code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__a :int = get_tests_dir('fixtures/test_sentencepiece_no_bos.model')
@require_sentencepiece
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : int = PegasusTokenizer
_lowerCamelCase : Dict = PegasusTokenizerFast
_lowerCamelCase : Union[str, Any] = True
_lowerCamelCase : str = True
def __A ( self : Dict ):
super().setUp()
# We have a SentencePiece fixture for testing
A_ = PegasusTokenizer(UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __A ( self : str ):
return PegasusTokenizer.from_pretrained("google/pegasus-large" )
def __A ( self : List[Any] , **UpperCAmelCase : Tuple ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : Dict ):
return ("This is a test", "This is a test")
def __A ( self : Optional[int] ):
A_ = "</s>"
A_ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase )
def __A ( self : Dict ):
A_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "</s>" )
self.assertEqual(vocab_keys[-1] , "v" )
self.assertEqual(len(UpperCAmelCase ) , 1103 )
def __A ( self : Union[str, Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1103 )
def __A ( self : Dict ):
A_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
A_ = self.tokenizer_class.from_pretrained(self.tmpdirname )
A_ = (
"Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"
" </s> <pad> <pad> <pad>"
)
A_ = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase ).input_ids[0]
A_ = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase ).input_ids[0]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
A_ = "<mask_1> To ensure a <mask_2> flow of bank resolutions."
A_ = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1]
A_ = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase ).input_ids[0]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Union[str, Any] ):
A_ = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
A_ = "To ensure a smooth flow of bank resolutions."
A_ = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1]
A_ = tokenizer([raw_input_str] , return_tensors=UpperCAmelCase ).input_ids[0]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def __A ( self : str ):
A_ = ["This is going to be way too long." * 150, "short example"]
A_ = ["not super long but more than 5 tokens", "tiny"]
A_ = self._large_tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="pt" )
A_ = self._large_tokenizer(
text_target=UpperCAmelCase , max_length=5 , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="pt" )
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(UpperCAmelCase ) == 2 # input_ids, attention_mask.
@slow
def __A ( self : Optional[Any] ):
# fmt: off
A_ = {"input_ids": [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase , model_name="google/bigbird-pegasus-large-arxiv" , revision="ba85d0851d708441f91440d509690f1ab6353415" , )
@require_sentencepiece
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = PegasusTokenizer
_lowerCamelCase : int = PegasusTokenizerFast
_lowerCamelCase : Tuple = True
_lowerCamelCase : int = True
def __A ( self : Dict ):
super().setUp()
# We have a SentencePiece fixture for testing
A_ = PegasusTokenizer(UpperCAmelCase , offset=0 , mask_token_sent=UpperCAmelCase , mask_token="[MASK]" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __A ( self : Optional[int] ):
return PegasusTokenizer.from_pretrained("google/bigbird-pegasus-large-arxiv" )
def __A ( self : Union[str, Any] , **UpperCAmelCase : Optional[Any] ):
return PegasusTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def __A ( self : List[str] , UpperCAmelCase : List[str] ):
return ("This is a test", "This is a test")
def __A ( self : Optional[Any] ):
A_ = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
A_ = self.tokenizer_class.from_pretrained(self.tmpdirname )
A_ = (
"Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"
" <pad> <pad> <pad>"
)
A_ = rust_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase ).input_ids[0]
A_ = py_tokenizer([raw_input_str] , return_tensors=UpperCAmelCase , add_special_tokens=UpperCAmelCase ).input_ids[0]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@require_torch
def __A ( self : List[Any] ):
A_ = ["This is going to be way too long." * 1000, "short example"]
A_ = ["not super long but more than 5 tokens", "tiny"]
A_ = self._large_tokenizer(UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="pt" )
A_ = self._large_tokenizer(
text_target=UpperCAmelCase , max_length=5 , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="pt" )
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(UpperCAmelCase ) == 2 # input_ids, attention_mask.
def __A ( self : Union[str, Any] ):
A_ = (
"This is an example string that is used to test the original TF implementation against the HF"
" implementation"
)
A_ = self._large_tokenizer(UpperCAmelCase ).input_ids
self.assertListEqual(
UpperCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__a :int = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(32, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=128, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__a :Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__a :str = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255)
__a :Any = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
__a :List[Any] = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=30, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
__a :List[Any] = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(64, 64)
)
__a :Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image)
__a :Optional[Any] = np.expand_dims(test_image, axis=0)
__a :str = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__a :int = 'Normal'
if result[0][0] == 1:
__a :Any = 'Abnormality detected'
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _a :
"""simple docstring"""
def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Tuple ):
return None
class _a :
"""simple docstring"""
def __A ( self : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] ):
return None
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Dict = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def __A ( self : Union[str, Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(UpperCAmelCase , "tf" , 12 , **UpperCAmelCase )
@require_torch
@slow
def __A ( self : int ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(UpperCAmelCase , "pt" , 12 , **UpperCAmelCase )
@require_torch
@slow
def __A ( self : Optional[int] ):
from transformers import BertModel
A_ = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(UpperCAmelCase ) )
vocab_file.flush()
A_ = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
A_ = BertModel(BertConfig(vocab_size=len(UpperCAmelCase ) ) )
model.save_pretrained(UpperCAmelCase )
self._test_export(UpperCAmelCase , "pt" , 12 , UpperCAmelCase )
@require_tf
@slow
def __A ( self : int ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
A_ = self._test_export(UpperCAmelCase , "tf" , 12 , **UpperCAmelCase )
A_ = quantize(Path(UpperCAmelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(UpperCAmelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def __A ( self : Optional[int] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
A_ = self._test_export(UpperCAmelCase , "pt" , 12 , **UpperCAmelCase )
A_ = quantize(UpperCAmelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(UpperCAmelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def __A ( self : Any , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any=None , **UpperCAmelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
A_ = Path(UpperCAmelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
return path
except Exception as e:
self.fail(UpperCAmelCase )
@require_torch
@require_tokenizers
@slow
def __A ( self : Tuple ):
from transformers import BertModel
A_ = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
A_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(UpperCAmelCase , UpperCAmelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def __A ( self : Optional[Any] ):
from transformers import TFBertModel
A_ = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
A_ = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(UpperCAmelCase , UpperCAmelCase , "tf" )
def __A ( self : List[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : int ):
A_ = FeatureExtractionPipeline(UpperCAmelCase , UpperCAmelCase )
A_ = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
A_ , A_ , A_ , A_ = infer_shapes(UpperCAmelCase , UpperCAmelCase )
# Assert all variables are present
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , UpperCAmelCase )
self.assertSequenceEqual(variable_names[3:] , UpperCAmelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def __A ( self : Optional[int] ):
A_ = ["input_ids", "attention_mask", "token_type_ids"]
A_ = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
A_ , A_ = ensure_valid_input(FuncContiguousArgs() , UpperCAmelCase , UpperCAmelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(UpperCAmelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(UpperCAmelCase ) , set(UpperCAmelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(UpperCAmelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
A_ , A_ = ensure_valid_input(FuncNonContiguousArgs() , UpperCAmelCase , UpperCAmelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(UpperCAmelCase ) , 1 )
self.assertEqual(len(UpperCAmelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def __A ( self : Union[str, Any] ):
A_ = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
__a :Union[str, Any] = 100
__a :Union[str, Any] = set(range(3, NUM_PRIMES, 2))
primes.add(2)
__a :int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=100 )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
A_ = set()
A_ = 42
A_ = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def __snake_case ( __UpperCamelCase : int = 5000 ):
"""simple docstring"""
for number_to_partition in range(1 ,__UpperCamelCase ):
if len(partition(__UpperCamelCase ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
def __snake_case ( __UpperCamelCase : list ):
"""simple docstring"""
if any(not isinstance(__UpperCamelCase ,__UpperCamelCase ) or x < 0 for x in sequence ):
raise TypeError("Sequence must be list of non-negative integers" )
for _ in range(len(__UpperCamelCase ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__UpperCamelCase ,sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[int] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
A_ = 192
A_ = 768
A_ = 12
A_ = 3
A_ = [800, 1333]
A_ = False
elif yolos_name == "yolos_s_dWr":
A_ = 330
A_ = 14
A_ = 6
A_ = 1320
elif "yolos_s" in yolos_name:
A_ = 384
A_ = 1536
A_ = 12
A_ = 6
elif "yolos_b" in yolos_name:
A_ = [800, 1344]
A_ = 91
A_ = "huggingface/label-files"
A_ = "coco-detection-id2label.json"
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
return config
def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : YolosConfig ,__UpperCamelCase : bool = False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
A_ = in_proj_weight[: config.hidden_size, :]
A_ = in_proj_bias[: config.hidden_size]
A_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A_ = in_proj_weight[-config.hidden_size :, :]
A_ = in_proj_bias[-config.hidden_size :]
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
if "backbone" in name:
A_ = name.replace("backbone" ,"vit" )
if "cls_token" in name:
A_ = name.replace("cls_token" ,"embeddings.cls_token" )
if "det_token" in name:
A_ = name.replace("det_token" ,"embeddings.detection_tokens" )
if "mid_pos_embed" in name:
A_ = name.replace("mid_pos_embed" ,"encoder.mid_position_embeddings" )
if "pos_embed" in name:
A_ = name.replace("pos_embed" ,"embeddings.position_embeddings" )
if "patch_embed.proj" in name:
A_ = name.replace("patch_embed.proj" ,"embeddings.patch_embeddings.projection" )
if "blocks" in name:
A_ = name.replace("blocks" ,"encoder.layer" )
if "attn.proj" in name:
A_ = name.replace("attn.proj" ,"attention.output.dense" )
if "attn" in name:
A_ = name.replace("attn" ,"attention.self" )
if "norm1" in name:
A_ = name.replace("norm1" ,"layernorm_before" )
if "norm2" in name:
A_ = name.replace("norm2" ,"layernorm_after" )
if "mlp.fc1" in name:
A_ = name.replace("mlp.fc1" ,"intermediate.dense" )
if "mlp.fc2" in name:
A_ = name.replace("mlp.fc2" ,"output.dense" )
if "class_embed" in name:
A_ = name.replace("class_embed" ,"class_labels_classifier" )
if "bbox_embed" in name:
A_ = name.replace("bbox_embed" ,"bbox_predictor" )
if "vit.norm" in name:
A_ = name.replace("vit.norm" ,"vit.layernorm" )
return name
def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : YolosForObjectDetection ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
A_ = orig_state_dict.pop(__UpperCamelCase )
if "qkv" in key:
A_ = key.split("." )
A_ = int(key_split[2] )
A_ = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
A_ = val[:dim, :]
A_ = val[
dim : dim * 2, :
]
A_ = val[-dim:, :]
else:
A_ = val[:dim]
A_ = val[dim : dim * 2]
A_ = val[-dim:]
else:
A_ = val
return orig_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return im
@torch.no_grad()
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : bool = False ):
"""simple docstring"""
A_ = get_yolos_config(__UpperCamelCase )
# load original state_dict
A_ = torch.load(__UpperCamelCase ,map_location="cpu" )["model"]
# load 🤗 model
A_ = YolosForObjectDetection(__UpperCamelCase )
model.eval()
A_ = convert_state_dict(__UpperCamelCase ,__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
# Check outputs on an image, prepared by YolosImageProcessor
A_ = 800 if yolos_name != "yolos_ti" else 512
A_ = YolosImageProcessor(format="coco_detection" ,size=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" )
A_ = model(**__UpperCamelCase )
A_ , A_ = outputs.logits, outputs.pred_boxes
A_ , A_ = None, None
if yolos_name == "yolos_ti":
A_ = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
A_ = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
A_ = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
A_ = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
A_ = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
A_ = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
A_ = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
A_ = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
A_ = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
A_ = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(f'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] ,__UpperCamelCase ,atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] ,__UpperCamelCase ,atol=1E-4 )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
print(f'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if push_to_hub:
A_ = {
"yolos_ti": "yolos-tiny",
"yolos_s_200_pre": "yolos-small",
"yolos_s_300_pre": "yolos-small-300",
"yolos_s_dWr": "yolos-small-dwr",
"yolos_base": "yolos-base",
}
print("Pushing to the hub..." )
A_ = model_mapping[yolos_name]
image_processor.push_to_hub(__UpperCamelCase ,organization="hustvl" )
model.push_to_hub(__UpperCamelCase ,organization="hustvl" )
if __name__ == "__main__":
__a :Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--yolos_name',
default='yolos_s_200_pre',
type=str,
help=(
'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\','
' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.'
),
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__a :str = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import inspect
import unittest
from transformers import ConvNextVaConfig
from transformers.models.auto import get_values
from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel
from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _a :
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : Dict=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : str=[10, 20, 30, 40] , UpperCAmelCase : str=[2, 2, 3, 2] , UpperCAmelCase : Dict=True , UpperCAmelCase : str=True , UpperCAmelCase : str=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Dict=10 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Any=["stage2", "stage3", "stage4"] , UpperCAmelCase : Optional[Any]=[2, 3, 4] , UpperCAmelCase : List[str]=None , ):
A_ = parent
A_ = batch_size
A_ = image_size
A_ = num_channels
A_ = num_stages
A_ = hidden_sizes
A_ = depths
A_ = is_training
A_ = use_labels
A_ = intermediate_size
A_ = hidden_act
A_ = num_labels
A_ = initializer_range
A_ = out_features
A_ = out_indices
A_ = scope
def __A ( self : Optional[int] ):
A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.num_labels )
A_ = self.get_config()
return config, pixel_values, labels
def __A ( self : Any ):
return ConvNextVaConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def __A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] ):
A_ = ConvNextVaModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __A ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict ):
A_ = ConvNextVaForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ):
A_ = ConvNextVaBackbone(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
A_ = None
A_ = ConvNextVaBackbone(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __A ( self : Union[str, Any] ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ = config_and_inputs
A_ = {"pixel_values": pixel_values}
return config, inputs_dict
def __A ( self : int ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ = config_and_inputs
A_ = {"pixel_values": pixel_values, "labels": labels}
return config, inputs_dict
@require_torch
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Dict = (
(
ConvNextVaModel,
ConvNextVaForImageClassification,
ConvNextVaBackbone,
)
if is_torch_available()
else ()
)
_lowerCamelCase : str = (
{'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification}
if is_torch_available()
else {}
)
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : int = False
_lowerCamelCase : List[Any] = False
_lowerCamelCase : str = False
_lowerCamelCase : Tuple = False
def __A ( self : Dict ):
A_ = ConvNextVaModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __A ( self : int ):
return
@unittest.skip(reason="ConvNextV2 does not use inputs_embeds" )
def __A ( self : Union[str, Any] ):
pass
@unittest.skip(reason="ConvNextV2 does not support input and output embeddings" )
def __A ( self : Optional[Any] ):
pass
@unittest.skip(reason="ConvNextV2 does not use feedforward chunking" )
def __A ( self : Tuple ):
pass
def __A ( self : int ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
A_ , A_ = self.model_tester.prepare_config_and_inputs_with_labels()
A_ = True
if model_class.__name__ in [
*get_values(UpperCAmelCase ),
*get_values(UpperCAmelCase ),
]:
continue
A_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = model(**UpperCAmelCase ).loss
loss.backward()
def __A ( self : Optional[Any] ):
if not self.model_tester.is_training:
return
for model_class in self.all_model_classes:
A_ , A_ = self.model_tester.prepare_config_and_inputs_with_labels()
A_ = False
A_ = True
if (
model_class.__name__
in [*get_values(UpperCAmelCase ), *get_values(UpperCAmelCase )]
or not model_class.supports_gradient_checkpointing
):
continue
A_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.gradient_checkpointing_enable()
model.train()
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = model(**UpperCAmelCase ).loss
loss.backward()
def __A ( self : Union[str, Any] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = model_class(UpperCAmelCase )
A_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ = [*signature.parameters.keys()]
A_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : str ):
def check_hidden_states_output(UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[int] ):
A_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A_ = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@slow
def __A ( self : List[Any] ):
for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = ConvNextVaModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __snake_case ( ):
"""simple docstring"""
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : int ):
return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None
@slow
def __A ( self : Optional[Any] ):
A_ = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(UpperCAmelCase )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = preprocessor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
# verify the logits
A_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
A_ = torch.tensor([0.9_996, 0.1_966, -0.4_386] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['image_processor', 'tokenizer']
_lowerCamelCase : Optional[int] = 'BlipImageProcessor'
_lowerCamelCase : List[str] = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ):
A_ = False
super().__init__(UpperCAmelCase , UpperCAmelCase )
A_ = self.image_processor
def __call__( self : int , UpperCAmelCase : ImageInput = None , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Optional[Any] , ):
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None:
A_ = self.tokenizer
A_ = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
return text_encoding
# add pixel_values
A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase )
if text is not None:
A_ = self.tokenizer(
text=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , )
else:
A_ = None
if text_encoding is not None:
encoding_image_processor.update(UpperCAmelCase )
return encoding_image_processor
def __A ( self : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def __A ( self : List[Any] ):
A_ = self.tokenizer.model_input_names
A_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
from heapq import heappop, heappush
import numpy as np
def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : bool ,):
"""simple docstring"""
A_ , A_ = grid.shape
A_ = [-1, 1, 0, 0]
A_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
A_ , A_ = [(0, source)], set()
A_ = np.full((rows, cols) ,np.inf )
A_ = 0
A_ = np.empty((rows, cols) ,dtype=__UpperCamelCase )
A_ = None
while queue:
((A_) , (A_)) = heappop(__UpperCamelCase )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
A_ = []
while (x, y) != source:
path.append((x, y) )
A_ , A_ = predecessors[x, y]
path.append(__UpperCamelCase ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(__UpperCamelCase ) ):
A_ , A_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
A_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(__UpperCamelCase ,(dist + 1, (nx, ny)) )
A_ = dist + 1
A_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : list[int] ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
A_ = i + 1
else:
A_ = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"{two_pointer([2, 7, 11, 15], 9) = }")
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
def __snake_case ( __UpperCamelCase : bytes ):
"""simple docstring"""
return "".join([hex(__UpperCamelCase )[2:].zfill(2 ).upper() for byte in list(__UpperCamelCase )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
if (len(__UpperCamelCase ) % 2) != 0:
raise ValueError(
"Base16 encoded data is invalid:\nData does not have an even number of hex digits." )
# Check the character set - the standard base16 alphabet
# is uppercase according to RFC3548 section 6
if not set(__UpperCamelCase ) <= set("0123456789ABCDEF" ):
raise ValueError(
"Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." )
# For every two hexadecimal digits (= a byte), turn it into an integer.
# Then, string the result together into bytes, and return it.
return bytes(int(data[i] + data[i + 1] ,16 ) for i in range(0 ,len(__UpperCamelCase ) ,2 ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
__a :int = 256
# Modulus to hash a string
__a :Union[str, Any] = 100_0003
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = len(__UpperCamelCase )
A_ = len(__UpperCamelCase )
if p_len > t_len:
return False
A_ = 0
A_ = 0
A_ = 1
# Calculating the hash of pattern and substring of text
for i in range(__UpperCamelCase ):
A_ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
A_ = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
A_ = (modulus_power * alphabet_size) % modulus
for i in range(0 ,t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
A_ = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def __snake_case ( ):
"""simple docstring"""
A_ = "abc1abc12"
A_ = "alskfjaldsabc1abc1abc12k23adsfabcabc"
A_ = "alskfjaldsk23adsfabcabc"
assert rabin_karp(__UpperCamelCase ,__UpperCamelCase ) and not rabin_karp(__UpperCamelCase ,__UpperCamelCase )
# Test 2)
A_ = "ABABX"
A_ = "ABABZABABYABABX"
assert rabin_karp(__UpperCamelCase ,__UpperCamelCase )
# Test 3)
A_ = "AAAB"
A_ = "ABAAAAAB"
assert rabin_karp(__UpperCamelCase ,__UpperCamelCase )
# Test 4)
A_ = "abcdabcy"
A_ = "abcxabcdabxabcdabcdabcy"
assert rabin_karp(__UpperCamelCase ,__UpperCamelCase )
# Test 5)
A_ = "Lü"
A_ = "Lüsai"
assert rabin_karp(__UpperCamelCase ,__UpperCamelCase )
A_ = "Lue"
assert not rabin_karp(__UpperCamelCase ,__UpperCamelCase )
print("Success." )
if __name__ == "__main__":
test_rabin_karp()
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(snake_case_ ) , 'Tatoeba directory does not exist.' )
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : Union[str, Any] ):
A_ = tempfile.mkdtemp()
return TatoebaConverter(save_dir=UpperCAmelCase )
@slow
def __A ( self : Any ):
self.resolver.convert_models(["heb-eng"] )
@slow
def __A ( self : List[str] ):
A_ , A_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=UpperCAmelCase )
assert mmeta["long_pair"] == "heb-eng"
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _a :
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict=2 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Any=7 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : Dict=36 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : str=512 , UpperCAmelCase : List[Any]=16 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Any=0.02 , UpperCAmelCase : int=6 , UpperCAmelCase : Optional[int]=6 , UpperCAmelCase : Optional[int]=3 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Any=None , UpperCAmelCase : Any=1000 , ):
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = image_size
A_ = patch_size
A_ = is_training
A_ = use_input_mask
A_ = use_token_type_ids
A_ = use_labels
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = type_sequence_label_size
A_ = initializer_range
A_ = coordinate_size
A_ = shape_size
A_ = num_labels
A_ = num_choices
A_ = scope
A_ = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
A_ = text_seq_length
A_ = (image_size // patch_size) ** 2 + 1
A_ = self.text_seq_length + self.image_seq_length
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
A_ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
A_ = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
A_ = bbox[i, j, 3]
A_ = bbox[i, j, 1]
A_ = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
A_ = bbox[i, j, 2]
A_ = bbox[i, j, 0]
A_ = tmp_coordinate
A_ = tf.constant(UpperCAmelCase )
A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.text_seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
A_ = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def __A ( self : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str ):
A_ = TFLayoutLMvaModel(config=UpperCAmelCase )
# text + image
A_ = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase )
A_ = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , )
A_ = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
A_ = model(UpperCAmelCase , training=UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
A_ = model({"pixel_values": pixel_values} , training=UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def __A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] ):
A_ = self.num_labels
A_ = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase )
A_ = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] ):
A_ = self.num_labels
A_ = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase )
A_ = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def __A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ):
A_ = 2
A_ = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase )
A_ = model(
UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[Any] ):
A_ = self.prepare_config_and_inputs()
((A_) , (A_) , (A_) , (A_) , (A_) , (A_) , (A_) , (A_)) = config_and_inputs
A_ = {
"input_ids": input_ids,
"bbox": bbox,
"pixel_values": pixel_values,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : str = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Optional[int] = (
{'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel}
if is_tf_available()
else {}
)
_lowerCamelCase : Any = False
_lowerCamelCase : str = False
_lowerCamelCase : str = False
def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ):
return True
def __A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple=False ):
A_ = copy.deepcopy(UpperCAmelCase )
if model_class in get_values(UpperCAmelCase ):
A_ = {
k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(UpperCAmelCase ):
A_ = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase ):
A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase ):
A_ = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(UpperCAmelCase ):
A_ = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def __A ( self : Union[str, Any] ):
A_ = TFLayoutLMvaModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : int ):
self.config_tester.run_common_tests()
def __A ( self : Optional[int] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = model_class(UpperCAmelCase )
if getattr(UpperCAmelCase , "hf_compute_loss" , UpperCAmelCase ):
# The number of elements in the loss should be the same as the number of elements in the label
A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0]
]
A_ = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = prepared_for_class.pop("input_ids" )
A_ = model(UpperCAmelCase , **UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = prepared_for_class.pop("input_ids" )
if "labels" in prepared_for_class:
A_ = prepared_for_class["labels"].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
A_ = -100
A_ = tf.convert_to_tensor(UpperCAmelCase )
A_ = model(UpperCAmelCase , **UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = model(UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
A_ = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase )
# Get keys that were added with the _prepare_for_class function
A_ = prepared_for_class.keys() - inputs_dict.keys()
A_ = inspect.signature(model.call ).parameters
A_ = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
A_ = {0: "input_ids"}
for label_key in label_keys:
A_ = signature_names.index(UpperCAmelCase )
A_ = label_key
A_ = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
A_ = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
A_ = prepared_for_class[value]
A_ = tuple(UpperCAmelCase )
# Send to model
A_ = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def __A ( self : Any ):
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[int] ):
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A_ = type
self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Any ):
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : int ):
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Union[str, Any] ):
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : Dict ):
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __snake_case ( ):
"""simple docstring"""
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : Optional[Any] ):
return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None
@slow
def __A ( self : int ):
A_ = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ).pixel_values
A_ = tf.constant([[1, 2]] )
A_ = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
A_ = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase )
# verify the logits
A_ = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase )
A_ = tf.constant(
[[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import numpy as np
def __snake_case ( __UpperCamelCase : np.array ):
"""simple docstring"""
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
__a :str = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Any , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Tuple ):
warnings.warn(
"The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileViTImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a :Tuple = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Any = [
'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST',
'WavLMForAudioFrameClassification',
'WavLMForCTC',
'WavLMForSequenceClassification',
'WavLMForXVector',
'WavLMModel',
'WavLMPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :List[str] = logging.get_logger(__name__)
__a :Optional[Any] = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = 'unispeech-sat'
def __init__( self : Tuple , UpperCAmelCase : int=32 , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Union[str, Any]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : List[str]=3072 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : int=1E-5 , UpperCAmelCase : Optional[int]="group" , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Dict=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase : int=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase : List[str]=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : str=128 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : str=False , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Dict=0.05 , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : int=10 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : int=320 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Any=100 , UpperCAmelCase : Tuple=256 , UpperCAmelCase : int=256 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Dict="mean" , UpperCAmelCase : List[str]=False , UpperCAmelCase : Any=False , UpperCAmelCase : Optional[Any]=256 , UpperCAmelCase : Optional[int]=(512, 512, 512, 512, 1500) , UpperCAmelCase : Union[str, Any]=(5, 3, 3, 1, 1) , UpperCAmelCase : Any=(1, 2, 3, 1, 1) , UpperCAmelCase : Dict=512 , UpperCAmelCase : Any=0 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : int=2 , UpperCAmelCase : List[str]=504 , **UpperCAmelCase : str , ):
super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase )
A_ = hidden_size
A_ = feat_extract_norm
A_ = feat_extract_activation
A_ = list(UpperCAmelCase )
A_ = list(UpperCAmelCase )
A_ = list(UpperCAmelCase )
A_ = conv_bias
A_ = num_conv_pos_embeddings
A_ = num_conv_pos_embedding_groups
A_ = len(self.conv_dim )
A_ = num_hidden_layers
A_ = intermediate_size
A_ = hidden_act
A_ = num_attention_heads
A_ = hidden_dropout
A_ = attention_dropout
A_ = activation_dropout
A_ = feat_proj_dropout
A_ = final_dropout
A_ = layerdrop
A_ = layer_norm_eps
A_ = initializer_range
A_ = vocab_size
A_ = num_clusters
A_ = do_stable_layer_norm
A_ = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A_ = apply_spec_augment
A_ = mask_time_prob
A_ = mask_time_length
A_ = mask_time_min_masks
A_ = mask_feature_prob
A_ = mask_feature_length
A_ = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
A_ = num_codevectors_per_group
A_ = num_codevector_groups
A_ = contrastive_logits_temperature
A_ = feat_quantizer_dropout
A_ = num_negatives
A_ = codevector_dim
A_ = proj_codevector_dim
A_ = diversity_loss_weight
# ctc loss
A_ = ctc_loss_reduction
A_ = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
A_ = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
A_ = list(UpperCAmelCase )
A_ = list(UpperCAmelCase )
A_ = list(UpperCAmelCase )
A_ = xvector_output_dim
@property
def __A ( self : List[str] ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : list[int] ,__UpperCamelCase : int ):
"""simple docstring"""
if len(__UpperCamelCase ) == 0:
return False
A_ = len(__UpperCamelCase ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] ,__UpperCamelCase )
else:
return binary_search(a_list[midpoint + 1 :] ,__UpperCamelCase )
if __name__ == "__main__":
__a :int = input('Enter numbers separated by comma:\n').strip()
__a :Dict = [int(item.strip()) for item in user_input.split(',')]
__a :str = int(input('Enter the number to be found in the list:\n').strip())
__a :Dict = '' if binary_search(sequence, target) else 'not '
print(F"{target} was {not_str}found in {sequence}")
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
from urllib.parse import quote
import pytest
from datasets.utils.hub import hf_hub_url
@pytest.mark.parametrize("repo_id" ,["canonical_dataset_name", "org-name/dataset-name"] )
@pytest.mark.parametrize("path" ,["filename.csv", "filename with blanks.csv"] )
@pytest.mark.parametrize("revision" ,[None, "v2"] )
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = hf_hub_url(repo_id=__UpperCamelCase ,path=__UpperCamelCase ,revision=__UpperCamelCase )
assert url == f'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(__UpperCamelCase )}'''
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
torch.set_grad_enabled(False)
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=False ):
"""simple docstring"""
A_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''module.blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''module.blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''module.blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''module.blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''module.blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''module.blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''module.blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("module.cls_token", "vit.embeddings.cls_token"),
("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
("module.pos_embed", "vit.embeddings.position_embeddings"),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("module.norm.weight", "layernorm.weight"),
("module.norm.bias", "layernorm.bias"),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("norm.weight", "vit.layernorm.weight"),
("norm.bias", "vit.layernorm.bias"),
("head.weight", "classifier.weight"),
("head.bias", "classifier.bias"),
] )
return rename_keys
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ,__UpperCamelCase : Optional[Any]=False ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
if base_model:
A_ = ""
else:
A_ = "vit."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A_ = state_dict.pop(f'''module.blocks.{i}.attn.qkv.weight''' )
A_ = state_dict.pop(f'''module.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
A_ = in_proj_weight[
: config.hidden_size, :
]
A_ = in_proj_bias[: config.hidden_size]
A_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A_ = in_proj_weight[
-config.hidden_size :, :
]
A_ = in_proj_bias[-config.hidden_size :]
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = [
"module.fc.fc1.weight",
"module.fc.fc1.bias",
"module.fc.bn1.weight",
"module.fc.bn1.bias",
"module.fc.bn1.running_mean",
"module.fc.bn1.running_var",
"module.fc.bn1.num_batches_tracked",
"module.fc.fc2.weight",
"module.fc.fc2.bias",
"module.fc.bn2.weight",
"module.fc.bn2.bias",
"module.fc.bn2.running_mean",
"module.fc.bn2.running_var",
"module.fc.bn2.num_batches_tracked",
"module.fc.fc3.weight",
"module.fc.fc3.bias",
]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = dct.pop(__UpperCamelCase )
A_ = val
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = ViTMSNConfig()
A_ = 1000
A_ = "datasets/huggingface/label-files"
A_ = "imagenet-1k-id2label.json"
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if "s16" in checkpoint_url:
A_ = 384
A_ = 1536
A_ = 6
elif "l16" in checkpoint_url:
A_ = 1024
A_ = 4096
A_ = 24
A_ = 16
A_ = 0.1
elif "b4" in checkpoint_url:
A_ = 4
elif "l7" in checkpoint_url:
A_ = 7
A_ = 1024
A_ = 4096
A_ = 24
A_ = 16
A_ = 0.1
A_ = ViTMSNModel(__UpperCamelCase )
A_ = torch.hub.load_state_dict_from_url(__UpperCamelCase ,map_location="cpu" )["target_encoder"]
A_ = ViTImageProcessor(size=config.image_size )
remove_projection_head(__UpperCamelCase )
A_ = create_rename_keys(__UpperCamelCase ,base_model=__UpperCamelCase )
for src, dest in rename_keys:
rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ,base_model=__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
A_ = ViTImageProcessor(
size=config.image_size ,image_mean=__UpperCamelCase ,image_std=__UpperCamelCase )
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" )
# forward pass
torch.manual_seed(2 )
A_ = model(**__UpperCamelCase )
A_ = outputs.last_hidden_state
# The following Colab Notebook was used to generate these outputs:
# https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb
if "s16" in checkpoint_url:
A_ = torch.tensor([[-1.0915, -1.4876, -1.1809]] )
elif "b16" in checkpoint_url:
A_ = torch.tensor([[14.2889, -18.9045, 11.7281]] )
elif "l16" in checkpoint_url:
A_ = torch.tensor([[41.5028, -22.8681, 45.6475]] )
elif "b4" in checkpoint_url:
A_ = torch.tensor([[-4.3868, 5.2932, -0.4137]] )
else:
A_ = torch.tensor([[-0.1792, -0.6465, 2.4263]] )
# verify logits
assert torch.allclose(last_hidden_state[:, 0, :3] ,__UpperCamelCase ,atol=1E-4 )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__a :Optional[int] = parser.parse_args()
convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
import logging
import os
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from accelerate.utils.imports import (
is_abit_bnb_available,
is_abit_bnb_available,
is_bnb_available,
)
from ..big_modeling import dispatch_model, init_empty_weights
from .dataclasses import BnbQuantizationConfig
from .modeling import (
find_tied_parameters,
get_balanced_memory,
infer_auto_device_map,
load_checkpoint_in_model,
offload_weight,
set_module_tensor_to_device,
)
if is_bnb_available():
import bitsandbytes as bnb
from copy import deepcopy
__a :List[str] = logging.getLogger(__name__)
def __snake_case ( __UpperCamelCase : torch.nn.Module ,__UpperCamelCase : BnbQuantizationConfig ,__UpperCamelCase : Union[str, os.PathLike] = None ,__UpperCamelCase : Optional[Dict[str, Union[int, str, torch.device]]] = None ,__UpperCamelCase : Optional[List[str]] = None ,__UpperCamelCase : Optional[Dict[Union[int, str], Union[int, str]]] = None ,__UpperCamelCase : Optional[Union[str, os.PathLike]] = None ,__UpperCamelCase : bool = False ,):
"""simple docstring"""
A_ = bnb_quantization_config.load_in_abit
A_ = bnb_quantization_config.load_in_abit
if load_in_abit and not is_abit_bnb_available():
raise ImportError(
"You have a version of `bitsandbytes` that is not compatible with 8bit quantization,"
" make sure you have the latest version of `bitsandbytes` installed." )
if load_in_abit and not is_abit_bnb_available():
raise ValueError(
"You have a version of `bitsandbytes` that is not compatible with 4bit quantization,"
"make sure you have the latest version of `bitsandbytes` installed." )
A_ = []
# custom device map
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(device_map.keys() ) > 1:
A_ = [key for key, value in device_map.items() if value in ["disk", "cpu"]]
# We keep some modules such as the lm_head in their original dtype for numerical stability reasons
if bnb_quantization_config.skip_modules is None:
A_ = get_keys_to_not_convert(__UpperCamelCase )
# add cpu modules to skip modules only for 4-bit modules
if load_in_abit:
bnb_quantization_config.skip_modules.extend(__UpperCamelCase )
A_ = bnb_quantization_config.skip_modules
# We add the modules we want to keep in full precision
if bnb_quantization_config.keep_in_fpaa_modules is None:
A_ = []
A_ = bnb_quantization_config.keep_in_fpaa_modules
modules_to_not_convert.extend(__UpperCamelCase )
# compatibility with peft
A_ = load_in_abit
A_ = load_in_abit
A_ = get_parameter_device(__UpperCamelCase )
if model_device.type != "meta":
# quantization of an already loaded model
logger.warning(
"It is not recommended to quantize a loaded model. "
"The model should be instantiated under the `init_empty_weights` context manager." )
A_ = replace_with_bnb_layers(__UpperCamelCase ,__UpperCamelCase ,modules_to_not_convert=__UpperCamelCase )
# convert param to the right dtype
A_ = bnb_quantization_config.torch_dtype
for name, param in model.state_dict().items():
if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ):
param.to(torch.floataa )
if param.dtype != torch.floataa:
A_ = name.replace(".weight" ,"" ).replace(".bias" ,"" )
A_ = getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
if param is not None:
param.to(torch.floataa )
elif torch.is_floating_point(__UpperCamelCase ):
param.to(__UpperCamelCase )
if model_device.type == "cuda":
# move everything to cpu in the first place because we can't do quantization if the weights are already on cuda
model.cuda(torch.cuda.current_device() )
torch.cuda.empty_cache()
elif torch.cuda.is_available():
model.to(torch.cuda.current_device() )
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization." )
logger.info(
f'''The model device type is {model_device.type}. However, cuda is needed for quantization.'''
"We move the model to cuda." )
return model
elif weights_location is None:
raise RuntimeError(
f'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' )
else:
with init_empty_weights():
A_ = replace_with_bnb_layers(
__UpperCamelCase ,__UpperCamelCase ,modules_to_not_convert=__UpperCamelCase )
A_ = get_quantized_model_device_map(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,max_memory=__UpperCamelCase ,no_split_module_classes=__UpperCamelCase ,)
if offload_state_dict is None and device_map is not None and "disk" in device_map.values():
A_ = True
A_ = any(x in list(device_map.values() ) for x in ["cpu", "disk"] )
load_checkpoint_in_model(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,dtype=bnb_quantization_config.torch_dtype ,offload_folder=__UpperCamelCase ,offload_state_dict=__UpperCamelCase ,keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules ,offload_abit_bnb=load_in_abit and offload ,)
return dispatch_model(__UpperCamelCase ,device_map=__UpperCamelCase ,offload_dir=__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : int ,__UpperCamelCase : Tuple=None ,__UpperCamelCase : str=None ,__UpperCamelCase : int=None ):
"""simple docstring"""
if device_map is None:
if torch.cuda.is_available():
A_ = {"": torch.cuda.current_device()}
else:
raise RuntimeError("No GPU found. A GPU is needed for quantization." )
logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." )
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]:
raise ValueError(
"If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or "
"'sequential'." )
A_ = {}
special_dtypes.update(
{
name: bnb_quantization_config.torch_dtype
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.skip_modules )
} )
special_dtypes.update(
{
name: torch.floataa
for name, _ in model.named_parameters()
if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules )
} )
A_ = {}
A_ = special_dtypes
A_ = no_split_module_classes
A_ = bnb_quantization_config.target_dtype
# get max_memory for each device.
if device_map != "sequential":
A_ = get_balanced_memory(
__UpperCamelCase ,low_zero=(device_map == "balanced_low_0") ,max_memory=__UpperCamelCase ,**__UpperCamelCase ,)
A_ = max_memory
A_ = infer_auto_device_map(__UpperCamelCase ,**__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
# check if don't have any quantized module on the cpu
A_ = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules
A_ = {
key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert
}
for device in ["cpu", "disk"]:
if device in device_map_without_some_modules.values():
if bnb_quantization_config.load_in_abit:
raise ValueError(
"\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " )
else:
logger.info(
"Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" )
del device_map_without_some_modules
return device_map
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[Any]=None ,__UpperCamelCase : List[str]=None ):
"""simple docstring"""
if modules_to_not_convert is None:
A_ = []
A_ , A_ = _replace_with_bnb_layers(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
if not has_been_replaced:
logger.warning(
"You are loading your model in 8bit or 4bit but no linear modules were found in your model."
" this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers."
" Please double check your model architecture, or submit an issue on github if you think this is"
" a bug." )
return model
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Optional[Any]=None ,):
"""simple docstring"""
A_ = False
for name, module in model.named_children():
if current_key_name is None:
A_ = []
current_key_name.append(__UpperCamelCase )
if isinstance(__UpperCamelCase ,nn.Linear ) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
A_ = ".".join(__UpperCamelCase )
A_ = True
for key in modules_to_not_convert:
if (
(key in current_key_name_str) and (key + "." in current_key_name_str)
) or key == current_key_name_str:
A_ = False
break
if proceed:
# Load bnb module with empty weight and replace ``nn.Linear` module
if bnb_quantization_config.load_in_abit:
A_ = bnb.nn.LinearabitLt(
module.in_features ,module.out_features ,module.bias is not None ,has_fpaa_weights=__UpperCamelCase ,threshold=bnb_quantization_config.llm_inta_threshold ,)
elif bnb_quantization_config.load_in_abit:
A_ = bnb.nn.Linearabit(
module.in_features ,module.out_features ,module.bias is not None ,bnb_quantization_config.bnb_abit_compute_dtype ,compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant ,quant_type=bnb_quantization_config.bnb_abit_quant_type ,)
else:
raise ValueError("load_in_8bit and load_in_4bit can't be both False" )
A_ = module.weight.data
if module.bias is not None:
A_ = module.bias.data
bnb_module.requires_grad_(__UpperCamelCase )
setattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
A_ = True
if len(list(module.children() ) ) > 0:
A_ , A_ = _replace_with_bnb_layers(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
A_ = has_been_replaced | _has_been_replaced
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
with init_empty_weights():
A_ = deepcopy(__UpperCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
A_ = find_tied_parameters(__UpperCamelCase )
# For compatibility with Accelerate < 0.18
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = sum(list(tied_params.values() ) ,[] ) + list(tied_params.keys() )
else:
A_ = sum(__UpperCamelCase ,[] )
A_ = len(__UpperCamelCase ) > 0
# Check if it is a base model
A_ = False
if hasattr(__UpperCamelCase ,"base_model_prefix" ):
A_ = not hasattr(__UpperCamelCase ,model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
A_ = list(model.named_children() )
A_ = [list_modules[-1][0]]
# add last module together with tied weights
A_ = set(__UpperCamelCase ) - set(__UpperCamelCase )
A_ = list(set(__UpperCamelCase ) ) + list(__UpperCamelCase )
# remove ".weight" from the keys
A_ = [".weight", ".bias"]
A_ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
A_ = name.replace(__UpperCamelCase ,"" )
filtered_module_names.append(__UpperCamelCase )
return filtered_module_names
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for m in model.modules():
if isinstance(__UpperCamelCase ,bnb.nn.Linearabit ):
return True
return False
def __snake_case ( __UpperCamelCase : nn.Module ):
"""simple docstring"""
return next(parameter.parameters() ).device
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if fpaa_statistics is None:
set_module_tensor_to_device(__UpperCamelCase ,__UpperCamelCase ,0 ,dtype=__UpperCamelCase ,value=__UpperCamelCase )
A_ = param_name
A_ = model
if "." in tensor_name:
A_ = tensor_name.split("." )
for split in splits[:-1]:
A_ = getattr(__UpperCamelCase ,__UpperCamelCase )
if new_module is None:
raise ValueError(f'''{module} has no attribute {split}.''' )
A_ = new_module
A_ = splits[-1]
# offload weights
A_ = False
offload_weight(module._parameters[tensor_name] ,__UpperCamelCase ,__UpperCamelCase ,index=__UpperCamelCase )
if hasattr(module._parameters[tensor_name] ,"SCB" ):
offload_weight(
module._parameters[tensor_name].SCB ,param_name.replace("weight" ,"SCB" ) ,__UpperCamelCase ,index=__UpperCamelCase ,)
else:
offload_weight(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,index=__UpperCamelCase )
offload_weight(__UpperCamelCase ,param_name.replace("weight" ,"SCB" ) ,__UpperCamelCase ,index=__UpperCamelCase )
set_module_tensor_to_device(__UpperCamelCase ,__UpperCamelCase ,"meta" ,dtype=__UpperCamelCase ,value=torch.empty(*param.size() ) )
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Tuple=True ,__UpperCamelCase : Tuple="pt" ):
"""simple docstring"""
A_ = {"add_prefix_space": True} if isinstance(__UpperCamelCase ,__UpperCamelCase ) and not line.startswith(" " ) else {}
A_ = padding_side
return tokenizer(
[line] ,max_length=__UpperCamelCase ,padding="max_length" if pad_to_max_length else None ,truncation=__UpperCamelCase ,return_tensors=__UpperCamelCase ,add_special_tokens=__UpperCamelCase ,**__UpperCamelCase ,)
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[int]=None ,):
"""simple docstring"""
A_ = input_ids.ne(__UpperCamelCase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any]="train" , UpperCAmelCase : Any=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Dict="" , ):
super().__init__()
A_ = Path(UpperCAmelCase ).joinpath(type_path + ".source" )
A_ = Path(UpperCAmelCase ).joinpath(type_path + ".target" )
A_ = self.get_char_lens(self.src_file )
A_ = max_source_length
A_ = max_target_length
assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}'''
A_ = tokenizer
A_ = prefix
if n_obs is not None:
A_ = self.src_lens[:n_obs]
A_ = src_lang
A_ = tgt_lang
def __len__( self : Union[str, Any] ):
return len(self.src_lens )
def __getitem__( self : Optional[int] , UpperCAmelCase : List[str] ):
A_ = index + 1 # linecache starts at 1
A_ = self.prefix + linecache.getline(str(self.src_file ) , UpperCAmelCase ).rstrip("\n" )
A_ = linecache.getline(str(self.tgt_file ) , UpperCAmelCase ).rstrip("\n" )
assert source_line, f'''empty source line for index {index}'''
assert tgt_line, f'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer , UpperCAmelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
A_ = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer
)
A_ = self.tokenizer.generator if isinstance(self.tokenizer , UpperCAmelCase ) else self.tokenizer
A_ = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_source_length , "right" )
A_ = encode_line(UpperCAmelCase , UpperCAmelCase , self.max_target_length , "right" )
A_ = source_inputs["input_ids"].squeeze()
A_ = target_inputs["input_ids"].squeeze()
A_ = source_inputs["attention_mask"].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def __A ( UpperCAmelCase : Dict ):
return [len(UpperCAmelCase ) for x in Path(UpperCAmelCase ).open().readlines()]
def __A ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ):
A_ = torch.stack([x["input_ids"] for x in batch] )
A_ = torch.stack([x["attention_mask"] for x in batch] )
A_ = torch.stack([x["decoder_input_ids"] for x in batch] )
A_ = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , UpperCAmelCase )
else self.tokenizer.pad_token_id
)
A_ = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , UpperCAmelCase )
else self.tokenizer.pad_token_id
)
A_ = trim_batch(UpperCAmelCase , UpperCAmelCase )
A_ , A_ = trim_batch(UpperCAmelCase , UpperCAmelCase , attention_mask=UpperCAmelCase )
A_ = {
"input_ids": source_ids,
"attention_mask": source_mask,
"decoder_input_ids": y,
}
return batch
__a :int = getLogger(__name__)
def __snake_case ( __UpperCamelCase : List[List] ):
"""simple docstring"""
return list(itertools.chain.from_iterable(__UpperCamelCase ) )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = get_git_info()
save_json(__UpperCamelCase ,os.path.join(__UpperCamelCase ,"git_log.json" ) )
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ,__UpperCamelCase : Tuple=4 ,**__UpperCamelCase : int ):
"""simple docstring"""
with open(__UpperCamelCase ,"w" ) as f:
json.dump(__UpperCamelCase ,__UpperCamelCase ,indent=__UpperCamelCase ,**__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(__UpperCamelCase ) as f:
return json.load(__UpperCamelCase )
def __snake_case ( ):
"""simple docstring"""
A_ = git.Repo(search_parent_directories=__UpperCamelCase )
A_ = {
"repo_id": str(__UpperCamelCase ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
"hostname": str(socket.gethostname() ),
}
return repo_infos
def __snake_case ( __UpperCamelCase : Callable ,__UpperCamelCase : Iterable ):
"""simple docstring"""
return list(map(__UpperCamelCase ,__UpperCamelCase ) )
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ):
"""simple docstring"""
with open(__UpperCamelCase ,"wb" ) as f:
return pickle.dump(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
def remove_articles(__UpperCamelCase : Optional[int] ):
return re.sub(R"\b(a|an|the)\b" ," " ,__UpperCamelCase )
def white_space_fix(__UpperCamelCase : List[Any] ):
return " ".join(text.split() )
def remove_punc(__UpperCamelCase : Tuple ):
A_ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__UpperCamelCase : Union[str, Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__UpperCamelCase ) ) ) )
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = normalize_answer(__UpperCamelCase ).split()
A_ = normalize_answer(__UpperCamelCase ).split()
A_ = Counter(__UpperCamelCase ) & Counter(__UpperCamelCase )
A_ = sum(common.values() )
if num_same == 0:
return 0
A_ = 1.0 * num_same / len(__UpperCamelCase )
A_ = 1.0 * num_same / len(__UpperCamelCase )
A_ = (2 * precision * recall) / (precision + recall)
return fa
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
return normalize_answer(__UpperCamelCase ) == normalize_answer(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[str] ):
"""simple docstring"""
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = 0
for hypo, pred in zip(__UpperCamelCase ,__UpperCamelCase ):
em += exact_match_score(__UpperCamelCase ,__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
em /= len(__UpperCamelCase )
return {"em": em}
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
return model_prefix.startswith("rag" )
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
A_ = "dropout_rate"
for p in extra_params:
if getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ):
if not hasattr(__UpperCamelCase ,__UpperCamelCase ) and not hasattr(__UpperCamelCase ,equivalent_param[p] ):
logger.info("config doesn't have a `{}` attribute".format(__UpperCamelCase ) )
delattr(__UpperCamelCase ,__UpperCamelCase )
continue
A_ = p if hasattr(__UpperCamelCase ,__UpperCamelCase ) else equivalent_param[p]
setattr(__UpperCamelCase ,__UpperCamelCase ,getattr(__UpperCamelCase ,__UpperCamelCase ) )
delattr(__UpperCamelCase ,__UpperCamelCase )
return hparams, config
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import argparse
import os
import re
import packaging.version
__a :Union[str, Any] = 'examples/'
__a :List[str] = {
'examples': (re.compile(R'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(R'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(R'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), R'\1version="VERSION",'),
'doc': (re.compile(R'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
__a :Optional[Any] = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
__a :str = 'README.md'
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : str ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
with open(__UpperCamelCase ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
A_ = f.read()
A_ , A_ = REPLACE_PATTERNS[pattern]
A_ = replace.replace("VERSION" ,__UpperCamelCase )
A_ = re_pattern.sub(__UpperCamelCase ,__UpperCamelCase )
with open(__UpperCamelCase ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.write(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
for folder, directories, fnames in os.walk(__UpperCamelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("research_projects" )
if "legacy" in directories:
directories.remove("legacy" )
for fname in fnames:
if fname.endswith(".py" ):
update_version_in_file(os.path.join(__UpperCamelCase ,__UpperCamelCase ) ,__UpperCamelCase ,pattern="examples" )
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : int=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
if not patch:
update_version_in_examples(__UpperCamelCase )
def __snake_case ( ):
"""simple docstring"""
A_ = "🤗 Transformers currently provides the following architectures"
A_ = "1. Want to contribute a new model?"
with open(__UpperCamelCase ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
A_ = f.readlines()
# Find the start of the list.
A_ = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
A_ = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("1." ):
A_ = lines[index].replace(
"https://huggingface.co/docs/transformers/main/model_doc" ,"https://huggingface.co/docs/transformers/model_doc" ,)
index += 1
with open(__UpperCamelCase ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(__UpperCamelCase )
def __snake_case ( ):
"""simple docstring"""
with open(REPLACE_FILES["init"] ,"r" ) as f:
A_ = f.read()
A_ = REPLACE_PATTERNS["init"][0].search(__UpperCamelCase ).groups()[0]
return packaging.version.parse(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Union[str, Any]=False ):
"""simple docstring"""
A_ = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" )
if default_version.is_devrelease:
A_ = default_version.base_version
elif patch:
A_ = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
A_ = f'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
A_ = input(f'''Which version are you releasing? [{default_version}]''' )
if len(__UpperCamelCase ) == 0:
A_ = default_version
print(f'''Updating version to {version}.''' )
global_version_update(__UpperCamelCase ,patch=__UpperCamelCase )
if not patch:
print("Cleaning main README, don't forget to run `make fix-copies`." )
clean_main_ref_in_model_list()
def __snake_case ( ):
"""simple docstring"""
A_ = get_version()
A_ = f'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
A_ = current_version.base_version
# Check with the user we got that right.
A_ = input(f'''Which version are we developing now? [{dev_version}]''' )
if len(__UpperCamelCase ) == 0:
A_ = dev_version
print(f'''Updating version to {version}.''' )
global_version_update(__UpperCamelCase )
print("Cleaning main README, don't forget to run `make fix-copies`." )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__a :List[str] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
__a :str = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work()
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__a :Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
def __snake_case ( __UpperCamelCase : Union[List, PIL.Image.Image, torch.Tensor] ):
"""simple docstring"""
warnings.warn(
"The preprocess method is deprecated and will be removed in a future version. Please"
" use VaeImageProcessor.preprocess instead" ,__UpperCamelCase ,)
if isinstance(__UpperCamelCase ,torch.Tensor ):
return image
elif isinstance(__UpperCamelCase ,PIL.Image.Image ):
A_ = [image]
if isinstance(image[0] ,PIL.Image.Image ):
A_ , A_ = image[0].size
A_ , A_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
A_ = [np.array(i.resize((w, h) ,resample=PIL_INTERPOLATION["lanczos"] ) )[None, :] for i in image]
A_ = np.concatenate(__UpperCamelCase ,axis=0 )
A_ = np.array(__UpperCamelCase ).astype(np.floataa ) / 255.0
A_ = image.transpose(0 ,3 ,1 ,2 )
A_ = 2.0 * image - 1.0
A_ = torch.from_numpy(__UpperCamelCase )
elif isinstance(image[0] ,torch.Tensor ):
A_ = torch.cat(__UpperCamelCase ,dim=0 )
return image
def __snake_case ( __UpperCamelCase : Union[List, PIL.Image.Image, torch.Tensor] ):
"""simple docstring"""
if isinstance(__UpperCamelCase ,torch.Tensor ):
return mask
elif isinstance(__UpperCamelCase ,PIL.Image.Image ):
A_ = [mask]
if isinstance(mask[0] ,PIL.Image.Image ):
A_ , A_ = mask[0].size
A_ , A_ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
A_ = [np.array(m.convert("L" ).resize((w, h) ,resample=PIL_INTERPOLATION["nearest"] ) )[None, :] for m in mask]
A_ = np.concatenate(__UpperCamelCase ,axis=0 )
A_ = mask.astype(np.floataa ) / 255.0
A_ = 0
A_ = 1
A_ = torch.from_numpy(__UpperCamelCase )
elif isinstance(mask[0] ,torch.Tensor ):
A_ = torch.cat(__UpperCamelCase ,dim=0 )
return mask
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : UNetaDModel
_lowerCamelCase : RePaintScheduler
def __init__( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ):
super().__init__()
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__( self : List[Any] , UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase : Union[torch.Tensor, PIL.Image.Image] , UpperCAmelCase : int = 250 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : int = 10 , UpperCAmelCase : int = 10 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ):
A_ = image
A_ = _preprocess_image(UpperCAmelCase )
A_ = original_image.to(device=self.device , dtype=self.unet.dtype )
A_ = _preprocess_mask(UpperCAmelCase )
A_ = mask_image.to(device=self.device , dtype=self.unet.dtype )
A_ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) != batch_size:
raise ValueError(
f'''You have passed a list of generators of length {len(UpperCAmelCase )}, but requested an effective batch'''
f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
A_ = original_image.shape
A_ = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.device )
A_ = eta
A_ = self.scheduler.timesteps[0] + 1
A_ = generator[0] if isinstance(UpperCAmelCase , UpperCAmelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
A_ = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute previous image: x_t -> x_t-1
A_ = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
A_ = self.scheduler.undo_step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = t
A_ = (image / 2 + 0.5).clamp(0 , 1 )
A_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
A_ = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase )
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__a :Any = None
__a :int = logging.get_logger(__name__)
__a :Dict = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
__a :Dict = {
'vocab_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/nllb-200-distilled-600M': (
'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json'
),
},
}
__a :Any = {
'facebook/nllb-large-en-ro': 1024,
'facebook/nllb-200-distilled-600M': 1024,
}
# fmt: off
__a :Optional[Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn']
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : Dict = ['input_ids', 'attention_mask']
_lowerCamelCase : Any = NllbTokenizer
_lowerCamelCase : List[int] = []
_lowerCamelCase : List[int] = []
def __init__( self : Tuple , UpperCAmelCase : Any=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : int="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : List[str]="</s>" , UpperCAmelCase : int="<s>" , UpperCAmelCase : Tuple="<unk>" , UpperCAmelCase : Any="<pad>" , UpperCAmelCase : Dict="<mask>" , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=False , **UpperCAmelCase : List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
A_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
A_ = legacy_behaviour
super().__init__(
vocab_file=UpperCAmelCase , tokenizer_file=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , unk_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase , additional_special_tokens=UpperCAmelCase , legacy_behaviour=UpperCAmelCase , **UpperCAmelCase , )
A_ = vocab_file
A_ = False if not self.vocab_file else True
A_ = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} )
A_ = {
lang_code: self.convert_tokens_to_ids(UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
A_ = src_lang if src_lang is not None else "eng_Latn"
A_ = self.convert_tokens_to_ids(self._src_lang )
A_ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __A ( self : int ):
return self._src_lang
@src_lang.setter
def __A ( self : Tuple , UpperCAmelCase : str ):
A_ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __A ( self : List[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __A ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __A ( self : Optional[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] , UpperCAmelCase : Optional[str] , **UpperCAmelCase : List[Any] ):
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
A_ = src_lang
A_ = self(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
A_ = self.convert_tokens_to_ids(UpperCAmelCase )
A_ = tgt_lang_id
return inputs
def __A ( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str = "eng_Latn" , UpperCAmelCase : Optional[List[str]] = None , UpperCAmelCase : str = "fra_Latn" , **UpperCAmelCase : Optional[int] , ):
A_ = src_lang
A_ = tgt_lang
return super().prepare_seqaseq_batch(UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
def __A ( self : List[Any] ):
return self.set_src_lang_special_tokens(self.src_lang )
def __A ( self : Tuple ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __A ( self : str , UpperCAmelCase : str ):
A_ = self.convert_tokens_to_ids(UpperCAmelCase )
if self.legacy_behaviour:
A_ = []
A_ = [self.eos_token_id, self.cur_lang_code]
else:
A_ = [self.cur_lang_code]
A_ = [self.eos_token_id]
A_ = self.convert_ids_to_tokens(self.prefix_tokens )
A_ = self.convert_ids_to_tokens(self.suffix_tokens )
A_ = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __A ( self : Optional[Any] , UpperCAmelCase : str ):
A_ = self.convert_tokens_to_ids(UpperCAmelCase )
if self.legacy_behaviour:
A_ = []
A_ = [self.eos_token_id, self.cur_lang_code]
else:
A_ = [self.cur_lang_code]
A_ = [self.eos_token_id]
A_ = self.convert_ids_to_tokens(self.prefix_tokens )
A_ = self.convert_ids_to_tokens(self.suffix_tokens )
A_ = processors.TemplateProcessing(
single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' )
return
A_ = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ):
copyfile(self.vocab_file , UpperCAmelCase )
return (out_vocab_file,)
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a :int = {
'configuration_instructblip': [
'INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP',
'InstructBlipConfig',
'InstructBlipQFormerConfig',
'InstructBlipVisionConfig',
],
'processing_instructblip': ['InstructBlipProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :List[str] = [
'INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST',
'InstructBlipQFormerModel',
'InstructBlipPreTrainedModel',
'InstructBlipForConditionalGeneration',
'InstructBlipVisionModel',
]
if TYPE_CHECKING:
from .configuration_instructblip import (
INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
InstructBlipConfig,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from .processing_instructblip import InstructBlipProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_instructblip import (
INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
InstructBlipForConditionalGeneration,
InstructBlipPreTrainedModel,
InstructBlipQFormerModel,
InstructBlipVisionModel,
)
else:
import sys
__a :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__a :Tuple = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Tuple = ['MobileViTFeatureExtractor']
__a :int = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[Any] = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :int = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__a :List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Optional[Any] = logging.get_logger(__name__)
__a :str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = 'openai-gpt'
_lowerCamelCase : Optional[Any] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : List[Any] , UpperCAmelCase : Union[str, Any]=40478 , UpperCAmelCase : str=512 , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : List[Any]=12 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : List[Any]=1E-5 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Dict="cls_index" , UpperCAmelCase : Dict=True , UpperCAmelCase : Dict=None , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=0.1 , **UpperCAmelCase : str , ):
A_ = vocab_size
A_ = n_positions
A_ = n_embd
A_ = n_layer
A_ = n_head
A_ = afn
A_ = resid_pdrop
A_ = embd_pdrop
A_ = attn_pdrop
A_ = layer_norm_epsilon
A_ = initializer_range
A_ = summary_type
A_ = summary_use_proj
A_ = summary_activation
A_ = summary_first_dropout
A_ = summary_proj_to_labels
super().__init__(**UpperCAmelCase )
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
def is_in_circle(__UpperCamelCase : float ,__UpperCamelCase : float ) -> bool:
A_ = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
A_ = mean(
int(is_in_circle(uniform(-1.0 ,1.0 ) ,uniform(-1.0 ,1.0 ) ) )
for _ in range(__UpperCamelCase ) )
# The ratio of the area for circle to square is pi/4.
A_ = proportion * 4
print(f'''The estimated value of pi is {pi_estimate}''' )
print(f'''The numpy value of pi is {pi}''' )
print(f'''The total error is {abs(pi - pi_estimate )}''' )
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Callable[[float], float] ,__UpperCamelCase : float = 0.0 ,__UpperCamelCase : float = 1.0 ,):
"""simple docstring"""
return mean(
function_to_integrate(uniform(__UpperCamelCase ,__UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value)
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : float = 0.0 ,__UpperCamelCase : float = 1.0 ):
"""simple docstring"""
def identity_function(__UpperCamelCase : float ) -> float:
return x
A_ = area_under_curve_estimator(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
A_ = (max_value * max_value - min_value * min_value) / 2
print("******************" )
print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {expected_value}''' )
print(f'''Total error is {abs(estimated_value - expected_value )}''' )
print("******************" )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
def function_to_integrate(__UpperCamelCase : float ) -> float:
return sqrt(4.0 - x * x )
A_ = area_under_curve_estimator(
__UpperCamelCase ,__UpperCamelCase ,0.0 ,2.0 )
print("******************" )
print("Estimating pi using area_under_curve_estimator" )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {pi}''' )
print(f'''Total error is {abs(estimated_value - pi )}''' )
print("******************" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "geglu" , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : str = "layer_norm" , UpperCAmelCase : bool = False , ):
super().__init__()
A_ = only_cross_attention
A_ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
A_ = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
A_ = AdaLayerNorm(UpperCAmelCase , UpperCAmelCase )
elif self.use_ada_layer_norm_zero:
A_ = AdaLayerNormZero(UpperCAmelCase , UpperCAmelCase )
else:
A_ = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase )
A_ = Attention(
query_dim=UpperCAmelCase , heads=UpperCAmelCase , dim_head=UpperCAmelCase , dropout=UpperCAmelCase , bias=UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=UpperCAmelCase , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
A_ = (
AdaLayerNorm(UpperCAmelCase , UpperCAmelCase )
if self.use_ada_layer_norm
else nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase )
)
A_ = Attention(
query_dim=UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=UpperCAmelCase , dim_head=UpperCAmelCase , dropout=UpperCAmelCase , bias=UpperCAmelCase , upcast_attention=UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none
else:
A_ = None
A_ = None
# 3. Feed-forward
A_ = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase )
A_ = FeedForward(UpperCAmelCase , dropout=UpperCAmelCase , activation_fn=UpperCAmelCase , final_dropout=UpperCAmelCase )
# let chunk size default to None
A_ = None
A_ = 0
def __A ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
# Sets chunk feed-forward
A_ = chunk_size
A_ = dim
def __A ( self : Any , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[torch.LongTensor] = None , UpperCAmelCase : Dict[str, Any] = None , UpperCAmelCase : Optional[torch.LongTensor] = None , ):
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Self-Attention
if self.use_ada_layer_norm:
A_ = self.norma(UpperCAmelCase , UpperCAmelCase )
elif self.use_ada_layer_norm_zero:
A_ , A_ , A_ , A_ , A_ = self.norma(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hidden_dtype=hidden_states.dtype )
else:
A_ = self.norma(UpperCAmelCase )
A_ = cross_attention_kwargs if cross_attention_kwargs is not None else {}
A_ = self.attna(
UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=UpperCAmelCase , **UpperCAmelCase , )
if self.use_ada_layer_norm_zero:
A_ = gate_msa.unsqueeze(1 ) * attn_output
A_ = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
A_ = (
self.norma(UpperCAmelCase , UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(UpperCAmelCase )
)
A_ = self.attna(
UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , attention_mask=UpperCAmelCase , **UpperCAmelCase , )
A_ = attn_output + hidden_states
# 3. Feed-forward
A_ = self.norma(UpperCAmelCase )
if self.use_ada_layer_norm_zero:
A_ = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
A_ = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
A_ = torch.cat(
[self.ff(UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
A_ = self.ff(UpperCAmelCase )
if self.use_ada_layer_norm_zero:
A_ = gate_mlp.unsqueeze(1 ) * ff_output
A_ = ff_output + hidden_states
return hidden_states
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 4 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : str = "geglu" , UpperCAmelCase : bool = False , ):
super().__init__()
A_ = int(dim * mult )
A_ = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
A_ = GELU(UpperCAmelCase , UpperCAmelCase )
if activation_fn == "gelu-approximate":
A_ = GELU(UpperCAmelCase , UpperCAmelCase , approximate="tanh" )
elif activation_fn == "geglu":
A_ = GEGLU(UpperCAmelCase , UpperCAmelCase )
elif activation_fn == "geglu-approximate":
A_ = ApproximateGELU(UpperCAmelCase , UpperCAmelCase )
A_ = nn.ModuleList([] )
# project in
self.net.append(UpperCAmelCase )
# project dropout
self.net.append(nn.Dropout(UpperCAmelCase ) )
# project out
self.net.append(nn.Linear(UpperCAmelCase , UpperCAmelCase ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(UpperCAmelCase ) )
def __A ( self : Dict , UpperCAmelCase : int ):
for module in self.net:
A_ = module(UpperCAmelCase )
return hidden_states
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str = "none" ):
super().__init__()
A_ = nn.Linear(UpperCAmelCase , UpperCAmelCase )
A_ = approximate
def __A ( self : str , UpperCAmelCase : Dict ):
if gate.device.type != "mps":
return F.gelu(UpperCAmelCase , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def __A ( self : List[Any] , UpperCAmelCase : Any ):
A_ = self.proj(UpperCAmelCase )
A_ = self.gelu(UpperCAmelCase )
return hidden_states
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int ):
super().__init__()
A_ = nn.Linear(UpperCAmelCase , dim_out * 2 )
def __A ( self : Tuple , UpperCAmelCase : Tuple ):
if gate.device.type != "mps":
return F.gelu(UpperCAmelCase )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def __A ( self : int , UpperCAmelCase : str ):
A_ , A_ = self.proj(UpperCAmelCase ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(UpperCAmelCase )
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : int ):
super().__init__()
A_ = nn.Linear(UpperCAmelCase , UpperCAmelCase )
def __A ( self : int , UpperCAmelCase : int ):
A_ = self.proj(UpperCAmelCase )
return x * torch.sigmoid(1.702 * x )
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : List[Any] , UpperCAmelCase : int ):
super().__init__()
A_ = nn.Embedding(UpperCAmelCase , UpperCAmelCase )
A_ = nn.SiLU()
A_ = nn.Linear(UpperCAmelCase , embedding_dim * 2 )
A_ = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase )
def __A ( self : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any ):
A_ = self.linear(self.silu(self.emb(UpperCAmelCase ) ) )
A_ , A_ = torch.chunk(UpperCAmelCase , 2 )
A_ = self.norm(UpperCAmelCase ) * (1 + scale) + shift
return x
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ):
super().__init__()
A_ = CombinedTimestepLabelEmbeddings(UpperCAmelCase , UpperCAmelCase )
A_ = nn.SiLU()
A_ = nn.Linear(UpperCAmelCase , 6 * embedding_dim , bias=UpperCAmelCase )
A_ = nn.LayerNorm(UpperCAmelCase , elementwise_affine=UpperCAmelCase , eps=1E-6 )
def __A ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=None ):
A_ = self.linear(self.silu(self.emb(UpperCAmelCase , UpperCAmelCase , hidden_dtype=UpperCAmelCase ) ) )
A_ , A_ , A_ , A_ , A_ , A_ = emb.chunk(6 , dim=1 )
A_ = self.norm(UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class _a ( nn.Module ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : float = 1E-5 ):
super().__init__()
A_ = num_groups
A_ = eps
if act_fn is None:
A_ = None
else:
A_ = get_activation(UpperCAmelCase )
A_ = nn.Linear(UpperCAmelCase , out_dim * 2 )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any ):
if self.act:
A_ = self.act(UpperCAmelCase )
A_ = self.linear(UpperCAmelCase )
A_ = emb[:, :, None, None]
A_ , A_ = emb.chunk(2 , dim=1 )
A_ = F.group_norm(UpperCAmelCase , self.num_groups , eps=self.eps )
A_ = x * (1 + scale) + shift
return x
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__a :Any = logging.get_logger(__name__)
__a :Dict = 'https://openaipublic.azureedge.net/jukebox/models/'
__a :List[str] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10:
A_ = key.replace(".model.1.bias" ,".conv1d_1.bias" )
elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10:
A_ = key.replace(".model.1.weight" ,".conv1d_1.weight" )
elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10:
A_ = key.replace(".model.3.bias" ,".conv1d_2.bias" )
elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10:
A_ = key.replace(".model.3.weight" ,".conv1d_2.weight" )
if "conditioner_blocks.0." in key:
A_ = key.replace("conditioner_blocks.0" ,"conditioner_blocks" )
if "prime_prior" in key:
A_ = key.replace("prime_prior" ,"encoder" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
A_ = key.replace(".emb." ,"." )
if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k" ,".codebook" )
if "y_emb." in key:
return key.replace("y_emb." ,"metadata_embedding." )
if "x_emb.emb." in key:
A_ = key.replace("0.x_emb.emb" ,"embed_tokens" )
if "prime_state_ln" in key:
return key.replace("prime_state_ln" ,"encoder.final_layer_norm" )
if ".ln" in key:
return key.replace(".ln" ,".layer_norm" )
if "_ln" in key:
return key.replace("_ln" ,"_layer_norm" )
if "prime_state_proj" in key:
return key.replace("prime_state_proj" ,"encoder.proj_in" )
if "prime_x_out" in key:
return key.replace("prime_x_out" ,"encoder.lm_head" )
if "prior.x_out" in key:
return key.replace("x_out" ,"fc_proj_out" )
if "x_emb" in key:
return key.replace("x_emb" ,"embed_tokens" )
return key
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Dict ,__UpperCamelCase : Dict ):
"""simple docstring"""
A_ = {}
import re
A_ = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
A_ = re.compile(
R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
A_ = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
A_ = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
A_ = re.compile(
R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
A_ = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
A_ = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" )
A_ = re.compile(
R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
A_ = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(__UpperCamelCase ):
A_ = re_encoder_block_conv_in.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = int(groups[2] ) * 2 + int(groups[3] )
A_ = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'''
A_ = re_encoder_block_conv_in.sub(__UpperCamelCase ,__UpperCamelCase )
elif re_encoder_block_resnet.fullmatch(__UpperCamelCase ):
A_ = re_encoder_block_resnet.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = int(groups[2] ) * 2 + int(groups[3] )
A_ = {"1": 1, "3": 2}[groups[-2]]
A_ = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'''
A_ = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
A_ = prefix + resnet_block
A_ = re_encoder_block_resnet.sub(__UpperCamelCase ,__UpperCamelCase )
elif re_encoder_block_proj_out.fullmatch(__UpperCamelCase ):
A_ = re_encoder_block_proj_out.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = f'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'''
A_ = re_encoder_block_proj_out.sub(__UpperCamelCase ,__UpperCamelCase )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(__UpperCamelCase ):
A_ = re_decoder_block_conv_out.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
A_ = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'''
A_ = re_decoder_block_conv_out.sub(__UpperCamelCase ,__UpperCamelCase )
elif re_decoder_block_resnet.fullmatch(__UpperCamelCase ):
A_ = re_decoder_block_resnet.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = int(groups[2] ) * 2 + int(groups[3] ) - 2
A_ = {"1": 1, "3": 2}[groups[-2]]
A_ = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'''
A_ = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
A_ = prefix + resnet_block
A_ = re_decoder_block_resnet.sub(__UpperCamelCase ,__UpperCamelCase )
elif re_decoder_block_proj_in.fullmatch(__UpperCamelCase ):
A_ = re_decoder_block_proj_in.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = f'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'''
A_ = re_decoder_block_proj_in.sub(__UpperCamelCase ,__UpperCamelCase )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(__UpperCamelCase ):
A_ = re_prior_cond_conv_out.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
A_ = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'''
A_ = re_prior_cond_conv_out.sub(__UpperCamelCase ,__UpperCamelCase )
elif re_prior_cond_resnet.fullmatch(__UpperCamelCase ):
A_ = re_prior_cond_resnet.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = int(groups[1] ) * 2 + int(groups[2] ) - 2
A_ = {"1": 1, "3": 2}[groups[-2]]
A_ = f'''conditioner_blocks.upsampler.upsample_block.{block_index}.'''
A_ = f'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'''
A_ = prefix + resnet_block
A_ = re_prior_cond_resnet.sub(__UpperCamelCase ,__UpperCamelCase )
elif re_prior_cond_proj_in.fullmatch(__UpperCamelCase ):
A_ = re_prior_cond_proj_in.match(__UpperCamelCase )
A_ = regex_match.groups()
A_ = f'''conditioner_blocks.upsampler.proj_in.{groups[-1]}'''
A_ = re_prior_cond_proj_in.sub(__UpperCamelCase ,__UpperCamelCase )
# keep original key
else:
A_ = original_key
A_ = replace_key(__UpperCamelCase )
if f'''{key_prefix}.{key}''' not in model_state_dict or key is None:
print(f'''failed converting {original_key} to {key}, does not match''' )
# handle missmatched shape
elif value.shape != model_state_dict[f'''{key_prefix}.{key}'''].shape:
A_ = model_state_dict[f'''{key_prefix}.{key}''']
print(f'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' )
A_ = original_key
A_ = original_key
A_ = value
return new_dict
@torch.no_grad()
def __snake_case ( __UpperCamelCase : str=None ,__UpperCamelCase : int=None ):
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ):
A_ = requests.get(f'''{PREFIX}{file}''' ,allow_redirects=__UpperCamelCase )
os.makedirs(f'''{pytorch_dump_folder_path}/''' ,exist_ok=__UpperCamelCase )
open(f'''{pytorch_dump_folder_path}/{file.split("/" )[-1]}''' ,"wb" ).write(r.content )
A_ = MODEL_MAPPING[model_name.split("/" )[-1]]
A_ = JukeboxConfig.from_pretrained(__UpperCamelCase )
A_ = JukeboxModel(__UpperCamelCase )
A_ = []
A_ = {}
for i, dict_name in enumerate(__UpperCamelCase ):
A_ = torch.load(f'''{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}''' )["model"]
A_ = {}
for k in old_dic.keys():
if k.endswith(".b" ):
A_ = old_dic[k]
elif k.endswith(".w" ):
A_ = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
A_ = old_dic[k]
else:
A_ = old_dic[k]
A_ = "vqvae" if i == 0 else f'''priors.{3 - i}'''
A_ = fix_jukebox_keys(__UpperCamelCase ,model.state_dict() ,__UpperCamelCase ,__UpperCamelCase )
weight_dict.append(__UpperCamelCase )
A_ = weight_dict.pop(0 )
model.vqvae.load_state_dict(__UpperCamelCase )
for i in range(len(__UpperCamelCase ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
with open(f'''{pytorch_dump_folder_path}/mapping.json''' ,"w" ) as txtfile:
json.dump(__UpperCamelCase ,__UpperCamelCase )
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
return weight_dict
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__a :Tuple = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('.')
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
A_ = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
f'''{test_file} instead.''' )
A_ = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
A_ = components[:-1] + [test_fn.replace(".py" ,"" )]
A_ = ".".join(__UpperCamelCase )
return test_module_path
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = get_module_path(__UpperCamelCase )
A_ = importlib.import_module(__UpperCamelCase )
return test_module
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
A_ = []
A_ = get_test_module(__UpperCamelCase )
for attr in dir(__UpperCamelCase ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(__UpperCamelCase ,__UpperCamelCase ) )
# sort with class names
return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ )
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = []
A_ = get_test_module(__UpperCamelCase )
for attr in dir(__UpperCamelCase ):
A_ = getattr(__UpperCamelCase ,__UpperCamelCase )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
A_ = getattr(__UpperCamelCase ,"all_model_classes" ,[] )
if len(__UpperCamelCase ) > 0:
test_classes.append(__UpperCamelCase )
# sort with class names
return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ )
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = get_test_classes(__UpperCamelCase )
A_ = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ )
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = test_class()
if hasattr(__UpperCamelCase ,"setUp" ):
test.setUp()
A_ = None
if hasattr(__UpperCamelCase ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
A_ = test.model_tester.__class__
return model_tester
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = get_test_classes(__UpperCamelCase )
A_ = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__UpperCamelCase )
# sort with class names
return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ )
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ):
"""simple docstring"""
A_ = get_test_classes_for_model(__UpperCamelCase ,__UpperCamelCase )
A_ = []
for test_class in test_classes:
A_ = get_model_tester_from_test_class(__UpperCamelCase )
if tester_class is not None:
tester_classes.append(__UpperCamelCase )
# sort with class names
return sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x.__name__ )
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = get_test_classes(__UpperCamelCase )
A_ = {test_class: get_model_tester_from_test_class(__UpperCamelCase ) for test_class in test_classes}
return test_tester_mapping
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = get_model_classes(__UpperCamelCase )
A_ = {
model_class: get_test_classes_for_model(__UpperCamelCase ,__UpperCamelCase ) for model_class in model_classes
}
return model_test_mapping
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = get_model_classes(__UpperCamelCase )
A_ = {
model_class: get_tester_classes_for_model(__UpperCamelCase ,__UpperCamelCase ) for model_class in model_classes
}
return model_to_tester_mapping
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
return o
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
return o.__name__
elif isinstance(__UpperCamelCase ,(list, tuple) ):
return [to_json(__UpperCamelCase ) for x in o]
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
return {to_json(__UpperCamelCase ): to_json(__UpperCamelCase ) for k, v in o.items()}
else:
return o
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = KandinskyVaaControlnetPipeline
_lowerCamelCase : List[str] = ['image_embeds', 'negative_image_embeds', 'hint']
_lowerCamelCase : Any = ['image_embeds', 'negative_image_embeds', 'hint']
_lowerCamelCase : Optional[Any] = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
_lowerCamelCase : List[str] = False
@property
def __A ( self : List[Any] ):
return 32
@property
def __A ( self : Tuple ):
return 32
@property
def __A ( self : List[str] ):
return self.time_input_dim
@property
def __A ( self : Tuple ):
return self.time_input_dim * 4
@property
def __A ( self : str ):
return 100
@property
def __A ( self : Tuple ):
torch.manual_seed(0 )
A_ = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
A_ = UNetaDConditionModel(**UpperCAmelCase )
return model
@property
def __A ( self : Union[str, Any] ):
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def __A ( self : Optional[Any] ):
torch.manual_seed(0 )
A_ = VQModel(**self.dummy_movq_kwargs )
return model
def __A ( self : str ):
A_ = self.dummy_unet
A_ = self.dummy_movq
A_ = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=UpperCAmelCase , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCAmelCase , )
A_ = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=0 ):
A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
A_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase )
# create hint
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase ) ).to(UpperCAmelCase )
if str(UpperCAmelCase ).startswith("mps" ):
A_ = torch.manual_seed(UpperCAmelCase )
else:
A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
A_ = {
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"guidance_scale": 4.0,
"num_inference_steps": 2,
"output_type": "np",
}
return inputs
def __A ( self : Optional[int] ):
A_ = "cpu"
A_ = self.get_dummy_components()
A_ = self.pipeline_class(**UpperCAmelCase )
A_ = pipe.to(UpperCAmelCase )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
A_ = pipe(**self.get_dummy_inputs(UpperCAmelCase ) )
A_ = output.images
A_ = pipe(
**self.get_dummy_inputs(UpperCAmelCase ) , return_dict=UpperCAmelCase , )[0]
A_ = image[0, -3:, -3:, -1]
A_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
A_ = np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : str ):
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy" )
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png" )
A_ = torch.from_numpy(np.array(UpperCAmelCase ) ).float() / 255.0
A_ = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
A_ = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase )
A_ = KandinskyVaaControlnetPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa )
A_ = pipeline.to(UpperCAmelCase )
pipeline.set_progress_bar_config(disable=UpperCAmelCase )
A_ = "A robot, 4k photo"
A_ = torch.Generator(device="cuda" ).manual_seed(0 )
A_ , A_ = pipe_prior(
UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
A_ = torch.Generator(device="cuda" ).manual_seed(0 )
A_ = pipeline(
image_embeds=UpperCAmelCase , negative_image_embeds=UpperCAmelCase , hint=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=100 , output_type="np" , )
A_ = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
import requests
from bsa import BeautifulSoup
def __snake_case ( __UpperCamelCase : str = "AAPL" ):
"""simple docstring"""
A_ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
A_ = BeautifulSoup(requests.get(__UpperCamelCase ).text ,"html.parser" )
A_ = "My(6px) Pos(r) smartphone_Mt(6px)"
return soup.find("div" ,class_=class_ ).find("span" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F"Current {symbol:<4} stock price is {stock_price(symbol):>8}")
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
__a :Optional[Any] = 'Input must be a string of 8 numbers plus letter'
__a :int = 'TRWAGMYFPDXBNJZSQVHLCKE'
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Expected string as input, found {type(__UpperCamelCase ).__name__}'''
raise TypeError(__UpperCamelCase )
A_ = spanish_id.replace("-" ,"" ).upper()
if len(__UpperCamelCase ) != 9:
raise ValueError(__UpperCamelCase )
try:
A_ = int(spanish_id_clean[0:8] )
A_ = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__UpperCamelCase ) from ex
if letter.isdigit():
raise ValueError(__UpperCamelCase )
return letter == LOOKUP_LETTERS[number % 23]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Union[str, Any]=30 , UpperCAmelCase : str=400 , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=None , UpperCAmelCase : Dict=0.9 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : List[str]=True , UpperCAmelCase : Any=[0.5, 0.5, 0.5] , UpperCAmelCase : Any=[0.5, 0.5, 0.5] , ):
A_ = size if size is not None else {"shortest_edge": 30}
A_ = crop_size if crop_size is not None else {"height": 30, "width": 30}
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = min_resolution
A_ = max_resolution
A_ = do_resize_and_center_crop
A_ = size
A_ = crop_pct
A_ = crop_size
A_ = do_normalize
A_ = image_mean
A_ = image_std
def __A ( self : Dict ):
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : str = PoolFormerImageProcessor if is_vision_available() else None
def __A ( self : Any ):
A_ = PoolFormerImageProcessingTester(self )
@property
def __A ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : List[str] ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize_and_center_crop" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
self.assertTrue(hasattr(UpperCAmelCase , "crop_pct" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) )
def __A ( self : Dict ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 30} )
self.assertEqual(image_processor.crop_size , {"height": 30, "width": 30} )
A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def __A ( self : List[Any] ):
pass
def __A ( self : Tuple ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Any ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : str ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
__a :Union[str, Any] = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582'
}
def __snake_case ( __UpperCamelCase : str = "dhaka" ,__UpperCamelCase : int = 5 ):
"""simple docstring"""
A_ = min(__UpperCamelCase ,50 ) # Prevent abuse!
A_ = {
"q": query,
"tbm": "isch",
"hl": "en",
"ijn": "0",
}
A_ = requests.get("https://www.google.com/search" ,params=__UpperCamelCase ,headers=__UpperCamelCase )
A_ = BeautifulSoup(html.text ,"html.parser" )
A_ = "".join(
re.findall(R"AF_initDataCallback\(([^<]+)\);" ,str(soup.select("script" ) ) ) )
A_ = json.dumps(__UpperCamelCase )
A_ = json.loads(__UpperCamelCase )
A_ = re.findall(
R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," ,__UpperCamelCase ,)
if not matched_google_image_data:
return 0
A_ = re.sub(
R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" ,"" ,str(__UpperCamelCase ) ,)
A_ = re.findall(
R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" ,__UpperCamelCase ,)
for index, fixed_full_res_image in enumerate(__UpperCamelCase ):
if index >= max_images:
return index
A_ = bytes(__UpperCamelCase ,"ascii" ).decode(
"unicode-escape" )
A_ = bytes(__UpperCamelCase ,"ascii" ).decode(
"unicode-escape" )
A_ = urllib.request.build_opener()
A_ = [
(
"User-Agent",
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582",
)
]
urllib.request.install_opener(__UpperCamelCase )
A_ = f'''query_{query.replace(" " ,"_" )}'''
if not os.path.exists(__UpperCamelCase ):
os.makedirs(__UpperCamelCase )
urllib.request.urlretrieve( # noqa: S310
__UpperCamelCase ,f'''{path_name}/original_size_img_{index}.jpg''' )
return index
if __name__ == "__main__":
try:
__a :Union[str, Any] = download_images_from_google_query(sys.argv[1])
print(F"{image_count} images were downloaded to disk.")
except IndexError:
print('Please provide a search term.')
raise
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=3 , UpperCAmelCase : List[Any]=18 , UpperCAmelCase : Optional[Any]=30 , UpperCAmelCase : str=400 , UpperCAmelCase : Any=True , UpperCAmelCase : int=None , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=None , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : Dict=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[int]=False , ):
A_ = size if size is not None else {"height": 20, "width": 20}
A_ = crop_size if crop_size is not None else {"height": 18, "width": 18}
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = image_size
A_ = min_resolution
A_ = max_resolution
A_ = do_resize
A_ = size
A_ = do_center_crop
A_ = crop_size
A_ = do_normalize
A_ = image_mean
A_ = image_std
A_ = do_reduce_labels
def __A ( self : Any ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __snake_case ( ):
"""simple docstring"""
A_ = load_dataset("hf-internal-testing/fixtures_ade20k" ,split="test" )
A_ = Image.open(dataset[0]["file"] )
A_ = Image.open(dataset[1]["file"] )
return image, map
def __snake_case ( ):
"""simple docstring"""
A_ = load_dataset("hf-internal-testing/fixtures_ade20k" ,split="test" )
A_ = Image.open(ds[0]["file"] )
A_ = Image.open(ds[1]["file"] )
A_ = Image.open(ds[2]["file"] )
A_ = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Any = BeitImageProcessor if is_vision_available() else None
def __A ( self : Union[str, Any] ):
A_ = BeitImageProcessingTester(self )
@property
def __A ( self : Any ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : Any ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) )
self.assertTrue(hasattr(UpperCAmelCase , "center_crop" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) )
def __A ( self : Any ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase )
A_ = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=UpperCAmelCase )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels , UpperCAmelCase )
def __A ( self : List[str] ):
pass
def __A ( self : int ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Optional[int] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Optional[int] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Any ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
A_ = []
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
A_ = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched
A_ = image_processing(UpperCAmelCase , UpperCAmelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test not batched input (PIL images)
A_ , A_ = prepare_semantic_single_inputs()
A_ = image_processing(UpperCAmelCase , UpperCAmelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched input (PIL images)
A_ , A_ = prepare_semantic_batch_inputs()
A_ = image_processing(UpperCAmelCase , UpperCAmelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
def __A ( self : int ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
A_ , A_ = prepare_semantic_single_inputs()
A_ = image_processing(UpperCAmelCase , UpperCAmelCase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 150 )
A_ = True
A_ = image_processing(UpperCAmelCase , UpperCAmelCase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Union[str, Any]=18 , UpperCAmelCase : List[str]=30 , UpperCAmelCase : Tuple=400 , UpperCAmelCase : Any=True , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=True , ):
A_ = size if size is not None else {"height": 18, "width": 18}
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = image_size
A_ = min_resolution
A_ = max_resolution
A_ = do_resize
A_ = size
A_ = do_normalize
def __A ( self : int ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804],
[-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = ImageGPTImageProcessor if is_vision_available() else None
def __A ( self : Union[str, Any] ):
A_ = ImageGPTImageProcessingTester(self )
@property
def __A ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : Optional[int] ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "clusters" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) )
def __A ( self : Dict ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 18} )
A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
def __A ( self : List[Any] ):
A_ = self.image_processing_class(**self.image_processor_dict )
A_ = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase , obj[key] ) )
else:
self.assertEqual(obj[key] , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(UpperCAmelCase , "image_processor.json" )
image_processor_first.to_json_file(UpperCAmelCase )
A_ = self.image_processing_class.from_json_file(UpperCAmelCase ).to_dict()
A_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase )
def __A ( self : Any ):
A_ = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(UpperCAmelCase )
A_ = self.image_processing_class.from_pretrained(UpperCAmelCase ).to_dict()
A_ = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(UpperCAmelCase , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , UpperCAmelCase )
@unittest.skip("ImageGPT requires clusters at initialization" )
def __A ( self : str ):
pass
def __snake_case ( ):
"""simple docstring"""
A_ = load_dataset("hf-internal-testing/fixtures_image_utils" ,split="test" )
A_ = Image.open(dataset[4]["file"] )
A_ = Image.open(dataset[5]["file"] )
A_ = [imagea, imagea]
return images
@require_vision
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Any ):
A_ = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" )
A_ = prepare_images()
# test non-batched
A_ = image_processing(images[0] , return_tensors="pt" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1024) )
A_ = [306, 191, 191]
self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase )
# test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1024) )
A_ = [303, 13, 13]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase )
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import datasets
__a :Any = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n'
__a :int = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n'
__a :Optional[int] = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n'
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
return (preds == labels).mean()
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
"""simple docstring"""
def __A ( self : Optional[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "sts-b" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def __A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ):
return {"accuracy": simple_accuracy(UpperCAmelCase , UpperCAmelCase )}
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
__a :Optional[Any] = yaml.safe_load(
'\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n'
)
__a :Dict = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__a :int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :Tuple = {
'name': 'root',
'text': '',
'is_empty_text': True,
'subsections': [
{
'name': 'Dataset Card for My Dataset',
'text': '',
'is_empty_text': True,
'subsections': [
{'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []},
{
'name': 'Dataset Description',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Dataset Summary',
'text': 'Some text here.',
'is_empty_text': False,
'subsections': [
{
'name': 'Extra Ignored Subsection',
'text': '',
'is_empty_text': True,
'subsections': [],
}
],
},
{
'name': 'Supported Tasks and Leaderboards',
'text': '',
'is_empty_text': True,
'subsections': [],
},
{'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []},
],
},
],
}
],
}
__a :Optional[Any] = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :Optional[int] = (
'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.'
)
__a :Optional[Any] = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :List[Any] = (
'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.'
)
__a :Any = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :Union[str, Any] = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.'
__a :Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).'
__a :Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n'
__a :Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.'
__a :List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n'
__a :int = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.'
__a :Tuple = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n'
__a :Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.'
__a :int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :Any = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.'
__a :Any = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n'
__a :Any = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.'
__a :List[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.'
__a :str = ''
__a :Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.'
__a :Dict = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n'
__a :List[str] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.'
@pytest.mark.parametrize(
"readme_md, expected_dict" ,[
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] ,)
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : List[str] ):
"""simple docstring"""
assert ReadMe.from_string(__UpperCamelCase ,__UpperCamelCase ).to_dict() == expected_dict
@pytest.mark.parametrize(
"readme_md, expected_error" ,[
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
with pytest.raises(__UpperCamelCase ,match=re.escape(expected_error.format(path="root" ) ) ):
A_ = ReadMe.from_string(__UpperCamelCase ,__UpperCamelCase )
readme.validate()
@pytest.mark.parametrize(
"readme_md, expected_error" ,[
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] ,)
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Dict ):
"""simple docstring"""
with pytest.raises(__UpperCamelCase ,match=re.escape(expected_error.format(path="root" ) ) ):
ReadMe.from_string(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize(
"readme_md," ,[
(README_MULTIPLE_SAME_HEADING_1),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
ReadMe.from_string(__UpperCamelCase ,__UpperCamelCase ,suppress_parsing_errors=__UpperCamelCase )
@pytest.mark.parametrize(
"readme_md, expected_dict" ,[
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] ,)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = Path(__UpperCamelCase ) / "README.md"
with open(__UpperCamelCase ,"w+" ) as readme_file:
readme_file.write(__UpperCamelCase )
A_ = ReadMe.from_readme(__UpperCamelCase ,__UpperCamelCase ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
"readme_md, expected_error" ,[
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] ,)
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : List[str] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = Path(__UpperCamelCase ) / "README.md"
with open(__UpperCamelCase ,"w+" ) as readme_file:
readme_file.write(__UpperCamelCase )
A_ = expected_error.format(path=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ,match=re.escape(__UpperCamelCase ) ):
A_ = ReadMe.from_readme(__UpperCamelCase ,__UpperCamelCase )
readme.validate()
@pytest.mark.parametrize(
"readme_md, expected_error" ,[
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] ,)
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Dict ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = Path(__UpperCamelCase ) / "README.md"
with open(__UpperCamelCase ,"w+" ) as readme_file:
readme_file.write(__UpperCamelCase )
A_ = expected_error.format(path=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ,match=re.escape(__UpperCamelCase ) ):
ReadMe.from_readme(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize(
"readme_md," ,[
(README_MULTIPLE_SAME_HEADING_1),
] ,)
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = Path(__UpperCamelCase ) / "README.md"
with open(__UpperCamelCase ,"w+" ) as readme_file:
readme_file.write(__UpperCamelCase )
ReadMe.from_readme(__UpperCamelCase ,__UpperCamelCase ,suppress_parsing_errors=__UpperCamelCase )
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : List[str]=18 , UpperCAmelCase : Optional[Any]=30 , UpperCAmelCase : Union[str, Any]=400 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : int=None , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=True , ):
A_ = size if size is not None else {"shortest_edge": 20}
A_ = crop_size if crop_size is not None else {"height": 18, "width": 18}
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = image_size
A_ = min_resolution
A_ = max_resolution
A_ = do_resize
A_ = size
A_ = do_center_crop
A_ = crop_size
A_ = do_flip_channel_order
def __A ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Any = MobileViTImageProcessor if is_vision_available() else None
def __A ( self : str ):
A_ = MobileViTImageProcessingTester(self )
@property
def __A ( self : List[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : Dict ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_center_crop" ) )
self.assertTrue(hasattr(UpperCAmelCase , "center_crop" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_flip_channel_order" ) )
def __A ( self : str ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def __A ( self : Any ):
pass
def __A ( self : Optional[Any] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Optional[int] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __A ( self : Tuple ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :str = logging.get_logger(__name__)
__a :Union[str, Any] = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = 'ctrl'
_lowerCamelCase : Optional[int] = ['past_key_values']
_lowerCamelCase : str = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : Dict , UpperCAmelCase : Tuple=246534 , UpperCAmelCase : Any=256 , UpperCAmelCase : List[Any]=1280 , UpperCAmelCase : List[str]=8192 , UpperCAmelCase : Optional[Any]=48 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=1E-6 , UpperCAmelCase : Tuple=0.02 , UpperCAmelCase : Tuple=True , **UpperCAmelCase : Tuple , ):
A_ = vocab_size
A_ = n_positions
A_ = n_embd
A_ = n_layer
A_ = n_head
A_ = dff
A_ = resid_pdrop
A_ = embd_pdrop
A_ = layer_norm_epsilon
A_ = initializer_range
A_ = use_cache
super().__init__(**UpperCAmelCase )
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__a :int = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = b.T
A_ = np.sum(np.square(__UpperCamelCase ) ,axis=1 )
A_ = np.sum(np.square(__UpperCamelCase ) ,axis=0 )
A_ = np.matmul(__UpperCamelCase ,__UpperCamelCase )
A_ = aa[:, None] - 2 * ab + ba[None, :]
return d
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = x.reshape(-1 ,3 )
A_ = squared_euclidean_distance(__UpperCamelCase ,__UpperCamelCase )
return np.argmin(__UpperCamelCase ,axis=1 )
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['pixel_values']
def __init__( self : Dict , UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , **UpperCAmelCase : int , ):
super().__init__(**UpperCAmelCase )
A_ = size if size is not None else {"height": 256, "width": 256}
A_ = get_size_dict(UpperCAmelCase )
A_ = np.array(UpperCAmelCase ) if clusters is not None else None
A_ = do_resize
A_ = size
A_ = resample
A_ = do_normalize
A_ = do_color_quantize
def __A ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ):
A_ = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' )
return resize(
UpperCAmelCase , size=(size["height"], size["width"]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Tuple , UpperCAmelCase : np.ndarray , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , ):
A_ = rescale(image=UpperCAmelCase , scale=1 / 127.5 , data_format=UpperCAmelCase )
A_ = image - 1
return image
def __A ( self : List[str] , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase : Optional[int] , ):
A_ = do_resize if do_resize is not None else self.do_resize
A_ = size if size is not None else self.size
A_ = get_size_dict(UpperCAmelCase )
A_ = resample if resample is not None else self.resample
A_ = do_normalize if do_normalize is not None else self.do_normalize
A_ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
A_ = clusters if clusters is not None else self.clusters
A_ = np.array(UpperCAmelCase )
A_ = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_color_quantize and clusters is None:
raise ValueError("Clusters must be specified if do_color_quantize is True." )
# All transformations expect numpy arrays.
A_ = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
A_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_normalize:
A_ = [self.normalize(image=UpperCAmelCase ) for image in images]
if do_color_quantize:
A_ = [to_channel_dimension_format(UpperCAmelCase , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
A_ = np.array(UpperCAmelCase )
A_ = color_quantize(UpperCAmelCase , UpperCAmelCase ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
A_ = images.shape[0]
A_ = images.reshape(UpperCAmelCase , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
A_ = list(UpperCAmelCase )
else:
A_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
A_ = {"input_ids": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import asyncio
import os
import shutil
import subprocess
import sys
import tempfile
import unittest
from distutils.util import strtobool
from functools import partial
from pathlib import Path
from typing import List, Union
from unittest import mock
import torch
from ..state import AcceleratorState, PartialState
from ..utils import (
gather,
is_bnb_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_mps_available,
is_safetensors_available,
is_tensorboard_available,
is_torch_version,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Dict=False ):
"""simple docstring"""
try:
A_ = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
A_ = default
else:
# KEY is set, convert it to True or False.
try:
A_ = strtobool(__UpperCamelCase )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f'''If set, {key} must be yes or no.''' )
return _value
__a :Any = parse_flag_from_env('RUN_SLOW', default=False)
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
return unittest.skip("Test was skipped" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
return unittest.skipUnless(_run_slow_tests ,"test is slow" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
return unittest.skipUnless(not torch.cuda.is_available() ,"test requires only a CPU" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
return unittest.skipUnless(torch.cuda.is_available() ,"test requires a GPU" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
return unittest.skipUnless(is_xpu_available() ,"test requires a XPU" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
return unittest.skipUnless(is_mps_available() ,"test requires a `mps` backend support in `torch`" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
return unittest.skipUnless(
is_transformers_available() and is_datasets_available() ,"test requires the Hugging Face suite" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Tuple ):
"""simple docstring"""
return unittest.skipUnless(is_bnb_available() ,"test requires the bitsandbytes library" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
return unittest.skipUnless(is_tpu_available() ,"test requires TPU" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() == 1 ,"test requires a GPU" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() == 1 ,"test requires a XPU" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
return unittest.skipUnless(torch.cuda.device_count() > 1 ,"test requires multiple GPUs" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
return unittest.skipUnless(torch.xpu.device_count() > 1 ,"test requires multiple XPUs" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
return unittest.skipUnless(is_safetensors_available() ,"test requires safetensors" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
return unittest.skipUnless(is_deepspeed_available() ,"test requires DeepSpeed" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
return unittest.skipUnless(is_torch_version(">=" ,"1.12.0" ) ,"test requires torch version >= 1.12.0" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[Any]=None ,__UpperCamelCase : Optional[Any]=None ):
"""simple docstring"""
if test_case is None:
return partial(__UpperCamelCase ,version=__UpperCamelCase )
return unittest.skipUnless(is_torch_version(">=" ,__UpperCamelCase ) ,f'''test requires torch version >= {version}''' )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
return unittest.skipUnless(is_tensorboard_available() ,"test requires Tensorboard" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
return unittest.skipUnless(is_wandb_available() ,"test requires wandb" )(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
return unittest.skipUnless(is_comet_ml_available() ,"test requires comet_ml" )(__UpperCamelCase )
__a :List[str] = (
any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available()
)
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
return unittest.skipUnless(
_atleast_one_tracker_available ,"test requires at least one tracker to be available and for `comet_ml` to not be installed" ,)(__UpperCamelCase )
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = True
@classmethod
def __A ( cls : Any ):
A_ = tempfile.mkdtemp()
@classmethod
def __A ( cls : List[Any] ):
if os.path.exists(cls.tmpdir ):
shutil.rmtree(cls.tmpdir )
def __A ( self : Dict ):
if self.clear_on_setup:
for path in Path(self.tmpdir ).glob("**/*" ):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(UpperCAmelCase )
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Optional[int] ):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state()
PartialState._reset_state()
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Union[str, Any] , UpperCAmelCase : Union[mock.Mock, List[mock.Mock]] ):
A_ = mocks if isinstance(UpperCAmelCase , (tuple, list) ) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop )
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = AcceleratorState()
A_ = tensor[None].clone().to(state.device )
A_ = gather(__UpperCamelCase ).cpu()
A_ = tensor[0].cpu()
for i in range(tensors.shape[0] ):
if not torch.equal(tensors[i] ,__UpperCamelCase ):
return False
return True
class _a :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] ):
A_ = returncode
A_ = stdout
A_ = stderr
async def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ):
"""simple docstring"""
while True:
A_ = await stream.readline()
if line:
callback(__UpperCamelCase )
else:
break
async def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : int=None ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : Tuple=None ,__UpperCamelCase : Tuple=False ,__UpperCamelCase : Any=False ):
"""simple docstring"""
if echo:
print("\nRunning: " ," ".join(__UpperCamelCase ) )
A_ = await asyncio.create_subprocess_exec(
cmd[0] ,*cmd[1:] ,stdin=__UpperCamelCase ,stdout=asyncio.subprocess.PIPE ,stderr=asyncio.subprocess.PIPE ,env=__UpperCamelCase ,)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
A_ = []
A_ = []
def tee(__UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : Dict ,__UpperCamelCase : List[Any]="" ):
A_ = line.decode("utf-8" ).rstrip()
sink.append(__UpperCamelCase )
if not quiet:
print(__UpperCamelCase ,__UpperCamelCase ,file=__UpperCamelCase )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout ,lambda __UpperCamelCase : tee(__UpperCamelCase ,__UpperCamelCase ,sys.stdout ,label="stdout:" ) ) ),
asyncio.create_task(_read_stream(p.stderr ,lambda __UpperCamelCase : tee(__UpperCamelCase ,__UpperCamelCase ,sys.stderr ,label="stderr:" ) ) ),
] ,timeout=__UpperCamelCase ,)
return _RunOutput(await p.wait() ,__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Optional[Any]=None ,__UpperCamelCase : str=None ,__UpperCamelCase : Optional[Any]=180 ,__UpperCamelCase : str=False ,__UpperCamelCase : str=True ):
"""simple docstring"""
A_ = asyncio.get_event_loop()
A_ = loop.run_until_complete(
_stream_subprocess(__UpperCamelCase ,env=__UpperCamelCase ,stdin=__UpperCamelCase ,timeout=__UpperCamelCase ,quiet=__UpperCamelCase ,echo=__UpperCamelCase ) )
A_ = " ".join(__UpperCamelCase )
if result.returncode > 0:
A_ = "\n".join(result.stderr )
raise RuntimeError(
f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n'''
f'''The combined stderr from workers follows:\n{stderr}''' )
return result
class _a ( snake_case_ ):
"""simple docstring"""
pass
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int]=False ):
"""simple docstring"""
try:
A_ = subprocess.check_output(__UpperCamelCase ,stderr=subprocess.STDOUT )
if return_stdout:
if hasattr(__UpperCamelCase ,"decode" ):
A_ = output.decode("utf-8" )
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f'''Command `{" ".join(__UpperCamelCase )}` failed with the following error:\n\n{e.output.decode()}''' ) from e
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
__a :List[str] = '\\n Text data.\n Second line of data.'
__a :str = 'file'
@pytest.fixture(scope="session" )
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd")
A_ = bytes(__UpperCamelCase ,"utf-8" )
with zstd.open(__UpperCamelCase ,"wb" ) as f:
f.write(__UpperCamelCase )
return path
@pytest.fixture
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
with open(os.path.join(tmpfs.local_root_dir ,__UpperCamelCase ) ,"w" ) as f:
f.write(__UpperCamelCase )
return FILE_PATH
@pytest.mark.parametrize("compression_format" ,["gzip", "xz", "zstd"] )
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path}
A_ = input_paths[compression_format]
A_ = tmp_path / "cache"
A_ = DownloadConfig(cache_dir=__UpperCamelCase ,extract_compressed_file=__UpperCamelCase )
A_ = cached_path(__UpperCamelCase ,download_config=__UpperCamelCase )
with open(__UpperCamelCase ) as f:
A_ = f.read()
with open(__UpperCamelCase ) as f:
A_ = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize("default_extracted" ,[True, False] )
@pytest.mark.parametrize("default_cache_dir" ,[True, False] )
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = "custom_cache"
A_ = "custom_extracted_dir"
A_ = tmp_path / "custom_extracted_path"
if default_extracted:
A_ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted")
else:
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" ,__UpperCamelCase )
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" ,str(__UpperCamelCase ) )
A_ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
A_ = xz_file
A_ = (
DownloadConfig(extract_compressed_file=__UpperCamelCase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir ,extract_compressed_file=__UpperCamelCase )
)
A_ = cached_path(__UpperCamelCase ,download_config=__UpperCamelCase )
assert Path(__UpperCamelCase ).parent.parts[-2:] == expected
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = str(Path(__UpperCamelCase ).resolve() )
assert cached_path(__UpperCamelCase ) == text_file
# relative path
A_ = str(Path(__UpperCamelCase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(__UpperCamelCase ) == text_file
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = str(tmp_path.resolve() / "__missing_file__.txt" )
with pytest.raises(__UpperCamelCase ):
cached_path(__UpperCamelCase )
# relative path
A_ = "./__missing_file__.txt"
with pytest.raises(__UpperCamelCase ):
cached_path(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = get_from_cache(f'''tmp://{tmpfs_file}''' )
with open(__UpperCamelCase ) as f:
A_ = f.read()
assert output_file_content == FILE_CONTENT
@patch("datasets.config.HF_DATASETS_OFFLINE" ,__UpperCamelCase )
def __snake_case ( ):
"""simple docstring"""
with pytest.raises(__UpperCamelCase ):
cached_path("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(__UpperCamelCase ):
http_get("https://huggingface.co" ,temp_file=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
http_head("https://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(__UpperCamelCase ):
ftp_get("ftp://huggingface.co" ,temp_file=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
ftp_head("ftp://huggingface.co" )
@patch("datasets.config.HF_DATASETS_OFFLINE" ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = tmp_path_factory.mktemp("data" ) / "file.html"
with pytest.raises(__UpperCamelCase ):
fsspec_get("s3://huggingface.co" ,temp_file=__UpperCamelCase )
with pytest.raises(__UpperCamelCase ):
fsspec_head("s3://huggingface.co" )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def __snake_case ( ):
"""simple docstring"""
print("Making key files..." )
make_key_files("rsa" ,1024 )
print("Key files generation successful." )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
print("Generating prime p..." )
A_ = rabinMiller.generate_large_prime(__UpperCamelCase )
print("Generating prime q..." )
A_ = rabinMiller.generate_large_prime(__UpperCamelCase )
A_ = p * q
print("Generating e that is relatively prime to (p - 1) * (q - 1)..." )
while True:
A_ = random.randrange(2 ** (key_size - 1) ,2 ** (key_size) )
if cryptoMath.gcd(__UpperCamelCase ,(p - 1) * (q - 1) ) == 1:
break
print("Calculating d that is mod inverse of e..." )
A_ = cryptoMath.find_mod_inverse(__UpperCamelCase ,(p - 1) * (q - 1) )
A_ = (n, e)
A_ = (n, d)
return (public_key, private_key)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : int ):
"""simple docstring"""
if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ):
print("\nWARNING:" )
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
"Use a different name or delete these files and re-run this program." )
sys.exit()
A_ , A_ = generate_key(__UpperCamelCase )
print(f'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(f'''{name}_pubkey.txt''' ,"w" ) as out_file:
out_file.write(f'''{key_size},{public_key[0]},{public_key[1]}''' )
print(f'''Writing private key to file {name}_privkey.txt...''' )
with open(f'''{name}_privkey.txt''' ,"w" ) as out_file:
out_file.write(f'''{key_size},{private_key[0]},{private_key[1]}''' )
if __name__ == "__main__":
main()
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Union[str, Any] ):
A_ = tempfile.mkdtemp()
A_ = SamImageProcessor()
A_ = SamProcessor(UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Union[str, Any] , **UpperCAmelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Tuple ):
shutil.rmtree(self.tmpdirname )
def __A ( self : int ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Tuple ):
A_ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = SamProcessor(image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = SamProcessor(image_processor=UpperCAmelCase )
A_ = [torch.ones((1, 3, 5, 5) )]
A_ = [[1764, 2646]]
A_ = [[683, 1024]]
A_ = processor.post_process_masks(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
A_ = processor.post_process_masks(
UpperCAmelCase , torch.tensor(UpperCAmelCase ) , torch.tensor(UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
A_ = [np.ones((1, 3, 5, 5) )]
A_ = processor.post_process_masks(UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
A_ = [[1, 0], [0, 1]]
with self.assertRaises(UpperCAmelCase ):
A_ = processor.post_process_masks(UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) )
@require_vision
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Optional[int] ):
A_ = tempfile.mkdtemp()
A_ = SamImageProcessor()
A_ = SamProcessor(UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[Any] , **UpperCAmelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : str ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Optional[Any] ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : str ):
A_ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Optional[int] ):
A_ = self.get_image_processor()
A_ = SamProcessor(image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = SamProcessor(image_processor=UpperCAmelCase )
A_ = [tf.ones((1, 3, 5, 5) )]
A_ = [[1764, 2646]]
A_ = [[683, 1024]]
A_ = processor.post_process_masks(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , return_tensors="tf" )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
A_ = processor.post_process_masks(
UpperCAmelCase , tf.convert_to_tensor(UpperCAmelCase ) , tf.convert_to_tensor(UpperCAmelCase ) , return_tensors="tf" , )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
A_ = [np.ones((1, 3, 5, 5) )]
A_ = processor.post_process_masks(
UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) , return_tensors="tf" )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
A_ = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
A_ = processor.post_process_masks(
UpperCAmelCase , np.array(UpperCAmelCase ) , np.array(UpperCAmelCase ) , return_tensors="tf" )
@require_vision
@require_torchvision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Optional[Any] ):
A_ = tempfile.mkdtemp()
A_ = SamImageProcessor()
A_ = SamProcessor(UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : int , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Tuple ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Union[str, Any] ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def __A ( self : str ):
A_ = self.get_image_processor()
A_ = SamProcessor(image_processor=UpperCAmelCase )
A_ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
A_ = [tf.convert_to_tensor(UpperCAmelCase )]
A_ = [torch.tensor(UpperCAmelCase )]
A_ = [[1764, 2646]]
A_ = [[683, 1024]]
A_ = processor.post_process_masks(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , return_tensors="tf" )
A_ = processor.post_process_masks(
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , return_tensors="pt" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = SamProcessor(image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="pt" )["pixel_values"].numpy()
A_ = processor(images=UpperCAmelCase , return_tensors="pt" )["pixel_values"].numpy()
A_ = image_processor(UpperCAmelCase , return_tensors="tf" )["pixel_values"].numpy()
A_ = processor(images=UpperCAmelCase , return_tensors="tf" )["pixel_values"].numpy()
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase ) )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase ) )
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase ) )
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
from .configuration_bert_masked import MaskedBertConfig
from .modeling_bert_masked import (
MaskedBertForMultipleChoice,
MaskedBertForQuestionAnswering,
MaskedBertForSequenceClassification,
MaskedBertForTokenClassification,
MaskedBertModel,
)
from .modules import *
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__a :Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(snake_case_ )
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[int] , **UpperCAmelCase : Tuple ):
super().__init__(**UpperCAmelCase )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self : List[str] , UpperCAmelCase : Union[np.ndarray, bytes, str] , **UpperCAmelCase : Optional[Any] ):
return super().__call__(UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Tuple , **UpperCAmelCase : List[str] ):
A_ = {}
if "candidate_labels" in kwargs:
A_ = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
A_ = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def __A ( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]="This is a sound of {}." ):
if isinstance(UpperCAmelCase , UpperCAmelCase ):
if audio.startswith("http://" ) or audio.startswith("https://" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
A_ = requests.get(UpperCAmelCase ).content
else:
with open(UpperCAmelCase , "rb" ) as f:
A_ = f.read()
if isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = ffmpeg_read(UpperCAmelCase , self.feature_extractor.sampling_rate )
if not isinstance(UpperCAmelCase , np.ndarray ):
raise ValueError("We expect a numpy ndarray as input" )
if len(audio.shape ) != 1:
raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" )
A_ = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" )
A_ = candidate_labels
A_ = [hypothesis_template.format(UpperCAmelCase ) for x in candidate_labels]
A_ = self.tokenizer(UpperCAmelCase , return_tensors=self.framework , padding=UpperCAmelCase )
A_ = [text_inputs]
return inputs
def __A ( self : Dict , UpperCAmelCase : Any ):
A_ = model_inputs.pop("candidate_labels" )
A_ = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , UpperCAmelCase ):
A_ = text_inputs[0]
else:
# Batching case.
A_ = text_inputs[0][0]
A_ = self.model(**UpperCAmelCase , **UpperCAmelCase )
A_ = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_audio,
}
return model_outputs
def __A ( self : str , UpperCAmelCase : List[Any] ):
A_ = model_outputs.pop("candidate_labels" )
A_ = model_outputs["logits"][0]
if self.framework == "pt":
A_ = logits.softmax(dim=0 )
A_ = probs.tolist()
else:
raise ValueError("`tf` framework not supported." )
A_ = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(UpperCAmelCase , UpperCAmelCase ) , key=lambda UpperCAmelCase : -x[0] )
]
return result
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
@property
def __A ( self : Optional[int] ):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def __A ( self : int ):
A_ = ort.SessionOptions()
A_ = False
return options
def __A ( self : List[str] ):
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" )
# using the PNDM scheduler by default
A_ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=UpperCAmelCase , feature_extractor=UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=UpperCAmelCase )
A_ = "A red cat sitting on a park bench"
A_ = np.random.RandomState(0 )
A_ = pipe(
prompt=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=UpperCAmelCase , output_type="np" , )
A_ = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 1E-2
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False ):
A_ = scheduler
A_ = optimizers if isinstance(UpperCAmelCase , (list, tuple) ) else [optimizers]
A_ = split_batches
A_ = step_with_optimizer
A_ = GradientState()
def __A ( self : Any , *UpperCAmelCase : str , **UpperCAmelCase : Tuple ):
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
A_ = AcceleratorState().num_processes
for _ in range(UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , "total_steps" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
else:
self.scheduler.step(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Optional[Any] ):
return self.scheduler.get_last_lr()
def __A ( self : List[Any] ):
return self.scheduler.state_dict()
def __A ( self : List[Any] , UpperCAmelCase : Tuple ):
self.scheduler.load_state_dict(UpperCAmelCase )
def __A ( self : Dict ):
return self.scheduler.get_lr()
def __A ( self : List[Any] , *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ):
return self.scheduler.print_lr(*UpperCAmelCase , **UpperCAmelCase )
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
import os
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = len(grid[0] )
A_ = len(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = 0
# Check vertically, horizontally, diagonally at the same time (only works
# for nxn grid)
for i in range(__UpperCamelCase ):
for j in range(n_rows - 3 ):
A_ = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i]
A_ = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3]
# Left-to-right diagonal (\) product
if i < n_columns - 3:
A_ = (
grid[i][j]
* grid[i + 1][j + 1]
* grid[i + 2][j + 2]
* grid[i + 3][j + 3]
)
# Right-to-left diagonal(/) product
if i > 2:
A_ = (
grid[i][j]
* grid[i - 1][j + 1]
* grid[i - 2][j + 2]
* grid[i - 3][j + 3]
)
A_ = max(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
if max_product > largest:
A_ = max_product
return largest
def __snake_case ( ):
"""simple docstring"""
A_ = []
with open(os.path.dirname(__UpperCamelCase ) + "/grid.txt" ) as file:
for line in file:
grid.append(line.strip("\n" ).split(" " ) )
A_ = [[int(__UpperCamelCase ) for i in grid[j]] for j in range(len(__UpperCamelCase ) )]
return largest_product(__UpperCamelCase )
if __name__ == "__main__":
print(solution())
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
__a :Optional[Any] = range(2, 20 + 1)
__a :Optional[int] = [10**k for k in range(ks[-1] + 1)]
__a :dict[int, dict[int, list[list[int]]]] = {}
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = sum(a_i[j] for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ) )
A_ = sum(a_i[j] * base[j] for j in range(min(len(__UpperCamelCase ) ,__UpperCamelCase ) ) )
A_ , A_ = 0, 0
A_ = n - i
A_ = memo.get(__UpperCamelCase )
if sub_memo is not None:
A_ = sub_memo.get(__UpperCamelCase )
if jumps is not None and len(__UpperCamelCase ) > 0:
# find and make the largest jump without going over
A_ = -1
for _k in range(len(__UpperCamelCase ) - 1 ,-1 ,-1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
A_ = _k
break
if max_jump >= 0:
A_ , A_ , A_ = jumps[max_jump]
# since the difference between jumps is cached, add c
A_ = diff + c
for j in range(min(__UpperCamelCase ,len(__UpperCamelCase ) ) ):
A_ , A_ = divmod(__UpperCamelCase ,10 )
if new_c > 0:
add(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
else:
A_ = []
else:
A_ = {c: []}
A_ = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
A_ , A_ = next_term(__UpperCamelCase ,k - 1 ,i + dn ,__UpperCamelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
A_ , A_ = compute(__UpperCamelCase ,__UpperCamelCase ,i + dn ,__UpperCamelCase )
diff += _diff
dn += terms_jumped
A_ = sub_memo[c]
# keep jumps sorted by # of terms skipped
A_ = 0
while j < len(__UpperCamelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(__UpperCamelCase ,(diff, dn, k) )
return (diff, dn)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if i >= n:
return 0, i
if k > len(__UpperCamelCase ):
a_i.extend([0 for _ in range(k - len(__UpperCamelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
A_ = i
A_ , A_ , A_ = 0, 0, 0
for j in range(len(__UpperCamelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
A_ = ds_c + ds_b
diff += addend
A_ = 0
for j in range(__UpperCamelCase ):
A_ = a_i[j] + addend
A_ , A_ = divmod(__UpperCamelCase ,10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
return diff, i - start_i
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ):
"""simple docstring"""
for j in range(__UpperCamelCase ,len(__UpperCamelCase ) ):
A_ = digits[j] + addend
if s >= 10:
A_ , A_ = divmod(__UpperCamelCase ,10 )
A_ = addend // 10 + quotient
else:
A_ = s
A_ = addend // 10
if addend == 0:
break
while addend > 0:
A_ , A_ = divmod(__UpperCamelCase ,10 )
digits.append(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : int = 10**15 ):
"""simple docstring"""
A_ = [1]
A_ = 1
A_ = 0
while True:
A_ , A_ = next_term(__UpperCamelCase ,20 ,i + dn ,__UpperCamelCase )
dn += terms_jumped
if dn == n - i:
break
A_ = 0
for j in range(len(__UpperCamelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = 'new-model'
if is_tf_available():
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = NewModelConfig
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = "bert-base-cased"
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : Optional[Any] ):
A_ = "bert-base-cased"
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForPreTraining.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : List[str] ):
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase )
A_ , A_ = TFAutoModelForCausalLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : str ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : Dict ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase )
A_ , A_ = TFAutoModelForMaskedLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : List[str] ):
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase )
A_ , A_ = TFAutoModelForSeqaSeqLM.from_pretrained(UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : str ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForSequenceClassification.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : Dict ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForQuestionAnswering.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
@slow
@require_tensorflow_probability
def __A ( self : int ):
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
A_ = AutoConfig.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = TFAutoModelForTableQuestionAnswering.from_pretrained(UpperCAmelCase )
A_ , A_ = TFAutoModelForTableQuestionAnswering.from_pretrained(
UpperCAmelCase , output_loading_info=UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict ):
A_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase ) , 14410 )
def __A ( self : Dict ):
A_ = TFAutoModelWithLMHead.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=UpperCAmelCase ) , 14410 )
def __A ( self : List[str] ):
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
A_ = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
A_ = copy.deepcopy(model.config )
A_ = ["FunnelBaseModel"]
A_ = TFAutoModel.from_config(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCAmelCase )
A_ = TFAutoModel.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Any ):
try:
AutoConfig.register("new-model" , UpperCAmelCase )
A_ = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(UpperCAmelCase ):
auto_class.register(UpperCAmelCase , UpperCAmelCase )
auto_class.register(UpperCAmelCase , UpperCAmelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(UpperCAmelCase ):
auto_class.register(UpperCAmelCase , UpperCAmelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
A_ = BertModelTester(self ).get_config()
A_ = NewModelConfig(**tiny_config.to_dict() )
A_ = auto_class.from_config(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(UpperCAmelCase )
A_ = auto_class.from_pretrained(UpperCAmelCase )
self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def __A ( self : str ):
with self.assertRaisesRegex(
UpperCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ):
A_ = TFAutoModel.from_pretrained("bert-base" )
def __A ( self : List[str] ):
with self.assertRaisesRegex(
UpperCAmelCase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
A_ = TFAutoModel.from_pretrained(UpperCAmelCase , revision="aaaaaa" )
def __A ( self : int ):
with self.assertRaisesRegex(
UpperCAmelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ):
A_ = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def __A ( self : List[Any] ):
with self.assertRaisesRegex(UpperCAmelCase , "Use `from_pt=True` to load this model" ):
A_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
def __A ( self : Tuple ):
# Make sure we have cached the model.
A_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
A_ = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
A_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
with RequestCounter() as counter:
A_ = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
A_ = s_dict.pop(__UpperCamelCase )
elif "subsample" in key:
A_ = s_dict.pop(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ , A_ = emb.weight.shape
A_ = nn.Linear(__UpperCamelCase ,__UpperCamelCase ,bias=__UpperCamelCase )
A_ = emb.weight.data
return lin_layer
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = torch.load(__UpperCamelCase ,map_location="cpu" )
A_ = mam_aaa["args"]
A_ = mam_aaa["model"]
A_ = state_dict["decoder.output_projection.weight"]
remove_ignore_keys_(__UpperCamelCase )
rename_keys(__UpperCamelCase )
A_ = state_dict["decoder.embed_tokens.weight"].shape[0]
A_ = args.share_decoder_input_output_embed
A_ = [int(__UpperCamelCase ) for i in args.conv_kernel_sizes.split("," )]
A_ = SpeechaTextConfig(
vocab_size=__UpperCamelCase ,max_source_positions=args.max_source_positions ,max_target_positions=args.max_target_positions ,encoder_layers=args.encoder_layers ,decoder_layers=args.decoder_layers ,encoder_attention_heads=args.encoder_attention_heads ,decoder_attention_heads=args.decoder_attention_heads ,encoder_ffn_dim=args.encoder_ffn_embed_dim ,decoder_ffn_dim=args.decoder_ffn_embed_dim ,d_model=args.encoder_embed_dim ,dropout=args.dropout ,attention_dropout=args.attention_dropout ,activation_dropout=args.activation_dropout ,activation_function="relu" ,num_conv_layers=len(__UpperCamelCase ) ,conv_channels=args.conv_channels ,conv_kernel_sizes=__UpperCamelCase ,input_feat_per_channel=args.input_feat_per_channel ,input_channels=args.input_channels ,tie_word_embeddings=__UpperCamelCase ,num_beams=5 ,max_length=200 ,use_cache=__UpperCamelCase ,decoder_start_token_id=2 ,early_stopping=__UpperCamelCase ,)
A_ = SpeechaTextForConditionalGeneration(__UpperCamelCase )
A_ , A_ = model.model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase )
if len(__UpperCamelCase ) > 0 and not set(__UpperCamelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,"
f''' but all the following weights are missing {missing}''' )
if tie_embeds:
A_ = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
A_ = lm_head_weights
model.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
__a :Dict = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
flip_channel_order,
get_resize_output_image_size,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging
if is_vision_available():
import PIL
if is_torch_available():
import torch
__a :Dict = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['pixel_values']
def __init__( self : int , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : Union[int, float] = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = True , **UpperCAmelCase : Dict , ):
super().__init__(**UpperCAmelCase )
A_ = size if size is not None else {"shortest_edge": 224}
A_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
A_ = crop_size if crop_size is not None else {"height": 256, "width": 256}
A_ = get_size_dict(UpperCAmelCase , param_name="crop_size" )
A_ = do_resize
A_ = size
A_ = resample
A_ = do_rescale
A_ = rescale_factor
A_ = do_center_crop
A_ = crop_size
A_ = do_flip_channel_order
def __A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PIL.Image.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : List[Any] , ):
A_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' )
A_ = get_resize_output_image_size(UpperCAmelCase , size=size["shortest_edge"] , default_to_square=UpperCAmelCase )
return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Tuple , ):
A_ = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' )
return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def __A ( self : str , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : int , ):
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None ):
return flip_channel_order(UpperCAmelCase , data_format=UpperCAmelCase )
def __A ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : Optional[Any] , ):
A_ = do_resize if do_resize is not None else self.do_resize
A_ = resample if resample is not None else self.resample
A_ = do_rescale if do_rescale is not None else self.do_rescale
A_ = rescale_factor if rescale_factor is not None else self.rescale_factor
A_ = do_center_crop if do_center_crop is not None else self.do_center_crop
A_ = (
do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order
)
A_ = size if size is not None else self.size
A_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase )
A_ = crop_size if crop_size is not None else self.crop_size
A_ = get_size_dict(UpperCAmelCase , param_name="crop_size" )
A_ = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
# All transformations expect numpy arrays.
A_ = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
A_ = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
A_ = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
A_ = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
# the pretrained checkpoints assume images are BGR, not RGB
if do_flip_channel_order:
A_ = [self.flip_channel_order(image=UpperCAmelCase ) for image in images]
A_ = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
A_ = {"pixel_values": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[Tuple] = None ):
A_ = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(UpperCAmelCase ):
A_ = target_sizes.numpy()
A_ = []
for idx in range(len(UpperCAmelCase ) ):
A_ = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=UpperCAmelCase )
A_ = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(UpperCAmelCase )
else:
A_ = logits.argmax(dim=1 )
A_ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def __snake_case ( *__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[Union[Dict, Any]] = None ,__UpperCamelCase : Optional[Any]=True ,__UpperCamelCase : Optional[Any]=2 ):
"""simple docstring"""
from .. import __version__
A_ = take_from
A_ = ()
if not isinstance(args[0] ,__UpperCamelCase ):
A_ = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__UpperCamelCase ).base_version ) >= version.parse(__UpperCamelCase ):
raise ValueError(
f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
f''' version {__version__} is >= {version_name}''' )
A_ = None
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__UpperCamelCase ),)
A_ = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__UpperCamelCase ,__UpperCamelCase ):
values += (getattr(__UpperCamelCase ,__UpperCamelCase ),)
A_ = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
A_ = f'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
A_ = warning + " " if standard_warn else ""
warnings.warn(warning + message ,__UpperCamelCase ,stacklevel=__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0:
A_ = inspect.getouterframes(inspect.currentframe() )[1]
A_ = call_frame.filename
A_ = call_frame.lineno
A_ = call_frame.function
A_ , A_ = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__UpperCamelCase ) == 0:
return
elif len(__UpperCamelCase ) == 1:
return values[0]
return values
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import unittest
from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Tuple , **UpperCAmelCase : Any ):
pass
@is_pipeline_test
@require_torch
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
def __A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ):
A_ = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
A_ = [
{
"image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ),
"question": "How many cats are there?",
},
{
"image": "./tests/fixtures/tests_samples/COCO/000000039769.png",
"question": "How many cats are there?",
},
]
return vqa_pipeline, examples
def __A ( self : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Dict ):
A_ = vqa_pipeline(UpperCAmelCase , top_k=1 )
self.assertEqual(
UpperCAmelCase , [
[{"score": ANY(UpperCAmelCase ), "answer": ANY(UpperCAmelCase )}],
[{"score": ANY(UpperCAmelCase ), "answer": ANY(UpperCAmelCase )}],
] , )
@require_torch
def __A ( self : Union[str, Any] ):
A_ = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" )
A_ = "./tests/fixtures/tests_samples/COCO/000000039769.png"
A_ = "How many cats are there?"
A_ = vqa_pipeline(image=UpperCAmelCase , question="How many cats are there?" , top_k=2 )
self.assertEqual(
UpperCAmelCase , [{"score": ANY(UpperCAmelCase ), "answer": ANY(UpperCAmelCase )}, {"score": ANY(UpperCAmelCase ), "answer": ANY(UpperCAmelCase )}] )
A_ = vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
UpperCAmelCase , [{"score": ANY(UpperCAmelCase ), "answer": ANY(UpperCAmelCase )}, {"score": ANY(UpperCAmelCase ), "answer": ANY(UpperCAmelCase )}] )
@slow
@require_torch
def __A ( self : Optional[Any] ):
A_ = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" )
A_ = "./tests/fixtures/tests_samples/COCO/000000039769.png"
A_ = "How many cats are there?"
A_ = vqa_pipeline(image=UpperCAmelCase , question=UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] )
A_ = vqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] )
A_ = vqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase , decimals=4 ) , [[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , )
@require_tf
@unittest.skip("Visual question answering not implemented in TF" )
def __A ( self : Tuple ):
pass
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
__a , __a , __a :Union[str, Any] = False, False, False
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : Optional[int] = None
_lowerCamelCase : bool = True
_lowerCamelCase : bool = True
_lowerCamelCase : Optional[str] = None
# Automatically constructed
_lowerCamelCase : ClassVar[str] = "dict"
_lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
_lowerCamelCase : str = field(default='Audio' , init=snake_case_ , repr=snake_case_ )
def __call__( self : List[str] ):
return self.pa_type
def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, bytes, dict] ):
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err
if isinstance(UpperCAmelCase , UpperCAmelCase ):
return {"bytes": None, "path": value}
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
A_ = BytesIO()
sf.write(UpperCAmelCase , value["array"] , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("pcm" ):
# "PCM" only has raw audio bytes
if value.get("sampling_rate" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" )
if value.get("bytes" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
A_ = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 32767
else:
A_ = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 32767
A_ = BytesIO(bytes() )
sf.write(UpperCAmelCase , UpperCAmelCase , value["sampling_rate"] , format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def __A ( self : Optional[int] , UpperCAmelCase : dict , UpperCAmelCase : Optional[Dict[str, Union[str, bool, None]]] = None ):
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." )
A_ , A_ = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None)
if path is None and file is None:
raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err
A_ = xsplitext(UpperCAmelCase )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
if file is None:
A_ = token_per_repo_id or {}
A_ = path.split("::" )[-1]
try:
A_ = string_to_dict(UpperCAmelCase , config.HUB_DATASETS_URL )["repo_id"]
A_ = token_per_repo_id[repo_id]
except (ValueError, KeyError):
A_ = None
with xopen(UpperCAmelCase , "rb" , use_auth_token=UpperCAmelCase ) as f:
A_ , A_ = sf.read(UpperCAmelCase )
else:
A_ , A_ = sf.read(UpperCAmelCase )
A_ = array.T
if self.mono:
A_ = librosa.to_mono(UpperCAmelCase )
if self.sampling_rate and self.sampling_rate != sampling_rate:
A_ = librosa.resample(UpperCAmelCase , orig_sr=UpperCAmelCase , target_sr=self.sampling_rate )
A_ = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def __A ( self : Optional[int] ):
from .features import Value
if self.decode:
raise ValueError("Cannot flatten a decoded Audio feature." )
return {
"bytes": Value("binary" ),
"path": Value("string" ),
}
def __A ( self : Optional[Any] , UpperCAmelCase : Union[pa.StringArray, pa.StructArray] ):
if pa.types.is_string(storage.type ):
A_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() )
A_ = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
A_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() )
A_ = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ):
A_ = pa.array([Audio().encode_example(UpperCAmelCase ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
A_ = storage.field("bytes" )
else:
A_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
A_ = storage.field("path" )
else:
A_ = pa.array([None] * len(UpperCAmelCase ) , type=pa.string() )
A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() )
return array_cast(UpperCAmelCase , self.pa_type )
def __A ( self : Tuple , UpperCAmelCase : pa.StructArray ):
@no_op_if_value_is_null
def path_to_bytes(UpperCAmelCase : str ):
with xopen(UpperCAmelCase , "rb" ) as f:
A_ = f.read()
return bytes_
A_ = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
A_ = pa.array(
[os.path.basename(UpperCAmelCase ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , )
A_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() )
return array_cast(UpperCAmelCase , self.pa_type )
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Dict = VQModel
_lowerCamelCase : Union[str, Any] = 'sample'
@property
def __A ( self : Union[str, Any] , UpperCAmelCase : List[Any]=(32, 32) ):
A_ = 4
A_ = 3
A_ = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCAmelCase )
return {"sample": image}
@property
def __A ( self : List[str] ):
return (3, 32, 32)
@property
def __A ( self : List[str] ):
return (3, 32, 32)
def __A ( self : Dict ):
A_ = {
"block_out_channels": [32, 64],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
A_ = self.dummy_input
return init_dict, inputs_dict
def __A ( self : Dict ):
pass
def __A ( self : List[Any] ):
pass
def __A ( self : Any ):
A_ , A_ = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
self.assertEqual(len(loading_info["missing_keys"] ) , 0 )
model.to(UpperCAmelCase )
A_ = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def __A ( self : Union[str, Any] ):
A_ = VQModel.from_pretrained("fusing/vqgan-dummy" )
model.to(UpperCAmelCase ).eval()
torch.manual_seed(0 )
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0 )
A_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size )
A_ = image.to(UpperCAmelCase )
with torch.no_grad():
A_ = model(UpperCAmelCase ).sample
A_ = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
A_ = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] )
# fmt: on
self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__a :int = [
'python',
'tqdm',
'regex',
'requests',
'packaging',
'filelock',
'numpy',
'tokenizers',
'huggingface-hub',
'safetensors',
'accelerate',
'pyyaml',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[Any]=None ):
"""simple docstring"""
require_version(deps[pkg] ,__UpperCamelCase )
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
import io
import itertools
import json
from dataclasses import dataclass
from typing import Optional
import pyarrow as pa
import pyarrow.json as paj
import datasets
from datasets.table import table_cast
from datasets.utils.file_utils import readline
__a :List[Any] = datasets.utils.logging.get_logger(__name__)
@dataclass
class _a ( datasets.BuilderConfig ):
"""simple docstring"""
_lowerCamelCase : Optional[datasets.Features] = None
_lowerCamelCase : str = "utf-8"
_lowerCamelCase : Optional[str] = None
_lowerCamelCase : Optional[str] = None
_lowerCamelCase : bool = True # deprecated
_lowerCamelCase : Optional[int] = None # deprecated
_lowerCamelCase : int = 1_0 << 2_0 # 10MB
_lowerCamelCase : Optional[bool] = None
class _a ( datasets.ArrowBasedBuilder ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = JsonConfig
def __A ( self : Optional[Any] ):
if self.config.block_size is not None:
logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead" )
A_ = self.config.block_size
if self.config.use_threads is not True:
logger.warning(
"The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore." )
if self.config.newlines_in_values is not None:
raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported" )
return datasets.DatasetInfo(features=self.config.features )
def __A ( self : Dict , UpperCAmelCase : Tuple ):
if not self.config.data_files:
raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
A_ = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCAmelCase , (str, list, tuple) ):
A_ = data_files
if isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = [files]
A_ = [dl_manager.iter_files(UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
A_ = []
for split_name, files in data_files.items():
if isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = [files]
A_ = [dl_manager.iter_files(UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=UpperCAmelCase , gen_kwargs={"files": files} ) )
return splits
def __A ( self : Optional[Any] , UpperCAmelCase : pa.Table ):
if self.config.features is not None:
# adding missing columns
for column_name in set(self.config.features ) - set(pa_table.column_names ):
A_ = self.config.features.arrow_schema.field(UpperCAmelCase ).type
A_ = pa_table.append_column(UpperCAmelCase , pa.array([None] * len(UpperCAmelCase ) , type=UpperCAmelCase ) )
# more expensive cast to support nested structures with keys in a different order
# allows str <-> int/float or str to Audio for example
A_ = table_cast(UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] ):
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase ) ):
# If the file is one json object and if we need to look at the list of items in one specific field
if self.config.field is not None:
with open(UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
A_ = json.load(UpperCAmelCase )
# We keep only the field we are interested in
A_ = dataset[self.config.field]
# We accept two format: a list of dicts or a dict of lists
if isinstance(UpperCAmelCase , (list, tuple) ):
A_ = set().union(*[row.keys() for row in dataset] )
A_ = {col: [row.get(UpperCAmelCase ) for row in dataset] for col in keys}
else:
A_ = dataset
A_ = pa.Table.from_pydict(UpperCAmelCase )
yield file_idx, self._cast_table(UpperCAmelCase )
# If the file has one json object per line
else:
with open(UpperCAmelCase , "rb" ) as f:
A_ = 0
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
# Set a default minimum value of 16kB if the chunk size is really small
A_ = max(self.config.chunksize // 32 , 16 << 10 )
A_ = (
self.config.encoding_errors if self.config.encoding_errors is not None else "strict"
)
while True:
A_ = f.read(self.config.chunksize )
if not batch:
break
# Finish current line
try:
batch += f.readline()
except (AttributeError, io.UnsupportedOperation):
batch += readline(UpperCAmelCase )
# PyArrow only accepts utf-8 encoded bytes
if self.config.encoding != "utf-8":
A_ = batch.decode(self.config.encoding , errors=UpperCAmelCase ).encode("utf-8" )
try:
while True:
try:
A_ = paj.read_json(
io.BytesIO(UpperCAmelCase ) , read_options=paj.ReadOptions(block_size=UpperCAmelCase ) )
break
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
if (
isinstance(UpperCAmelCase , pa.ArrowInvalid )
and "straddling" not in str(UpperCAmelCase )
or block_size > len(UpperCAmelCase )
):
raise
else:
# Increase the block size in case it was too small.
# The block size will be reset for the next file.
logger.debug(
f'''Batch of {len(UpperCAmelCase )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' )
block_size *= 2
except pa.ArrowInvalid as e:
try:
with open(
UpperCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f:
A_ = json.load(UpperCAmelCase )
except json.JSONDecodeError:
logger.error(f'''Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}''' )
raise e
# If possible, parse the file as a list of json objects and exit the loop
if isinstance(UpperCAmelCase , UpperCAmelCase ): # list is the only sequence type supported in JSON
try:
A_ = set().union(*[row.keys() for row in dataset] )
A_ = {col: [row.get(UpperCAmelCase ) for row in dataset] for col in keys}
A_ = pa.Table.from_pydict(UpperCAmelCase )
except (pa.ArrowInvalid, AttributeError) as e:
logger.error(f'''Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}''' )
raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None
yield file_idx, self._cast_table(UpperCAmelCase )
break
else:
logger.error(f'''Failed to read file \'{file}\' with error {type(UpperCAmelCase )}: {e}''' )
raise ValueError(
f'''Not able to read records in the JSON file at {file}. '''
f'''You should probably indicate the field of the JSON file containing your records. '''
f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. '''
f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(UpperCAmelCase )
batch_idx += 1
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a :Optional[Any] = {
'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Tuple = [
'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MegatronBertForCausalLM',
'MegatronBertForMaskedLM',
'MegatronBertForMultipleChoice',
'MegatronBertForNextSentencePrediction',
'MegatronBertForPreTraining',
'MegatronBertForQuestionAnswering',
'MegatronBertForSequenceClassification',
'MegatronBertForTokenClassification',
'MegatronBertModel',
'MegatronBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__a :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : int = ''
_lowerCamelCase : Tuple = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : int , UpperCAmelCase : Optional[DatasetInfo] = None , UpperCAmelCase : Optional[str] = None , **UpperCAmelCase : Union[str, Any] , ):
super().__init__(self , **UpperCAmelCase )
A_ = repo_info
A_ = token
A_ = None
def __A ( self : Optional[Any] ):
if self.dir_cache is None:
A_ = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
A_ = {
"name": hf_file.rfilename,
"size": None,
"type": "file",
}
self.dir_cache.update(
{
str(UpperCAmelCase ): {"name": str(UpperCAmelCase ), "size": None, "type": "directory"}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def __A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str = "rb" , **UpperCAmelCase : str , ):
if not isinstance(self.repo_info , UpperCAmelCase ):
raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
A_ = hf_hub_url(self.repo_info.id , UpperCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
UpperCAmelCase , mode=UpperCAmelCase , headers=get_authentication_headers_for_url(UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={"trust_env": True} , ).open()
def __A ( self : Tuple , UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
self._get_dirs()
A_ = self._strip_protocol(UpperCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(UpperCAmelCase )
def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : int=False , **UpperCAmelCase : Optional[Any] ):
self._get_dirs()
A_ = PurePosixPath(path.strip("/" ) )
A_ = {}
for p, f in self.dir_cache.items():
A_ = PurePosixPath(p.strip("/" ) )
A_ = p.parent
if root == path:
A_ = f
A_ = list(paths.values() )
if detail:
return out
else:
return sorted(f["name"] for f in out )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = JukeboxTokenizer
_lowerCamelCase : Optional[Any] = {
'artist': 'Zac Brown Band',
'genres': 'Country',
'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ',
}
@require_torch
def __A ( self : Tuple ):
import torch
A_ = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" )
A_ = tokenizer(**self.metas )["input_ids"]
# fmt: off
A_ = [
torch.tensor([[
0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27,
76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32,
44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43,
47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76,
76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35,
30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76,
27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45,
45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46,
41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31,
76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63,
76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39,
64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40,
30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8,
27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45,
34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45,
27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34,
41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76,
76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49,
44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64,
76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41,
32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27,
40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46,
45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49,
31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27,
45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78,
76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29,
34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48,
31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41,
40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31,
38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64,
78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31,
76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39,
41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76,
27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44,
46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78,
76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76,
41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45,
46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49,
41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65,
78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76,
40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39,
27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33,
76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76,
76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76,
41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64,
76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76,
27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67,
78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46,
34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76,
44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47,
40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51,
78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76,
46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27,
38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47,
40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28,
27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76,
20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30,
76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45,
76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44,
76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76,
76, 76]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
torch.tensor([[0, 0, 0, 1069, 11]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
@require_torch
def __A ( self : int ):
import torch
A_ = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" )
A_ = tokenizer(**self.metas )["input_ids"]
# fmt: off
A_ = [
torch.tensor([[
0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39,
31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38,
31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27,
40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64,
79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41,
77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48,
27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40,
37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41,
32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40,
77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63,
77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77,
46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31,
77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77,
77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37,
77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30,
77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45,
64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49,
40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1,
40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77,
38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31,
31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29,
41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27,
46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46,
41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45,
31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44,
31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77,
23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47,
44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42,
31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77,
38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35,
40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77,
77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34,
27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34,
31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77,
34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32,
31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77,
1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42,
31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31,
45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42,
31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77,
77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77,
15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77,
11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33,
45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12,
41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41,
44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34,
46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42,
27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77,
77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45,
35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63,
77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30,
31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77,
77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38,
41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64,
77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27,
40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77,
77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31,
77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45,
27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34,
77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77,
77, 77, 77, 77, 77, 77]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) )
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) )
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
__a :Union[str, Any] = get_logger()
__a :Optional[dict] = None
class _a ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : Any=None , UpperCAmelCase : Dict=None , **UpperCAmelCase : List[str] ):
super().__init__(features=UpperCAmelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError(
f'''Expected {device} to be a `str` not {type(UpperCAmelCase )}, as `jaxlib.xla_extension.Device` '''
"is not serializable neither with `pickle` nor with `dill`. Instead you can surround "
"the device with `str()` to get its string identifier that will be internally mapped "
"to the actual `jaxlib.xla_extension.Device`." )
A_ = device if isinstance(UpperCAmelCase , UpperCAmelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
A_ = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f'''Device with string identifier {self.device} not listed among the available '''
f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '''
f'''device: {str(jax.devices()[0] )}.''' )
A_ = str(jax.devices()[0] )
A_ = jnp_array_kwargs
@staticmethod
def __A ( ):
import jax
return {str(UpperCAmelCase ): device for device in jax.devices()}
def __A ( self : Union[str, Any] , UpperCAmelCase : str ):
import jax
import jax.numpy as jnp
if isinstance(UpperCAmelCase , UpperCAmelCase ) and column:
if all(
isinstance(UpperCAmelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(UpperCAmelCase , axis=0 )
return column
def __A ( self : Any , UpperCAmelCase : Tuple ):
import jax
import jax.numpy as jnp
if isinstance(UpperCAmelCase , (str, bytes, type(UpperCAmelCase )) ):
return value
elif isinstance(UpperCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
A_ = {}
if isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
A_ = {"dtype": jnp.intaa}
else:
A_ = {"dtype": jnp.intaa}
elif isinstance(UpperCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
A_ = {"dtype": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(UpperCAmelCase , PIL.Image.Image ):
A_ = np.asarray(UpperCAmelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
A_ = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(UpperCAmelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def __A ( self : str , UpperCAmelCase : Tuple ):
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(UpperCAmelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(UpperCAmelCase , "__array__" ) and not isinstance(UpperCAmelCase , jax.Array ):
A_ = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(UpperCAmelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] )
elif isinstance(UpperCAmelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(UpperCAmelCase ) for substruct in data_struct] )
return self._tensorize(UpperCAmelCase )
def __A ( self : Tuple , UpperCAmelCase : dict ):
return map_nested(self._recursive_tensorize , UpperCAmelCase , map_list=UpperCAmelCase )
def __A ( self : int , UpperCAmelCase : pa.Table ):
A_ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase )
A_ = self.python_features_decoder.decode_row(UpperCAmelCase )
return self.recursive_tensorize(UpperCAmelCase )
def __A ( self : Any , UpperCAmelCase : pa.Table ):
A_ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase )
A_ = self.python_features_decoder.decode_column(UpperCAmelCase , pa_table.column_names[0] )
A_ = self.recursive_tensorize(UpperCAmelCase )
A_ = self._consolidate(UpperCAmelCase )
return column
def __A ( self : Tuple , UpperCAmelCase : pa.Table ):
A_ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase )
A_ = self.python_features_decoder.decode_batch(UpperCAmelCase )
A_ = self.recursive_tensorize(UpperCAmelCase )
for column_name in batch:
A_ = self._consolidate(batch[column_name] )
return batch
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : str ):
debug_launcher(test_script.main )
def __A ( self : List[str] ):
debug_launcher(test_ops.main )
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def __snake_case ( __UpperCamelCase : dict ):
"""simple docstring"""
return (data["data"], data["target"])
def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ):
"""simple docstring"""
A_ = XGBRegressor(verbosity=0 ,random_state=42 )
xgb.fit(__UpperCamelCase ,__UpperCamelCase )
# Predict target for test data
A_ = xgb.predict(__UpperCamelCase )
A_ = predictions.reshape(len(__UpperCamelCase ) ,1 )
return predictions
def __snake_case ( ):
"""simple docstring"""
A_ = fetch_california_housing()
A_ , A_ = data_handling(__UpperCamelCase )
A_ , A_ , A_ , A_ = train_test_split(
__UpperCamelCase ,__UpperCamelCase ,test_size=0.25 ,random_state=1 )
A_ = xgboost(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(__UpperCamelCase ,__UpperCamelCase )}''' )
print(f'''Mean Square Error : {mean_squared_error(__UpperCamelCase ,__UpperCamelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
__a :Optional[int] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Any ,__UpperCamelCase : Dict ):
"""simple docstring"""
A_ = UniSpeechSatForSequenceClassification.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase )
A_ = downstream_dict["projector.weight"]
A_ = downstream_dict["projector.bias"]
A_ = downstream_dict["model.post_net.linear.weight"]
A_ = downstream_dict["model.post_net.linear.bias"]
return model
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = UniSpeechSatForAudioFrameClassification.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase )
A_ = downstream_dict["model.linear.weight"]
A_ = downstream_dict["model.linear.bias"]
return model
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = UniSpeechSatForXVector.from_pretrained(__UpperCamelCase ,config=__UpperCamelCase )
A_ = downstream_dict["connector.weight"]
A_ = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
A_ = downstream_dict[
f'''model.framelevel_feature_extractor.module.{i}.kernel.weight'''
]
A_ = downstream_dict[f'''model.framelevel_feature_extractor.module.{i}.kernel.bias''']
A_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
A_ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
A_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
A_ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
A_ = downstream_dict["objective.W"]
return model
@torch.no_grad()
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = torch.load(__UpperCamelCase ,map_location="cpu" )
A_ = checkpoint["Downstream"]
A_ = UniSpeechSatConfig.from_pretrained(__UpperCamelCase )
A_ = WavaVecaFeatureExtractor.from_pretrained(
__UpperCamelCase ,return_attention_mask=__UpperCamelCase ,do_normalize=__UpperCamelCase )
A_ = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
A_ = convert_classification(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
elif arch.endswith("ForAudioFrameClassification" ):
A_ = convert_diarization(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
elif arch.endswith("ForXVector" ):
A_ = convert_xvector(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
else:
raise NotImplementedError(f'''S3PRL weights conversion is not supported for {arch}''' )
if hf_config.use_weighted_layer_sum:
A_ = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(__UpperCamelCase )
hf_model.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Tuple = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
__a :Union[str, Any] = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
from functools import lru_cache
@lru_cache
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if num < 0:
raise ValueError("Number should not be negative." )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : List[Any] = IFPipeline
_lowerCamelCase : Optional[Any] = TEXT_TO_IMAGE_PARAMS - {'width', 'height', 'latents'}
_lowerCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS
_lowerCamelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {'latents'}
def __A ( self : Optional[Any] ):
return self._get_dummy_components()
def __A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : List[Any]=0 ):
if str(UpperCAmelCase ).startswith("mps" ):
A_ = torch.manual_seed(UpperCAmelCase )
else:
A_ = torch.Generator(device=UpperCAmelCase ).manual_seed(UpperCAmelCase )
A_ = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def __A ( self : List[Any] ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" )
def __A ( self : List[Any] ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __A ( self : Union[str, Any] ):
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __A ( self : List[Any] ):
self._test_save_load_local()
def __A ( self : Union[str, Any] ):
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def __A ( self : Optional[Any] ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@slow
@require_torch_gpu
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __A ( self : Tuple ):
# if
A_ = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa )
A_ = IFSuperResolutionPipeline.from_pretrained(
"DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("cuda" )
A_ , A_ = pipe_a.encode_prompt("anime turtle" , device="cuda" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
A_ = None
A_ = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
A_ = IFImgaImgPipeline(**pipe_a.components )
A_ = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
A_ = IFInpaintingPipeline(**pipe_a.components )
A_ = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Dict ):
# pipeline 1
_start_torch_memory_measurement()
A_ = torch.Generator(device="cpu" ).manual_seed(0 )
A_ = pipe_a(
prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , num_inference_steps=2 , generator=UpperCAmelCase , output_type="np" , )
A_ = output.images[0]
assert image.shape == (64, 64, 3)
A_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" )
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
# pipeline 2
_start_torch_memory_measurement()
A_ = torch.Generator(device="cpu" ).manual_seed(0 )
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = pipe_a(
prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , )
A_ = output.images[0]
assert image.shape == (256, 256, 3)
A_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" )
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
def __A ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : int ):
# pipeline 1
_start_torch_memory_measurement()
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = torch.Generator(device="cpu" ).manual_seed(0 )
A_ = pipe_a(
prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , image=UpperCAmelCase , num_inference_steps=2 , generator=UpperCAmelCase , output_type="np" , )
A_ = output.images[0]
assert image.shape == (64, 64, 3)
A_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" )
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
# pipeline 2
_start_torch_memory_measurement()
A_ = torch.Generator(device="cpu" ).manual_seed(0 )
A_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = pipe_a(
prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , image=UpperCAmelCase , original_image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , )
A_ = output.images[0]
assert image.shape == (256, 256, 3)
A_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" )
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int ):
# pipeline 1
_start_torch_memory_measurement()
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(UpperCAmelCase )
A_ = torch.Generator(device="cpu" ).manual_seed(0 )
A_ = pipe_a(
prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , num_inference_steps=2 , generator=UpperCAmelCase , output_type="np" , )
A_ = output.images[0]
assert image.shape == (64, 64, 3)
A_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" )
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
# pipeline 2
_start_torch_memory_measurement()
A_ = torch.Generator(device="cpu" ).manual_seed(0 )
A_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(UpperCAmelCase )
A_ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(UpperCAmelCase )
A_ = pipe_a(
prompt_embeds=UpperCAmelCase , negative_prompt_embeds=UpperCAmelCase , image=UpperCAmelCase , mask_image=UpperCAmelCase , original_image=UpperCAmelCase , generator=UpperCAmelCase , num_inference_steps=2 , output_type="np" , )
A_ = output.images[0]
assert image.shape == (256, 256, 3)
A_ = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
A_ = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" )
assert_mean_pixel_difference(UpperCAmelCase , UpperCAmelCase )
def __snake_case ( ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = (DPMSolverSDEScheduler,)
_lowerCamelCase : Tuple = 1_0
def __A ( self : str , **UpperCAmelCase : Optional[int] ):
A_ = {
"num_train_timesteps": 1100,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
"noise_sampler_seed": 0,
}
config.update(**UpperCAmelCase )
return config
def __A ( self : Dict ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=UpperCAmelCase )
def __A ( self : str ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=UpperCAmelCase , beta_end=UpperCAmelCase )
def __A ( self : List[str] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=UpperCAmelCase )
def __A ( self : Tuple ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.scheduler_classes[0]
A_ = self.get_scheduler_config()
A_ = scheduler_class(**UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
A_ = self.dummy_model()
A_ = self.dummy_sample_deter * scheduler.init_noise_sigma
A_ = sample.to(UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
A_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
A_ = model(UpperCAmelCase , UpperCAmelCase )
A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = output.prev_sample
A_ = torch.sum(torch.abs(UpperCAmelCase ) )
A_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2
assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2
assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3
def __A ( self : Any ):
A_ = self.scheduler_classes[0]
A_ = self.get_scheduler_config(prediction_type="v_prediction" )
A_ = scheduler_class(**UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps )
A_ = self.dummy_model()
A_ = self.dummy_sample_deter * scheduler.init_noise_sigma
A_ = sample.to(UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
A_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
A_ = model(UpperCAmelCase , UpperCAmelCase )
A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = output.prev_sample
A_ = torch.sum(torch.abs(UpperCAmelCase ) )
A_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2
assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2
assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3
else:
assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2
assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3
def __A ( self : Dict ):
A_ = self.scheduler_classes[0]
A_ = self.get_scheduler_config()
A_ = scheduler_class(**UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase )
A_ = self.dummy_model()
A_ = self.dummy_sample_deter.to(UpperCAmelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
A_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
A_ = model(UpperCAmelCase , UpperCAmelCase )
A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = output.prev_sample
A_ = torch.sum(torch.abs(UpperCAmelCase ) )
A_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2
assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2
assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3
def __A ( self : List[Any] ):
A_ = self.scheduler_classes[0]
A_ = self.get_scheduler_config()
A_ = scheduler_class(**UpperCAmelCase , use_karras_sigmas=UpperCAmelCase )
scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase )
A_ = self.dummy_model()
A_ = self.dummy_sample_deter.to(UpperCAmelCase ) * scheduler.init_noise_sigma
A_ = sample.to(UpperCAmelCase )
for t in scheduler.timesteps:
A_ = scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
A_ = model(UpperCAmelCase , UpperCAmelCase )
A_ = scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = output.prev_sample
A_ = torch.sum(torch.abs(UpperCAmelCase ) )
A_ = torch.mean(torch.abs(UpperCAmelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
else:
assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
__a :str = pytest.mark.integration
@pytest.mark.parametrize("path" ,["paws", "csv"] )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : str ):
"""simple docstring"""
inspect_dataset(__UpperCamelCase ,__UpperCamelCase )
A_ = path + ".py"
assert script_name in os.listdir(__UpperCamelCase )
assert "__pycache__" not in os.listdir(__UpperCamelCase )
@pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.parametrize("path" ,["accuracy"] )
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ):
"""simple docstring"""
inspect_metric(__UpperCamelCase ,__UpperCamelCase )
A_ = path + ".py"
assert script_name in os.listdir(__UpperCamelCase )
assert "__pycache__" not in os.listdir(__UpperCamelCase )
@pytest.mark.parametrize(
"path, config_name, expected_splits" ,[
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] ,)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ):
"""simple docstring"""
A_ = get_dataset_config_info(__UpperCamelCase ,config_name=__UpperCamelCase )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" ,[
("paws", None, ValueError),
] ,)
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
with pytest.raises(__UpperCamelCase ):
get_dataset_config_info(__UpperCamelCase ,config_name=__UpperCamelCase )
@pytest.mark.parametrize(
"path, expected" ,[
("squad", "plain_text"),
("acronym_identification", "default"),
("lhoestq/squad", "plain_text"),
("lhoestq/test", "default"),
("lhoestq/demo1", "lhoestq--demo1"),
("dalle-mini/wit", "dalle-mini--wit"),
] ,)
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = get_dataset_config_names(__UpperCamelCase )
assert expected in config_names
@pytest.mark.parametrize(
"path, expected_configs, expected_splits_in_first_config" ,[
("squad", ["plain_text"], ["train", "validation"]),
("dalle-mini/wit", ["dalle-mini--wit"], ["train"]),
("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]),
] ,)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = get_dataset_infos(__UpperCamelCase )
assert list(infos.keys() ) == expected_configs
A_ = expected_configs[0]
assert expected_config in infos
A_ = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"path, expected_config, expected_splits" ,[
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = get_dataset_infos(__UpperCamelCase )
assert expected_config in infos
A_ = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" ,[
("paws", None, ValueError),
] ,)
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
with pytest.raises(__UpperCamelCase ):
get_dataset_split_names(__UpperCamelCase ,config_name=__UpperCamelCase )
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
__a :str = get_logger(__name__)
__a :Optional[Any] = R'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n'
class _a :
"""simple docstring"""
@add_start_docstrings(UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ):
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class _a :
"""simple docstring"""
@add_start_docstrings(UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray ):
raise NotImplementedError(
f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' )
class _a ( snake_case_ ):
"""simple docstring"""
@add_start_docstrings(UpperCAmelCase )
def __call__( self : List[str] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
for processor in self:
A_ = inspect.signature(processor.__call__ ).parameters
if len(UpperCAmelCase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f'''Make sure that all the required parameters: {list(function_args.keys() )} for '''
f'''{processor.__class__} are passed to the logits processor.''' )
A_ = processor(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase )
else:
A_ = processor(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : float ):
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not (temperature > 0):
raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' )
A_ = temperature
def __call__( self : List[Any] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
A_ = scores / self.temperature
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : float , UpperCAmelCase : float = -float("Inf" ) , UpperCAmelCase : int = 1 ):
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' )
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or (min_tokens_to_keep < 1):
raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' )
A_ = top_p
A_ = filter_value
A_ = min_tokens_to_keep
def __call__( self : Union[str, Any] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
A_ , A_ = lax.top_k(UpperCAmelCase , scores.shape[-1] )
A_ = jnp.full_like(UpperCAmelCase , self.filter_value )
A_ = jax.nn.softmax(UpperCAmelCase , axis=-1 ).cumsum(axis=-1 )
A_ = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
A_ = jnp.roll(UpperCAmelCase , 1 )
score_mask |= score_mask.at[:, 0].set(UpperCAmelCase )
# min tokens to keep
A_ = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase )
A_ = jnp.where(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = jax.lax.sort_key_val(UpperCAmelCase , UpperCAmelCase )[-1]
return next_scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : int , UpperCAmelCase : float = -float("Inf" ) , UpperCAmelCase : int = 1 ):
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or top_k <= 0:
raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' )
A_ = max(UpperCAmelCase , UpperCAmelCase )
A_ = filter_value
def __call__( self : List[str] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
A_ , A_ = scores.shape
A_ = jnp.full(batch_size * vocab_size , self.filter_value )
A_ = min(self.top_k , scores.shape[-1] ) # Safety check
A_ , A_ = lax.top_k(UpperCAmelCase , UpperCAmelCase )
A_ = jnp.broadcast_to((jnp.arange(UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
A_ = topk_scores.flatten()
A_ = topk_indices.flatten() + shift
A_ = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase )
A_ = next_scores_flat.reshape(UpperCAmelCase , UpperCAmelCase )
return next_scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : int ):
A_ = bos_token_id
def __call__( self : Tuple , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
A_ = jnp.full(scores.shape , -float("inf" ) )
A_ = 1 - jnp.bool_(cur_len - 1 )
A_ = jnp.where(UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : int ):
A_ = max_length
A_ = eos_token_id
def __call__( self : Optional[int] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
A_ = jnp.full(scores.shape , -float("inf" ) )
A_ = 1 - jnp.bool_(cur_len - self.max_length + 1 )
A_ = jnp.where(UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : int ):
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or min_length < 0:
raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' )
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or eos_token_id < 0:
raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' )
A_ = min_length
A_ = eos_token_id
def __call__( self : Union[str, Any] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
# create boolean flag to decide if min length penalty should be applied
A_ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
A_ = jnp.where(UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , UpperCAmelCase )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict ):
A_ = list(UpperCAmelCase )
A_ = begin_index
def __call__( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int ):
A_ = 1 - jnp.bool_(cur_len - self.begin_index )
A_ = jnp.where(UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , UpperCAmelCase )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : list ):
A_ = list(UpperCAmelCase )
def __call__( self : Dict , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
A_ = scores.at[..., self.suppress_tokens].set(-float("inf" ) )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[Any] ):
A_ = dict(UpperCAmelCase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
A_ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
A_ = force_token_array.at[index].set(UpperCAmelCase )
A_ = jnp.intaa(UpperCAmelCase )
def __call__( self : Optional[int] , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : jnp.ndarray , UpperCAmelCase : int ):
def _force_token(UpperCAmelCase : str ):
A_ = scores.shape[0]
A_ = self.force_token_array[generation_idx]
A_ = jnp.ones_like(UpperCAmelCase , dtype=scores.dtype ) * -float("inf" )
A_ = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
A_ = lax.dynamic_update_slice(UpperCAmelCase , UpperCAmelCase , (0, current_token) )
return new_scores
A_ = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase ) , lambda: scores , ) , )
return scores
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ):
A_ = generate_config.eos_token_id
A_ = generate_config.no_timestamps_token_id
A_ = generate_config.no_timestamps_token_id + 1
A_ = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(UpperCAmelCase , "max_initial_timestamp_index" ):
A_ = generate_config.max_initial_timestamp_index
else:
A_ = model_config.vocab_size
if self.max_initial_timestamp_index is None:
A_ = model_config.vocab_size
def __call__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : str ):
# suppress <|notimestamps|> which is handled by without_timestamps
A_ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) )
def handle_pairs(UpperCAmelCase : List[str] , UpperCAmelCase : Dict ):
A_ = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase , UpperCAmelCase )
A_ = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase , )
A_ = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase , UpperCAmelCase )
A_ = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase , UpperCAmelCase , )
return jnp.where(
UpperCAmelCase , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , UpperCAmelCase , )
A_ = jax.vmap(UpperCAmelCase )(UpperCAmelCase , UpperCAmelCase )
A_ = jnp.where(cur_len == self.begin_index , UpperCAmelCase , UpperCAmelCase )
A_ = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase , )
A_ = self.timestamp_begin + self.max_initial_timestamp_index
A_ = jnp.where(
UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , UpperCAmelCase , )
# if sum of probability over timestamps is above any other token, sample timestamp
A_ = jax.nn.log_softmax(UpperCAmelCase , axis=-1 )
def handle_cumulative_probs(UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ):
A_ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
A_ = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , UpperCAmelCase , )
A_ = jax.vmap(UpperCAmelCase )(UpperCAmelCase , UpperCAmelCase )
return scores
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__a :List[Any] = logging.get_logger(__name__)
__a :Optional[Any] = '▁'
__a :int = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'}
__a :Any = {
'vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model',
},
'monolingual_vocab_file': {
'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt',
},
}
__a :Union[str, Any] = {'vinai/bartpho-syllable': 1024}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : int = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : str = ['input_ids', 'attention_mask']
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int]="<s>" , UpperCAmelCase : Optional[Any]="</s>" , UpperCAmelCase : List[Any]="</s>" , UpperCAmelCase : List[str]="<s>" , UpperCAmelCase : int="<unk>" , UpperCAmelCase : Optional[Any]="<pad>" , UpperCAmelCase : Tuple="<mask>" , UpperCAmelCase : Optional[Dict[str, Any]] = None , **UpperCAmelCase : Tuple , ):
# Mask token behave like a normal word, i.e. include the space before it
A_ = AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) else mask_token
A_ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , cls_token=UpperCAmelCase , pad_token=UpperCAmelCase , mask_token=UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase , )
A_ = vocab_file
A_ = monolingual_vocab_file
A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
A_ = {}
A_ = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
A_ = cnt
cnt += 1
with open(UpperCAmelCase , "r" , encoding="utf-8" ) as f:
for line in f.readlines():
A_ = line.strip().split()[0]
A_ = len(self.fairseq_tokens_to_ids )
if str(UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
A_ = len(self.fairseq_tokens_to_ids )
A_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self : Dict ):
A_ = self.__dict__.copy()
A_ = None
A_ = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : List[str] , UpperCAmelCase : str ):
A_ = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
A_ = {}
A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def __A ( self : str , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A_ = [self.cls_token_id]
A_ = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __A ( self : List[str] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=UpperCAmelCase , token_ids_a=UpperCAmelCase , already_has_special_tokens=UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(UpperCAmelCase )) + [1]
return [1] + ([0] * len(UpperCAmelCase )) + [1, 1] + ([0] * len(UpperCAmelCase )) + [1]
def __A ( self : int , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def __A ( self : List[Any] ):
return len(self.fairseq_ids_to_tokens )
def __A ( self : Tuple ):
A_ = {self.convert_ids_to_tokens(UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __A ( self : Dict , UpperCAmelCase : str ):
return self.sp_model.encode(UpperCAmelCase , out_type=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : Dict ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def __A ( self : str , UpperCAmelCase : Any ):
return self.fairseq_ids_to_tokens[index]
def __A ( self : Any , UpperCAmelCase : Any ):
A_ = "".join(UpperCAmelCase ).replace(UpperCAmelCase , " " ).strip()
return out_string
def __A ( self : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
A_ = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
A_ = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["monolingual_vocab_file"] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(UpperCAmelCase , "wb" ) as fi:
A_ = self.sp_model.serialized_model_proto()
fi.write(UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(f'''{str(UpperCAmelCase )} \n''' )
return out_vocab_file, out_monolingual_vocab_file
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
from pathlib import Path
import fire
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = Path(__UpperCamelCase )
A_ = Path(__UpperCamelCase )
dest_dir.mkdir(exist_ok=__UpperCamelCase )
for path in src_dir.iterdir():
A_ = [x.rstrip() for x in list(path.open().readlines() )][:n]
A_ = dest_dir.joinpath(path.name )
print(__UpperCamelCase )
dest_path.open("w" ).write("\n".join(__UpperCamelCase ) )
if __name__ == "__main__":
fire.Fire(minify)
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = 'char'
_lowerCamelCase : str = 'bpe'
_lowerCamelCase : Optional[Any] = 'wp'
__a :Union[str, Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = ['image_processor', 'char_tokenizer']
_lowerCamelCase : Any = 'ViTImageProcessor'
_lowerCamelCase : Union[str, Any] = 'MgpstrTokenizer'
def __init__( self : Tuple , UpperCAmelCase : List[str]=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : List[Any] ):
A_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
A_ = kwargs.pop("feature_extractor" )
A_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
A_ = tokenizer
A_ = AutoTokenizer.from_pretrained("gpt2" )
A_ = AutoTokenizer.from_pretrained("bert-base-uncased" )
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __call__( self : int , UpperCAmelCase : Any=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Any ):
if images is None and text is None:
raise ValueError("You need to specify either an `images` or `text` input to process." )
if images is not None:
A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if text is not None:
A_ = self.char_tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
A_ = encodings["input_ids"]
return inputs
def __A ( self : str , UpperCAmelCase : int ):
A_ , A_ , A_ = sequences
A_ = char_preds.size(0 )
A_ , A_ = self._decode_helper(UpperCAmelCase , "char" )
A_ , A_ = self._decode_helper(UpperCAmelCase , "bpe" )
A_ , A_ = self._decode_helper(UpperCAmelCase , "wp" )
A_ = []
A_ = []
for i in range(UpperCAmelCase ):
A_ = [char_scores[i], bpe_scores[i], wp_scores[i]]
A_ = [char_strs[i], bpe_strs[i], wp_strs[i]]
A_ = scores.index(max(UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
A_ = {}
A_ = final_strs
A_ = final_scores
A_ = char_strs
A_ = bpe_strs
A_ = wp_strs
return out
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] ):
if format == DecodeType.CHARACTER:
A_ = self.char_decode
A_ = 1
A_ = "[s]"
elif format == DecodeType.BPE:
A_ = self.bpe_decode
A_ = 2
A_ = "#"
elif format == DecodeType.WORDPIECE:
A_ = self.wp_decode
A_ = 102
A_ = "[SEP]"
else:
raise ValueError(f'''Format {format} is not supported.''' )
A_ , A_ = [], []
A_ = pred_logits.size(0 )
A_ = pred_logits.size(1 )
A_ , A_ = pred_logits.topk(1 , dim=-1 , largest=UpperCAmelCase , sorted=UpperCAmelCase )
A_ = preds_index.view(-1 , UpperCAmelCase )[:, 1:]
A_ = decoder(UpperCAmelCase )
A_ , A_ = torch.nn.functional.softmax(UpperCAmelCase , dim=2 ).max(dim=2 )
A_ = preds_max_prob[:, 1:]
for index in range(UpperCAmelCase ):
A_ = preds_str[index].find(UpperCAmelCase )
A_ = preds_str[index][:pred_eos]
A_ = preds_index[index].cpu().tolist()
A_ = pred_index.index(UpperCAmelCase ) if eos_token in pred_index else -1
A_ = preds_max_prob[index][: pred_eos_index + 1]
A_ = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(UpperCAmelCase )
conf_scores.append(UpperCAmelCase )
return dec_strs, conf_scores
def __A ( self : str , UpperCAmelCase : List[str] ):
A_ = [seq.replace(" " , "" ) for seq in self.char_tokenizer.batch_decode(UpperCAmelCase )]
return decode_strs
def __A ( self : List[str] , UpperCAmelCase : str ):
return self.bpe_tokenizer.batch_decode(UpperCAmelCase )
def __A ( self : Tuple , UpperCAmelCase : Optional[int] ):
A_ = [seq.replace(" " , "" ) for seq in self.wp_tokenizer.batch_decode(UpperCAmelCase )]
return decode_strs
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
from __future__ import annotations
import unittest
from transformers import DistilBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.distilbert.modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Any , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = False
A_ = True
A_ = 99
A_ = 32
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = None
def __A ( self : str ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple ):
A_ = TFDistilBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask}
A_ = model(UpperCAmelCase )
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] ):
A_ = TFDistilBertForMaskedLM(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] ):
A_ = TFDistilBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : str , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFDistilBertForSequenceClassification(UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[Any] ):
A_ = self.num_choices
A_ = TFDistilBertForMultipleChoice(UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : str , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFDistilBertForTokenClassification(UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Tuple ):
A_ = self.prepare_config_and_inputs()
((A_) , (A_) , (A_) , (A_) , (A_) , (A_)) = config_and_inputs
A_ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = (
(
TFDistilBertModel,
TFDistilBertForMaskedLM,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertForMultipleChoice,
)
if is_tf_available()
else None
)
_lowerCamelCase : Optional[int] = (
{
'feature-extraction': TFDistilBertModel,
'fill-mask': TFDistilBertForMaskedLM,
'question-answering': TFDistilBertForQuestionAnswering,
'text-classification': TFDistilBertForSequenceClassification,
'token-classification': TFDistilBertForTokenClassification,
'zero-shot': TFDistilBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : Optional[int] ):
A_ = TFDistilBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def __A ( self : List[Any] ):
self.config_tester.run_common_tests()
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase )
def __A ( self : Any ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase )
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase )
def __A ( self : str ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase )
def __A ( self : str ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : Optional[int] ):
for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ):
A_ = TFDistilBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : List[str] ):
A_ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[0.19_261_885, -0.13_732_955, 0.4_119_799],
[0.22_150_156, -0.07_422_661, 0.39_037_204],
[0.22_756_018, -0.0_896_414, 0.3_701_467],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : str ):
"""simple docstring"""
A_ , A_ = set(__UpperCamelCase ), [start]
while stack:
A_ = stack.pop()
explored.add(__UpperCamelCase )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(__UpperCamelCase )
return explored
__a :int = {
'A': ['B', 'C', 'D'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B', 'D'],
'E': ['B', 'F'],
'F': ['C', 'E', 'G'],
'G': ['F'],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, 'A'))
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
WhisperForConditionalGeneration,
WhisperProcessor,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.utils import logging
__a :str = logging.get_logger(__name__) # pylint: disable=invalid-name
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : WhisperForConditionalGeneration , UpperCAmelCase : WhisperProcessor , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : StableDiffusionSafetyChecker , UpperCAmelCase : CLIPImageProcessor , ):
super().__init__()
if safety_checker is None:
logger.warning(
f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
self.register_modules(
speech_model=UpperCAmelCase , speech_processor=UpperCAmelCase , vae=UpperCAmelCase , text_encoder=UpperCAmelCase , tokenizer=UpperCAmelCase , unet=UpperCAmelCase , scheduler=UpperCAmelCase , feature_extractor=UpperCAmelCase , )
def __A ( self : Optional[Any] , UpperCAmelCase : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
A_ = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCAmelCase )
def __A ( self : List[str] ):
self.enable_attention_slicing(UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=16000 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : int , ):
A_ = self.speech_processor.feature_extractor(
UpperCAmelCase , return_tensors="pt" , sampling_rate=UpperCAmelCase ).input_features.to(self.device )
A_ = self.speech_model.generate(UpperCAmelCase , max_length=480000 )
A_ = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase , normalize=UpperCAmelCase )[
0
]
if isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = 1
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = len(UpperCAmelCase )
else:
raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase )}''' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(UpperCAmelCase , UpperCAmelCase ) or callback_steps <= 0)
):
raise ValueError(
f'''`callback_steps` has to be a positive integer but is {callback_steps} of type'''
f''' {type(UpperCAmelCase )}.''' )
# get prompt text embeddings
A_ = self.tokenizer(
UpperCAmelCase , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , )
A_ = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
A_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' )
A_ = text_input_ids[:, : self.tokenizer.model_max_length]
A_ = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
A_ , A_ , A_ = text_embeddings.shape
A_ = text_embeddings.repeat(1 , UpperCAmelCase , 1 )
A_ = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
A_ = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
A_ = 42
if negative_prompt is None:
A_ = [""] * batch_size
elif type(UpperCAmelCase ) is not type(UpperCAmelCase ):
raise TypeError(
f'''`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase )} !='''
f''' {type(UpperCAmelCase )}.''' )
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = [negative_prompt]
elif batch_size != len(UpperCAmelCase ):
raise ValueError(
f'''`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase )}, but `prompt`:'''
f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'''
" the batch size of `prompt`." )
else:
A_ = negative_prompt
A_ = text_input_ids.shape[-1]
A_ = self.tokenizer(
UpperCAmelCase , padding="max_length" , max_length=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors="pt" , )
A_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
A_ = uncond_embeddings.shape[1]
A_ = uncond_embeddings.repeat(1 , UpperCAmelCase , 1 )
A_ = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
A_ = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
A_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
A_ = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
A_ = torch.randn(UpperCAmelCase , generator=UpperCAmelCase , device="cpu" , dtype=UpperCAmelCase ).to(
self.device )
else:
A_ = torch.randn(UpperCAmelCase , generator=UpperCAmelCase , device=self.device , dtype=UpperCAmelCase )
else:
if latents.shape != latents_shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' )
A_ = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
A_ = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
A_ = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
A_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
A_ = {}
if accepts_eta:
A_ = eta
for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
A_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
A_ = self.scheduler.scale_model_input(UpperCAmelCase , UpperCAmelCase )
# predict the noise residual
A_ = self.unet(UpperCAmelCase , UpperCAmelCase , encoder_hidden_states=UpperCAmelCase ).sample
# perform guidance
if do_classifier_free_guidance:
A_ , A_ = noise_pred.chunk(2 )
A_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
A_ = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = 1 / 0.18_215 * latents
A_ = self.vae.decode(UpperCAmelCase ).sample
A_ = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
A_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
A_ = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return image
return StableDiffusionPipelineOutput(images=UpperCAmelCase , nsfw_content_detected=UpperCAmelCase )
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
__a :List[Any] = pytest.mark.integration
__a :str = {'comet'}
__a :Any = importlib.util.find_spec('fairseq') is not None
__a :Union[str, Any] = {'code_eval'}
__a :Optional[Any] = os.name == 'nt'
__a :str = {'bertscore', 'frugalscore', 'perplexity'}
__a :Tuple = importlib.util.find_spec('transformers') is not None
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def wrapper(self : Any ,__UpperCamelCase : Tuple ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self ,__UpperCamelCase )
return wrapper
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def wrapper(self : Tuple ,__UpperCamelCase : List[str] ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self ,__UpperCamelCase )
return wrapper
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
@wraps(__UpperCamelCase )
def wrapper(self : Optional[int] ,__UpperCamelCase : str ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self ,__UpperCamelCase )
return wrapper
def __snake_case ( ):
"""simple docstring"""
A_ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
snake_case_ , snake_case_ , snake_case_ )
@local
class _a ( parameterized.TestCase ):
"""simple docstring"""
_lowerCamelCase : str = {}
_lowerCamelCase : str = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __A ( self : Any , UpperCAmelCase : Optional[Any] ):
A_ = "[...]"
A_ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , UpperCAmelCase ) ).module_path )
A_ = datasets.load.import_main_class(metric_module.__name__ , dataset=UpperCAmelCase )
# check parameters
A_ = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(UpperCAmelCase , metric_module.__name__ ):
with self.use_local_metrics():
try:
A_ = doctest.testmod(UpperCAmelCase , verbose=UpperCAmelCase , raise_on_error=UpperCAmelCase )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __A ( self : Union[str, Any] , UpperCAmelCase : Union[str, Any] ):
A_ = "[...]"
A_ = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , UpperCAmelCase ) ).module_path )
# run doctest
with self.use_local_metrics():
A_ = doctest.testmod(UpperCAmelCase , verbose=UpperCAmelCase , raise_on_error=UpperCAmelCase )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ):
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](UpperCAmelCase ):
yield
else:
yield
@contextmanager
def __A ( self : List[Any] ):
def load_local_metric(UpperCAmelCase : int , *UpperCAmelCase : List[str] , **UpperCAmelCase : Tuple ):
return load_metric(os.path.join("metrics" , UpperCAmelCase ) , *UpperCAmelCase , **UpperCAmelCase )
with patch("datasets.load_metric" ) as mock_load_metric:
A_ = load_local_metric
yield
@classmethod
def __A ( cls : List[Any] , UpperCAmelCase : str ):
def wrapper(UpperCAmelCase : Optional[Any] ):
A_ = contextmanager(UpperCAmelCase )
A_ = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : str , UpperCAmelCase : Union[str, Any] ):
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
A_ = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
import torch
def bert_cos_score_idf(__UpperCamelCase : List[str] ,__UpperCamelCase : int ,*__UpperCamelCase : Tuple ,**__UpperCamelCase : Tuple ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__UpperCamelCase ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
A_ = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
def load_from_checkpoint(__UpperCamelCase : int ):
class _a :
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
assert len(UpperCAmelCase ) == 2
A_ = [0.19, 0.92]
return scores, sum(UpperCAmelCase ) / len(UpperCAmelCase )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
A_ = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
A_ = load_from_checkpoint
yield
def __snake_case ( ):
"""simple docstring"""
A_ = load_metric(os.path.join("metrics" ,"seqeval" ) )
A_ = "ERROR"
A_ = f'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(__UpperCamelCase ,match=re.escape(__UpperCamelCase ) ):
metric.compute(predictions=[] ,references=[] ,scheme=__UpperCamelCase )
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=0.01 , UpperCAmelCase : Optional[int]=1000 ):
A_ = p_stop
A_ = max_length
def __iter__( self : Any ):
A_ = 0
A_ = False
while not stop and count < self.max_length:
yield count
count += 1
A_ = random.random() < self.p_stop
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : int=True ):
A_ = [
BatchSamplerShard(UpperCAmelCase , 2 , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
for i in range(2 )
]
A_ = [list(UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(UpperCAmelCase ) for shard in batch_sampler_shards] , [len(UpperCAmelCase ) for e in expected] )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : str ):
# Check the shards when the dataset is a round multiple of total batch size.
A_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
A_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
A_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
A_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
A_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
A_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
A_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
A_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
# Check the shards when the dataset is very small.
A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase )
def __A ( self : List[str] ):
# Check the shards when the dataset is a round multiple of batch size.
A_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
A_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size.
A_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
A_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
A_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
A_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
# Check the shards when the dataset is very small.
A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase )
def __A ( self : Tuple ):
# Check the shards when the dataset is a round multiple of total batch size.
A_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
A_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
A_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
A_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is very small.
A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCAmelCase )
A_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , even_batches=UpperCAmelCase )
def __A ( self : Tuple ):
# Check the shards when the dataset is a round multiple of batch size.
A_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size.
A_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
A_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
# Check the shards when the dataset is very small.
A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [[[0, 1]], []]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = [[], []]
self.check_batch_sampler_shards(UpperCAmelCase , UpperCAmelCase , split_batches=UpperCAmelCase , even_batches=UpperCAmelCase )
def __A ( self : Union[str, Any] ):
A_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
A_ = [BatchSamplerShard(UpperCAmelCase , 2 , UpperCAmelCase , even_batches=UpperCAmelCase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def __A ( self : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : List[str]=False ):
random.seed(UpperCAmelCase )
A_ = list(UpperCAmelCase )
A_ = [
IterableDatasetShard(
UpperCAmelCase , batch_size=UpperCAmelCase , drop_last=UpperCAmelCase , num_processes=UpperCAmelCase , process_index=UpperCAmelCase , split_batches=UpperCAmelCase , )
for i in range(UpperCAmelCase )
]
A_ = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(UpperCAmelCase )
iterable_dataset_lists.append(list(UpperCAmelCase ) )
A_ = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
A_ = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
self.assertTrue(len(UpperCAmelCase ) % shard_batch_size == 0 )
A_ = []
for idx in range(0 , len(UpperCAmelCase ) , UpperCAmelCase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(UpperCAmelCase ) < len(UpperCAmelCase ):
reference += reference
self.assertListEqual(UpperCAmelCase , reference[: len(UpperCAmelCase )] )
def __A ( self : Optional[int] ):
A_ = 42
A_ = RandomIterableDataset()
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
# Edge case with a very small dataset
A_ = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
self.check_iterable_dataset_shards(UpperCAmelCase , UpperCAmelCase , batch_size=4 , drop_last=UpperCAmelCase , split_batches=UpperCAmelCase )
def __A ( self : int ):
A_ = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCAmelCase )
A_ = SkipBatchSampler(UpperCAmelCase , 2 )
self.assertListEqual(list(UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def __A ( self : Optional[Any] ):
A_ = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def __A ( self : Optional[int] ):
A_ = DataLoader(list(range(16 ) ) , batch_size=4 )
A_ = skip_first_batches(UpperCAmelCase , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def __A ( self : str ):
A_ = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def __A ( self : Dict ):
Accelerator()
A_ = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if bit_count < 0:
raise ValueError("The given input must be positive" )
# get the generated string sequence
A_ = gray_code_sequence_string(__UpperCamelCase )
#
# convert them to integers
for i in range(len(__UpperCamelCase ) ):
A_ = int(sequence[i] ,2 )
return sequence
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
A_ = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
A_ = gray_code_sequence_string(bit_count - 1 )
A_ = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
A_ = "0" + smaller_sequence[i]
sequence.append(__UpperCamelCase )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
A_ = "1" + smaller_sequence[i]
sequence.append(__UpperCamelCase )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__a :int = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class _a :
"""simple docstring"""
_lowerCamelCase : Dict = PegasusConfig
_lowerCamelCase : Dict = {}
_lowerCamelCase : List[str] = 'gelu'
def __init__( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : int=13 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : str=False , UpperCAmelCase : str=99 , UpperCAmelCase : Tuple=32 , UpperCAmelCase : str=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=20 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Dict=1 , UpperCAmelCase : Dict=0 , ):
A_ = parent
A_ = batch_size
A_ = seq_length
A_ = is_training
A_ = use_labels
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = eos_token_id
A_ = pad_token_id
A_ = bos_token_id
def __A ( self : int ):
A_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
A_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
A_ = np.concatenate([input_ids, eos_tensor] , axis=1 )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
A_ = prepare_pegasus_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def __A ( self : Tuple , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str ):
A_ = 20
A_ = model_class_name(UpperCAmelCase )
A_ = model.encode(inputs_dict["input_ids"] )
A_ , A_ = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
A_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
A_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
A_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A_ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
A_ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
A_ = model.decode(UpperCAmelCase , UpperCAmelCase )
A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def __A ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ):
A_ = 20
A_ = model_class_name(UpperCAmelCase )
A_ = model.encode(inputs_dict["input_ids"] )
A_ , A_ = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
A_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
A_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
A_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A_ = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
A_ = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
A_ = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : str ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict=None ,__UpperCamelCase : Any=None ,):
"""simple docstring"""
if attention_mask is None:
A_ = np.not_equal(__UpperCamelCase ,config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
A_ = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape ,dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] ,config.pad_token_id ).astype(np.inta ),
] ,axis=-1 ,)
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : List[str] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
_lowerCamelCase : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
_lowerCamelCase : Dict = True
_lowerCamelCase : Union[str, Any] = False
_lowerCamelCase : Optional[Any] = False
_lowerCamelCase : List[str] = False
def __A ( self : Tuple ):
A_ = FlaxPegasusModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase )
def __A ( self : str ):
self.config_tester.run_common_tests()
def __A ( self : List[Any] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[int] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : List[str] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=None , **UpperCAmelCase : str ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("JIT Enabled" ):
A_ = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
A_ = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def __A ( self : Optional[int] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A_ = model_class(UpperCAmelCase )
A_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
A_ = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("JIT Enabled" ):
A_ = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
A_ = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __A ( self : List[str] ):
for model_class_name in self.all_model_classes:
A_ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=UpperCAmelCase )
A_ = np.ones((1, 1) )
A_ = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@slow
def __A ( self : Dict ):
A_ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
A_ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
A_ = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
A_ = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
A_ = tokenizer(UpperCAmelCase , return_tensors="np" , truncation=UpperCAmelCase , max_length=512 , padding=UpperCAmelCase )
A_ = model.generate(**UpperCAmelCase , num_beams=2 ).sequences
A_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
assert tgt_text == decoded
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ):
"""simple docstring"""
return math.sqrt(sum(pow(a - b ,2 ) for a, b in zip(__UpperCamelCase ,__UpperCamelCase ) ) )
def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ):
"""simple docstring"""
if dataset.ndim != value_array.ndim:
A_ = (
"Wrong input data's dimensions... "
f'''dataset : {dataset.ndim}, value_array : {value_array.ndim}'''
)
raise ValueError(__UpperCamelCase )
try:
if dataset.shape[1] != value_array.shape[1]:
A_ = (
"Wrong input data's shape... "
f'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'''
)
raise ValueError(__UpperCamelCase )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape" )
if dataset.dtype != value_array.dtype:
A_ = (
"Input data have different datatype... "
f'''dataset : {dataset.dtype}, value_array : {value_array.dtype}'''
)
raise TypeError(__UpperCamelCase )
A_ = []
for value in value_array:
A_ = euclidean(__UpperCamelCase ,dataset[0] )
A_ = dataset[0].tolist()
for dataset_value in dataset[1:]:
A_ = euclidean(__UpperCamelCase ,__UpperCamelCase )
if dist > temp_dist:
A_ = temp_dist
A_ = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : np.ndarray ):
"""simple docstring"""
return np.dot(__UpperCamelCase ,__UpperCamelCase ) / (norm(__UpperCamelCase ) * norm(__UpperCamelCase ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.