperCamelCase_ , UpperCamelCase_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): UpperCamelCase_ = v.T UpperCamelCase_ = torch.from_numpy(UpperCamelCase_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' UpperCamelCase_ = mapping["model.embed_positions.weight"] UpperCamelCase_ = mapping.pop("model.embed_positions.weight" ) UpperCamelCase_ , UpperCamelCase_ = torch_model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) UpperCamelCase_ = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], F'''no matches found for the following tf keys {extra}''' return torch_model def lowerCAmelCase_ ( UpperCamelCase_ ) -> Dict: UpperCamelCase_ = tf.train.list_variables(UpperCamelCase_ ) UpperCamelCase_ = {} UpperCamelCase_ = ["global_step"] for name, shape in tqdm(UpperCamelCase_ , desc="converting tf checkpoint to dict" ): UpperCamelCase_ = any(pat in name for pat in ignore_name ) if skip_key: continue UpperCamelCase_ = tf.train.load_variable(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = array return tf_weights def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: UpperCamelCase_ = get_tf_weights_as_numpy(UpperCamelCase_ ) UpperCamelCase_ = convert_bigbird_pegasus(UpperCamelCase_ , UpperCamelCase_ ) torch_model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') _UpperCAmelCase = parser.parse_args() _UpperCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
362
import argparse import json from tqdm import tqdm def lowerCAmelCase_ ( ) -> Tuple: UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=UpperCamelCase_ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=UpperCamelCase_ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=UpperCamelCase_ , help="where to store parsed gold_data_path file" , ) UpperCamelCase_ = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: UpperCamelCase_ = json.load(UpperCamelCase_ ) for dpr_record in tqdm(UpperCamelCase_ ): UpperCamelCase_ = dpr_record["question"] UpperCamelCase_ = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(UpperCamelCase_ ) + "\n" ) if __name__ == "__main__": main()
328
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: int , _SCREAMING_SNAKE_CASE: str = "▁" , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "<unk>" , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "</s>" , _SCREAMING_SNAKE_CASE: Union[str, AddedToken] = "<pad>" , ) -> int: """simple docstring""" UpperCamelCase_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } UpperCamelCase_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCamelCase_ = token_dict["token"] UpperCamelCase_ = Tokenizer(Unigram() ) UpperCamelCase_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) UpperCamelCase_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Digits(individual_digits=_SCREAMING_SNAKE_CASE ), pre_tokenizers.Punctuation(), ] ) UpperCamelCase_ = decoders.Metaspace(replacement=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) UpperCamelCase_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Union[str, List[str]] , _SCREAMING_SNAKE_CASE: int = 8000 , _SCREAMING_SNAKE_CASE: bool = True , ) -> int: """simple docstring""" UpperCamelCase_ = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = [files] self._tokenizer.train(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Union[Iterator[str], Iterator[Iterator[str]]] , _SCREAMING_SNAKE_CASE: int = 8000 , _SCREAMING_SNAKE_CASE: bool = True , ) -> Tuple: """simple docstring""" UpperCamelCase_ = trainers.UnigramTrainer( vocab_size=_SCREAMING_SNAKE_CASE , special_tokens=self.special_tokens_list , show_progress=_SCREAMING_SNAKE_CASE , ) self._tokenizer.train_from_iterator(_SCREAMING_SNAKE_CASE , trainer=_SCREAMING_SNAKE_CASE ) self.add_unk_id() def lowercase ( self: Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ = json.loads(self._tokenizer.to_str() ) UpperCamelCase_ = self.special_tokens["unk"]["id"] UpperCamelCase_ = Tokenizer.from_str(json.dumps(_SCREAMING_SNAKE_CASE ) )
363
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
328
0
from __future__ import annotations _UpperCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> tuple[list[list[int]], list[list[int]]]: UpperCamelCase_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase_ ) ) ] # the reference grid UpperCamelCase_ = 1 UpperCamelCase_ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase_ ) ) ] # the action grid UpperCamelCase_ = init[0] UpperCamelCase_ = init[1] UpperCamelCase_ = 0 UpperCamelCase_ = g + heuristic[x][y] # cost from starting cell to destination cell UpperCamelCase_ = [[f, g, x, y]] UpperCamelCase_ = False # flag that is set when search is complete UpperCamelCase_ = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase_ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCamelCase_ = cell.pop() UpperCamelCase_ = next_cell[2] UpperCamelCase_ = next_cell[3] UpperCamelCase_ = next_cell[1] if x == goal[0] and y == goal[1]: UpperCamelCase_ = True else: for i in range(len(UpperCamelCase_ ) ): # to try out different valid actions UpperCamelCase_ = x + DIRECTIONS[i][0] UpperCamelCase_ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCamelCase_ = g + cost UpperCamelCase_ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCamelCase_ = 1 UpperCamelCase_ = i UpperCamelCase_ = [] UpperCamelCase_ = goal[0] UpperCamelCase_ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCamelCase_ = x - DIRECTIONS[action[x][y]][0] UpperCamelCase_ = y - DIRECTIONS[action[x][y]][1] UpperCamelCase_ = xa UpperCamelCase_ = ya invpath.append([x, y] ) UpperCamelCase_ = [] for i in range(len(UpperCamelCase_ ) ): path.append(invpath[len(UpperCamelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": _UpperCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _UpperCAmelCase = [0, 0] # all coordinates are given in format [y,x] _UpperCAmelCase = [len(grid) - 1, len(grid[0]) - 1] _UpperCAmelCase = 1 # the cost map which pushes the path closer to the goal _UpperCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _UpperCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _UpperCAmelCase = 9_9 _UpperCAmelCase , _UpperCAmelCase = search(grid, init, goal, cost, heuristic) print('ACTION MAP') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
364
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): @register_to_config def __init__( self: List[str] , *, _SCREAMING_SNAKE_CASE: int = 4 , _SCREAMING_SNAKE_CASE: int = 768 , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , ) -> Tuple: """simple docstring""" super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(_SCREAMING_SNAKE_CASE ) ) # parameters for additional clip time embeddings UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # parameters for encoder hidden states UpperCamelCase_ = clip_extra_context_tokens UpperCamelCase_ = nn.Linear( _SCREAMING_SNAKE_CASE , self.clip_extra_context_tokens * cross_attention_dim ) UpperCamelCase_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) def lowercase ( self: Optional[int] , *, _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple ) -> str: """simple docstring""" if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCamelCase_ = image_embeddings.shape[0] UpperCamelCase_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCamelCase_ = classifier_free_guidance_embeddings.expand( _SCREAMING_SNAKE_CASE , -1 ) UpperCamelCase_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCamelCase_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCamelCase_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.clip_image_embeddings_project_to_time_embeddings(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCamelCase_ = self.clip_extra_context_tokens_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = clip_extra_context_tokens.reshape(_SCREAMING_SNAKE_CASE , -1 , self.clip_extra_context_tokens ) UpperCamelCase_ = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCamelCase_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.text_encoder_hidden_states_norm(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
328
0
import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> str: UpperCamelCase_ = BeautifulSoup(requests.get(UpperCamelCase_ , params=UpperCamelCase_ ).content , "html.parser" ) UpperCamelCase_ = soup.find("div" , attrs={"class": "gs_ri"} ) UpperCamelCase_ = div.find("div" , attrs={"class": "gs_fl"} ).find_all("a" ) return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase = { 'title': ( 'Precisely geometry controlled microsupercapacitors for ultrahigh areal ' 'capacitance, volumetric capacitance, and energy density' ), 'journal': 'Chem. Mater.', 'volume': 3_0, 'pages': '3979-3990', 'year': 2_0_1_8, 'hl': 'en', } print(get_citation('https://scholar.google.com/scholar_lookup', params=params))
365
from functools import lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> set: UpperCamelCase_ = 2 UpperCamelCase_ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(UpperCamelCase_ ) if n > 1: factors.add(UpperCamelCase_ ) return factors @lru_cache def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: return len(unique_prime_factors(UpperCamelCase_ ) ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> bool: return len(set(UpperCamelCase_ ) ) in (0, 1) def lowerCAmelCase_ ( UpperCamelCase_ ) -> list: UpperCamelCase_ = 2 while True: # Increment each value of a generated range UpperCamelCase_ = [base + i for i in range(UpperCamelCase_ )] # Run elements through out unique_prime_factors function # Append our target number to the end. UpperCamelCase_ = [upf_len(UpperCamelCase_ ) for x in group] checker.append(UpperCamelCase_ ) # If all numbers in the list are equal, return the group variable. if equality(UpperCamelCase_ ): return group # Increment our base variable by 1 base += 1 def lowerCAmelCase_ ( UpperCamelCase_ = 4 ) -> int: UpperCamelCase_ = run(UpperCamelCase_ ) return results[0] if len(UpperCamelCase_ ) else None if __name__ == "__main__": print(solution())
328
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _UpperCAmelCase = logging.getLogger(__name__) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default='''NER''' , metadata={'''help''': '''Task type to fine tune in training (e.g. NER, POS, etc)'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : bool = field(default=lowerCAmelCase_ , metadata={'''help''': '''Set this flag to use fast tokenization.'''} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _UpperCamelCase : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'''} ) _UpperCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={'''help''': '''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'''} , ) _UpperCamelCase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : bool = field( default=lowerCAmelCase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCAmelCase_ ( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) UpperCamelCase_ = import_module("tasks" ) try: UpperCamelCase_ = getattr(UpperCamelCase_ , model_args.task_type ) UpperCamelCase_ = token_classification_task_clazz() except AttributeError: raise ValueError( F'''Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' F'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , UpperCamelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task UpperCamelCase_ = token_classification_task.get_labels(data_args.labels ) UpperCamelCase_ = dict(enumerate(UpperCamelCase_ ) ) UpperCamelCase_ = len(UpperCamelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase_ , idalabel=UpperCamelCase_ , labelaid={label: i for i, label in enumerate(UpperCamelCase_ )} , cache_dir=model_args.cache_dir , ) UpperCamelCase_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) UpperCamelCase_ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=UpperCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets UpperCamelCase_ = ( TokenClassificationDataset( token_classification_task=UpperCamelCase_ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , labels=UpperCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) UpperCamelCase_ = ( TokenClassificationDataset( token_classification_task=UpperCamelCase_ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , labels=UpperCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(UpperCamelCase_ , UpperCamelCase_ ) -> Tuple[List[int], List[int]]: UpperCamelCase_ = np.argmax(UpperCamelCase_ , axis=2 ) UpperCamelCase_ , UpperCamelCase_ = preds.shape UpperCamelCase_ = [[] for _ in range(UpperCamelCase_ )] UpperCamelCase_ = [[] for _ in range(UpperCamelCase_ )] for i in range(UpperCamelCase_ ): for j in range(UpperCamelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(UpperCamelCase_ ) -> Dict: UpperCamelCase_ , UpperCamelCase_ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), "precision": precision_score(UpperCamelCase_ , UpperCamelCase_ ), "recall": recall_score(UpperCamelCase_ , UpperCamelCase_ ), "f1": fa_score(UpperCamelCase_ , UpperCamelCase_ ), } # Data collator UpperCamelCase_ = DataCollatorWithPadding(UpperCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer UpperCamelCase_ = Trainer( model=UpperCamelCase_ , args=UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , compute_metrics=UpperCamelCase_ , data_collator=UpperCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation UpperCamelCase_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) UpperCamelCase_ = trainer.evaluate() UpperCamelCase_ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , UpperCamelCase_ , UpperCamelCase_ ) writer.write("%s = %s\n" % (key, value) ) results.update(UpperCamelCase_ ) # Predict if training_args.do_predict: UpperCamelCase_ = TokenClassificationDataset( token_classification_task=UpperCamelCase_ , data_dir=data_args.data_dir , tokenizer=UpperCamelCase_ , labels=UpperCamelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = trainer.predict(UpperCamelCase_ ) UpperCamelCase_ , UpperCamelCase_ = align_predictions(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase_ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , UpperCamelCase_ , UpperCamelCase_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions UpperCamelCase_ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(UpperCamelCase_ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return results def lowerCAmelCase_ ( UpperCamelCase_ ) -> Union[str, Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
366
def lowerCAmelCase_ ( UpperCamelCase_ ) -> int: UpperCamelCase_ = len(UpperCamelCase_ ) UpperCamelCase_ = len(matrix[0] ) UpperCamelCase_ = min(UpperCamelCase_ , UpperCamelCase_ ) for row in range(UpperCamelCase_ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase_ ): UpperCamelCase_ = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase_ , UpperCamelCase_ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase_ = True for i in range(row + 1 , UpperCamelCase_ ): if matrix[i][row] != 0: UpperCamelCase_ , UpperCamelCase_ = matrix[i], matrix[row] UpperCamelCase_ = False break if reduce: rank -= 1 for i in range(UpperCamelCase_ ): UpperCamelCase_ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
328
0
from abc import ABC, abstractmethod from typing import List, Optional class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: int ) -> Optional[Any]: """simple docstring""" self.test() def lowercase ( self: List[Any] ) -> Any: """simple docstring""" UpperCamelCase_ = 0 UpperCamelCase_ = False while not completed: if counter == 1: self.reset() UpperCamelCase_ = self.advance() if not self.does_advance(_SCREAMING_SNAKE_CASE ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.update(_SCREAMING_SNAKE_CASE ) counter += 1 if counter > 10000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowercase ( self: Tuple ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: int ) -> List[str]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowercase ( self: int , _SCREAMING_SNAKE_CASE: Tuple=False ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Optional[int] , _SCREAMING_SNAKE_CASE: List[int] ) -> Union[str, Any]: """simple docstring""" super(_SCREAMING_SNAKE_CASE , self ).__init__() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase_ = token_ids UpperCamelCase_ = len(self.token_ids ) UpperCamelCase_ = -1 # the index of the currently fulfilled step UpperCamelCase_ = False def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int ) -> int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False if self.does_advance(_SCREAMING_SNAKE_CASE ): self.fulfilled_idx += 1 UpperCamelCase_ = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase_ = True UpperCamelCase_ = completed else: # failed to make progress. UpperCamelCase_ = True self.reset() return stepped, completed, reset def lowercase ( self: Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = False UpperCamelCase_ = 0 def lowercase ( self: str ) -> List[str]: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: int=False ) -> List[Any]: """simple docstring""" UpperCamelCase_ = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase_ = self.seqlen UpperCamelCase_ = self.fulfilled_idx UpperCamelCase_ = self.completed return new_constraint class _UpperCamelCase : def __init__( self: int , _SCREAMING_SNAKE_CASE: List[List[int]] , _SCREAMING_SNAKE_CASE: Tuple=True ) -> List[Any]: """simple docstring""" UpperCamelCase_ = max([len(_SCREAMING_SNAKE_CASE ) for one in nested_token_ids] ) UpperCamelCase_ = {} for token_ids in nested_token_ids: UpperCamelCase_ = root for tidx, token_id in enumerate(_SCREAMING_SNAKE_CASE ): if token_id not in level: UpperCamelCase_ = {} UpperCamelCase_ = level[token_id] if no_subsets and self.has_subsets(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f''' {nested_token_ids}.''' ) UpperCamelCase_ = root def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: str ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.trie for current_token in current_seq: UpperCamelCase_ = start[current_token] UpperCamelCase_ = list(start.keys() ) return next_tokens def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> int: """simple docstring""" UpperCamelCase_ = self.next_tokens(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) == 0 def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: str ) -> List[Any]: """simple docstring""" UpperCamelCase_ = list(root.values() ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 1 else: return sum([self.count_leaves(_SCREAMING_SNAKE_CASE ) for nn in next_nodes] ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.count_leaves(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) != leaf_count class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[List[int]] ) -> Dict: """simple docstring""" super(_SCREAMING_SNAKE_CASE , self ).__init__() if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase_ = DisjunctiveTrie(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = nested_token_ids UpperCamelCase_ = self.trie.max_height UpperCamelCase_ = [] UpperCamelCase_ = False def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.trie.next_tokens(self.current_seq ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None else: return token_list def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: int ) -> str: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase ( self: int , _SCREAMING_SNAKE_CASE: int ) -> Optional[int]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False if self.does_advance(_SCREAMING_SNAKE_CASE ): self.current_seq.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = True else: UpperCamelCase_ = True self.reset() UpperCamelCase_ = self.trie.reached_leaf(self.current_seq ) UpperCamelCase_ = completed return stepped, completed, reset def lowercase ( self: int ) -> int: """simple docstring""" UpperCamelCase_ = False UpperCamelCase_ = [] def lowercase ( self: Any ) -> Union[str, Any]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Union[str, Any]=False ) -> List[str]: """simple docstring""" UpperCamelCase_ = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase_ = self.seqlen UpperCamelCase_ = self.current_seq UpperCamelCase_ = self.completed return new_constraint class _UpperCamelCase : def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Constraint] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = constraints # max # of steps required to fulfill a given constraint UpperCamelCase_ = max([c.seqlen for c in constraints] ) UpperCamelCase_ = len(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = False self.init_state() def lowercase ( self: Any ) -> str: """simple docstring""" UpperCamelCase_ = [] UpperCamelCase_ = None UpperCamelCase_ = [constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) for constraint in self.constraints] def lowercase ( self: Union[str, Any] ) -> Dict: """simple docstring""" UpperCamelCase_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase ( self: List[str] ) -> Tuple: """simple docstring""" UpperCamelCase_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase_ = constraint.advance() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.append(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.extend(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = self.inprogress_constraint.advance() if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.append(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): token_list.extend(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) == 0: return None else: return token_list def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: Optional[List[int]] ) -> Union[str, Any]: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase_ , UpperCamelCase_ = self.add(_SCREAMING_SNAKE_CASE ) # the entire list of constraints are fulfilled if self.completed: break def lowercase ( self: Optional[int] , _SCREAMING_SNAKE_CASE: int ) -> Optional[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase_ , UpperCamelCase_ = False, False if self.completed: UpperCamelCase_ = True UpperCamelCase_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.inprogress_constraint.update(_SCREAMING_SNAKE_CASE ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase_ = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = pending_constraint.update(_SCREAMING_SNAKE_CASE ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = None if not complete and stepped: UpperCamelCase_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Tuple=True ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase_ = [ constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase_ = self.inprogress_constraint.copy(stateful=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
367
import math def lowerCAmelCase_ ( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(UpperCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _UpperCAmelCase = 'Enter the base and the power separated by a comma: ' _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) _UpperCAmelCase , _UpperCAmelCase = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. _UpperCAmelCase = res(xa, ya) _UpperCAmelCase = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
328
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class _UpperCamelCase ( lowerCAmelCase_ ): _UpperCamelCase : int = '''mctct''' def __init__( self: int , _SCREAMING_SNAKE_CASE: Optional[Any]=8065 , _SCREAMING_SNAKE_CASE: List[str]=1536 , _SCREAMING_SNAKE_CASE: Optional[int]=36 , _SCREAMING_SNAKE_CASE: Optional[int]=6144 , _SCREAMING_SNAKE_CASE: Tuple=4 , _SCREAMING_SNAKE_CASE: str=384 , _SCREAMING_SNAKE_CASE: Union[str, Any]=920 , _SCREAMING_SNAKE_CASE: Tuple=1e-5 , _SCREAMING_SNAKE_CASE: Dict=0.3 , _SCREAMING_SNAKE_CASE: str="relu" , _SCREAMING_SNAKE_CASE: int=0.02 , _SCREAMING_SNAKE_CASE: Any=0.3 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.3 , _SCREAMING_SNAKE_CASE: List[str]=1 , _SCREAMING_SNAKE_CASE: Optional[int]=0 , _SCREAMING_SNAKE_CASE: str=2 , _SCREAMING_SNAKE_CASE: List[str]=1 , _SCREAMING_SNAKE_CASE: Tuple=0.3 , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: Optional[int]=(7,) , _SCREAMING_SNAKE_CASE: List[str]=(3,) , _SCREAMING_SNAKE_CASE: Tuple=80 , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: int=None , _SCREAMING_SNAKE_CASE: Any="sum" , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , **_SCREAMING_SNAKE_CASE: List[str] , ) -> Tuple: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE , pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = intermediate_size UpperCamelCase_ = num_attention_heads UpperCamelCase_ = attention_head_dim UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = layerdrop UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_range UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = eos_token_id UpperCamelCase_ = conv_glu_dim UpperCamelCase_ = conv_dropout UpperCamelCase_ = num_conv_layers UpperCamelCase_ = input_feat_per_channel UpperCamelCase_ = input_channels UpperCamelCase_ = conv_channels UpperCamelCase_ = ctc_loss_reduction UpperCamelCase_ = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCamelCase_ = list(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = list(_SCREAMING_SNAKE_CASE ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.conv_kernel)` == `config.num_conv_layers` " f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
368
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _UpperCAmelCase = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def lowerCAmelCase_ ( UpperCamelCase_ ) -> List[Any]: if isinstance(UpperCamelCase_ , torch.Tensor ): return image elif isinstance(UpperCamelCase_ , PIL.Image.Image ): UpperCamelCase_ = [image] UpperCamelCase_ = [trans(img.convert("RGB" ) ) for img in image] UpperCamelCase_ = torch.stack(UpperCamelCase_ ) return image class _UpperCamelCase ( lowerCAmelCase_ ): def __init__( self: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM UpperCamelCase_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> Optional[Any]: """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: List[str] ) -> int: """simple docstring""" UpperCamelCase_ = min(int(num_inference_steps * strength ) , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowercase ( self: Tuple , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Optional[int] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Optional[int]=None ) -> List[Any]: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCamelCase_ = image.to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(_SCREAMING_SNAKE_CASE )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) # get latents print("add noise to latents at timestep" , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.scheduler.add_noise(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = init_latents return latents @torch.no_grad() def __call__( self: Dict , _SCREAMING_SNAKE_CASE: Union[torch.FloatTensor, PIL.Image.Image] = None , _SCREAMING_SNAKE_CASE: float = 0.8 , _SCREAMING_SNAKE_CASE: int = 1 , _SCREAMING_SNAKE_CASE: Optional[Union[torch.Generator, List[torch.Generator]]] = None , _SCREAMING_SNAKE_CASE: float = 0.0 , _SCREAMING_SNAKE_CASE: int = 50 , _SCREAMING_SNAKE_CASE: Optional[bool] = None , _SCREAMING_SNAKE_CASE: Optional[str] = "pil" , _SCREAMING_SNAKE_CASE: bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" self.check_inputs(_SCREAMING_SNAKE_CASE ) # 2. Preprocess image UpperCamelCase_ = preprocess(_SCREAMING_SNAKE_CASE ) # 3. set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=self.device ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.device ) UpperCamelCase_ = timesteps[:1].repeat(_SCREAMING_SNAKE_CASE ) # 4. Prepare latent variables UpperCamelCase_ = self.prepare_latents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.unet.dtype , self.device , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ = latents # 5. Denoising loop for t in self.progress_bar(_SCREAMING_SNAKE_CASE ): # 1. predict noise model_output UpperCamelCase_ = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , eta=_SCREAMING_SNAKE_CASE , use_clipped_model_output=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample UpperCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
328
0
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _UpperCAmelCase = '\\n\n' _UpperCAmelCase = '\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n' _UpperCAmelCase = '\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to \'cuda\' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 78.22\n >>> print(round(results["perplexities"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric("perplexity")\n >>> input_texts = datasets.load_dataset("wikitext",\n ... "wikitext-2-raw-v1",\n ... split="test")["text"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!=\'\']\n >>> results = perplexity.compute(model_id=\'gpt2\',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n [\'perplexities\', \'mean_perplexity\']\n >>> print(round(results["mean_perplexity"], 2))\n 60.35\n >>> print(round(results["perplexities"][0], 2))\n 81.12\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): def lowercase ( self: List[str] ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: int = 16 , _SCREAMING_SNAKE_CASE: bool = True , _SCREAMING_SNAKE_CASE: Optional[Any]=None ) -> Optional[int]: """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase_ = "cuda" else: UpperCamelCase_ = "cuda" if torch.cuda.is_available() else "cpu" UpperCamelCase_ = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = model.to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase_ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_SCREAMING_SNAKE_CASE ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase_ = model.config.max_length - 1 else: UpperCamelCase_ = model.config.max_length UpperCamelCase_ = tokenizer( _SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , return_tensors="pt" , return_attention_mask=_SCREAMING_SNAKE_CASE , ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = encodings["input_ids"] UpperCamelCase_ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase_ = [] UpperCamelCase_ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = min(start_index + batch_size , len(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase_ = encoded_texts[start_index:end_index] UpperCamelCase_ = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase_ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase_ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_SCREAMING_SNAKE_CASE ), attn_mask] , dim=1 ) UpperCamelCase_ = encoded_batch with torch.no_grad(): UpperCamelCase_ = model(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ).logits UpperCamelCase_ = out_logits[..., :-1, :].contiguous() UpperCamelCase_ = labels[..., 1:].contiguous() UpperCamelCase_ = attn_mask[..., 1:].contiguous() UpperCamelCase_ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _SCREAMING_SNAKE_CASE ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_SCREAMING_SNAKE_CASE )}
369
import re from filelock import FileLock try: import nltk _UpperCAmelCase = True except (ImportError, ModuleNotFoundError): _UpperCAmelCase = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def lowerCAmelCase_ ( UpperCamelCase_ ) -> str: re.sub("<n>" , "" , UpperCamelCase_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase_ ) )
328
0
def lowerCAmelCase_ ( UpperCamelCase_ = 100 ): UpperCamelCase_ = set() UpperCamelCase_ = 0 UpperCamelCase_ = n + 1 # maximum limit for a in range(2 , UpperCamelCase_ ): for b in range(2 , UpperCamelCase_ ): UpperCamelCase_ = a**b # calculates the current power collect_powers.add(UpperCamelCase_ ) # adds the result to the set return len(UpperCamelCase_ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
370
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): _UpperCamelCase : Optional[Any] = DiTPipeline _UpperCamelCase : Any = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _UpperCamelCase : Dict = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } _UpperCamelCase : Optional[int] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _UpperCamelCase : Dict = False def lowercase ( self: str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_SCREAMING_SNAKE_CASE , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_SCREAMING_SNAKE_CASE , ) UpperCamelCase_ = AutoencoderKL() UpperCamelCase_ = DDIMScheduler() UpperCamelCase_ = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict , _SCREAMING_SNAKE_CASE: List[str]=0 ) -> Dict: """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith("mps" ): UpperCamelCase_ = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowercase ( self: Any ) -> List[str]: """simple docstring""" UpperCamelCase_ = "cpu" UpperCamelCase_ = self.get_dummy_components() UpperCamelCase_ = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(**_SCREAMING_SNAKE_CASE ).images UpperCamelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase_ = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) UpperCamelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def lowercase ( self: Optional[int] ) -> Any: """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Optional[int] ) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def lowercase ( self: int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) UpperCamelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) UpperCamelCase_ = ["vase", "umbrella"] UpperCamelCase_ = pipe.get_label_ids(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCamelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
328
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False, False, False @dataclass class _UpperCamelCase : _UpperCamelCase : Optional[int] = None _UpperCamelCase : bool = True _UpperCamelCase : bool = True _UpperCamelCase : Optional[str] = None # Automatically constructed _UpperCamelCase : ClassVar[str] = "dict" _UpperCamelCase : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _UpperCamelCase : str = field(default='''Audio''' , init=lowerCAmelCase_ , repr=lowerCAmelCase_ ) def __call__( self: int ) -> Union[str, Any]: """simple docstring""" return self.pa_type def lowercase ( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, bytes, dict] ) -> dict: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCamelCase_ = BytesIO() sf.write(_SCREAMING_SNAKE_CASE , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCamelCase_ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: UpperCamelCase_ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767 UpperCamelCase_ = BytesIO(bytes() ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: dict , _SCREAMING_SNAKE_CASE: Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: """simple docstring""" if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) UpperCamelCase_ , UpperCamelCase_ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err UpperCamelCase_ = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: UpperCamelCase_ = token_per_repo_id or {} UpperCamelCase_ = path.split("::" )[-1] try: UpperCamelCase_ = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["repo_id"] UpperCamelCase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCamelCase_ = None with xopen(_SCREAMING_SNAKE_CASE , "rb" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: UpperCamelCase_ , UpperCamelCase_ = sf.read(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase_ , UpperCamelCase_ = sf.read(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = array.T if self.mono: UpperCamelCase_ = librosa.to_mono(_SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCamelCase_ = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) UpperCamelCase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase ( self: Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) UpperCamelCase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): UpperCamelCase_ = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: UpperCamelCase_ = storage.field("bytes" ) else: UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: UpperCamelCase_ = storage.field("path" ) else: UpperCamelCase_ = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) UpperCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def lowercase ( self: Dict , _SCREAMING_SNAKE_CASE: pa.StructArray ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE: Any ): with xopen(_SCREAMING_SNAKE_CASE , "rb" ) as f: UpperCamelCase_ = f.read() return bytes_ UpperCamelCase_ = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase_ = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) UpperCamelCase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
371
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCamelCase : def __init__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = "" UpperCamelCase_ = "" UpperCamelCase_ = [] UpperCamelCase_ = 0 UpperCamelCase_ = 256 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 UpperCamelCase_ = 0 def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) UpperCamelCase_ = copy.deepcopy(self.img ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) UpperCamelCase_ = np.sum(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase_ = x[i] / self.k self.sk += prk UpperCamelCase_ = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase_ = int(last % last ) UpperCamelCase_ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase_ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase_ = self.img[j][i] if num != self.last_list[num]: UpperCamelCase_ = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def lowercase ( self: Any ) -> Optional[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase ( self: Tuple ) -> Union[str, Any]: """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _UpperCAmelCase = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
328
0
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _a : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple=13 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Any=16 , UpperCAmelCase : Optional[int]=[1, 2, 1] , UpperCAmelCase : List[Any]=[2, 2, 4] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Tuple=2.0 , UpperCAmelCase : Any=True , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : str=0.1 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[int]=1E-5 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=None , UpperCAmelCase : int=True , UpperCAmelCase : int=10 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Dict=["stage1", "stage2", "stage3"] , UpperCAmelCase : Optional[Any]=[1, 2, 3] , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = embed_dim A_ = depths A_ = num_heads A_ = window_size A_ = mlp_ratio A_ = qkv_bias A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = drop_path_rate A_ = hidden_act A_ = use_absolute_embeddings A_ = patch_norm A_ = layer_norm_eps A_ = initializer_range A_ = is_training A_ = scope A_ = use_labels A_ = type_sequence_label_size A_ = encoder_stride A_ = out_features A_ = out_indices def __A ( self : List[str] ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self : List[str] ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __A ( self : str , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ): A_ = MaskFormerSwinModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) A_ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) A_ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] ): A_ = MaskFormerSwinBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(UpperCAmelCase ): A_ = ["stem"] A_ = MaskFormerSwinBackbone(config=UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _lowerCamelCase : str = {'feature-extraction': MaskFormerSwinModel} if is_torch_available() else {} _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Any = False _lowerCamelCase : List[str] = False def __A ( self : Union[str, Any] ): A_ = MaskFormerSwinModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def __A ( self : Dict ): pass def __A ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __A ( self : List[str] ): return def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def __A ( self : Dict ): pass @unittest.skip("Swin does not support feedforward chunking" ) def __A ( self : List[str] ): pass def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __A ( self : Union[str, Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def __A ( self : Any ): pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def __A ( self : Union[str, Any] ): pass def __A ( self : int , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ): A_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = outputs.hidden_states A_ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # Swin has a different seq_length A_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __A ( self : Optional[Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: A_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[int] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = 3 A_ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) A_ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A_ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) A_ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: A_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True self.check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def __A ( self : Tuple ): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : int ): pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def __A ( self : Any ): pass def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(UpperCAmelCase : Union[str, Any] ): A_ = 0 return t def check_equivalence(UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Any={} ): with torch.no_grad(): A_ = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ) A_ = model(**UpperCAmelCase , return_dict=UpperCAmelCase , **UpperCAmelCase ).to_tuple() def recursive_check(UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): if isinstance(UpperCAmelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(UpperCAmelCase , UpperCAmelCase ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(UpperCAmelCase , UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(UpperCAmelCase ) , set_nan_tensor_to_zero(UpperCAmelCase ) , atol=1E-5 ) , msg=( "Tuple and dict output are not equal. Difference:" f''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' f''' {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}. Dict has''' f''' `nan`: {torch.isnan(UpperCAmelCase ).any()} and `inf`: {torch.isinf(UpperCAmelCase )}.''' ) , ) recursive_check(UpperCAmelCase , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {"output_hidden_states": True} ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) check_equivalence(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , {"output_hidden_states": True} ) @require_torch class _a ( unittest.TestCase , snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = (MaskFormerSwinBackbone,) if is_torch_available() else () _lowerCamelCase : List[Any] = MaskFormerSwinConfig def __A ( self : Optional[int] ): A_ = MaskFormerSwinModelTester(self ) def __A ( self : Optional[int] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: A_ = backbone_class(UpperCAmelCase ) backbone.to(UpperCAmelCase ) backbone.eval() A_ = backbone(**UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True A_ = backbone(**UpperCAmelCase , output_hidden_states=UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) A_ , A_ , A_ = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: A_ = backbone(**UpperCAmelCase , output_attentions=UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[str] = AudioLDMPipeline _lowerCamelCase : Union[str, Any] = TEXT_TO_AUDIO_PARAMS _lowerCamelCase : Dict = TEXT_TO_AUDIO_BATCH_PARAMS _lowerCamelCase : Union[str, Any] = frozenset( [ 'num_inference_steps', 'num_waveforms_per_prompt', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) def __A ( self : Union[str, Any] ): torch.manual_seed(0 ) A_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=(32, 64) , class_embed_type="simple_projection" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=UpperCAmelCase , ) A_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , ) torch.manual_seed(0 ) A_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) A_ = ClapTextModelWithProjection(UpperCAmelCase ) A_ = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta" , model_max_length=77 ) A_ = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=16000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=UpperCAmelCase , ) A_ = SpeechTaHifiGan(UpperCAmelCase ) A_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "vocoder": vocoder, } return components def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=0 ): if str(UpperCAmelCase ).startswith("mps" ): A_ = torch.manual_seed(UpperCAmelCase ) else: A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = { "prompt": "A hammer hitting a wooden surface", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, } return inputs def __A ( self : Union[str, Any] ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = audioldm_pipe(**UpperCAmelCase ) A_ = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 256 A_ = audio[:10] A_ = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __A ( self : Optional[Any] ): A_ = self.get_dummy_components() A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = 3 * [inputs["prompt"]] # forward A_ = audioldm_pipe(**UpperCAmelCase ) A_ = output.audios[0] A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = 3 * [inputs.pop("prompt" )] A_ = audioldm_pipe.tokenizer( UpperCAmelCase , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors="pt" , ) A_ = text_inputs["input_ids"].to(UpperCAmelCase ) A_ = audioldm_pipe.text_encoder( UpperCAmelCase , ) A_ = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state A_ = F.normalize(UpperCAmelCase , dim=-1 ) A_ = prompt_embeds # forward A_ = audioldm_pipe(**UpperCAmelCase ) A_ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __A ( self : str ): A_ = self.get_dummy_components() A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = 3 * ["this is a negative prompt"] A_ = negative_prompt A_ = 3 * [inputs["prompt"]] # forward A_ = audioldm_pipe(**UpperCAmelCase ) A_ = output.audios[0] A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = 3 * [inputs.pop("prompt" )] A_ = [] for p in [prompt, negative_prompt]: A_ = audioldm_pipe.tokenizer( UpperCAmelCase , padding="max_length" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=UpperCAmelCase , return_tensors="pt" , ) A_ = text_inputs["input_ids"].to(UpperCAmelCase ) A_ = audioldm_pipe.text_encoder( UpperCAmelCase , ) A_ = text_embeds.text_embeds # additional L_2 normalization over each hidden-state A_ = F.normalize(UpperCAmelCase , dim=-1 ) embeds.append(UpperCAmelCase ) A_ , A_ = embeds # forward A_ = audioldm_pipe(**UpperCAmelCase ) A_ = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def __A ( self : Any ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = "egg cracking" A_ = audioldm_pipe(**UpperCAmelCase , negative_prompt=UpperCAmelCase ) A_ = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 256 A_ = audio[:10] A_ = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def __A ( self : List[Any] ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = PNDMScheduler(skip_prk_steps=UpperCAmelCase ) A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = "A hammer hitting a wooden surface" # test num_waveforms_per_prompt=1 (default) A_ = audioldm_pipe(UpperCAmelCase , num_inference_steps=2 ).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts A_ = 2 A_ = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt A_ = 2 A_ = audioldm_pipe(UpperCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase ).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts A_ = 2 A_ = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=UpperCAmelCase ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def __A ( self : List[Any] ): A_ = "cpu" # ensure determinism for the device-dependent torch.Generator A_ = self.get_dummy_components() A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = audioldm_pipe.vocoder.config.sampling_rate A_ = self.get_dummy_inputs(UpperCAmelCase ) A_ = audioldm_pipe(audio_length_in_s=0.016 , **UpperCAmelCase ) A_ = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) / vocoder_sampling_rate == 0.016 A_ = audioldm_pipe(audio_length_in_s=0.032 , **UpperCAmelCase ) A_ = output.audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) / vocoder_sampling_rate == 0.032 def __A ( self : Union[str, Any] ): A_ = self.get_dummy_components() A_ = AudioLDMPipeline(**UpperCAmelCase ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = ["hey"] A_ = audioldm_pipe(UpperCAmelCase , num_inference_steps=1 ) A_ = output.audios.shape assert audio_shape == (1, 256) A_ = audioldm_pipe.vocoder.config config.model_in_dim *= 2 A_ = SpeechTaHifiGan(UpperCAmelCase ).to(UpperCAmelCase ) A_ = audioldm_pipe(UpperCAmelCase , num_inference_steps=1 ) A_ = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def __A ( self : List[str] ): self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase ) def __A ( self : List[str] ): self._test_inference_batch_single_identical(test_mean_pixel_difference=UpperCAmelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __A ( self : str ): self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase ) @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Dict ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __A ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict="cpu" , UpperCAmelCase : List[str]=torch.floataa , UpperCAmelCase : Dict=0 ): A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase ) A_ = np.random.RandomState(UpperCAmelCase ).standard_normal((1, 8, 128, 16) ) A_ = torch.from_numpy(UpperCAmelCase ).to(device=UpperCAmelCase , dtype=UpperCAmelCase ) A_ = { "prompt": "A hammer hitting a wooden surface", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 2.5, } return inputs def __A ( self : List[Any] ): A_ = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_inputs(UpperCAmelCase ) A_ = 25 A_ = audioldm_pipe(**UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 81920 A_ = audio[77230:77240] A_ = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) A_ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def __A ( self : str ): A_ = AudioLDMPipeline.from_pretrained("cvssp/audioldm" ) A_ = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) A_ = audioldm_pipe.to(UpperCAmelCase ) audioldm_pipe.set_progress_bar_config(disable=UpperCAmelCase ) A_ = self.get_inputs(UpperCAmelCase ) A_ = audioldm_pipe(**UpperCAmelCase ).audios[0] assert audio.ndim == 1 assert len(UpperCAmelCase ) == 81920 A_ = audio[27780:27790] A_ = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) A_ = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = 1 A_ = 2 while i * i <= n: A_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __snake_case ( ): """simple docstring""" A_ = 1 A_ = 1 while True: i += 1 t_num += i if count_divisors(__UpperCamelCase ) > 500: break return t_num if __name__ == "__main__": print(solution())
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging __a :int = logging.get_logger(__name__) class _a : """simple docstring""" _lowerCamelCase : str _lowerCamelCase : str = None @staticmethod def __A ( ): raise NotImplementedError def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : str , **UpperCAmelCase : List[str] ): raise NotImplementedError def __A ( self : Any , UpperCAmelCase : str ): raise NotImplementedError def __A ( self : List[Any] ): if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def __A ( cls : Tuple ): return f'''`pip install {cls.pip_package or cls.name}`''' class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'optuna' @staticmethod def __A ( ): return is_optuna_available() def __A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): return run_hp_search_optuna(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : Dict ): return default_hp_space_optuna(UpperCAmelCase ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = 'ray' _lowerCamelCase : Optional[Any] = '\'ray[tune]\'' @staticmethod def __A ( ): return is_ray_available() def __A ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str , **UpperCAmelCase : Dict ): return run_hp_search_ray(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] ): return default_hp_space_ray(UpperCAmelCase ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'sigopt' @staticmethod def __A ( ): return is_sigopt_available() def __A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : str , **UpperCAmelCase : int ): return run_hp_search_sigopt(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Union[str, Any] , UpperCAmelCase : Any ): return default_hp_space_sigopt(UpperCAmelCase ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'wandb' @staticmethod def __A ( ): return is_wandb_available() def __A ( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : str , **UpperCAmelCase : List[str] ): return run_hp_search_wandb(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : List[str] ): return default_hp_space_wandb(UpperCAmelCase ) __a :List[Any] = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __snake_case ( ): """simple docstring""" A_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__UpperCamelCase ) > 0: A_ = available_backends[0].name if len(__UpperCamelCase ) > 1: logger.info( f'''{len(__UpperCamelCase )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( "No hyperparameter search backend available.\n" + "\n".join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
329
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
1
import string def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for key in range(len(string.ascii_uppercase ) ): A_ = "" for symbol in message: if symbol in string.ascii_uppercase: A_ = string.ascii_uppercase.find(__UpperCamelCase ) A_ = num - key if num < 0: A_ = num + len(string.ascii_uppercase ) A_ = translated + string.ascii_uppercase[num] else: A_ = translated + symbol print(f'''Decryption using Key #{key}: {translated}''' ) def __snake_case ( ): """simple docstring""" A_ = input("Encrypted message: " ) A_ = message.upper() decrypt(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __snake_case ( *__UpperCamelCase : str ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): A_ = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __snake_case ( __UpperCamelCase : Exception ): """simple docstring""" A_ = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can't allocate memory", # CPU OOM ] if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __snake_case ( __UpperCamelCase : callable = None ,__UpperCamelCase : int = 128 ): """simple docstring""" if function is None: return functools.partial(__UpperCamelCase ,starting_batch_size=__UpperCamelCase ) A_ = starting_batch_size def decorator(*__UpperCamelCase : int ,**__UpperCamelCase : Union[str, Any] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() A_ = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): A_ = ", ".join([f'''{arg}={value}''' for arg, value in zip(params[1:] ,args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__UpperCamelCase ,*__UpperCamelCase ,**__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
329
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
1
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
def __snake_case ( __UpperCamelCase : int = 6008_5147_5143 ): """simple docstring""" try: A_ = int(__UpperCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) A_ = 1 A_ = 2 while i * i <= n: while n % i == 0: A_ = i n //= i i += 1 if n > 1: A_ = n return int(__UpperCamelCase ) if __name__ == "__main__": print(F"{solution() = }")
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer __a :Any = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast __a :Optional[Any] = TaTokenizerFast __a :Dict = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[Any] = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys __a :str = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
329
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : PreTrainedTokenizer ,__UpperCamelCase : int ,__UpperCamelCase : Optional[int] = None ,): """simple docstring""" A_ = {} if train_file is not None: A_ = [train_file] if eval_file is not None: A_ = [eval_file] if test_file is not None: A_ = [test_file] A_ = datasets.load_dataset("csv" ,data_files=__UpperCamelCase ) A_ = list(ds[list(files.keys() )[0]].features.keys() ) A_ = features_name.pop(__UpperCamelCase ) A_ = list(set(ds[list(files.keys() )[0]][label_name] ) ) A_ = {label: i for i, label in enumerate(__UpperCamelCase )} A_ = tokenizer.model_input_names A_ = {} if len(__UpperCamelCase ) == 1: for k in files.keys(): A_ = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ,padding="max_length" ) ,batched=__UpperCamelCase ,) elif len(__UpperCamelCase ) == 2: for k in files.keys(): A_ = ds[k].map( lambda __UpperCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase ,padding="max_length" ,) ,batched=__UpperCamelCase ,) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: A_ = {k: v for k, v in ex.items() if k in input_names} A_ = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: A_ = {k: v for k, v in ex.items() if k in input_names} A_ = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: A_ = {k: v for k, v in ex.items() if k in input_names} A_ = labelaid[ex[label_name]] yield (d, label) A_ = ( tf.data.Dataset.from_generator( __UpperCamelCase ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: A_ = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) A_ = ( tf.data.Dataset.from_generator( __UpperCamelCase ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: A_ = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) A_ = ( tf.data.Dataset.from_generator( __UpperCamelCase ,({k: tf.intaa for k in input_names}, tf.intaa) ,({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) ,) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: A_ = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __a :Dict = logging.getLogger(__name__) @dataclass class _a : """simple docstring""" _lowerCamelCase : int = field(metadata={'help': 'Which column contains the label'} ) _lowerCamelCase : str = field(default=snake_case_ , metadata={'help': 'The path of the training file'} ) _lowerCamelCase : Optional[str] = field(default=snake_case_ , metadata={'help': 'The path of the development file'} ) _lowerCamelCase : Optional[str] = field(default=snake_case_ , metadata={'help': 'The path of the test file'} ) _lowerCamelCase : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowerCamelCase : bool = field( default=snake_case_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class _a : """simple docstring""" _lowerCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowerCamelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowerCamelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowerCamelCase : bool = field(default=snake_case_ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowerCamelCase : Optional[str] = field( default=snake_case_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def __snake_case ( ): """simple docstring""" A_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) A_ , A_ , A_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO ,) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) A_ , A_ , A_ , A_ = get_tfds( train_file=data_args.train_file ,eval_file=data_args.dev_file ,test_file=data_args.test_file ,tokenizer=__UpperCamelCase ,label_column_id=data_args.label_column_id ,max_seq_length=data_args.max_seq_length ,) A_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=len(__UpperCamelCase ) ,labelaid=__UpperCamelCase ,idalabel={id: label for label, id in labelaid.items()} ,finetuning_task="text-classification" ,cache_dir=model_args.cache_dir ,) with training_args.strategy.scope(): A_ = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_pt=bool(".bin" in model_args.model_name_or_path ) ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,) def compute_metrics(__UpperCamelCase : EvalPrediction ) -> Dict: A_ = np.argmax(p.predictions ,axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer A_ = TFTrainer( model=__UpperCamelCase ,args=__UpperCamelCase ,train_dataset=__UpperCamelCase ,eval_dataset=__UpperCamelCase ,compute_metrics=__UpperCamelCase ,) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation A_ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) A_ = trainer.evaluate() A_ = os.path.join(training_args.output_dir ,"eval_results.txt" ) with open(__UpperCamelCase ,"w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__UpperCamelCase ) return results if __name__ == "__main__": main()
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer __a :Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __a :Any = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[PIL.Image.Image, np.ndarray] class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : PriorTransformer , UpperCAmelCase : CLIPVisionModel , UpperCAmelCase : CLIPImageProcessor , UpperCAmelCase : HeunDiscreteScheduler , UpperCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=UpperCAmelCase , image_encoder=UpperCAmelCase , image_processor=UpperCAmelCase , scheduler=UpperCAmelCase , renderer=UpperCAmelCase , ) def __A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): if latents is None: A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) A_ = latents.to(UpperCAmelCase ) A_ = latents * scheduler.init_noise_sigma return latents def __A ( self : int , UpperCAmelCase : Optional[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) A_ = torch.device(f'''cuda:{gpu_id}''' ) A_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase , UpperCAmelCase ) @property def __A ( self : List[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(UpperCAmelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __A ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Dict , ): if isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(image[0] , torch.Tensor ): A_ = torch.cat(UpperCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(UpperCAmelCase , axis=0 ) if not isinstance(UpperCAmelCase , torch.Tensor ): A_ = self.image_processor(UpperCAmelCase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) A_ = image.to(dtype=self.image_encoder.dtype , device=UpperCAmelCase ) A_ = self.image_encoder(UpperCAmelCase )["last_hidden_state"] A_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A_ = image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: A_ = torch.zeros_like(UpperCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(UpperCAmelCase ) def __call__( self : Optional[int] , UpperCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 25 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : float = 4.0 , UpperCAmelCase : int = 64 , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): if isinstance(UpperCAmelCase , PIL.Image.Image ): A_ = 1 elif isinstance(UpperCAmelCase , torch.Tensor ): A_ = image.shape[0] elif isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A_ = len(UpperCAmelCase ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(UpperCAmelCase )}''' ) A_ = self._execution_device A_ = batch_size * num_images_per_prompt A_ = guidance_scale > 1.0 A_ = self._encode_image(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # prior self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase ) A_ = self.scheduler.timesteps A_ = self.prior.config.num_embeddings A_ = self.prior.config.embedding_dim A_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A_ = latents.reshape(latents.shape[0] , UpperCAmelCase , UpperCAmelCase ) for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance A_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A_ = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase ) A_ = self.prior( UpperCAmelCase , timestep=UpperCAmelCase , proj_embedding=UpperCAmelCase , ).predicted_image_embedding # remove the variance A_ , A_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A_ , A_ = noise_pred.chunk(2 ) A_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A_ = self.scheduler.step( UpperCAmelCase , timestep=UpperCAmelCase , sample=UpperCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=UpperCAmelCase ) A_ = [] for i, latent in enumerate(UpperCAmelCase ): print() A_ = self.renderer.decode( latent[None, :] , UpperCAmelCase , size=UpperCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(UpperCAmelCase ) A_ = torch.stack(UpperCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) A_ = images.cpu().numpy() if output_type == "pil": A_ = [self.numpy_to_pil(UpperCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=UpperCAmelCase )
329
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
1
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=99 , UpperCAmelCase : List[Any]=24 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Dict=16 , UpperCAmelCase : int=2 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=1000 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = scope A_ = range_bbox def __A ( self : str ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ = bbox[i, j, 3] A_ = bbox[i, j, 1] A_ = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ = bbox[i, j, 2] A_ = bbox[i, j, 0] A_ = t A_ = None if self.use_input_mask: A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self : int ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , ): A_ = LiltModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , token_type_ids=UpperCAmelCase ) A_ = model(UpperCAmelCase , bbox=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , ): A_ = self.num_labels A_ = LiltForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , ): A_ = LiltForQuestionAnswering(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model( UpperCAmelCase , bbox=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Dict ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _lowerCamelCase : Union[str, Any] = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Any = False def __A ( self : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ): return True def __A ( self : Dict ): A_ = LiltModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Optional[int] ): self.config_tester.run_common_tests() def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) @slow def __A ( self : List[str] ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = LiltModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @require_torch @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any ): A_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(UpperCAmelCase ) A_ = torch.tensor([[1, 2]] , device=UpperCAmelCase ) A_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase ) A_ = torch.Size([1, 2, 768] ) A_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase , atol=1E-3 ) )
329
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
1
from __future__ import annotations from typing import Any class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float = 0 ): A_ , A_ = row, column A_ = [[default_value for c in range(UpperCAmelCase )] for r in range(UpperCAmelCase )] def __str__( self : List[Any] ): A_ = f'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier A_ = 0 for row_vector in self.array: for obj in row_vector: A_ = max(UpperCAmelCase , len(str(UpperCAmelCase ) ) ) A_ = f'''%{max_element_length}s''' # Make string and return def single_line(UpperCAmelCase : list[float] ) -> str: nonlocal string_format_identifier A_ = "[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self : Dict ): return str(self ) def __A ( self : Dict , UpperCAmelCase : tuple[int, int] ): if not (isinstance(UpperCAmelCase , (list, tuple) ) and len(UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , UpperCAmelCase : tuple[int, int] ): assert self.validate_indicies(UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple , UpperCAmelCase : tuple[int, int] , UpperCAmelCase : float ): assert self.validate_indicies(UpperCAmelCase ) A_ = value def __add__( self : Optional[int] , UpperCAmelCase : Matrix ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add A_ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A_ = self[r, c] + another[r, c] return result def __neg__( self : List[str] ): A_ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A_ = -self[r, c] return result def __sub__( self : str , UpperCAmelCase : Matrix ): return self + (-another) def __mul__( self : Union[str, Any] , UpperCAmelCase : int | float | Matrix ): if isinstance(UpperCAmelCase , (int, float) ): # Scalar multiplication A_ = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A_ = self[r, c] * another return result elif isinstance(UpperCAmelCase , UpperCAmelCase ): # Matrix multiplication assert self.column == another.row A_ = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: A_ = f'''Unsupported type given for another ({type(UpperCAmelCase )})''' raise TypeError(UpperCAmelCase ) def __A ( self : Tuple ): A_ = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): A_ = self[r, c] return result def __A ( self : Any , UpperCAmelCase : Matrix , UpperCAmelCase : Matrix ): assert isinstance(UpperCAmelCase , UpperCAmelCase ) and isinstance(UpperCAmelCase , UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A_ = v.transpose() A_ = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __snake_case ( ): """simple docstring""" A_ = Matrix(3 ,3 ,0 ) for i in range(3 ): A_ = 1 print(f'''a^(-1) is {ainv}''' ) # u, v A_ = Matrix(3 ,1 ,0 ) A_ , A_ , A_ = 1, 2, -3 A_ = Matrix(3 ,1 ,0 ) A_ , A_ , A_ = 4, -2, 5 print(f'''u is {u}''' ) print(f'''v is {v}''' ) print(f'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(f'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__UpperCamelCase ,__UpperCamelCase )}''' ) def __snake_case ( ): """simple docstring""" import doctest doctest.testmod() testa()
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __a :List[str] = TypeVar('T') class _a ( Generic[T] ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : T ): A_ = data A_ = None def __str__( self : Union[str, Any] ): return f'''{self.data}''' class _a ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ): A_ = None def __iter__( self : Dict ): A_ = self.top while node: yield node.data A_ = node.next def __str__( self : Tuple ): return "->".join([str(UpperCAmelCase ) for item in self] ) def __len__( self : Dict ): return len(tuple(iter(self ) ) ) def __A ( self : Optional[int] ): return self.top is None def __A ( self : Dict , UpperCAmelCase : T ): A_ = Node(UpperCAmelCase ) if not self.is_empty(): A_ = self.top A_ = node def __A ( self : Any ): if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , UpperCAmelCase ) A_ = self.top A_ = self.top.next return pop_node.data def __A ( self : Union[str, Any] ): if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __A ( self : List[str] ): A_ = None if __name__ == "__main__": from doctest import testmod testmod()
329
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
1
from collections.abc import Sequence def __snake_case ( __UpperCamelCase : Sequence[int] | None = None ): """simple docstring""" if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) A_ = nums[0] for i in range(1 ,len(__UpperCamelCase ) ): A_ = nums[i] A_ = max(__UpperCamelCase ,ans + num ,__UpperCamelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __a :Union[str, Any] = int(input('Enter number of elements : ').strip()) __a :Dict = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _a : """simple docstring""" def __init__( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any=2 , UpperCAmelCase : str=32 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : int=3 , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=32 , UpperCAmelCase : int=4 , UpperCAmelCase : Tuple=[0, 1, 2, 3] , UpperCAmelCase : List[str]=4 , UpperCAmelCase : str=37 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : int=[1, 384, 24, 24] , UpperCAmelCase : Tuple=True , UpperCAmelCase : Any=None , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self : str ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self : List[str] ): A_ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ): A_ = DPTModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_labels A_ = DPTForDepthEstimation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[Any] ): A_ = self.num_labels A_ = DPTForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self : int ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _lowerCamelCase : Dict = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False _lowerCamelCase : List[str] = False def __A ( self : Optional[int] ): A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def __A ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __A ( self : Any ): pass def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __A ( self : Union[str, Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : str ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(UpperCAmelCase ): continue A_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = model(**UpperCAmelCase ).loss loss.backward() def __A ( self : int ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = model(**UpperCAmelCase ).loss loss.backward() def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: A_ = model_class(config=UpperCAmelCase ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : Tuple ): pass @slow def __A ( self : Optional[Any] ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Optional[int] ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = "add" with self.assertRaises(UpperCAmelCase ): A_ = DPTForDepthEstimation(UpperCAmelCase ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : str ): A_ = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) A_ = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(UpperCAmelCase ) A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , UpperCAmelCase ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , UpperCAmelCase , atol=1E-4 ) )
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __a :Any = logging.get_logger(__name__) __a :str = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : str ): """simple docstring""" for attribute in key.split("." ): A_ = getattr(__UpperCamelCase ,__UpperCamelCase ) if weight_type is not None: A_ = getattr(__UpperCamelCase ,__UpperCamelCase ).shape else: A_ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": A_ = value elif weight_type == "weight_g": A_ = value elif weight_type == "weight_v": A_ = value elif weight_type == "bias": A_ = value else: A_ = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ): """simple docstring""" A_ = [] A_ = fairseq_model.state_dict() A_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): A_ = False if "conv_layers" in name: load_conv_layer( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,hf_model.config.feat_extract_norm == "group" ,) A_ = True else: for key, mapped_key in MAPPING.items(): A_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ = True if "*" in mapped_key: A_ = name.split(__UpperCamelCase )[0].split("." )[-2] A_ = mapped_key.replace("*" ,__UpperCamelCase ) if "weight_g" in name: A_ = "weight_g" elif "weight_v" in name: A_ = "weight_v" elif "weight" in name: A_ = "weight" elif "bias" in name: A_ = "bias" else: A_ = None set_recursively(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) continue if not is_used: unused_weights.append(__UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = full_name.split("conv_layers." )[-1] A_ = name.split("." ) A_ = int(items[0] ) A_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) A_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) A_ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Any ): """simple docstring""" A_ = SEWConfig() if is_finetuned: A_ = model.wav_encoder.wav_model.cfg else: A_ = model.cfg A_ = fs_config.conv_bias A_ = eval(fs_config.conv_feature_layers ) A_ = [x[0] for x in conv_layers] A_ = [x[1] for x in conv_layers] A_ = [x[2] for x in conv_layers] A_ = "gelu" A_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" A_ = 0.0 A_ = fs_config.activation_fn.name A_ = fs_config.encoder_embed_dim A_ = 0.02 A_ = fs_config.encoder_ffn_embed_dim A_ = 1E-5 A_ = fs_config.encoder_layerdrop A_ = fs_config.encoder_attention_heads A_ = fs_config.conv_pos_groups A_ = fs_config.conv_pos A_ = len(__UpperCamelCase ) A_ = fs_config.encoder_layers A_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: A_ = model.cfg A_ = fs_config.final_dropout A_ = fs_config.layerdrop A_ = fs_config.activation_dropout A_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 A_ = fs_config.attention_dropout A_ = fs_config.dropout_input A_ = fs_config.dropout A_ = fs_config.mask_channel_length A_ = fs_config.mask_channel_prob A_ = fs_config.mask_length A_ = fs_config.mask_prob A_ = "Wav2Vec2FeatureExtractor" A_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : int=None ,__UpperCamelCase : List[str]=None ,__UpperCamelCase : str=True ): """simple docstring""" if is_finetuned: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] ,arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A_ , A_ , A_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: A_ = SEWConfig.from_pretrained(__UpperCamelCase ) else: A_ = convert_config(model[0] ,__UpperCamelCase ) A_ = model[0].eval() A_ = True if config.feat_extract_norm == "layer" else False A_ = WavaVecaFeatureExtractor( feature_size=1 ,sampling_rate=1_6000 ,padding_value=0 ,do_normalize=__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,) if is_finetuned: if dict_path: A_ = Dictionary.load(__UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.pad_index A_ = target_dict.bos_index A_ = target_dict.eos_index A_ = len(target_dict.symbols ) A_ = os.path.join(__UpperCamelCase ,"vocab.json" ) if not os.path.isdir(__UpperCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__UpperCamelCase ) ) return os.makedirs(__UpperCamelCase ,exist_ok=__UpperCamelCase ) with open(__UpperCamelCase ,"w" ,encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices ,__UpperCamelCase ) A_ = WavaVecaCTCTokenizer( __UpperCamelCase ,unk_token=target_dict.unk_word ,pad_token=target_dict.pad_word ,bos_token=target_dict.bos_word ,eos_token=target_dict.eos_word ,word_delimiter_token="|" ,do_lower_case=__UpperCamelCase ,) A_ = WavaVecaProcessor(feature_extractor=__UpperCamelCase ,tokenizer=__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) A_ = SEWForCTC(__UpperCamelCase ) else: A_ = SEWModel(__UpperCamelCase ) feature_extractor.save_pretrained(__UpperCamelCase ) recursively_load_weights(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[int] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __a :int = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
__a :List[str] = 'Alexander Joslin' import operator as op from .stack import Stack def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} A_ = Stack() A_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(__UpperCamelCase ) ) elif i in operators: # RULE 2 operator_stack.push(__UpperCamelCase ) elif i == ")": # RULE 4 A_ = operator_stack.peek() operator_stack.pop() A_ = operand_stack.peek() operand_stack.pop() A_ = operand_stack.peek() operand_stack.pop() A_ = operators[opr](__UpperCamelCase ,__UpperCamelCase ) operand_stack.push(__UpperCamelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __a :str = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(F"{equation} = {dijkstras_two_stack_algorithm(equation)}")
329
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __snake_case ( __UpperCamelCase : Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" A_ = [] if isinstance(__UpperCamelCase ,__UpperCamelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase ,(list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase ,torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Tuple[int, ...] ): """simple docstring""" A_ = [] for d in reversed(__UpperCamelCase ): idx.append(flat_idx % d ) A_ = flat_idx // d return tuple(reversed(__UpperCamelCase ) ) @torch.jit.ignore def __snake_case ( __UpperCamelCase : Sequence[int] ,__UpperCamelCase : Sequence[int] ,__UpperCamelCase : Sequence[int] ,__UpperCamelCase : Optional[Sequence[bool]] = None ,__UpperCamelCase : Optional[Sequence[bool]] = None ,): """simple docstring""" def reduce_edge_list(__UpperCamelCase : List[bool] ) -> None: A_ = True for i in range(len(__UpperCamelCase ) ): A_ = -1 * (i + 1) l[reversed_idx] &= tally A_ = l[reversed_idx] if start_edges is None: A_ = [s == 0 for s in start] reduce_edge_list(__UpperCamelCase ) if end_edges is None: A_ = [e == (d - 1) for e, d in zip(__UpperCamelCase ,__UpperCamelCase )] reduce_edge_list(__UpperCamelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__UpperCamelCase ) == 0: return [()] elif len(__UpperCamelCase ) == 1: return [(slice(start[0] ,end[0] + 1 ),)] A_ = [] A_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(__UpperCamelCase ,__UpperCamelCase ): if s == e: path_list.append(slice(__UpperCamelCase ,s + 1 ) ) else: break A_ = tuple(__UpperCamelCase ) A_ = len(__UpperCamelCase ) # start == end, and we're done if divergence_idx == len(__UpperCamelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ = start[divergence_idx] return tuple( path + (slice(__UpperCamelCase ,sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] ,[d - 1 for d in dims[divergence_idx + 1 :]] ,dims[divergence_idx + 1 :] ,start_edges=start_edges[divergence_idx + 1 :] ,end_edges=[True for _ in end_edges[divergence_idx + 1 :]] ,) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None A_ = end[divergence_idx] return tuple( path + (slice(__UpperCamelCase ,edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] ,end[divergence_idx + 1 :] ,dims[divergence_idx + 1 :] ,start_edges=[True for _ in start_edges[divergence_idx + 1 :]] ,end_edges=end_edges[divergence_idx + 1 :] ,) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] ,end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) A_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 ,end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __snake_case ( __UpperCamelCase : torch.Tensor ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" A_ = t.shape[:no_batch_dims] A_ = list(_flat_idx_to_idx(__UpperCamelCase ,__UpperCamelCase ) ) # _get_minimal_slice_set is inclusive A_ = list(_flat_idx_to_idx(flat_end - 1 ,__UpperCamelCase ) ) # Get an ordered list of slices to perform A_ = _get_minimal_slice_set( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) A_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __snake_case ( __UpperCamelCase : Callable ,__UpperCamelCase : Dict[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : bool = False ,__UpperCamelCase : Any = None ,__UpperCamelCase : bool = False ,): """simple docstring""" if not (len(__UpperCamelCase ) > 0): raise ValueError("Must provide at least one input" ) A_ = [shape[:no_batch_dims] for shape in _fetch_dims(__UpperCamelCase )] A_ = tuple([max(__UpperCamelCase ) for s in zip(*__UpperCamelCase )] ) def _prep_inputs(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: A_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) A_ = t.reshape(-1 ,*t.shape[no_batch_dims:] ) else: A_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t A_ = tensor_tree_map(_prep_inputs ,__UpperCamelCase ) A_ = None if _out is not None: A_ = tensor_tree_map(lambda __UpperCamelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) ,_out ) A_ = 1 for d in orig_batch_dims: flat_batch_dim *= d A_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__UpperCamelCase : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t A_ = 0 A_ = prepped_outputs for _ in range(__UpperCamelCase ): # Chunk the input if not low_mem: A_ = _select_chunk else: A_ = partial( _chunk_slice ,flat_start=__UpperCamelCase ,flat_end=min(__UpperCamelCase ,i + chunk_size ) ,no_batch_dims=len(__UpperCamelCase ) ,) A_ = tensor_tree_map(__UpperCamelCase ,__UpperCamelCase ) # Run the layer on the chunk A_ = layer(**__UpperCamelCase ) # Allocate space for the output if out is None: A_ = tensor_tree_map(lambda __UpperCamelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) ,__UpperCamelCase ) # Put the chunk in its pre-allocated space if isinstance(__UpperCamelCase ,__UpperCamelCase ): def assign(__UpperCamelCase : dict ,__UpperCamelCase : dict ) -> None: for k, v in da.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): assign(__UpperCamelCase ,da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: A_ = da[k] assign(__UpperCamelCase ,__UpperCamelCase ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): for xa, xa in zip(__UpperCamelCase ,__UpperCamelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: A_ = xa elif isinstance(__UpperCamelCase ,torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: A_ = output_chunk else: raise ValueError("Not supported" ) i += chunk_size A_ = tensor_tree_map(lambda __UpperCamelCase : t.view(orig_batch_dims + t.shape[1:] ) ,__UpperCamelCase ) return out class _a : """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 512 , ): A_ = max_chunk_size A_ = None A_ = None def __A ( self : int , UpperCAmelCase : Callable , UpperCAmelCase : tuple , UpperCAmelCase : int ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size A_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] A_ = [c for c in candidates if c > min_chunk_size] A_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase : int ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase , chunk_size=UpperCAmelCase ) return True except RuntimeError: return False A_ = 0 A_ = len(UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: A_ = test_chunk_size(candidates[i] ) if not viable: A_ = (min_viable_chunk_size_index + i) // 2 else: A_ = i A_ = (i + len(UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def __A ( self : Dict , UpperCAmelCase : Iterable , UpperCAmelCase : Iterable ): A_ = True for aa, aa in zip(UpperCAmelCase , UpperCAmelCase ): assert type(UpperCAmelCase ) == type(UpperCAmelCase ) if isinstance(UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase : x[0] )] A_ = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase , UpperCAmelCase ) else: consistent &= aa == aa return consistent def __A ( self : str , UpperCAmelCase : Callable , UpperCAmelCase : tuple , UpperCAmelCase : int , ): A_ = True A_ = tree_map(lambda UpperCAmelCase : a.shape if isinstance(UpperCAmelCase , torch.Tensor ) else a , UpperCAmelCase , UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase ) A_ = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value A_ = False if not consistent: A_ = self._determine_favorable_chunk_size( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) A_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
329
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
1
# flake8: noqa # Lint as: python3 __a :int = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
__a :Optional[int] = { 'meter': 'm', 'kilometer': 'km', 'megametre': 'Mm', 'gigametre': 'Gm', 'terametre': 'Tm', 'petametre': 'Pm', 'exametre': 'Em', 'zettametre': 'Zm', 'yottametre': 'Ym', } # Exponent of the factor(meter) __a :List[str] = { 'm': 0, 'km': 3, 'Mm': 6, 'Gm': 9, 'Tm': 12, 'Pm': 15, 'Em': 18, 'Zm': 21, 'Ym': 24, } def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = from_type.lower().strip("s" ) A_ = to_type.lower().strip("s" ) A_ = UNIT_SYMBOL.get(__UpperCamelCase ,__UpperCamelCase ) A_ = UNIT_SYMBOL.get(__UpperCamelCase ,__UpperCamelCase ) if from_sanitized not in METRIC_CONVERSION: A_ = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) if to_sanitized not in METRIC_CONVERSION: A_ = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {", ".join(__UpperCamelCase )}''' ) raise ValueError(__UpperCamelCase ) A_ = METRIC_CONVERSION[from_sanitized] A_ = METRIC_CONVERSION[to_sanitized] A_ = 1 if from_exponent > to_exponent: A_ = from_exponent - to_exponent else: A_ = -(to_exponent - from_exponent) return value * pow(10 ,__UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
import os from distutils.util import strtobool def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ): """simple docstring""" for e in env_keys: A_ = int(os.environ.get(__UpperCamelCase ,-1 ) ) if val >= 0: return val return default def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any=False ): """simple docstring""" A_ = os.environ.get(__UpperCamelCase ,str(__UpperCamelCase ) ) return strtobool(__UpperCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : List[Any]="no" ): """simple docstring""" A_ = os.environ.get(__UpperCamelCase ,str(__UpperCamelCase ) ) return value
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __a :Union[str, Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" A_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: A_ = 128 elif "12-12" in model_name: A_ = 12 A_ = 12 elif "14-14" in model_name: A_ = 14 A_ = 14 elif "16-16" in model_name: A_ = 16 A_ = 16 else: raise ValueError("Model not supported" ) A_ = "huggingface/label-files" if "speech-commands" in model_name: A_ = 35 A_ = "speech-commands-v2-id2label.json" else: A_ = 527 A_ = "audioset-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} return config def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" if "module.v" in name: A_ = name.replace("module.v" ,"audio_spectrogram_transformer" ) if "cls_token" in name: A_ = name.replace("cls_token" ,"embeddings.cls_token" ) if "dist_token" in name: A_ = name.replace("dist_token" ,"embeddings.distillation_token" ) if "pos_embed" in name: A_ = name.replace("pos_embed" ,"embeddings.position_embeddings" ) if "patch_embed.proj" in name: A_ = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: A_ = name.replace("blocks" ,"encoder.layer" ) if "attn.proj" in name: A_ = name.replace("attn.proj" ,"attention.output.dense" ) if "attn" in name: A_ = name.replace("attn" ,"attention.self" ) if "norm1" in name: A_ = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name: A_ = name.replace("norm2" ,"layernorm_after" ) if "mlp.fc1" in name: A_ = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: A_ = name.replace("mlp.fc2" ,"output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: A_ = name.replace("audio_spectrogram_transformer.norm" ,"audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: A_ = name.replace("module.mlp_head.0" ,"classifier.layernorm" ) if "module.mlp_head.1" in name: A_ = name.replace("module.mlp_head.1" ,"classifier.dense" ) return name def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict ): """simple docstring""" for key in orig_state_dict.copy().keys(): A_ = orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: A_ = key.split("." ) A_ = int(key_split[3] ) A_ = config.hidden_size if "weight" in key: A_ = val[:dim, :] A_ = val[dim : dim * 2, :] A_ = val[-dim:, :] else: A_ = val[:dim] A_ = val[dim : dim * 2] A_ = val[-dim:] else: A_ = val return orig_state_dict def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) @torch.no_grad() def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[str] ,__UpperCamelCase : str=False ): """simple docstring""" A_ = get_audio_spectrogram_transformer_config(__UpperCamelCase ) A_ = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict A_ = model_name_to_url[model_name] A_ = torch.hub.load_state_dict_from_url(__UpperCamelCase ,map_location="cpu" ) # remove some keys remove_keys(__UpperCamelCase ) # rename some keys A_ = convert_state_dict(__UpperCamelCase ,__UpperCamelCase ) # load 🤗 model A_ = ASTForAudioClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 A_ = -4.267_7393 if "speech-commands" not in model_name else -6.84_5978 A_ = 4.568_9974 if "speech-commands" not in model_name else 5.565_4526 A_ = 1024 if "speech-commands" not in model_name else 128 A_ = ASTFeatureExtractor(mean=__UpperCamelCase ,std=__UpperCamelCase ,max_length=__UpperCamelCase ) if "speech-commands" in model_name: A_ = load_dataset("speech_commands" ,"v0.02" ,split="validation" ) A_ = dataset[0]["audio"]["array"] else: A_ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" ,filename="sample_audio.flac" ,repo_type="dataset" ,) A_ , A_ = torchaudio.load(__UpperCamelCase ) A_ = waveform.squeeze().numpy() A_ = feature_extractor(__UpperCamelCase ,sampling_rate=1_6000 ,return_tensors="pt" ) # forward pass A_ = model(**__UpperCamelCase ) A_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": A_ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": A_ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": A_ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": A_ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": A_ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": A_ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": A_ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": A_ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(__UpperCamelCase ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a :List[str] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=30 , UpperCAmelCase : Tuple=400 , UpperCAmelCase : Any=True , UpperCAmelCase : int=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[Any]=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[Any]=1 / 255 , UpperCAmelCase : Dict=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} A_ = parent A_ = batch_size A_ = num_channels A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std A_ = do_rescale A_ = rescale_factor A_ = do_pad def __A ( self : int ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : str=False ): if not batched: A_ = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): A_ , A_ = image.size else: A_ , A_ = image.shape[1], image.shape[2] if w < h: A_ = int(self.size["shortest_edge"] * h / w ) A_ = self.size["shortest_edge"] elif w > h: A_ = self.size["shortest_edge"] A_ = int(self.size["shortest_edge"] * w / h ) else: A_ = self.size["shortest_edge"] A_ = self.size["shortest_edge"] else: A_ = [] for image in image_inputs: A_ , A_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] A_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple = DeformableDetrImageProcessor if is_vision_available() else None def __A ( self : int ): A_ = DeformableDetrImageProcessingTester(self ) @property def __A ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Any ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_rescale" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def __A ( self : str ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) A_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCAmelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def __A ( self : str ): pass def __A ( self : Tuple ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Dict ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : str ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self : List[str] ): # prepare image and target A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: A_ = json.loads(f.read() ) A_ = {"image_id": 39769, "annotations": target} # encode them A_ = DeformableDetrImageProcessor() A_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="pt" ) # verify pixel values A_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify area A_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) A_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) ) # verify image_id A_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels A_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify orig_size A_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size A_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) ) @slow def __A ( self : Optional[int] ): # prepare image, target and masks_path A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: A_ = json.loads(f.read() ) A_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} A_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them A_ = DeformableDetrImageProcessor(format="coco_panoptic" ) A_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="pt" ) # verify pixel values A_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify area A_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) A_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) ) # verify image_id A_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels A_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify masks A_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase ) # verify orig_size A_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size A_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
329
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __a :Dict = False __a :int = True __a :Any = False if __name__ == "__main__": __a :Any = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __a :Union[str, Any] = parser.parse_args() __a :int = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __a :Dict = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __a :Dict = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __a :Tuple = reader.read() __a :Optional[int] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __a :Any = UNetaDModel(**config) else: __a :str = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __a :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __a :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __a :List[str] = config[key] del config[key] __a :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] __a :Union[str, Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __a :int = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __a :Optional[int] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __a :List[Any] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __a :Tuple = param_value __a :List[Any] = True if not has_changed: __a :str = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1
from __future__ import annotations def __snake_case ( __UpperCamelCase : int | str ): """simple docstring""" A_ = str(__UpperCamelCase ) return n == n[::-1] def __snake_case ( __UpperCamelCase : int = 100_0000 ): """simple docstring""" A_ = 0 for i in range(1 ,__UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
329
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __a :Any = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __a :List[Any] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __a :Optional[Any] = 'zero2' __a :Union[str, Any] = 'zero3' __a :Tuple = [ZEROa, ZEROa] def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : int ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = parameterized.to_safe_name("_".join(str(__UpperCamelCase ) for x in param.args ) ) return f'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test __a :List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _a ( snake_case_ ): """simple docstring""" @parameterized.expand(UpperCAmelCase , name_func=UpperCAmelCase ) def __A ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : int ): self.run_and_check( stage=UpperCAmelCase , model=UpperCAmelCase , distributed=UpperCAmelCase , fpaa=UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase , name_func=UpperCAmelCase ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): self.run_and_check( stage=UpperCAmelCase , model=UpperCAmelCase , distributed=UpperCAmelCase , fpaa=UpperCAmelCase , ) @parameterized.expand(UpperCAmelCase , name_func=UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] ): self.run_and_check( stage=UpperCAmelCase , model=UpperCAmelCase , distributed=UpperCAmelCase , fpaa=UpperCAmelCase , ) @require_torch_multi_gpu @parameterized.expand(UpperCAmelCase , name_func=UpperCAmelCase ) def __A ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] ): self.run_and_check( stage=UpperCAmelCase , model=UpperCAmelCase , distributed=UpperCAmelCase , fpaa=UpperCAmelCase , ) def __A ( self : Union[str, Any] , UpperCAmelCase : Optional[Any] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def __A ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : int = 10 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , ): A_ = models[model] A_ = self.run_trainer( stage=UpperCAmelCase , model_name=UpperCAmelCase , eval_steps=UpperCAmelCase , num_train_epochs=1 , distributed=UpperCAmelCase , fpaa=UpperCAmelCase , ) self.do_checks(UpperCAmelCase ) return output_dir def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : int = 10 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , ): A_ = self.get_auto_remove_tmp_dir("./xxx" , after=UpperCAmelCase ) A_ = f''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(UpperCAmelCase )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ = f'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() A_ = [f'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] A_ = self.get_launcher(UpperCAmelCase ) A_ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) return output_dir def __A ( self : int , UpperCAmelCase : Optional[Any]=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) A_ = min(2 , get_gpu_count() ) if distributed else 1 return f'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ , A_ = emb.weight.shape A_ = nn.Linear(__UpperCamelCase ,__UpperCamelCase ,bias=__UpperCamelCase ) A_ = emb.weight.data return lin_layer def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Dict="facebook/mbart-large-en-ro" ,__UpperCamelCase : Union[str, Any]=False ,__UpperCamelCase : Dict=False ): """simple docstring""" A_ = torch.load(__UpperCamelCase ,map_location="cpu" )["model"] remove_ignore_keys_(__UpperCamelCase ) A_ = state_dict["encoder.embed_tokens.weight"].shape[0] A_ = MBartConfig.from_pretrained(__UpperCamelCase ,vocab_size=__UpperCamelCase ) if mbart_aa and finetuned: A_ = "relu" A_ = state_dict["decoder.embed_tokens.weight"] A_ = MBartForConditionalGeneration(__UpperCamelCase ) model.model.load_state_dict(__UpperCamelCase ) if finetuned: A_ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') __a :List[Any] = parser.parse_args() __a :Union[str, Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
def __snake_case ( __UpperCamelCase : list ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__UpperCamelCase ) == 0: raise ValueError("Input list must be a non empty list" ) if len(__UpperCamelCase ) == 1: return True A_ = series[1] - series[0] for index in range(len(__UpperCamelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def __snake_case ( __UpperCamelCase : list ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(__UpperCamelCase ) == 0: raise ValueError("Input list must be a non empty list" ) A_ = 0 for val in series: answer += val return answer / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
329
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
1
from graphs.minimum_spanning_tree_kruskal import kruskal def __snake_case ( ): """simple docstring""" A_ = 9 A_ = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] A_ = kruskal(__UpperCamelCase ,__UpperCamelCase ) A_ = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__UpperCamelCase ) == sorted(__UpperCamelCase )
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __a :Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[Any] , *UpperCAmelCase : Any , **UpperCAmelCase : int ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __A ( self : Optional[int] , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[Any]=None ): A_ = {} A_ = {} if prompt is not None: A_ = prompt if generate_kwargs is not None: A_ = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: A_ = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) A_ = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : str , UpperCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase : str ): return super().__call__(UpperCAmelCase , **UpperCAmelCase ) def __A ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any]=None ): A_ = load_image(UpperCAmelCase ) if prompt is not None: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError( f'''Received an invalid text input, got - {type(UpperCAmelCase )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) A_ = self.model.config.model_type if model_type == "git": A_ = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) A_ = self.tokenizer(text=UpperCAmelCase , add_special_tokens=UpperCAmelCase ).input_ids A_ = [self.tokenizer.cls_token_id] + input_ids A_ = torch.tensor(UpperCAmelCase ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": A_ = self.image_processor(images=UpperCAmelCase , header_text=UpperCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation A_ = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) A_ = self.tokenizer(UpperCAmelCase , return_tensors=self.framework ) model_inputs.update(UpperCAmelCase ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: A_ = self.image_processor(images=UpperCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: A_ = None return model_inputs def __A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : str=None ): # Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the # pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first. if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , UpperCAmelCase ) and all(x is None for x in model_inputs["input_ids"] ) ): A_ = None if generate_kwargs is None: A_ = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. A_ = model_inputs.pop(self.model.main_input_name ) A_ = self.model.generate(UpperCAmelCase , **UpperCAmelCase , **UpperCAmelCase ) return model_outputs def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ): A_ = [] for output_ids in model_outputs: A_ = { "generated_text": self.tokenizer.decode( UpperCAmelCase , skip_special_tokens=UpperCAmelCase , ) } records.append(UpperCAmelCase ) return records
329
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
1
def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 ,input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
329
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging __a :List[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['input_values', 'attention_mask'] def __init__( self : List[str] , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 16000 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : bool = False , UpperCAmelCase : int = 80 , UpperCAmelCase : int = 16 , UpperCAmelCase : int = 64 , UpperCAmelCase : str = "hann_window" , UpperCAmelCase : float = 1.0 , UpperCAmelCase : float = 80 , UpperCAmelCase : float = 7600 , UpperCAmelCase : float = 1E-10 , UpperCAmelCase : int = 2 , UpperCAmelCase : bool = True , **UpperCAmelCase : List[Any] , ): super().__init__(feature_size=UpperCAmelCase , sampling_rate=UpperCAmelCase , padding_value=UpperCAmelCase , **UpperCAmelCase ) A_ = do_normalize A_ = return_attention_mask A_ = num_mel_bins A_ = hop_length A_ = win_length A_ = win_function A_ = frame_signal_scale A_ = fmin A_ = fmax A_ = mel_floor A_ = reduction_factor A_ = win_length * sampling_rate // 1000 A_ = hop_length * sampling_rate // 1000 A_ = optimal_fft_length(self.sample_size ) A_ = (self.n_fft // 2) + 1 A_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase ) A_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="slaney" , mel_scale="slaney" , ) if frame_signal_scale != 1.0: warnings.warn( "The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers" , UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( "The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers" , UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def __A ( UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : List[np.ndarray] , UpperCAmelCase : float = 0.0 ): if attention_mask is not None: A_ = np.array(UpperCAmelCase , np.intaa ) A_ = [] for vector, length in zip(UpperCAmelCase , attention_mask.sum(-1 ) ): A_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: A_ = padding_value normed_input_values.append(UpperCAmelCase ) else: A_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __A ( self : Tuple , UpperCAmelCase : np.ndarray , ): A_ = spectrogram( UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="log10" , ) return log_mel_spec.T def __call__( self : List[str] , UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : int , ): if audio is None and audio_target is None: raise ValueError("You must provide either `audio` or `audio_target` values." ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if audio is not None: A_ = self._process_audio( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ) else: A_ = None if audio_target is not None: A_ = self._process_audio( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase , ) if inputs is None: return inputs_target else: A_ = inputs_target["input_values"] A_ = inputs_target.get("attention_mask" ) if decoder_attention_mask is not None: A_ = decoder_attention_mask return inputs def __A ( self : List[Any] , UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase : bool = False , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : int , ): A_ = isinstance(UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A_ = is_batched_numpy or ( isinstance(UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(UpperCAmelCase , np.ndarray ): A_ = np.asarray(UpperCAmelCase , dtype=np.floataa ) elif isinstance(UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A_ = speech.astype(np.floataa ) # always return batch if not is_batched: A_ = [speech] # needed to make pad() work on spectrogram inputs A_ = self.feature_size # convert into correct format for padding if is_target: A_ = [self._extract_mel_features(UpperCAmelCase ) for waveform in speech] A_ = BatchFeature({"input_values": features} ) A_ = self.num_mel_bins else: A_ = BatchFeature({"input_values": speech} ) A_ = self.pad( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , **UpperCAmelCase , ) A_ = feature_size_hack # convert input values to correct format A_ = padded_inputs["input_values"] if not isinstance(input_values[0] , np.ndarray ): A_ = [np.asarray(UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A_ = input_values.astype(np.floataa ) # convert attention_mask to correct format A_ = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ = [np.asarray(UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A_ = ( attention_mask if self._get_padding_strategies(UpperCAmelCase , max_length=UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) A_ = self.zero_mean_unit_var_norm( padded_inputs["input_values"] , attention_mask=UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: A_ = padded_inputs.convert_to_tensors(UpperCAmelCase ) return padded_inputs def __A ( self : int ): A_ = super().to_dict() # Don't serialize these as they are derived from the other properties. A_ = ["window", "mel_filters", "sample_size", "sample_stride", "n_fft", "n_freqs"] for name in names: if name in output: del output[name] return output
329
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
1
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _a ( snake_case_ ): """simple docstring""" def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): A_ = dataset A_ = process A_ = params def __len__( self : List[str] ): return len(self.dataset ) def __getitem__( self : int , UpperCAmelCase : Tuple ): A_ = self.dataset[i] A_ = self.process(UpperCAmelCase , **self.params ) return processed class _a ( snake_case_ ): """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any]=None ): A_ = loader A_ = infer A_ = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether A_ = None A_ = loader_batch_size # Internal bookkeeping A_ = None A_ = None def __len__( self : Union[str, Any] ): return len(self.loader ) def __iter__( self : int ): A_ = iter(self.loader ) return self def __A ( self : int ): if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice A_ = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) A_ = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase , UpperCAmelCase ): # Convert ModelOutput to tuple first A_ = element.to_tuple() if isinstance(element[0] , torch.Tensor ): A_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase , UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): A_ = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): A_ = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around A_ = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers A_ = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. A_ = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 A_ = self._loader_batch_data.__class__(UpperCAmelCase ) self._loader_batch_index += 1 return result def __A ( self : List[str] ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch A_ = next(self.iterator ) A_ = self.infer(UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase , torch.Tensor ): A_ = processed else: A_ = list(processed.keys() )[0] A_ = processed[key] if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = len(UpperCAmelCase ) else: A_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ = observed_batch_size # Setting internal index to unwrap the batch A_ = processed A_ = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=None ): super().__init__(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __iter__( self : Any ): A_ = iter(self.loader ) A_ = None return self def __A ( self : Dict ): if self.subiterator is None: A_ = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item A_ = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators A_ = self.infer(next(self.iterator ) , **self.params ) A_ = next(self.subiterator ) return processed class _a ( snake_case_ ): """simple docstring""" def __iter__( self : List[str] ): A_ = iter(self.loader ) return self def __A ( self : Optional[Any] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. A_ = False A_ = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: A_ = self.loader_batch_item() A_ = item.pop("is_last" ) accumulator.append(UpperCAmelCase ) if is_last: return accumulator while not is_last: A_ = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase , torch.Tensor ): A_ = processed else: A_ = list(processed.keys() )[0] A_ = processed[key] if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = len(UpperCAmelCase ) else: A_ = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. A_ = observed_batch_size A_ = processed A_ = 0 while self._loader_batch_index < self.loader_batch_size: A_ = self.loader_batch_item() A_ = item.pop("is_last" ) accumulator.append(UpperCAmelCase ) if is_last: return accumulator else: A_ = processed A_ = item.pop("is_last" ) accumulator.append(UpperCAmelCase ) return accumulator class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Dataset , UpperCAmelCase : str ): A_ = dataset A_ = key def __len__( self : Any ): return len(self.dataset ) def __getitem__( self : List[str] , UpperCAmelCase : Tuple ): return self.dataset[i][self.key] class _a ( snake_case_ ): """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : str , UpperCAmelCase : str ): A_ = dataset A_ = keya A_ = keya def __len__( self : List[str] ): return len(self.dataset ) def __getitem__( self : Optional[Any] , UpperCAmelCase : Tuple ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
from functools import reduce __a :Optional[Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __snake_case ( __UpperCamelCase : str = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda __UpperCamelCase ,__UpperCamelCase : str(int(__UpperCamelCase ) * int(__UpperCamelCase ) ) ,n[i : i + 13] ) ) for i in range(len(__UpperCamelCase ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
329
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
1
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def __snake_case ( __UpperCamelCase : int = 3 ): """simple docstring""" if isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(__UpperCamelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) A_ = QuantumRegister(__UpperCamelCase ,"qr" ) A_ = ClassicalRegister(__UpperCamelCase ,"cr" ) A_ = QuantumCircuit(__UpperCamelCase ,__UpperCamelCase ) A_ = number_of_qubits for i in range(__UpperCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(__UpperCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) ,__UpperCamelCase ,__UpperCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(__UpperCamelCase ,number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(__UpperCamelCase ,__UpperCamelCase ) # simulate with 10000 shots A_ = Aer.get_backend("qasm_simulator" ) A_ = execute(__UpperCamelCase ,__UpperCamelCase ,shots=1_0000 ) return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": print( F"Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}" )
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch __a :Dict = logging.get_logger(__name__) @dataclass class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[str]=6.0 , UpperCAmelCase : int=None , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Any=None , UpperCAmelCase : Any="fp4" , UpperCAmelCase : Any=False , **UpperCAmelCase : Tuple , ): A_ = load_in_abit A_ = load_in_abit A_ = llm_inta_threshold A_ = llm_inta_skip_modules A_ = llm_inta_enable_fpaa_cpu_offload A_ = llm_inta_has_fpaa_weight A_ = bnb_abit_quant_type A_ = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: A_ = torch.floataa elif isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = getattr(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , torch.dtype ): A_ = bnb_abit_compute_dtype else: raise ValueError("bnb_4bit_compute_dtype must be a string or a torch.dtype" ) self.post_init() def __A ( self : int ): if not isinstance(self.llm_inta_threshold , UpperCAmelCase ): raise ValueError("llm_int8_threshold must be a float" ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , UpperCAmelCase ): raise ValueError("llm_int8_skip_modules must be a list of strings" ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , UpperCAmelCase ): raise ValueError("llm_int8_enable_fp32_cpu_offload must be a boolean" ) if not isinstance(self.llm_inta_has_fpaa_weight , UpperCAmelCase ): raise ValueError("llm_int8_has_fp16_weight must be a boolean" ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError("bnb_4bit_compute_dtype must be torch.dtype" ) if not isinstance(self.bnb_abit_quant_type , UpperCAmelCase ): raise ValueError("bnb_4bit_quant_type must be a string" ) if not isinstance(self.bnb_abit_use_double_quant , UpperCAmelCase ): raise ValueError("bnb_4bit_use_double_quant must be a boolean" ) if self.load_in_abit and not version.parse(importlib.metadata.version("bitsandbytes" ) ) >= version.parse( "0.39.0" ): raise ValueError( "4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version" ) def __A ( self : Tuple ): return self.load_in_abit or self.load_in_abit def __A ( self : Union[str, Any] ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __A ( cls : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): A_ = cls(**UpperCAmelCase ) A_ = [] for key, value in kwargs.items(): if hasattr(UpperCAmelCase , UpperCAmelCase ): setattr(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) to_remove.append(UpperCAmelCase ) for key in to_remove: kwargs.pop(UpperCAmelCase , UpperCAmelCase ) if return_unused_kwargs: return config, kwargs else: return config def __A ( self : int , UpperCAmelCase : Union[str, os.PathLike] ): with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer: A_ = self.to_dict() A_ = json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + "\n" writer.write(UpperCAmelCase ) def __A ( self : Any ): A_ = copy.deepcopy(self.__dict__ ) A_ = str(output["bnb_4bit_compute_dtype"] ).split("." )[1] return output def __repr__( self : Dict ): return f'''{self.__class__.__name__} {self.to_json_string()}''' def __A ( self : Any , UpperCAmelCase : bool = True ): if use_diff is True: A_ = self.to_diff_dict() else: A_ = self.to_dict() return json.dumps(UpperCAmelCase , indent=2 , sort_keys=UpperCAmelCase ) + "\n" def __A ( self : Union[str, Any] ): A_ = self.to_dict() # get the default config dict A_ = BitsAndBytesConfig().to_dict() A_ = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: A_ = value return serializable_config_dict
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
__a :List[str] = 0 # The first color of the flag. __a :int = 1 # The second color of the flag. __a :Optional[int] = 2 # The third color of the flag. __a :Any = (red, white, blue) def __snake_case ( __UpperCamelCase : list ): """simple docstring""" if not sequence: return [] if len(__UpperCamelCase ) == 1: return list(__UpperCamelCase ) A_ = 0 A_ = len(__UpperCamelCase ) - 1 A_ = 0 while mid <= high: if sequence[mid] == colors[0]: A_ , A_ = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: A_ , A_ = sequence[high], sequence[mid] high -= 1 else: A_ = f'''The elements inside the sequence must contains only {colors} values''' raise ValueError(__UpperCamelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __a :str = input('Enter numbers separated by commas:\n').strip() __a :Tuple = [int(item.strip()) for item in user_input.split(',')] print(F"{dutch_national_flag_sort(unsorted)}")
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
class _a : """simple docstring""" def __init__( self : Dict , UpperCAmelCase : list[int] ): A_ = len(UpperCAmelCase ) A_ = [0] * len_array if len_array > 0: A_ = array[0] for i in range(1 , UpperCAmelCase ): A_ = self.prefix_sum[i - 1] + array[i] def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : int ): if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def __A ( self : Tuple , UpperCAmelCase : int ): A_ = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(UpperCAmelCase ) return False if __name__ == "__main__": import doctest doctest.testmod()
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
import os from pathlib import Path def __snake_case ( ): """simple docstring""" from torch.utils.cpp_extension import load A_ = Path(__UpperCamelCase ).resolve().parent.parent.parent / "kernels" / "deformable_detr" A_ = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" ,"ms_deform_attn_cpu.cpp" ), os.path.join("cuda" ,"ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" ,__UpperCamelCase ,with_cuda=__UpperCamelCase ,extra_include_paths=[str(__UpperCamelCase )] ,extra_cflags=["-DWITH_CUDA=1"] ,extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] ,) import MultiScaleDeformableAttention as MSDA return MSDA
329
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
1
from __future__ import annotations from typing import Any class _a ( snake_case_ ): """simple docstring""" pass class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Any ): A_ = data A_ = None def __iter__( self : Optional[Any] ): A_ = self A_ = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCAmelCase ) yield node.data A_ = node.next_node @property def __A ( self : int ): try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __a :Union[str, Any] = Node(1) __a :Optional[Any] = Node(2) __a :List[str] = Node(3) __a :Dict = Node(4) print(root_node.has_loop) # False __a :Optional[int] = root_node.next_node print(root_node.has_loop) # True __a :int = Node(5) __a :Any = Node(6) __a :Optional[int] = Node(5) __a :Union[str, Any] = Node(6) print(root_node.has_loop) # False __a :Dict = Node(1) print(root_node.has_loop) # False
329
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a :Any = logging.get_logger(__name__) __a :List[Any] = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _a ( snake_case_ , snake_case_ ): """simple docstring""" _lowerCamelCase : str = 'focalnet' def __init__( self : Union[str, Any] , UpperCAmelCase : List[str]=224 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Optional[int]=96 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Tuple=[192, 384, 768, 768] , UpperCAmelCase : Tuple=[2, 2, 6, 2] , UpperCAmelCase : Tuple=[2, 2, 2, 2] , UpperCAmelCase : List[str]=[3, 3, 3, 3] , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=4.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Dict=False , UpperCAmelCase : Tuple=1E-4 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : List[str]=1E-5 , UpperCAmelCase : Any=32 , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] , ): super().__init__(**UpperCAmelCase ) A_ = image_size A_ = patch_size A_ = num_channels A_ = embed_dim A_ = use_conv_embed A_ = hidden_sizes A_ = depths A_ = focal_levels A_ = focal_windows A_ = hidden_act A_ = mlp_ratio A_ = hidden_dropout_prob A_ = drop_path_rate A_ = use_layerscale A_ = layerscale_value A_ = use_post_layernorm A_ = use_post_layernorm_in_modulation A_ = normalize_modulator A_ = initializer_range A_ = layer_norm_eps A_ = encoder_stride A_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] A_ , A_ = get_aligned_output_features_output_indices( out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __a :Optional[int] = TypeVar('T') def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return (position - 1) // 2 def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return (2 * position) + 1 def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return (2 * position) + 2 class _a ( Generic[T] ): """simple docstring""" def __init__( self : int ): A_ = [] A_ = {} A_ = 0 def __len__( self : Tuple ): return self.elements def __repr__( self : Union[str, Any] ): return str(self.heap ) def __A ( self : List[str] ): # Check if the priority queue is empty return self.elements == 0 def __A ( self : int , UpperCAmelCase : T , UpperCAmelCase : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) A_ = self.elements self.elements += 1 self._bubble_up(UpperCAmelCase ) def __A ( self : str ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) A_ , A_ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: A_ , A_ = self.heap[0] self._bubble_down(UpperCAmelCase ) return elem def __A ( self : Tuple , UpperCAmelCase : T , UpperCAmelCase : int ): # Update the weight of the given key A_ = self.position_map[elem] A_ = (elem, weight) if position > 0: A_ = get_parent_position(UpperCAmelCase ) A_ , A_ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) else: self._bubble_down(UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : T ): # Place a node at the proper position (upward movement) [to be used internally # only] A_ = self.position_map[elem] if curr_pos == 0: return None A_ = get_parent_position(UpperCAmelCase ) A_ , A_ = self.heap[curr_pos] A_ , A_ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_up(UpperCAmelCase ) return None def __A ( self : str , UpperCAmelCase : T ): # Place a node at the proper position (downward movement) [to be used # internally only] A_ = self.position_map[elem] A_ , A_ = self.heap[curr_pos] A_ = get_child_left_position(UpperCAmelCase ) A_ = get_child_right_position(UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: A_ , A_ = self.heap[child_left_position] A_ , A_ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) if child_left_position < self.elements: A_ , A_ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) else: return None if child_right_position < self.elements: A_ , A_ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCAmelCase , UpperCAmelCase ) return self._bubble_down(UpperCAmelCase ) return None def __A ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int ): # Swap the nodes at the given positions A_ = self.heap[nodea_pos][0] A_ = self.heap[nodea_pos][0] A_ , A_ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) A_ = nodea_pos A_ = nodea_pos class _a ( Generic[T] ): """simple docstring""" def __init__( self : Dict ): A_ = {} A_ = 0 def __repr__( self : Tuple ): return str(self.connections ) def __len__( self : List[str] ): return self.nodes def __A ( self : Optional[int] , UpperCAmelCase : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: A_ = {} self.nodes += 1 def __A ( self : Any , UpperCAmelCase : T , UpperCAmelCase : T , UpperCAmelCase : int ): # Add an edge between 2 nodes in the graph self.add_node(UpperCAmelCase ) self.add_node(UpperCAmelCase ) A_ = weight A_ = weight def __snake_case ( __UpperCamelCase : GraphUndirectedWeighted[T] ,): """simple docstring""" A_ = {node: maxsize for node in graph.connections} A_ = {node: None for node in graph.connections} A_ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(__UpperCamelCase ,__UpperCamelCase ) if priority_queue.is_empty(): return dist, parent # initialization A_ = priority_queue.extract_min() A_ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase ,dist[neighbour] ) A_ = node # running prim's algorithm while not priority_queue.is_empty(): A_ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: A_ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(__UpperCamelCase ,dist[neighbour] ) A_ = node return dist, parent
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
def __snake_case ( __UpperCamelCase : list[int] ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(__UpperCamelCase ) ) def __snake_case ( __UpperCamelCase : list[list[int]] ,__UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): """simple docstring""" if index == len(__UpperCamelCase ): return True # Recursive Step for i in range(__UpperCamelCase ): if valid_coloring(graph[index] ,__UpperCamelCase ,__UpperCamelCase ): # Color current vertex A_ = i # Validate coloring if util_color(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,index + 1 ): return True # Backtrack A_ = -1 return False def __snake_case ( __UpperCamelCase : list[list[int]] ,__UpperCamelCase : int ): """simple docstring""" A_ = [-1] * len(__UpperCamelCase ) if util_color(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,0 ): return colored_vertices return []
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :List[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Tuple ): """simple docstring""" A_ = OrderedDict() for key, value in state_dict.items(): if key.startswith("module.encoder" ): A_ = key.replace("module.encoder" ,"glpn.encoder" ) if key.startswith("module.decoder" ): A_ = key.replace("module.decoder" ,"decoder.stages" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 A_ = key[key.find("patch_embed" ) + len("patch_embed" )] A_ = key.replace(f'''patch_embed{idx}''' ,f'''patch_embeddings.{int(__UpperCamelCase )-1}''' ) if "norm" in key: A_ = key.replace("norm" ,"layer_norm" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 A_ = key[key.find("glpn.encoder.layer_norm" ) + len("glpn.encoder.layer_norm" )] A_ = key.replace(f'''layer_norm{idx}''' ,f'''layer_norm.{int(__UpperCamelCase )-1}''' ) if "layer_norm1" in key: A_ = key.replace("layer_norm1" ,"layer_norm_1" ) if "layer_norm2" in key: A_ = key.replace("layer_norm2" ,"layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 A_ = key[key.find("block" ) + len("block" )] A_ = key.replace(f'''block{idx}''' ,f'''block.{int(__UpperCamelCase )-1}''' ) if "attn.q" in key: A_ = key.replace("attn.q" ,"attention.self.query" ) if "attn.proj" in key: A_ = key.replace("attn.proj" ,"attention.output.dense" ) if "attn" in key: A_ = key.replace("attn" ,"attention.self" ) if "fc1" in key: A_ = key.replace("fc1" ,"dense1" ) if "fc2" in key: A_ = key.replace("fc2" ,"dense2" ) if "linear_pred" in key: A_ = key.replace("linear_pred" ,"classifier" ) if "linear_fuse" in key: A_ = key.replace("linear_fuse.conv" ,"linear_fuse" ) A_ = key.replace("linear_fuse.bn" ,"batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 A_ = key[key.find("linear_c" ) + len("linear_c" )] A_ = key.replace(f'''linear_c{idx}''' ,f'''linear_c.{int(__UpperCamelCase )-1}''' ) if "bot_conv" in key: A_ = key.replace("bot_conv" ,"0.convolution" ) if "skip_conv1" in key: A_ = key.replace("skip_conv1" ,"1.convolution" ) if "skip_conv2" in key: A_ = key.replace("skip_conv2" ,"2.convolution" ) if "fusion1" in key: A_ = key.replace("fusion1" ,"1.fusion" ) if "fusion2" in key: A_ = key.replace("fusion2" ,"2.fusion" ) if "fusion3" in key: A_ = key.replace("fusion3" ,"3.fusion" ) if "fusion" in key and "conv" in key: A_ = key.replace("conv" ,"convolutional_layer" ) if key.startswith("module.last_layer_depth" ): A_ = key.replace("module.last_layer_depth" ,"head.head" ) A_ = value return new_state_dict def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Dict ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) A_ = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) A_ = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict A_ = kv_weight[ : config.hidden_sizes[i], : ] A_ = kv_bias[: config.hidden_sizes[i]] A_ = kv_weight[ config.hidden_sizes[i] :, : ] A_ = kv_bias[config.hidden_sizes[i] :] def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ,__UpperCamelCase : str=False ,__UpperCamelCase : Any=None ): """simple docstring""" A_ = GLPNConfig(hidden_sizes=[64, 128, 320, 512] ,decoder_hidden_size=64 ,depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) A_ = GLPNImageProcessor() # prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info("Converting model..." ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # key and value matrices need special treatment read_in_k_v(__UpperCamelCase ,__UpperCamelCase ) # create HuggingFace model and load state dict A_ = GLPNForDepthEstimation(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: A_ = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: A_ = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) A_ = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] ,__UpperCamelCase ,atol=1E-4 ) print("Looks ok!" ) # finally, push to hub if required if push_to_hub: logger.info("Pushing model and image processor to the hub..." ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase ,__UpperCamelCase ) ,organization="nielsr" ,commit_message="Add model" ,use_temp_dir=__UpperCamelCase ,) image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase ,__UpperCamelCase ) ,organization="nielsr" ,commit_message="Add image processor" ,use_temp_dir=__UpperCamelCase ,) if __name__ == "__main__": __a :Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __a :Dict = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
329
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :List[str] = { 'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'], 'tokenization_roberta': ['RobertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = ['RobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = [ 'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaForCausalLM', 'RobertaForMaskedLM', 'RobertaForMultipleChoice', 'RobertaForQuestionAnswering', 'RobertaForSequenceClassification', 'RobertaForTokenClassification', 'RobertaModel', 'RobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = [ 'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaForCausalLM', 'TFRobertaForMaskedLM', 'TFRobertaForMultipleChoice', 'TFRobertaForQuestionAnswering', 'TFRobertaForSequenceClassification', 'TFRobertaForTokenClassification', 'TFRobertaMainLayer', 'TFRobertaModel', 'TFRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Union[str, Any] = [ 'FlaxRobertaForCausalLM', 'FlaxRobertaForMaskedLM', 'FlaxRobertaForMultipleChoice', 'FlaxRobertaForQuestionAnswering', 'FlaxRobertaForSequenceClassification', 'FlaxRobertaForTokenClassification', 'FlaxRobertaModel', 'FlaxRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1