code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor __a :List[Any] = random.Random() def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=1.0 ,__UpperCamelCase : str=None ,__UpperCamelCase : Union[str, Any]=None ): """simple docstring""" if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : str=7 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : Tuple=2000 , UpperCAmelCase : Optional[Any]=24 , UpperCAmelCase : Union[str, Any]=24 , UpperCAmelCase : str=0.0 , UpperCAmelCase : str=16000 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , ): A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = feature_size A_ = num_mel_bins A_ = padding_value A_ = sampling_rate A_ = return_attention_mask A_ = do_normalize def __A ( self : List[str] ): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self : str , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=False ): def _flatten(UpperCAmelCase : int ): return list(itertools.chain(*UpperCAmelCase ) ) if equal_length: A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(UpperCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self : Dict ): A_ = SpeechaTextFeatureExtractionTester(self ) def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ): self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : Optional[Any] ): # Tests that all call wrap to encode_plus and batch_encode_plus A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs] # Test feature size A_ = feature_extractor(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input A_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features A_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) # Test batched A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ = np.asarray(UpperCAmelCase ) A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ): self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) def __A ( self : Dict ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 16, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): A_ = feature_extractor( UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self : Any ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 16, None] for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ): A_ = feature_extractor( UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = [np.sum(UpperCAmelCase ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self : Any ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="max_length" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self : Union[str, Any] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="longest" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feature_extractor( UpperCAmelCase , padding="longest" , max_length=16 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , ) A_ = inputs.input_features A_ = inputs.attention_mask A_ = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self : Optional[int] ): import torch A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = np.random.rand(100 , 32 ).astype(np.floataa ) A_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self : Optional[Any] , UpperCAmelCase : int ): from datasets import load_dataset A_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech A_ = ds.sort("id" ).select(range(UpperCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self : str ): # fmt: off A_ = np.array([ -1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241, -1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128, -1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625, ] ) # fmt: on A_ = self._load_datasamples(1 ) A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = feature_extractor(UpperCAmelCase , return_tensors="pt" ).input_features self.assertEquals(input_features.shape , (1, 584, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase , atol=1E-4 ) )
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
from collections.abc import Callable def __snake_case ( __UpperCamelCase : Callable[[float], float] ,__UpperCamelCase : float ,__UpperCamelCase : float ): """simple docstring""" A_ = a A_ = b if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCamelCase ) == 0: return b elif ( function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: A_ = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__UpperCamelCase ) == 0: return mid elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0: A_ = mid else: A_ = mid A_ = start + (end - start) / 2.0 return mid def __snake_case ( __UpperCamelCase : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
class _a : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : Any ): # we need a list not a string, so do something to change the type A_ = arr.split("," ) def __A ( self : Union[str, Any] ): A_ = [int(self.array[0] )] * len(self.array ) A_ = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): A_ = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) A_ = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __a :str = input('please input some numbers:') __a :int = SubArray(whole_array) __a :Any = array.solve_sub_array() print(('the results is:', re))
329
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
1
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" A_ = max(len(__UpperCamelCase ) ,len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) ,b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
329
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
1
def __snake_case ( __UpperCamelCase : int = 5000_0000 ): """simple docstring""" A_ = set() A_ = int((limit - 24) ** (1 / 2) ) A_ = set(range(3 ,prime_square_limit + 1 ,2 ) ) primes.add(2 ) for p in range(3 ,prime_square_limit + 1 ,2 ): if p not in primes: continue primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,__UpperCamelCase ) ) ) for primea in primes: A_ = primea * primea for primea in primes: A_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: A_ = primea * primea * primea * primea A_ = square + cube + tetr if total >= limit: break ret.add(__UpperCamelCase ) return len(__UpperCamelCase ) if __name__ == "__main__": print(F"{solution() = }")
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights A_ = FlaxDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase ) A_ = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , "snapshots" ) )] A_ = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith(".bin" ) for f in files ) @slow @require_flax class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Dict ): A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase ) A_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A_ = jax.random.PRNGKey(0 ) A_ = 4 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng A_ = replicate(UpperCAmelCase ) A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 A_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(UpperCAmelCase ) == num_samples def __A ( self : Union[str, Any] ): A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=UpperCAmelCase ) A_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng A_ = replicate(UpperCAmelCase ) A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def __A ( self : List[str] ): A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase ) A_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng A_ = replicate(UpperCAmelCase ) A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __A ( self : Union[str, Any] ): A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa ) A_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng A_ = replicate(UpperCAmelCase ) A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def __A ( self : Dict ): A_ = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , ) A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , ) A_ = scheduler.create_state() A_ = scheduler_state A_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A_ = jax.random.PRNGKey(0 ) A_ = 50 A_ = jax.device_count() A_ = num_samples * [prompt] A_ = pipeline.prepare_inputs(UpperCAmelCase ) # shard inputs and rng A_ = replicate(UpperCAmelCase ) A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def __A ( self : str ): A_ = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) A_ = jax.device_count() A_ = num_samples * [prompt] A_ = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase ) A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , ) A_ = replicate(UpperCAmelCase ) A_ = pipeline.prepare_inputs(UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) A_ = images[2, 0, 256, 10:17, 1] # With memory efficient attention A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , ) A_ = replicate(UpperCAmelCase ) A_ = pipeline.prepare_inputs(UpperCAmelCase ) A_ = shard(UpperCAmelCase ) A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) A_ = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a :int = logging.get_logger(__name__) __a :int = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = 'time_series_transformer' _lowerCamelCase : Optional[int] = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "student_t" , UpperCAmelCase : str = "nll" , UpperCAmelCase : int = 1 , UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCAmelCase : Optional[Union[str, bool]] = "mean" , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : bool = True , UpperCAmelCase : str = "gelu" , UpperCAmelCase : int = 64 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 100 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : Union[str, Any]=True , **UpperCAmelCase : List[str] , ): # time series specific configuration A_ = prediction_length A_ = context_length or prediction_length A_ = distribution_output A_ = loss A_ = input_size A_ = num_time_features A_ = lags_sequence A_ = scaling A_ = num_dynamic_real_features A_ = num_static_real_features A_ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) A_ = cardinality else: A_ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) A_ = embedding_dimension else: A_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A_ = num_parallel_samples # Transformer architecture configuration A_ = input_size * len(UpperCAmelCase ) + self._number_of_features A_ = d_model A_ = encoder_attention_heads A_ = decoder_attention_heads A_ = encoder_ffn_dim A_ = decoder_ffn_dim A_ = encoder_layers A_ = decoder_layers A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = activation_function A_ = init_std A_ = use_cache super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : str ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
from collections import defaultdict def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = first_str.lower().strip() A_ = second_str.lower().strip() # Remove whitespace A_ = first_str.replace(" " ,"" ) A_ = second_str.replace(" " ,"" ) # Strings of different lengths are not anagrams if len(__UpperCamelCase ) != len(__UpperCamelCase ): return False # Default values for count should be 0 A_ = defaultdict(__UpperCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__UpperCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() __a :Any = input('Enter the first string ').strip() __a :Any = input('Enter the second string ').strip() __a :Optional[int] = check_anagrams(input_a, input_b) print(F"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
1
import requests __a :List[Any] = '' # <-- Put your OpenWeatherMap appid here! __a :str = 'https://api.openweathermap.org/data/2.5/' def __snake_case ( __UpperCamelCase : str = "Chicago" ,__UpperCamelCase : str = APPID ): """simple docstring""" return requests.get(URL_BASE + "weather" ,params=locals() ).json() def __snake_case ( __UpperCamelCase : str = "Kolkata, India" ,__UpperCamelCase : str = APPID ): """simple docstring""" return requests.get(URL_BASE + "forecast" ,params=locals() ).json() def __snake_case ( __UpperCamelCase : float = 55.68 ,__UpperCamelCase : float = 12.57 ,__UpperCamelCase : str = APPID ): """simple docstring""" return requests.get(URL_BASE + "onecall" ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: __a :Tuple = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class _a : """simple docstring""" def __init__( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int = 13 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : int = 128 , UpperCAmelCase : int=[16, 32, 64, 128] , UpperCAmelCase : int = 7 , UpperCAmelCase : int = 4 , UpperCAmelCase : int = 37 , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 10 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 128 , UpperCAmelCase : List[int] = [2, 2, 2, 2] , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = encoder_stride A_ = num_attention_outputs A_ = embed_dim A_ = embed_dim + 1 A_ = resolution A_ = depths A_ = hidden_sizes A_ = dim A_ = mlp_expansion_ratio def __A ( self : Dict ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = self.get_config() return config, pixel_values, labels def __A ( self : Dict ): return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __A ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ): A_ = TFEfficientFormerModel(config=UpperCAmelCase ) A_ = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): A_ = self.type_sequence_label_size A_ = TFEfficientFormerForImageClassification(UpperCAmelCase ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = TFEfficientFormerForImageClassification(UpperCAmelCase ) A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Any ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase : Union[str, Any] = ( { 'feature-extraction': TFEfficientFormerModel, 'image-classification': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase : Optional[Any] = False _lowerCamelCase : Tuple = False _lowerCamelCase : Dict = False _lowerCamelCase : Tuple = False _lowerCamelCase : Optional[int] = False def __A ( self : int ): A_ = TFEfficientFormerModelTester(self ) A_ = ConfigTester( self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def __A ( self : Any ): self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def __A ( self : Union[str, Any] ): pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def __A ( self : List[str] ): pass def __A ( self : List[str] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : List[Any] ): def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ): A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): A_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: A_ = seq_length * self.model_tester.chunk_length else: A_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase , (list, tuple) ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "decoder_seq_length" , UpperCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=False ): A_ = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def __A ( self : Optional[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def __A ( self : Dict ): for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "encoder_seq_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "chunk_length" , UpperCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): A_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A_ = True A_ = False A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) A_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase ) A_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __A ( self : int ): # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A_ = model_class(UpperCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } A_ = model(UpperCAmelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : List[str] ): return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def __A ( self : List[Any] ): A_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ) # forward pass A_ = model(**UpperCAmelCase , training=UpperCAmelCase ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Any ): A_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" ) # forward pass A_ = model(**UpperCAmelCase , training=UpperCAmelCase ) # verify the logits A_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
329
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
1
from random import shuffle import tensorflow as tf from numpy import array def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = int(__UpperCamelCase ) assert noofclusters < len(__UpperCamelCase ) # Find out the dimensionality A_ = len(vectors[0] ) # Will help select random centroids from among the available vectors A_ = list(range(len(__UpperCamelCase ) ) ) shuffle(__UpperCamelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. A_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION A_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points A_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCamelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values A_ = tf.placeholder("float64" ,[dim] ) A_ = [] for centroid in centroids: cent_assigns.append(tf.assign(__UpperCamelCase ,__UpperCamelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) A_ = [tf.Variable(0 ) for i in range(len(__UpperCamelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value A_ = tf.placeholder("int32" ) A_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(__UpperCamelCase ,__UpperCamelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input A_ = tf.placeholder("float" ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors A_ = tf.reduce_mean(__UpperCamelCase ,0 ) ##Node for computing Euclidean distances # Placeholders for input A_ = tf.placeholder("float" ,[dim] ) A_ = tf.placeholder("float" ,[dim] ) A_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCamelCase ,__UpperCamelCase ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input A_ = tf.placeholder("float" ,[noofclusters] ) A_ = tf.argmin(__UpperCamelCase ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. A_ = tf.initialize_all_variables() # Initialize all variables sess.run(__UpperCamelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. A_ = 100 for _ in range(__UpperCamelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(__UpperCamelCase ) ): A_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. A_ = [ sess.run(__UpperCamelCase ,feed_dict={va: vect, va: sess.run(__UpperCamelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input A_ = sess.run( __UpperCamelCase ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(__UpperCamelCase ): # Collect all the vectors assigned to this cluster A_ = [ vectors[i] for i in range(len(__UpperCamelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location A_ = sess.run( __UpperCamelCase ,feed_dict={mean_input: array(__UpperCamelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments A_ = sess.run(__UpperCamelCase ) A_ = sess.run(__UpperCamelCase ) return centroids, assignments
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
from __future__ import annotations def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" if b == 0: return (1, 0) ((A_) , (A_)) = extended_euclid(__UpperCamelCase ,a % b ) A_ = a // b return (y, x - k * y) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" ((A_) , (A_)) = extended_euclid(__UpperCamelCase ,__UpperCamelCase ) A_ = na * na A_ = ra * x * na + ra * y * na return (n % m + m) % m def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" ((A_) , (A_)) = extended_euclid(__UpperCamelCase ,__UpperCamelCase ) if b < 0: A_ = (b % n + n) % n return b def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" A_ , A_ = invert_modulo(__UpperCamelCase ,__UpperCamelCase ), invert_modulo(__UpperCamelCase ,__UpperCamelCase ) A_ = na * na A_ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a :Optional[Any] = logging.get_logger(__name__) __a :Optional[Any] = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __a :List[str] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __a :List[str] = {'facebook/blenderbot_small-90M': 512} def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" A_ = set() A_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A_ = char A_ = set(__UpperCamelCase ) return pairs class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : List[Any] = ['input_ids', 'attention_mask'] def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any="__start__" , UpperCAmelCase : Any="__end__" , UpperCAmelCase : Tuple="__unk__" , UpperCAmelCase : int="__null__" , **UpperCAmelCase : Dict , ): super().__init__(unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , **UpperCAmelCase ) with open(UpperCAmelCase , encoding="utf-8" ) as vocab_handle: A_ = json.load(UpperCAmelCase ) A_ = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase , encoding="utf-8" ) as merges_handle: A_ = merges_handle.read().split("\n" )[1:-1] A_ = [tuple(merge.split() ) for merge in merges] A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) A_ = {} @property def __A ( self : Tuple ): return len(self.encoder ) def __A ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : str , UpperCAmelCase : str ): if token in self.cache: return self.cache[token] A_ = re.sub("([.,!?()])" , R" \1" , UpperCAmelCase ) A_ = re.sub("(')" , R" \1 " , UpperCAmelCase ) A_ = re.sub(R"\s{2,}" , " " , UpperCAmelCase ) if "\n" in token: A_ = token.replace("\n" , " __newln__" ) A_ = token.split(" " ) A_ = [] for token in tokens: if not len(UpperCAmelCase ): continue A_ = token.lower() A_ = tuple(UpperCAmelCase ) A_ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A_ = get_pairs(UpperCAmelCase ) if not pairs: words.append(UpperCAmelCase ) continue while True: A_ = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A_ , A_ = bigram A_ = [] A_ = 0 while i < len(UpperCAmelCase ): try: A_ = word.index(UpperCAmelCase , UpperCAmelCase ) new_word.extend(word[i:j] ) A_ = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ = tuple(UpperCAmelCase ) A_ = new_word if len(UpperCAmelCase ) == 1: break else: A_ = get_pairs(UpperCAmelCase ) A_ = "@@ ".join(UpperCAmelCase ) A_ = word[:-4] A_ = word words.append(UpperCAmelCase ) return " ".join(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : str ): A_ = [] A_ = re.findall(R"\S+\n?" , UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(" " ) ) ) return split_tokens def __A ( self : Any , UpperCAmelCase : str ): A_ = token.lower() return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) ) def __A ( self : int , UpperCAmelCase : int ): return self.decoder.get(UpperCAmelCase , self.unk_token ) def __A ( self : Union[str, Any] , UpperCAmelCase : List[str] ): A_ = " ".join(UpperCAmelCase ).replace("@@ " , "" ).strip() return out_string def __A ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join( UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + "\n" ) A_ = 0 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A_ = token_index writer.write(" ".join(UpperCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file
329
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
1
from abc import ABC, abstractmethod from argparse import ArgumentParser class _a ( snake_case_ ): """simple docstring""" @staticmethod @abstractmethod def __A ( UpperCAmelCase : ArgumentParser ): raise NotImplementedError() @abstractmethod def __A ( self : int ): raise NotImplementedError()
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a :Union[str, Any] = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Dict = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Tuple = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __a :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
1
from collections import defaultdict from math import ceil, sqrt def __snake_case ( __UpperCamelCase : int = 100_0000 ,__UpperCamelCase : int = 10 ): """simple docstring""" A_ = defaultdict(__UpperCamelCase ) for outer_width in range(3 ,(t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: A_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 ) else: A_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__UpperCamelCase ,outer_width - 1 ,2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"{solution() = }")
329
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
1
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class _a : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=99 , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=2 , UpperCAmelCase : Any=32 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Dict=None , ): A_ = parent A_ = batch_size A_ = decoder_seq_length # For common tests A_ = self.decoder_seq_length A_ = is_training A_ = use_attention_mask A_ = use_labels A_ = vocab_size A_ = d_model A_ = d_model A_ = decoder_layers A_ = decoder_layers A_ = decoder_ffn_dim A_ = decoder_attention_heads A_ = decoder_attention_heads A_ = eos_token_id A_ = bos_token_id A_ = pad_token_id A_ = decoder_start_token_id A_ = use_cache A_ = max_position_embeddings A_ = None A_ = decoder_seq_length A_ = 2 A_ = 1 def __A ( self : List[Any] ): A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ = None if self.use_attention_mask: A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A_ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def __A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ): A_ = True A_ = TrOCRDecoder(config=UpperCAmelCase ).to(UpperCAmelCase ).eval() A_ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass A_ = model(UpperCAmelCase , use_cache=UpperCAmelCase ) A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) A_ = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids A_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = model(UpperCAmelCase )["last_hidden_state"] A_ = model(UpperCAmelCase , past_key_values=UpperCAmelCase )["last_hidden_state"] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() A_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) def __A ( self : int ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ = config_and_inputs A_ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () _lowerCamelCase : Tuple = (TrOCRForCausalLM,) if is_torch_available() else () _lowerCamelCase : List[str] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} _lowerCamelCase : Dict = True _lowerCamelCase : Dict = False def __A ( self : Optional[int] ): A_ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase ) A_ = ConfigTester(self , config_class=UpperCAmelCase ) def __A ( self : Optional[int] ): pass def __A ( self : Union[str, Any] ): pass def __A ( self : int ): pass def __A ( self : Union[str, Any] ): self.config_tester.run_common_tests() def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase ) def __A ( self : Any ): return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def __A ( self : List[str] ): pass
329
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
1
import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = 0 A_ = 0 while num > 0: A_ = num % 8 A_ = octal + (remainder * math.floor(math.pow(10 ,__UpperCamelCase ) )) counter += 1 A_ = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(__UpperCamelCase )}''' def __snake_case ( ): """simple docstring""" print("\n2 in octal is:" ) print(decimal_to_octal(2 ) ) # = 2 print("\n8 in octal is:" ) print(decimal_to_octal(8 ) ) # = 10 print("\n65 in octal is:" ) print(decimal_to_octal(65 ) ) # = 101 print("\n216 in octal is:" ) print(decimal_to_octal(216 ) ) # = 330 print("\n512 in octal is:" ) print(decimal_to_octal(512 ) ) # = 1000 print("\n" ) if __name__ == "__main__": main()
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
1
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = ParquetDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[str] ,__UpperCamelCase : Dict ): """simple docstring""" A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,split=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" ,[str, list] ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : str ,__UpperCamelCase : Any ): """simple docstring""" if issubclass(__UpperCamelCase ,__UpperCamelCase ): A_ = parquet_path elif issubclass(__UpperCamelCase ,__UpperCamelCase ): A_ = [parquet_path] A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(__UpperCamelCase ,__UpperCamelCase ) for split in splits: A_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ): """simple docstring""" A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = ParquetDatasetReader( {"train": parquet_path} ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Any ): """simple docstring""" A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = ParquetDatasetReader({"train": parquet_path} ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" if split: A_ = {split: parquet_path} else: A_ = "train" A_ = {"train": parquet_path, "test": parquet_path} A_ = tmp_path / "cache" A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"} A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read() _check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ): """simple docstring""" A_ = ParquetDatasetWriter(__UpperCamelCase ,tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ = pq.ParquetFile(tmp_path / "foo.parquet" ) A_ = pf.read() assert dataset.data.table == output_table def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = str(shared_datadir / "test_image_rgb.jpg" ) A_ = {"image": [image_path]} A_ = Features({"image": Image()} ) A_ = Dataset.from_dict(__UpperCamelCase ,features=__UpperCamelCase ) A_ = ParquetDatasetWriter(__UpperCamelCase ,tmp_path / "foo.parquet" ) assert writer.write() > 0 A_ = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features A_ = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) ,streaming=__UpperCamelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" ,[ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ): """simple docstring""" assert get_writer_batch_size(__UpperCamelCase ) == expected
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _a : """simple docstring""" _lowerCamelCase : int = XGLMConfig _lowerCamelCase : Dict = {} _lowerCamelCase : Tuple = 'gelu' def __init__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : str=14 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Optional[int]=0.02 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_labels A_ = vocab_size A_ = d_model A_ = num_hidden_layers A_ = num_attention_heads A_ = ffn_dim A_ = activation_function A_ = activation_dropout A_ = attention_dropout A_ = max_position_embeddings A_ = initializer_range A_ = None A_ = 0 A_ = 2 A_ = 1 def __A ( self : Union[str, Any] ): return XGLMConfig.from_pretrained("facebook/xglm-564M" ) def __A ( self : Union[str, Any] ): A_ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = self.get_config() A_ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __A ( self : Tuple ): return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase , ) def __A ( self : Union[str, Any] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { "input_ids": input_ids, "head_mask": head_mask, } return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () _lowerCamelCase : str = (TFXGLMForCausalLM,) if is_tf_available() else () _lowerCamelCase : List[str] = ( {'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {} ) _lowerCamelCase : Any = False _lowerCamelCase : List[Any] = False _lowerCamelCase : Optional[Any] = False def __A ( self : Optional[Any] ): A_ = TFXGLMModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , n_embd=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() @slow def __A ( self : str ): for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFXGLMModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) @unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." ) def __A ( self : str ): super().test_resize_token_embeddings() @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : int , UpperCAmelCase : Tuple=True ): A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A_ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A_ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on A_ = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase ) @slow def __A ( self : int ): A_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) tf.random.set_seed(0 ) A_ = tokenizer("Today is a nice day and" , return_tensors="tf" ) A_ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(":/CPU:0" ): A_ = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , seed=[7, 0] ) A_ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase ) A_ = ( "Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due" ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) @slow def __A ( self : str ): A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" ) A_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) A_ = "left" # use different length sentences to test batching A_ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When", "Hello, my dog is a little", ] A_ = tokenizer(UpperCAmelCase , return_tensors="tf" , padding=UpperCAmelCase ) A_ = inputs["input_ids"] A_ = model.generate(input_ids=UpperCAmelCase , attention_mask=inputs["attention_mask"] , max_new_tokens=12 ) A_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids A_ = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 ) A_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids A_ = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 ) A_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) A_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase ) A_ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase ) A_ = [ "This is an extremelly long sentence that only exists to test the ability of the model to cope with " "left-padding, such as in batched generation. The output for the sequence below should be the same " "regardless of whether left padding is applied or not. When left padding is applied, the sequence will be " "a single", "Hello, my dog is a little bit of a shy one, but he is very friendly", ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] )
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging __a :List[Any] = logging.get_logger(__name__) __a :int = { 'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = 'perceiver' def __init__( self : str , UpperCAmelCase : Any=256 , UpperCAmelCase : str=1280 , UpperCAmelCase : str=768 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Dict=26 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]="kv" , UpperCAmelCase : str=1 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : str=1E-12 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[Any]=262 , UpperCAmelCase : Dict=2048 , UpperCAmelCase : List[Any]=56 , UpperCAmelCase : Dict=[368, 496] , UpperCAmelCase : int=16 , UpperCAmelCase : Optional[int]=1920 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : str=[1, 16, 224, 224] , **UpperCAmelCase : List[Any] , ): super().__init__(**UpperCAmelCase ) A_ = num_latents A_ = d_latents A_ = d_model A_ = num_blocks A_ = num_self_attends_per_block A_ = num_self_attention_heads A_ = num_cross_attention_heads A_ = qk_channels A_ = v_channels A_ = cross_attention_shape_for_attention A_ = self_attention_widening_factor A_ = cross_attention_widening_factor A_ = hidden_act A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = use_query_residual # masked language modeling attributes A_ = vocab_size A_ = max_position_embeddings # image classification attributes A_ = image_size # flow attributes A_ = train_size # multimodal autoencoding attributes A_ = num_frames A_ = audio_samples_per_frame A_ = samples_per_patch A_ = output_shape class _a ( snake_case_ ): """simple docstring""" @property def __A ( self : Union[str, Any] ): if self.task == "multiple-choice": A_ = {0: "batch", 1: "choice", 2: "sequence"} else: A_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def __A ( self : List[Any] ): return 1E-4 def __A ( self : Dict , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 40 , UpperCAmelCase : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(UpperCAmelCase , UpperCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A_ = preprocessor.num_special_tokens_to_add(UpperCAmelCase ) A_ = compute_effective_axis_dimension( UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence A_ = [" ".join(["a"] ) * seq_length] * batch_size A_ = dict(preprocessor(UpperCAmelCase , return_tensors=UpperCAmelCase ) ) A_ = inputs.pop("input_ids" ) return inputs elif isinstance(UpperCAmelCase , UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX A_ = compute_effective_axis_dimension(UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) A_ = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) ) A_ = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = RobertaTokenizer _lowerCamelCase : List[Any] = RobertaTokenizerFast _lowerCamelCase : List[Any] = True _lowerCamelCase : int = {'cls_token': '<s>'} def __A ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) A_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] A_ = {"unk_token": "<unk>"} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) def __A ( self : Tuple , **UpperCAmelCase : Dict ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Dict , **UpperCAmelCase : int ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Dict , UpperCAmelCase : str ): A_ = "lower newer" A_ = "lower newer" return input_text, output_text def __A ( self : Optional[int] ): A_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) A_ = "lower newer" A_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] A_ = tokenizer.tokenize(UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokens + [tokenizer.unk_token] A_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase ) def __A ( self : str ): A_ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __A ( self : Optional[Any] ): A_ = self.tokenizer_class.from_pretrained("roberta-base" ) A_ = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase ) A_ = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase ) A_ = tokenizer.encode( "sequence builders" , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self : int ): A_ = self.get_tokenizer() A_ = "Encode this sequence." A_ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) # Testing spaces after special tokens A_ = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase )} ) # mask token has a left space A_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) A_ = "Encode <mask> sequence" A_ = "Encode <mask>sequence" A_ = tokenizer.encode(UpperCAmelCase ) A_ = encoded.index(UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.encode(UpperCAmelCase ) A_ = encoded.index(UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): pass def __A ( self : Dict ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) A_ = "A, <mask> AllenNLP sentence." A_ = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) A_ = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) A_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) A_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __A ( self : Dict ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): A_ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) A_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase ) self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase ) self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase ) def __A ( self : int ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name` A_ = f'''{text_of_1_token} {text_of_1_token}''' A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = f''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ) + 1, 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , ) A_ = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase ) A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _a ( snake_case_ ): """simple docstring""" def __A ( self : Optional[int] ): A_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase , "width_multiplier" ) ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=3 , UpperCAmelCase : Any="swish" , UpperCAmelCase : Tuple=3 , UpperCAmelCase : int=32 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=0.25 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=0.0 , ): A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = make_divisible(512 * width_multiplier , divisor=8 ) A_ = hidden_act A_ = conv_kernel_size A_ = output_stride A_ = classifier_dropout_prob A_ = use_labels A_ = is_training A_ = num_labels A_ = initializer_range A_ = scope A_ = width_multiplier A_ = ffn_dropout A_ = attn_dropout def __A ( self : List[Any] ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.num_labels ) A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Union[str, Any] ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ): A_ = MobileViTVaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Tuple ): A_ = self.num_labels A_ = MobileViTVaForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ): A_ = self.num_labels A_ = MobileViTVaForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) _lowerCamelCase : Tuple = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase : int = False _lowerCamelCase : int = False _lowerCamelCase : List[str] = False _lowerCamelCase : List[Any] = False def __A ( self : Union[str, Any] ): A_ = MobileViTVaModelTester(self ) A_ = MobileViTVaConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase ) def __A ( self : Tuple ): self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def __A ( self : Tuple ): pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def __A ( self : Tuple ): pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def __A ( self : List[Any] ): pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def __A ( self : List[Any] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : Union[str, Any] ): pass def __A ( self : Optional[int] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : List[str] ): def check_hidden_states_output(UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any ): A_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = outputs.hidden_states A_ = 5 self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. A_ = 2 for i in range(len(UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) @slow def __A ( self : List[str] ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = MobileViTVaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : int ): return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def __A ( self : Optional[Any] ): A_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( UpperCAmelCase ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) A_ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Any ): A_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) A_ = model.to(UpperCAmelCase ) A_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.logits # verify the logits A_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCAmelCase ) A_ = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Union[str, Any] ): A_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) A_ = model.to(UpperCAmelCase ) A_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.logits.detach().cpu() A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(50, 60)] ) A_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) A_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
329
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Any = logging.get_logger(__name__) __a :Optional[Any] = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'cvt' def __init__( self : Tuple , UpperCAmelCase : int=3 , UpperCAmelCase : int=[7, 3, 3] , UpperCAmelCase : Optional[int]=[4, 2, 2] , UpperCAmelCase : Dict=[2, 1, 1] , UpperCAmelCase : Dict=[64, 192, 384] , UpperCAmelCase : Union[str, Any]=[1, 3, 6] , UpperCAmelCase : int=[1, 2, 10] , UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , UpperCAmelCase : Any=[0.0, 0.0, 0.0] , UpperCAmelCase : Optional[Any]=[0.0, 0.0, 0.1] , UpperCAmelCase : Tuple=[True, True, True] , UpperCAmelCase : List[str]=[False, False, True] , UpperCAmelCase : str=["dw_bn", "dw_bn", "dw_bn"] , UpperCAmelCase : str=[3, 3, 3] , UpperCAmelCase : Dict=[1, 1, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 2] , UpperCAmelCase : Optional[int]=[1, 1, 1] , UpperCAmelCase : Dict=[1, 1, 1] , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , **UpperCAmelCase : Dict , ): super().__init__(**UpperCAmelCase ) A_ = num_channels A_ = patch_sizes A_ = patch_stride A_ = patch_padding A_ = embed_dim A_ = num_heads A_ = depth A_ = mlp_ratio A_ = attention_drop_rate A_ = drop_rate A_ = drop_path_rate A_ = qkv_bias A_ = cls_token A_ = qkv_projection_method A_ = kernel_qkv A_ = padding_kv A_ = stride_kv A_ = padding_q A_ = stride_q A_ = initializer_range A_ = layer_norm_eps
329
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __a :Optional[int] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ): """simple docstring""" try: with open(__UpperCamelCase ,"rb" ) as flax_state_f: A_ = from_bytes(__UpperCamelCase ,flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCamelCase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights A_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa ,__UpperCamelCase ) ).values() if any(__UpperCamelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) A_ = jax.tree_util.tree_map( lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,__UpperCamelCase ) A_ = "" A_ = flatten_dict(__UpperCamelCase ,sep="." ) A_ = pt_model.state_dict() # keep track of unexpected & missing keys A_ = [] A_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A_ = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: A_ = flax_key_tuple_array[:-1] + ["weight"] A_ = jnp.transpose(__UpperCamelCase ,(3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": A_ = flax_key_tuple_array[:-1] + ["weight"] A_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": A_ = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCamelCase ): A_ = ( flax_key_tuple_string.replace("_0" ,".0" ) .replace("_1" ,".1" ) .replace("_2" ,".2" ) .replace("_3" ,".3" ) .replace("_4" ,".4" ) .replace("_5" ,".5" ) .replace("_6" ,".6" ) .replace("_7" ,".7" ) .replace("_8" ,".8" ) .replace("_9" ,".9" ) ) A_ = ".".join(__UpperCamelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict A_ = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase ,np.ndarray ) else flax_tensor A_ = torch.from_numpy(__UpperCamelCase ) # remove from missing keys missing_keys.remove(__UpperCamelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCamelCase ) pt_model.load_state_dict(__UpperCamelCase ) # re-transform missing_keys to list A_ = list(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(__UpperCamelCase ) > 0: logger.warning( f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' " use it for predictions and inference." ) return pt_model
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
import tensorflow as tf from ...tf_utils import shape_list class _a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any=1 , UpperCAmelCase : int=False , **UpperCAmelCase : int ): super().__init__(**UpperCAmelCase ) A_ = vocab_size A_ = d_embed A_ = d_proj A_ = cutoffs + [vocab_size] A_ = [0] + self.cutoffs A_ = div_val A_ = self.cutoffs[0] A_ = len(self.cutoffs ) - 1 A_ = self.shortlist_size + self.n_clusters A_ = keep_order A_ = [] A_ = [] def __A ( self : List[str] , UpperCAmelCase : Any ): if self.n_clusters > 0: A_ = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=UpperCAmelCase , name="cluster_weight" ) A_ = self.add_weight( shape=(self.n_clusters,) , initializer="zeros" , trainable=UpperCAmelCase , name="cluster_bias" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: A_ = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_projs_._{i}''' , ) self.out_projs.append(UpperCAmelCase ) else: self.out_projs.append(UpperCAmelCase ) A_ = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(self.vocab_size,) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] A_ = self.d_embed // (self.div_val**i) A_ = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_projs_._{i}''' ) self.out_projs.append(UpperCAmelCase ) A_ = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._weight''' , ) A_ = self.add_weight( shape=(r_idx - l_idx,) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._bias''' , ) self.out_layers.append((weight, bias) ) super().build(UpperCAmelCase ) @staticmethod def __A ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple=None ): A_ = x if proj is not None: A_ = tf.einsum("ibd,ed->ibe" , UpperCAmelCase , UpperCAmelCase ) return tf.einsum("ibd,nd->ibn" , UpperCAmelCase , UpperCAmelCase ) + b @staticmethod def __A ( UpperCAmelCase : int , UpperCAmelCase : Tuple ): A_ = shape_list(UpperCAmelCase ) A_ = tf.range(lp_size[0] , dtype=target.dtype ) A_ = tf.stack([r, target] , 1 ) return tf.gather_nd(UpperCAmelCase , UpperCAmelCase ) def __A ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=False ): A_ = 0 if self.n_clusters == 0: A_ = self._logit(UpperCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCAmelCase , logits=UpperCAmelCase ) A_ = tf.nn.log_softmax(UpperCAmelCase , axis=-1 ) else: A_ = shape_list(UpperCAmelCase ) A_ = [] A_ = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: A_ = (target >= l_idx) & (target < r_idx) A_ = tf.where(UpperCAmelCase ) A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase ) - l_idx if self.div_val == 1: A_ = self.out_layers[0][0][l_idx:r_idx] A_ = self.out_layers[0][1][l_idx:r_idx] else: A_ = self.out_layers[i][0] A_ = self.out_layers[i][1] if i == 0: A_ = tf.concat([cur_W, self.cluster_weight] , 0 ) A_ = tf.concat([cur_b, self.cluster_bias] , 0 ) A_ = self._logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.out_projs[0] ) A_ = tf.nn.log_softmax(UpperCAmelCase ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase ) A_ = self._gather_logprob(UpperCAmelCase , UpperCAmelCase ) else: A_ = self._logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.out_projs[i] ) A_ = tf.nn.log_softmax(UpperCAmelCase ) A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(UpperCAmelCase ) if target is not None: A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase ) A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase ) A_ = self._gather_logprob(UpperCAmelCase , UpperCAmelCase ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(UpperCAmelCase , -cur_logprob , shape_list(UpperCAmelCase ) ) A_ = tf.concat(UpperCAmelCase , axis=-1 ) if target is not None: if return_mean: A_ = tf.reduce_mean(UpperCAmelCase ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(UpperCAmelCase ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(UpperCAmelCase , name=self.name , aggregation="mean" if return_mean else "" ) return out
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __a :Optional[Any] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Any = DebertaVaTokenizer _lowerCamelCase : int = DebertaVaTokenizerFast _lowerCamelCase : int = True _lowerCamelCase : Any = True def __A ( self : str ): super().setUp() # We have a SentencePiece fixture for testing A_ = DebertaVaTokenizer(UpperCAmelCase , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : Union[str, Any] , UpperCAmelCase : str ): A_ = "this is a test" A_ = "this is a test" return input_text, output_text def __A ( self : List[Any] ): A_ = "<pad>" A_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase ) def __A ( self : int ): A_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(UpperCAmelCase ) , 30001 ) def __A ( self : Tuple ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def __A ( self : List[str] ): # fmt: off A_ = " \tHeLLo!how \n Are yoU? " A_ = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __A ( self : Optional[int] ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def __A ( self : Optional[Any] ): pass def __A ( self : Optional[Any] ): # fmt: off A_ = "I was born in 92000, and this is falsé." A_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on A_ = DebertaVaTokenizer(UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Any ): # fmt: off A_ = "I was born in 92000, and this is falsé." A_ = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # fmt: off A_ = "I was born in 92000, and this is falsé." A_ = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # fmt: off A_ = "I was born in 92000, and this is falsé." A_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): # fmt: off A_ = " \tHeLLo!how \n Are yoU? " A_ = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = "I was born in 92000, and this is falsé." A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) A_ = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = self.get_rust_tokenizer() A_ = tokenizer.encode(UpperCAmelCase ) A_ = rust_tokenizer.encode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ = "This is a test" A_ = [13, 1, 4398, 25, 21, 1289] A_ = ["▁", "T", "his", "▁is", "▁a", "▁test"] A_ = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] A_ = DebertaVaTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase ) A_ = DebertaVaTokenizerFast(UpperCAmelCase , keep_accents=UpperCAmelCase ) A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) # fmt: off A_ = "I was born in 92000, and this is falsé." A_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] A_ = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] A_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = rust_tokenizer.tokenize(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) A_ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[Any] ): A_ = DebertaVaTokenizer(UpperCAmelCase ) A_ = tokenizer.encode("sequence builders" ) A_ = tokenizer.encode("multi-sequence build" ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCAmelCase , ) @slow def __A ( self : List[Any] ): # fmt: off A_ = {"input_ids": [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
import operator as op def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = [] A_ = lambda __UpperCamelCase ,__UpperCamelCase : int(x / y ) # noqa: E731 integer division operation A_ = { "^": op.pow, "*": op.mul, "/": div, "+": op.add, "-": op.sub, } # operators & their respective operation # print table header print("Symbol".center(8 ) ,"Action".center(12 ) ,"Stack" ,sep=" | " ) print("-" * (30 + len(__UpperCamelCase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(__UpperCamelCase ) # append x to stack # output in tabular format print(x.rjust(8 ) ,("push(" + x + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " ) else: A_ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) ,("pop(" + b + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " ) A_ = stack.pop() # pop stack # output in tabular format print("".rjust(8 ) ,("pop(" + a + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " ) stack.append( str(opr[x](int(__UpperCamelCase ) ,int(__UpperCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) ,("push(" + a + x + b + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " ,) return int(stack[0] ) if __name__ == "__main__": __a :Dict = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
from __future__ import annotations from collections import deque class _a : """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : list[str] ): A_ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(UpperCAmelCase ) self.set_fail_transitions() def __A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __A ( self : List[Any] , UpperCAmelCase : str ): A_ = 0 for character in keyword: A_ = self.find_next_state(UpperCAmelCase , UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) A_ = len(self.adlist ) - 1 else: A_ = next_state self.adlist[current_state]["output"].append(UpperCAmelCase ) def __A ( self : str ): A_ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCAmelCase ) A_ = 0 while q: A_ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCAmelCase ) A_ = self.adlist[r]["fail_state"] while ( self.find_next_state(UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): A_ = self.adlist[state]["fail_state"] A_ = self.find_next_state( UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: A_ = 0 A_ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def __A ( self : Tuple , UpperCAmelCase : str ): A_ = {} # returns a dict with keywords and list of its occurrences A_ = 0 for i in range(len(UpperCAmelCase ) ): while ( self.find_next_state(UpperCAmelCase , string[i] ) is None and current_state != 0 ): A_ = self.adlist[current_state]["fail_state"] A_ = self.find_next_state(UpperCAmelCase , string[i] ) if next_state is None: A_ = 0 else: A_ = next_state for key in self.adlist[current_state]["output"]: if key not in result: A_ = [] result[key].append(i - len(UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
329
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
1
from string import ascii_uppercase __a :Dict = {char: i for i, char in enumerate(ascii_uppercase)} __a :int = dict(enumerate(ascii_uppercase)) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = len(__UpperCamelCase ) A_ = 0 while True: if x == i: A_ = 0 if len(__UpperCamelCase ) == len(__UpperCamelCase ): break key += key[i] i += 1 return key def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = "" A_ = 0 for letter in message: if letter == " ": cipher_text += " " else: A_ = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = "" A_ = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: A_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __snake_case ( ): """simple docstring""" A_ = "THE GERMAN ATTACK" A_ = "SECRET" A_ = generate_key(__UpperCamelCase ,__UpperCamelCase ) A_ = cipher_text(__UpperCamelCase ,__UpperCamelCase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(__UpperCamelCase ,__UpperCamelCase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1
from typing import List import numpy as np def __snake_case ( __UpperCamelCase : dict ): """simple docstring""" A_ = {key: len(__UpperCamelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCamelCase ,__UpperCamelCase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) A_ = max(lists_lengths.values() ,default=0 ) return max(1 ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" A_ = [] for group_idx in range(__UpperCamelCase ): A_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break A_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 A_ = range(__UpperCamelCase ,start + num_shards_to_add ) shards_indices_per_group.append(__UpperCamelCase ) return shards_indices_per_group def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : int ): """simple docstring""" A_ = _number_of_shards_in_gen_kwargs(__UpperCamelCase ) if num_shards == 1: return [dict(__UpperCamelCase )] else: A_ = _distribute_shards(num_shards=__UpperCamelCase ,max_num_jobs=__UpperCamelCase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__UpperCamelCase ,__UpperCamelCase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__UpperCamelCase ) ) ] def __snake_case ( __UpperCamelCase : List[dict] ): """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] ,__UpperCamelCase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __snake_case ( __UpperCamelCase : np.random.Generator ,__UpperCamelCase : dict ): """simple docstring""" A_ = {len(__UpperCamelCase ) for value in gen_kwargs.values() if isinstance(__UpperCamelCase ,__UpperCamelCase )} A_ = {} for size in list_sizes: A_ = list(range(__UpperCamelCase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes A_ = dict(__UpperCamelCase ) for key, value in shuffled_kwargs.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = [value[i] for i in indices_per_size[len(__UpperCamelCase )]] return shuffled_kwargs
329
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __a :Tuple = logging.get_logger(__name__) class _a ( enum.Enum ): """simple docstring""" _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[int] = 1 @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = 'generated' def __init__( self : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __A ( self : str , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Any , ): A_ = {} if truncation is not None: A_ = truncation A_ = generate_kwargs A_ = {} if return_tensors is not None and return_type is None: A_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: A_ = return_type if clean_up_tokenization_spaces is not None: A_ = clean_up_tokenization_spaces if stop_sequence is not None: A_ = self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) if len(UpperCAmelCase ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) A_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): return True def __A ( self : Dict , *UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ): A_ = self.model.config.prefix if self.model.config.prefix is not None else "" if isinstance(args[0] , UpperCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" ) A_ = ([prefix + arg for arg in args[0]],) A_ = True elif isinstance(args[0] , UpperCAmelCase ): A_ = (prefix + args[0],) A_ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) A_ = self.tokenizer(*UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): A_ = super().__call__(*UpperCAmelCase , **UpperCAmelCase ) if ( isinstance(args[0] , UpperCAmelCase ) and all(isinstance(UpperCAmelCase , UpperCAmelCase ) for el in args[0] ) and all(len(UpperCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def __A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCAmelCase : str ): A_ = self._parse_and_tokenize(UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase ) return inputs def __A ( self : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): if self.framework == "pt": A_ , A_ = model_inputs["input_ids"].shape elif self.framework == "tf": A_ , A_ = tf.shape(model_inputs["input_ids"] ).numpy() A_ = generate_kwargs.get("min_length" , self.model.config.min_length ) A_ = generate_kwargs.get("max_length" , self.model.config.max_length ) self.check_inputs(UpperCAmelCase , generate_kwargs["min_length"] , generate_kwargs["max_length"] ) A_ = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) A_ = output_ids.shape[0] if self.framework == "pt": A_ = output_ids.reshape(UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": A_ = tf.reshape(UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=ReturnType.TEXT , UpperCAmelCase : Tuple=False ): A_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: A_ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: A_ = { f'''{self.return_name}_text''': self.tokenizer.decode( UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) } records.append(UpperCAmelCase ) return records @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'summary' def __call__( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[str] ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' "a summarization task, where outputs shorter than the input are typically wanted, you might " f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'translation' def __A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ): if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' "increasing your max_length manually, e.g. translator('...', max_length=400)" ) return True def __A ( self : str , *UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None ): if getattr(self.tokenizer , "_build_translation_inputs" , UpperCAmelCase ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase , return_tensors=self.framework , truncation=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase ) else: return super()._parse_and_tokenize(*UpperCAmelCase , truncation=UpperCAmelCase ) def __A ( self : Optional[int] , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ): A_ , A_ , A_ = super()._sanitize_parameters(**UpperCAmelCase ) if src_lang is not None: A_ = src_lang if tgt_lang is not None: A_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. A_ = kwargs.get("task" , self.task ) A_ = task.split("_" ) if task and len(UpperCAmelCase ) == 4: # translation, XX, to YY A_ = items[1] A_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __a :List[str] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): warnings.warn( "The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use SegformerImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : int=True , UpperCAmelCase : int=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : str=2 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : str=3 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Union[str, Any]=None , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_multiple_size A_ = hidden_act A_ = hidden_dropout A_ = attention_dropout A_ = weight_tying A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def __A ( self : str ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = self.get_config() return config, input_ids, input_mask, token_labels def __A ( self : Dict ): return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self : Tuple ): A_ , A_ , A_ , A_ = self.prepare_config_and_inputs() A_ = True return config, input_ids, input_mask, token_labels def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Dict ): A_ = GPTNeoXJapaneseModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = True A_ = GPTNeoXJapaneseModel(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ): A_ = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ): A_ = True A_ = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() # first forward pass A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase ) A_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = torch.cat([input_mask, next_mask] , dim=-1 ) A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase ) A_ = output_from_no_past["hidden_states"][0] A_ = model( UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["hidden_states"][0] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -3:, random_slice_idx].detach() A_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) ) def __A ( self : str ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ = config_and_inputs A_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _lowerCamelCase : Any = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _lowerCamelCase : Union[str, Any] = ( {'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _lowerCamelCase : Any = False _lowerCamelCase : Optional[Any] = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[str] = False def __A ( self : Any ): A_ = GPTNeoXJapaneseModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : List[Any] ): self.config_tester.run_common_tests() def __A ( self : List[Any] ): A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : int ): A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): # This regression test was failing with PyTorch < 1.3 A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs_for_decoder() A_ = None self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase ) @slow def __A ( self : Any ): A_ = "abeja/gpt-neox-japanese-2.7b" A_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] A_ = [ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] A_ = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCAmelCase ) A_ = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCAmelCase ) A_ = [] for prompt in prompts: A_ = tokenizer(UpperCAmelCase , return_tensors="pt" ).input_ids A_ = model.generate(UpperCAmelCase , max_length=50 ) A_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
329
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
1
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[int] ): # A mock response for an HTTP head request to emulate server down A_ = mock.Mock() A_ = 500 A_ = {} A_ = HTTPError A_ = {} # Download this model to make sure it's in the cache. A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head: A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __A ( self : Dict ): # A mock response for an HTTP head request to emulate server down A_ = mock.Mock() A_ = 500 A_ = {} A_ = HTTPError A_ = {} # Download this model to make sure it's in the cache. A_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head: A_ = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def __A ( self : Any ): # This test is for deprecated behavior and can be removed in v5 try: A_ = tempfile.mktemp() with open(UpperCAmelCase , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , UpperCAmelCase ) A_ = AlbertTokenizer.from_pretrained(UpperCAmelCase ) finally: os.remove(UpperCAmelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , UpperCAmelCase ) A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def __A ( self : List[str] ): # This test is for deprecated behavior and can be removed in v5 A_ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def __A ( cls : List[Any] ): A_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def __A ( cls : List[str] ): try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def __A ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(UpperCAmelCase , "vocab.txt" ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) A_ = BertTokenizer(UpperCAmelCase ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(UpperCAmelCase , repo_id="test-tokenizer" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __A ( self : str ): with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(UpperCAmelCase , "vocab.txt" ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) A_ = BertTokenizer(UpperCAmelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( UpperCAmelCase , repo_id="valid_org/test-tokenizer-org" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) A_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __A ( self : Optional[int] ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(UpperCAmelCase , "vocab.txt" ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) A_ = CustomTokenizer(UpperCAmelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) A_ = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: A_ = os.path.join(UpperCAmelCase , "vocab.txt" ) with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) A_ = BertTokenizerFast.from_pretrained(UpperCAmelCase ) bert_tokenizer.save_pretrained(UpperCAmelCase ) A_ = CustomTokenizerFast.from_pretrained(UpperCAmelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) A_ = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) A_ = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=UpperCAmelCase , trust_remote_code=UpperCAmelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[str] ): A_ = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def __A ( self : Dict ): A_ = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def __A ( self : int ): A_ = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def __A ( self : List[Any] ): A_ = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def __A ( self : Tuple ): A_ = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def __A ( self : Optional[Any] ): A_ = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def __A ( self : Optional[int] ): A_ = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def __A ( self : Optional[int] ): # Even if the offsets are wrong, we necessarily output correct string # parts. A_ = Trie() A_ = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(UpperCAmelCase , ["AB", "C"] )
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
1
import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : float = 1 / 1_2345 ): """simple docstring""" A_ = 0 A_ = 0 A_ = 3 while True: A_ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(__UpperCamelCase ): A_ = int(__UpperCamelCase ) total_partitions += 1 if check_partition_perfect(__UpperCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(__UpperCamelCase ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
329
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[Any] = ['image_processor', 'tokenizer'] _lowerCamelCase : List[str] = 'ChineseCLIPImageProcessor' _lowerCamelCase : List[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : str , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Optional[Any] ): A_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) A_ = kwargs.pop("feature_extractor" ) A_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCAmelCase , UpperCAmelCase ) A_ = self.image_processor def __call__( self : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A_ = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if images is not None: A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase ) if text is not None and images is not None: A_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase ) def __A ( self : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[Any] ): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase ) @property def __A ( self : Any ): A_ = self.tokenizer.model_input_names A_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self : List[Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class
329
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" def get_masked_lm_array(__UpperCamelCase : str ): A_ = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_array(__UpperCamelCase : str ): A_ = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_layer_array(__UpperCamelCase : int ,__UpperCamelCase : str ): A_ = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) def get_encoder_attention_layer_array(__UpperCamelCase : int ,__UpperCamelCase : str ,__UpperCamelCase : Any ): A_ = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase ) A_ = array.reshape(__UpperCamelCase ) if "kernel" in name: A_ = array.transpose() return torch.from_numpy(__UpperCamelCase ) print(f'''Loading model based on config from {config_path}...''' ) A_ = BertConfig.from_json_file(__UpperCamelCase ) A_ = BertForMaskedLM(__UpperCamelCase ) # Layers for layer_index in range(0 ,config.num_hidden_layers ): A_ = model.bert.encoder.layer[layer_index] # Self-attention A_ = layer.attention.self A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_query_dense/kernel" ,self_attn.query.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_query_dense/bias" ,self_attn.query.bias.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_key_dense/kernel" ,self_attn.key.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_key_dense/bias" ,self_attn.key.bias.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_value_dense/kernel" ,self_attn.value.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_value_dense/bias" ,self_attn.value.bias.data.shape ) # Self-attention Output A_ = layer.attention.output A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_output_dense/kernel" ,self_output.dense.weight.data.shape ) A_ = get_encoder_attention_layer_array( __UpperCamelCase ,"_output_dense/bias" ,self_output.dense.bias.data.shape ) A_ = get_encoder_layer_array(__UpperCamelCase ,"_attention_layer_norm/gamma" ) A_ = get_encoder_layer_array(__UpperCamelCase ,"_attention_layer_norm/beta" ) # Intermediate A_ = layer.intermediate A_ = get_encoder_layer_array(__UpperCamelCase ,"_intermediate_dense/kernel" ) A_ = get_encoder_layer_array(__UpperCamelCase ,"_intermediate_dense/bias" ) # Output A_ = layer.output A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_dense/kernel" ) A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_dense/bias" ) A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_layer_norm/gamma" ) A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_layer_norm/beta" ) # Embeddings A_ = get_encoder_array("_position_embedding_layer/embeddings" ) A_ = get_encoder_array("_type_embedding_layer/embeddings" ) A_ = get_encoder_array("_embedding_norm_layer/gamma" ) A_ = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head A_ = model.cls.predictions.transform A_ = get_masked_lm_array("dense/kernel" ) A_ = get_masked_lm_array("dense/bias" ) A_ = get_masked_lm_array("layer_norm/gamma" ) A_ = get_masked_lm_array("layer_norm/beta" ) A_ = get_masked_lm_array("embedding_table" ) # Pooling A_ = BertPooler(config=__UpperCamelCase ) A_ = get_encoder_array("_pooler_layer/kernel" ) A_ = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__UpperCamelCase ) # Integration test - should load without any errors ;) A_ = BertForMaskedLM.from_pretrained(__UpperCamelCase ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model.', ) __a :Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
329
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a :str = logging.get_logger(__name__) __a :Union[str, Any] = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'deit' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Any=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : Tuple=224 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : int=3 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=16 , **UpperCAmelCase : Optional[int] , ): super().__init__(**UpperCAmelCase ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = qkv_bias A_ = encoder_stride class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = version.parse('1.11' ) @property def __A ( self : Union[str, Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __A ( self : Dict ): return 1E-4
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
1
import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer __a :Union[str, Any] = logging.getLogger(__name__) def __snake_case ( ): """simple docstring""" A_ = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" ,type=__UpperCamelCase ,default="wikitext" ,help="Name of the training. Explore datasets at: hf.co/datasets." ,) parser.add_argument( "--dataset_config" ,type=__UpperCamelCase ,default="wikitext-103-raw-v1" ,help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" ,type=__UpperCamelCase ,default="sayakpaul/unigram-tokenizer-wikitext" ,help="Tokenizer identifier. Can be a local filepath or a Hub identifier." ,) parser.add_argument( "--shard_size" ,type=__UpperCamelCase ,default=1000 ,help="Number of entries to go in a single shard." ,) parser.add_argument("--split" ,type=__UpperCamelCase ,default="train" ,choices=["train", "test", "validation"] ) parser.add_argument( "--limit" ,default=__UpperCamelCase ,type=__UpperCamelCase ,help="Limit the number of shards (used for debugging)." ,) parser.add_argument( "--max_length" ,type=__UpperCamelCase ,default=512 ,help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." ,) parser.add_argument( "--output_dir" ,default="tf-tpu" ,type=__UpperCamelCase ,help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." ,) A_ = parser.parse_args() return args def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" def fn(__UpperCamelCase : Union[str, Any] ): return tokenizer(examples["text"] ) return fn def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = [] for i in range(len(tokenized_data["input_ids"] ) ): A_ = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } A_ = tf.train.Features(feature=__UpperCamelCase ) A_ = tf.train.Example(features=__UpperCamelCase ) A_ = example.SerializeToString() records.append(__UpperCamelCase ) return records def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = datasets.load_dataset(args.dataset_name ,args.dataset_config ,split=args.split ) if args.limit is not None: A_ = min(len(__UpperCamelCase ) ,args.limit ) A_ = dataset.select(range(__UpperCamelCase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) A_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) A_ = os.path.join(args.output_dir ,args.split ) if not os.path.exists(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) else: A_ = os.path.join(args.output_dir ,args.split ) # Tokenize the whole dataset at once. A_ = tokenize_function(__UpperCamelCase ) A_ = dataset.map(__UpperCamelCase ,batched=__UpperCamelCase ,num_proc=4 ,remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(__UpperCamelCase : Any ): # Concatenate all texts. A_ = {k: sum(examples[k] ,[] ) for k in examples.keys()} A_ = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 A_ = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. A_ = { k: [t[i : i + args.max_length] for i in range(0 ,__UpperCamelCase ,args.max_length )] for k, t in concatenated_examples.items() } return result A_ = dataset_tokenized.map(__UpperCamelCase ,batched=__UpperCamelCase ,batch_size=1000 ,num_proc=4 ) A_ = 0 A_ = 0 for shard in range(0 ,len(__UpperCamelCase ) ,args.shard_size ): A_ = grouped_dataset[shard : shard + args.shard_size] A_ = len(dataset_snapshot["input_ids"] ) A_ = os.path.join(__UpperCamelCase ,f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) A_ = get_serialized_examples(__UpperCamelCase ) with tf.io.TFRecordWriter(__UpperCamelCase ) as out_file: for i in range(len(__UpperCamelCase ) ): A_ = serialized_examples[i] out_file.write(__UpperCamelCase ) print("Wrote file {} containing {} records".format(__UpperCamelCase ,__UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''' ,"w" ) as f: print(f'''Total {args.split} records: {total_records}''' ,file=__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = parse_args() main(args)
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : str=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Optional[Any]=400 , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[int]=1 / 255 , UpperCAmelCase : Tuple=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p A_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} A_ = parent A_ = batch_size A_ = num_channels A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size A_ = do_normalize A_ = image_mean A_ = image_std A_ = do_rescale A_ = rescale_factor A_ = do_pad def __A ( self : Optional[int] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False ): if not batched: A_ = image_inputs[0] if isinstance(UpperCAmelCase , Image.Image ): A_ , A_ = image.size else: A_ , A_ = image.shape[1], image.shape[2] if w < h: A_ = int(self.size["shortest_edge"] * h / w ) A_ = self.size["shortest_edge"] elif w > h: A_ = self.size["shortest_edge"] A_ = int(self.size["shortest_edge"] * w / h ) else: A_ = self.size["shortest_edge"] A_ = self.size["shortest_edge"] else: A_ = [] for image in image_inputs: A_ , A_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0] A_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = DetaImageProcessor if is_vision_available() else None def __A ( self : List[Any] ): A_ = DetaImageProcessingTester(self ) @property def __A ( self : Union[str, Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : List[str] ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_rescale" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) def __A ( self : Optional[Any] ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , UpperCAmelCase ) def __A ( self : Optional[Any] ): pass def __A ( self : Tuple ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Dict ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __A ( self : Optional[int] ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __A ( self : Any ): # prepare image and target A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: A_ = json.loads(f.read() ) A_ = {"image_id": 39769, "annotations": target} # encode them A_ = DetaImageProcessor() A_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="pt" ) # verify pixel values A_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify area A_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) A_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) ) # verify image_id A_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels A_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify orig_size A_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size A_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) ) @slow def __A ( self : Dict ): # prepare image, target and masks_path A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: A_ = json.loads(f.read() ) A_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} A_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them A_ = DetaImageProcessor(format="coco_panoptic" ) A_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="pt" ) # verify pixel values A_ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase ) A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) ) # verify area A_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) ) # verify boxes A_ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase ) A_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) ) # verify image_id A_ = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) ) # verify is_crowd A_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) ) # verify class_labels A_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) ) # verify masks A_ = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase ) # verify orig_size A_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) ) # verify size A_ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Tuple = { 'configuration_longformer': [ 'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongformerConfig', 'LongformerOnnxConfig', ], 'tokenization_longformer': ['LongformerTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :List[str] = ['LongformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'LongformerForMaskedLM', 'LongformerForMultipleChoice', 'LongformerForQuestionAnswering', 'LongformerForSequenceClassification', 'LongformerForTokenClassification', 'LongformerModel', 'LongformerPreTrainedModel', 'LongformerSelfAttention', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Tuple = [ 'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLongformerForMaskedLM', 'TFLongformerForMultipleChoice', 'TFLongformerForQuestionAnswering', 'TFLongformerForSequenceClassification', 'TFLongformerForTokenClassification', 'TFLongformerModel', 'TFLongformerPreTrainedModel', 'TFLongformerSelfAttention', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __a :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
__a :str = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on __a :Dict = {value: key for key, value in MORSE_CODE_DICT.items()} def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def __snake_case ( ): """simple docstring""" A_ = "Morse code here!" print(__UpperCamelCase ) A_ = encrypt(__UpperCamelCase ) print(__UpperCamelCase ) A_ = decrypt(__UpperCamelCase ) print(__UpperCamelCase ) if __name__ == "__main__": main()
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase : str = "▁" , UpperCAmelCase : bool = True , UpperCAmelCase : Union[str, AddedToken] = "<unk>" , UpperCAmelCase : Union[str, AddedToken] = "</s>" , UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ): A_ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } A_ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): A_ = token_dict["token"] A_ = Tokenizer(Unigram() ) A_ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) A_ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase , add_prefix_space=UpperCAmelCase ), pre_tokenizers.Digits(individual_digits=UpperCAmelCase ), pre_tokenizers.Punctuation(), ] ) A_ = decoders.Metaspace(replacement=UpperCAmelCase , add_prefix_space=UpperCAmelCase ) A_ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) A_ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 8000 , UpperCAmelCase : bool = True , ): A_ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase , ) if isinstance(UpperCAmelCase , UpperCAmelCase ): A_ = [files] self._tokenizer.train(UpperCAmelCase , trainer=UpperCAmelCase ) self.add_unk_id() def __A ( self : Tuple , UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCAmelCase : int = 8000 , UpperCAmelCase : bool = True , ): A_ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase , ) self._tokenizer.train_from_iterator(UpperCAmelCase , trainer=UpperCAmelCase ) self.add_unk_id() def __A ( self : Tuple ): A_ = json.loads(self._tokenizer.to_str() ) A_ = self.special_tokens["unk"]["id"] A_ = Tokenizer.from_str(json.dumps(UpperCAmelCase ) )
329
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :int = logging.get_logger(__name__) __a :int = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = 'mra' def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=50265 , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=12 , UpperCAmelCase : int=3072 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=512 , UpperCAmelCase : Any=1 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : List[str]=1E-5 , UpperCAmelCase : Dict="absolute" , UpperCAmelCase : str=4 , UpperCAmelCase : int="full" , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Dict=0 , UpperCAmelCase : int=1 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Optional[Any]=2 , **UpperCAmelCase : Union[str, Any] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps A_ = position_embedding_type A_ = block_per_row A_ = approx_mode A_ = initial_prior_first_n_blocks A_ = initial_prior_diagonal_n_blocks
329
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __a :Optional[int] = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Any = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :str = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __a :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a :Optional[Any] = logging.get_logger(__name__) __a :Optional[Any] = { 'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'data2vec-text' def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Tuple=3072 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : List[Any]=1E-12 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Any=0 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int="absolute" , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Optional[int] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = position_embedding_type A_ = use_cache A_ = classifier_dropout class _a ( snake_case_ ): """simple docstring""" @property def __A ( self : Dict ): if self.task == "multiple-choice": A_ = {0: "batch", 1: "choice", 2: "sequence"} else: A_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
329
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
1
import math import qiskit def __snake_case ( __UpperCamelCase : int = 1 ,__UpperCamelCase : int = 1 ,__UpperCamelCase : int = 1 ): """simple docstring""" if ( isinstance(__UpperCamelCase ,__UpperCamelCase ) or isinstance(__UpperCamelCase ,__UpperCamelCase ) or isinstance(__UpperCamelCase ,__UpperCamelCase ) ): raise TypeError("inputs must be integers." ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("inputs must be positive." ) if ( (math.floor(__UpperCamelCase ) != input_a) or (math.floor(__UpperCamelCase ) != input_a) or (math.floor(__UpperCamelCase ) != carry_in) ): raise ValueError("inputs must be exact integers." ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("inputs must be less or equal to 2." ) # build registers A_ = qiskit.QuantumRegister(4 ,"qr" ) A_ = qiskit.ClassicalRegister(2 ,"cr" ) # list the entries A_ = [input_a, input_a, carry_in] A_ = qiskit.QuantumCircuit(__UpperCamelCase ,__UpperCamelCase ) for i in range(0 ,3 ): if entry[i] == 2: quantum_circuit.h(__UpperCamelCase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__UpperCamelCase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__UpperCamelCase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 ,1 ,3 ) # ccx = toffoli gate quantum_circuit.cx(0 ,1 ) quantum_circuit.ccx(1 ,2 ,3 ) quantum_circuit.cx(1 ,2 ) quantum_circuit.cx(0 ,1 ) quantum_circuit.measure([2, 3] ,__UpperCamelCase ) # measure the last two qbits A_ = qiskit.Aer.get_backend("aer_simulator" ) A_ = qiskit.execute(__UpperCamelCase ,__UpperCamelCase ,shots=1000 ) return job.result().get_counts(__UpperCamelCase ) if __name__ == "__main__": print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
329
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a :Optional[int] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int]=False ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : int=False ): """simple docstring""" A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"), ( "text_embeddings.position_embeddings.weight", "vilt.embeddings.text_embeddings.position_embeddings.weight", ), ("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"), ( "text_embeddings.token_type_embeddings.weight", "vilt.embeddings.text_embeddings.token_type_embeddings.weight", ), ("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"), ("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"), # patch embeddings ("transformer.cls_token", "vilt.embeddings.cls_token"), ("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"), ("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"), ("transformer.pos_embed", "vilt.embeddings.position_embeddings"), # token type embeddings ("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"), ] ) # final layernorm + pooler rename_keys.extend( [ ("transformer.norm.weight", "vilt.layernorm.weight"), ("transformer.norm.bias", "vilt.layernorm.bias"), ("pooler.dense.weight", "vilt.pooler.dense.weight"), ("pooler.dense.bias", "vilt.pooler.dense.bias"), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("vqa_classifier.0.weight", "classifier.0.weight"), ("vqa_classifier.0.bias", "classifier.0.bias"), ("vqa_classifier.1.weight", "classifier.1.weight"), ("vqa_classifier.1.bias", "classifier.1.bias"), ("vqa_classifier.3.weight", "classifier.3.weight"), ("vqa_classifier.3.bias", "classifier.3.bias"), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("nlvr2_classifier.0.weight", "classifier.0.weight"), ("nlvr2_classifier.0.bias", "classifier.0.bias"), ("nlvr2_classifier.1.weight", "classifier.1.weight"), ("nlvr2_classifier.1.bias", "classifier.1.bias"), ("nlvr2_classifier.3.weight", "classifier.3.weight"), ("nlvr2_classifier.3.bias", "classifier.3.bias"), ] ) else: pass return rename_keys def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): A_ = "vilt." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ): """simple docstring""" A_ = dct.pop(__UpperCamelCase ) A_ = val @torch.no_grad() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : int ): """simple docstring""" A_ = ViltConfig(image_size=384 ,patch_size=32 ,tie_word_embeddings=__UpperCamelCase ) A_ = False A_ = False A_ = False A_ = False if "vqa" in checkpoint_url: A_ = True A_ = 3129 A_ = "huggingface/label-files" A_ = "vqa2-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = ViltForQuestionAnswering(__UpperCamelCase ) elif "nlvr" in checkpoint_url: A_ = True A_ = 2 A_ = {0: "False", 1: "True"} A_ = {v: k for k, v in config.idalabel.items()} A_ = 3 A_ = ViltForImagesAndTextClassification(__UpperCamelCase ) elif "irtr" in checkpoint_url: A_ = True A_ = ViltForImageAndTextRetrieval(__UpperCamelCase ) elif "mlm_itm" in checkpoint_url: A_ = True A_ = ViltForMaskedLM(__UpperCamelCase ) else: raise ValueError("Unknown model type" ) # load state_dict of original model, remove and rename some keys A_ = torch.hub.load_state_dict_from_url(__UpperCamelCase ,map_location="cpu" )["state_dict"] A_ = create_rename_keys(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ) if mlm_model or irtr_model: A_ = ["itm_score.fc.weight", "itm_score.fc.bias"] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: A_ , A_ = model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__UpperCamelCase ) # Define processor A_ = ViltImageProcessor(size=384 ) A_ = BertTokenizer.from_pretrained("bert-base-uncased" ) A_ = ViltProcessor(__UpperCamelCase ,__UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: A_ = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" ,stream=__UpperCamelCase ).raw ) A_ = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" ,stream=__UpperCamelCase ).raw ) A_ = ( "The left image contains twice the number of dogs as the right image, and at least two dogs in total are" " standing." ) A_ = processor(__UpperCamelCase ,__UpperCamelCase ,return_tensors="pt" ) A_ = processor(__UpperCamelCase ,__UpperCamelCase ,return_tensors="pt" ) A_ = model( input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,) else: A_ = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" ,stream=__UpperCamelCase ).raw ) if mlm_model: A_ = "a bunch of [MASK] laying on a [MASK]." else: A_ = "How many cats are there?" A_ = processor(__UpperCamelCase ,__UpperCamelCase ,return_tensors="pt" ) A_ = model(**__UpperCamelCase ) # Verify outputs if mlm_model: A_ = torch.Size([1, 11, 3_0522] ) A_ = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,__UpperCamelCase ,atol=1E-4 ) # verify masked token prediction equals "cats" A_ = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A_ = torch.Size([1, 3129] ) A_ = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] ,__UpperCamelCase ,atol=1E-4 ) # verify vqa prediction equals "2" A_ = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A_ = torch.Size([1, 2] ) A_ = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a :Any = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
329
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str=100 , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Dict=30 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=3 , UpperCAmelCase : int=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : int=4 , UpperCAmelCase : Any=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=10 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=[0, 1, 2, 3] , ): A_ = parent A_ = 100 A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = type_sequence_label_size A_ = initializer_range A_ = scope A_ = out_indices A_ = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self : int ): A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self : Dict ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def __A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ): A_ = BeitModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ): A_ = BeitForMaskedImageModeling(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] ): A_ = self.type_sequence_label_size A_ = BeitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ = 1 A_ = BeitForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ): A_ = self.num_labels A_ = BeitForSemanticSegmentation(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) A_ = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def __A ( self : Dict ): A_ = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ = config_and_inputs A_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowerCamelCase : int = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase : Optional[int] = False _lowerCamelCase : List[str] = False _lowerCamelCase : Dict = False def __A ( self : str ): A_ = BeitModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def __A ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def __A ( self : Optional[int] ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __A ( self : Union[str, Any] ): pass def __A ( self : int ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) ) def __A ( self : Union[str, Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(UpperCAmelCase ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase ) def __A ( self : Union[str, Any] ): if not self.model_tester.is_training: return A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling]: continue A_ = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.train() A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = model(**UpperCAmelCase ).loss loss.backward() def __A ( self : List[Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return A_ = False A_ = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue A_ = model_class(UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(UpperCAmelCase ) model.train() A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase ) A_ = model(**UpperCAmelCase ).loss loss.backward() def __A ( self : Optional[Any] ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(UpperCAmelCase ) for model_class in self.all_model_classes: A_ = model_class(config=UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __A ( self : Dict ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = BeitModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __snake_case ( ): """simple docstring""" A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def __A ( self : Dict ): A_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCAmelCase ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).pixel_values.to(UpperCAmelCase ) # prepare bool_masked_pos A_ = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(pixel_values=UpperCAmelCase , bool_masked_pos=UpperCAmelCase ) A_ = outputs.logits # verify the logits A_ = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , UpperCAmelCase ) A_ = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase , atol=1E-2 ) ) @slow def __A ( self : List[str] ): A_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCAmelCase ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.logits # verify the logits A_ = torch.Size((1, 1000) ) self.assertEqual(logits.shape , UpperCAmelCase ) A_ = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) A_ = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def __A ( self : Any ): A_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( UpperCAmelCase ) A_ = self.default_image_processor A_ = prepare_img() A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.logits # verify the logits A_ = torch.Size((1, 21841) ) self.assertEqual(logits.shape , UpperCAmelCase ) A_ = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) A_ = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase ) @slow def __A ( self : Any ): A_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) A_ = model.to(UpperCAmelCase ) A_ = BeitImageProcessor(do_resize=UpperCAmelCase , size=640 , do_center_crop=UpperCAmelCase ) A_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) A_ = Image.open(ds[0]["file"] ) A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.logits # verify the logits A_ = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , UpperCAmelCase ) A_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: A_ = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=UpperCAmelCase , ) else: A_ = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Optional[Any] ): A_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) A_ = model.to(UpperCAmelCase ) A_ = BeitImageProcessor(do_resize=UpperCAmelCase , size=640 , do_center_crop=UpperCAmelCase ) A_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) A_ = Image.open(ds[0]["file"] ) A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): A_ = model(**UpperCAmelCase ) A_ = outputs.logits.detach().cpu() A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(500, 300)] ) A_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase ) A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase ) A_ = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase )
329
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
1
from collections.abc import Generator def __snake_case ( ): """simple docstring""" A_ , A_ = 0, 1 while True: A_ , A_ = b, a + b yield b def __snake_case ( __UpperCamelCase : int = 1000 ): """simple docstring""" A_ = 1 A_ = fibonacci_generator() while len(str(next(__UpperCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
329
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType __a :Dict = logging.get_logger(__name__) __a :List[Any] = { 'openai/imagegpt-small': '', 'openai/imagegpt-medium': '', 'openai/imagegpt-large': '', } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = 'imagegpt' _lowerCamelCase : Tuple = ['past_key_values'] _lowerCamelCase : Tuple = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , UpperCAmelCase : List[Any]=512 + 1 , UpperCAmelCase : Optional[int]=32 * 32 , UpperCAmelCase : str=512 , UpperCAmelCase : Union[str, Any]=24 , UpperCAmelCase : str=8 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]="quick_gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Tuple=1E-5 , UpperCAmelCase : str=0.02 , UpperCAmelCase : int=True , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : int , ): A_ = vocab_size A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = scale_attn_weights A_ = use_cache A_ = scale_attn_by_inverse_layer_idx A_ = reorder_and_upcast_attn A_ = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class _a ( snake_case_ ): """simple docstring""" @property def __A ( self : Dict ): return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def __A ( self : List[str] , UpperCAmelCase : "FeatureExtractionMixin" , UpperCAmelCase : int = 1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , ): A_ = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) ) return inputs
329
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
1
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __a :Tuple = logging.get_logger(__name__) __a :Optional[Any] = 'Hello world! cécé herlolip' def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : bool ): """simple docstring""" A_ = FairseqRobertaModel.from_pretrained(__UpperCamelCase ) roberta.eval() # disable dropout A_ = roberta.model.encoder.sentence_encoder A_ = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,) if classification_head: A_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0] print("Our RoBERTa config:" ,__UpperCamelCase ) A_ = XLMRobertaXLForSequenceClassification(__UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(__UpperCamelCase ) model.eval() # Now let's copy all the weights. # Embeddings A_ = roberta_sent_encoder.embed_tokens.weight A_ = roberta_sent_encoder.embed_positions.weight A_ = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. A_ = roberta_sent_encoder.layer_norm.weight A_ = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A_ = model.roberta.encoder.layer[i] A_ = roberta_sent_encoder.layers[i] A_ = layer.attention A_ = roberta_layer.self_attn_layer_norm.weight A_ = roberta_layer.self_attn_layer_norm.bias # self attention A_ = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) A_ = roberta_layer.self_attn.q_proj.weight A_ = roberta_layer.self_attn.q_proj.bias A_ = roberta_layer.self_attn.k_proj.weight A_ = roberta_layer.self_attn.k_proj.bias A_ = roberta_layer.self_attn.v_proj.weight A_ = roberta_layer.self_attn.v_proj.bias # self-attention output A_ = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape A_ = roberta_layer.self_attn.out_proj.weight A_ = roberta_layer.self_attn.out_proj.bias # this one is final layer norm A_ = roberta_layer.final_layer_norm.weight A_ = roberta_layer.final_layer_norm.bias # intermediate A_ = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape A_ = roberta_layer.fca.weight A_ = roberta_layer.fca.bias # output A_ = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape A_ = roberta_layer.fca.weight A_ = roberta_layer.fca.bias # end of layer if classification_head: A_ = roberta.model.classification_heads["mnli"].dense.weight A_ = roberta.model.classification_heads["mnli"].dense.bias A_ = roberta.model.classification_heads["mnli"].out_proj.weight A_ = roberta.model.classification_heads["mnli"].out_proj.bias else: # LM Head A_ = roberta.model.encoder.lm_head.dense.weight A_ = roberta.model.encoder.lm_head.dense.bias A_ = roberta.model.encoder.lm_head.layer_norm.weight A_ = roberta.model.encoder.lm_head.layer_norm.bias A_ = roberta.model.encoder.lm_head.weight A_ = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. A_ = roberta.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1 A_ = model(__UpperCamelCase )[0] if classification_head: A_ = roberta.model.classification_heads["mnli"](roberta.extract_features(__UpperCamelCase ) ) else: A_ = roberta.model(__UpperCamelCase )[0] print(our_output.shape ,their_output.shape ) A_ = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 A_ = torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1E-3 ) print("Do both models output the same tensors?" ,"🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) pathlib.Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __a :Optional[int] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
329
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
1
from math import isqrt def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 10**8 ): """simple docstring""" A_ = calculate_prime_numbers(max_number // 2 ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"{solution() = }")
329
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Any = logging.get_logger(__name__) __a :Optional[int] = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = 'swinv2' _lowerCamelCase : Any = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=224 , UpperCAmelCase : Dict=4 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : Optional[Any]=[2, 2, 6, 2] , UpperCAmelCase : int=[3, 6, 12, 24] , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Any=4.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Any=1E-5 , UpperCAmelCase : Optional[int]=32 , **UpperCAmelCase : Any , ): super().__init__(**UpperCAmelCase ) A_ = image_size A_ = patch_size A_ = num_channels A_ = embed_dim A_ = depths A_ = len(UpperCAmelCase ) A_ = num_heads A_ = window_size A_ = mlp_ratio A_ = qkv_bias A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = drop_path_rate A_ = hidden_act A_ = use_absolute_embeddings A_ = layer_norm_eps A_ = initializer_range A_ = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model A_ = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) ) A_ = (0, 0, 0, 0)
329
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a :Dict = logging.get_logger(__name__) __a :Optional[int] = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _a ( snake_case_ ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if config is None: assert isinstance(self.model , UpperCAmelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) A_ = self.model.config else: A_ = config A_ = data_args A_ = self.config.tgt_vocab_size if isinstance(self.config , UpperCAmelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' " padding.." ) if self.args.label_smoothing == 0: A_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss A_ = label_smoothed_nll_loss def __A ( self : Optional[int] , UpperCAmelCase : int ): if self.optimizer is None: A_ = ["bias", "LayerNorm.weight"] A_ = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] A_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: A_ = Adafactor A_ = {"scale_parameter": False, "relative_step": False} else: A_ = AdamW A_ = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } A_ = self.args.learning_rate if self.sharded_ddp: A_ = OSS( params=UpperCAmelCase , optim=UpperCAmelCase , **UpperCAmelCase , ) else: A_ = optimizer_cls(UpperCAmelCase , **UpperCAmelCase ) if self.lr_scheduler is None: A_ = self._get_lr_scheduler(UpperCAmelCase ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def __A ( self : int , UpperCAmelCase : Optional[int] ): A_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": A_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": A_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: A_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCAmelCase ) return scheduler def __A ( self : Optional[Any] ): if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] ): if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models A_ , A_ = model(**UpperCAmelCase , labels=UpperCAmelCase , use_cache=UpperCAmelCase )[:2] else: # compute label smoothed loss A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0] A_ = torch.nn.functional.log_softmax(UpperCAmelCase , dim=-1 ) A_ , A_ = self.loss_fn(UpperCAmelCase , UpperCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def __A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any ): A_ = inputs.pop("labels" ) A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return loss def __A ( self : Any , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase : bool , UpperCAmelCase : Optional[List[str]] = None , ): A_ = self._prepare_inputs(UpperCAmelCase ) A_ = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: A_ = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **UpperCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) A_ = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) A_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] ) return (loss, logits, labels) def __A ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): # If PAD token is not defined at least EOS token has to be defined A_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f''' padded to `max_length`={max_length}''' ) A_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) A_ = tensor return padded_tensor
329
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
1
import numpy as np def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ,__UpperCamelCase : int ): """simple docstring""" A_ = int(np.ceil((x_end - xa) / h ) ) A_ = np.zeros((n + 1,) ) A_ = ya A_ = xa for k in range(__UpperCamelCase ): A_ = f(__UpperCamelCase ,y[k] ) A_ = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) A_ = f(x + 0.5 * h ,y[k] + 0.5 * h * ka ) A_ = f(x + h ,y[k] + h * ka ) A_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
329
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : str=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=18 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : List[Any]=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=[0.5, 0.5, 0.5] , UpperCAmelCase : str=[0.5, 0.5, 0.5] , ): A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size if size is not None else {"height": 18, "width": 20} A_ = do_thumbnail A_ = do_align_axis A_ = do_pad A_ = do_normalize A_ = image_mean A_ = image_std def __A ( self : Dict ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a ( snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = DonutImageProcessor if is_vision_available() else None def __A ( self : int ): A_ = DonutImageProcessingTester(self ) @property def __A ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : Optional[Any] ): A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_thumbnail" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_align_long_axis" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) ) def __A ( self : Any ): A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def __A ( self : int ): pass @is_flaky() def __A ( self : List[Any] ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __A ( self : Any ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def __A ( self : Union[str, Any] ): # Initialize image_processing A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
329
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
1
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ): """simple docstring""" A_ = AutoConfig.from_pretrained(__UpperCamelCase ) A_ = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCamelCase ) A_ = checkpoints.load_tax_checkpoint(__UpperCamelCase ) A_ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": A_ = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": A_ = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): A_ = f'''layers_{str(__UpperCamelCase )}''' # Self-Attention A_ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] A_ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] A_ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] A_ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization A_ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization A_ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning A_ = flax_model.params["encoder"]["block"][str(__UpperCamelCase )]["layer"] A_ = tax_attention_key A_ = tax_attention_out A_ = tax_attention_query A_ = tax_attention_value A_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = tax_global_layer_norm if split_mlp_wi: A_ = tax_mlp_wi_a A_ = tax_mlp_wi_a else: A_ = tax_mlp_wi A_ = tax_mlp_wo A_ = tax_mlp_layer_norm A_ = flax_model_encoder_layer_block # Only for layer 0: A_ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T A_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": A_ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T A_ = tax_encoder_global_rel_embedding # Assigning A_ = tax_model["target"]["encoder"]["encoder_norm"]["scale"] A_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): A_ = f'''layers_{str(__UpperCamelCase )}''' # Self-Attention A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization A_ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention A_ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] A_ = tax_enc_dec_attention_module["key"]["kernel"] A_ = tax_enc_dec_attention_module["out"]["kernel"] A_ = tax_enc_dec_attention_module["query"]["kernel"] A_ = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization A_ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization A_ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning A_ = flax_model.params["decoder"]["block"][str(__UpperCamelCase )]["layer"] A_ = tax_attention_key A_ = tax_attention_out A_ = tax_attention_query A_ = tax_attention_value A_ = tax_pre_attention_layer_norm A_ = tax_enc_dec_attention_key A_ = tax_enc_dec_attention_out A_ = tax_enc_dec_attention_query A_ = tax_enc_dec_attention_value A_ = tax_cross_layer_norm if split_mlp_wi: A_ = tax_mlp_wi_a A_ = tax_mlp_wi_a else: A_ = tax_mlp_wi A_ = tax_mlp_wo A_ = txa_mlp_layer_norm A_ = flax_model_decoder_layer_block # Decoder Normalization A_ = tax_model["target"]["decoder"]["decoder_norm"]["scale"] A_ = txa_decoder_norm # Only for layer 0: A_ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T A_ = tax_decoder_rel_embedding # Token Embeddings A_ = tax_model["target"]["token_embedder"]["embedding"] A_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: A_ = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(__UpperCamelCase ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": __a :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) __a :List[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
329
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
1
from numpy import exp, pi, sqrt def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : float = 0.0 ,__UpperCamelCase : float = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
329
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
1
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
1
def __snake_case ( __UpperCamelCase : list[list[float]] ): """simple docstring""" A_ = [] for data in source_data: for i, el in enumerate(__UpperCamelCase ): if len(__UpperCamelCase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(__UpperCamelCase ) ) return data_lists def __snake_case ( __UpperCamelCase : list[list[float]] ,__UpperCamelCase : list[int] ): """simple docstring""" A_ = [] for dlist, weight in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ) A_ = max(__UpperCamelCase ) A_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A_ = f'''Invalid weight of {weight:f} provided''' raise ValueError(__UpperCamelCase ) score_lists.append(__UpperCamelCase ) return score_lists def __snake_case ( __UpperCamelCase : list[list[float]] ): """simple docstring""" A_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(__UpperCamelCase ): A_ = final_scores[j] + ele return final_scores def __snake_case ( __UpperCamelCase : list[list[float]] ,__UpperCamelCase : list[int] ): """simple docstring""" A_ = get_data(__UpperCamelCase ) A_ = calculate_each_score(__UpperCamelCase ,__UpperCamelCase ) A_ = generate_final_scores(__UpperCamelCase ) # append scores to source data for i, ele in enumerate(__UpperCamelCase ): source_data[i].append(__UpperCamelCase ) return source_data
329
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
1
def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = [0] * len(__UpperCamelCase ) for i in range(1 ,len(__UpperCamelCase ) ): # use last results for better performance - dynamic programming A_ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: A_ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 A_ = j return prefix_result def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return max(prefix_function(__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
329
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __a :Dict = 'sshleifer/bart-tiny-random' __a :Optional[Any] = 'patrickvonplaten/t5-tiny-random' @require_torch class _a ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self : Optional[int] ): return AutoConfig.from_pretrained(UpperCAmelCase ) def __A ( self : Union[str, Any] ): A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def __A ( self : int ): A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase ) def __A ( self : Optional[int] ): A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def __A ( self : Tuple ): A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def __A ( self : str ): with self.assertRaises(UpperCAmelCase ): create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=UpperCAmelCase , d=UpperCAmelCase )
329
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
1
from __future__ import annotations from typing import TypedDict class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str _lowerCamelCase : int def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError("The parameter s type must be str." ) return [s[i:] + s[:i] for i in range(len(__UpperCamelCase ) )] def __snake_case ( __UpperCamelCase : str ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError("The parameter s type must be str." ) if not s: raise ValueError("The parameter s must not be empty." ) A_ = all_rotations(__UpperCamelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation A_ = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCamelCase ), } return response def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError("The parameter bwt_string type must be str." ) if not bwt_string: raise ValueError("The parameter bwt_string must not be empty." ) try: A_ = int(__UpperCamelCase ) except ValueError: raise TypeError( "The parameter idx_original_string type must be int or passive" " of cast to int." ) if idx_original_string < 0: raise ValueError("The parameter idx_original_string must not be lower than 0." ) if idx_original_string >= len(__UpperCamelCase ): raise ValueError( "The parameter idx_original_string must be lower than" " len(bwt_string)." ) A_ = [""] * len(__UpperCamelCase ) for _ in range(len(__UpperCamelCase ) ): for i in range(len(__UpperCamelCase ) ): A_ = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __a :Any = 'Provide a string that I will generate its BWT transform: ' __a :Dict = input(entry_msg).strip() __a :List[Any] = bwt_transform(s) print( F"Burrows Wheeler transform for string '{s}' results " F"in '{result['bwt_string']}'" ) __a :List[str] = reverse_bwt(result['bwt_string'], result['idx_original_string']) print( F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' " F"we get original string '{original_string}'" )
329
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=snake_case_ ) class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _lowerCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) _lowerCamelCase : ClassVar[Features] = Features({} ) _lowerCamelCase : str = "text" @property def __A ( self : str ): return {self.text_column: "text"}
329
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class _a ( snake_case_ ): """simple docstring""" def __lt__( self : Dict , UpperCAmelCase : Optional[Any] ): return self[-1] < other[-1] def __eq__( self : Dict , UpperCAmelCase : Optional[Any] ): return self[-1] == other[-1] def __snake_case ( __UpperCamelCase : list ): """simple docstring""" A_ = [] # sort into stacks for element in collection: A_ = Stack([element] ) A_ = bisect_left(__UpperCamelCase ,__UpperCamelCase ) if i != len(__UpperCamelCase ): stacks[i].append(__UpperCamelCase ) else: stacks.append(__UpperCamelCase ) # use a heap-based merge to merge stack efficiently A_ = merge(*(reversed(__UpperCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": __a :int = input('Enter numbers separated by a comma:\n').strip() __a :Dict = [int(item) for item in user_input.split(',')] print(patience_sort(unsorted))
329
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
1
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ): """simple docstring""" return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 ,number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
350
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a :Optional[int] = logging.get_logger(__name__) __a :str = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _a ( A__ , A__ ): """simple docstring""" _lowerCamelCase : List[str] = "focalnet" def __init__( self : Optional[Any] , UpperCAmelCase : str=224 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : str=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : str=[192, 384, 768, 768] , UpperCAmelCase : List[str]=[2, 2, 6, 2] , UpperCAmelCase : Any=[2, 2, 2, 2] , UpperCAmelCase : List[str]=[3, 3, 3, 3] , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Any=4.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Any=1E-4 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Tuple=1E-5 , UpperCAmelCase : Any=32 , UpperCAmelCase : int=None , UpperCAmelCase : str=None , **UpperCAmelCase : Optional[Any] , ): super().__init__(**__A ) A_ = image_size A_ = patch_size A_ = num_channels A_ = embed_dim A_ = use_conv_embed A_ = hidden_sizes A_ = depths A_ = focal_levels A_ = focal_windows A_ = hidden_act A_ = mlp_ratio A_ = hidden_dropout_prob A_ = drop_path_rate A_ = use_layerscale A_ = layerscale_value A_ = use_post_layernorm A_ = use_post_layernorm_in_modulation A_ = normalize_modulator A_ = initializer_range A_ = layer_norm_eps A_ = encoder_stride A_ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )] A_ = get_aligned_output_features_output_indices( out_features=__A , out_indices=__A , stage_names=self.stage_names )
351
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __a :int = logging.get_logger(__name__) __a :Optional[Any] = { 'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json', 'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json', 'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json', 'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json', 'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json', 'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json', 'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json', 'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json', 'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json', 'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json', } class _a ( _UpperCAmelCase ): """simple docstring""" _lowerCamelCase : int = "xlm" _lowerCamelCase : List[Any] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self : Union[str, Any] , UpperCAmelCase : Any=30145 , UpperCAmelCase : List[str]=2048 , UpperCAmelCase : Any=12 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=1 , UpperCAmelCase : str=True , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : List[str]=2048**-0.5 , UpperCAmelCase : List[Any]=1E-12 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=2 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : int=True , UpperCAmelCase : Dict="first" , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=None , UpperCAmelCase : int=True , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : str=0 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=0 , **UpperCAmelCase : int , ): A_ = vocab_size A_ = emb_dim A_ = n_layers A_ = n_heads A_ = dropout A_ = attention_dropout A_ = gelu_activation A_ = sinusoidal_embeddings A_ = causal A_ = asm A_ = n_langs A_ = use_lang_emb A_ = layer_norm_eps A_ = bos_index A_ = eos_index A_ = pad_index A_ = unk_index A_ = mask_index A_ = is_encoder A_ = max_position_embeddings A_ = embed_init_std A_ = init_std A_ = summary_type A_ = summary_use_proj A_ = summary_activation A_ = summary_proj_to_labels A_ = summary_first_dropout A_ = start_n_top A_ = end_n_top A_ = mask_token_id A_ = lang_id if "n_words" in kwargs: A_ = kwargs['''n_words'''] super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) class _a ( _UpperCAmelCase ): """simple docstring""" @property def __A ( self : Union[str, Any] ): if self.task == "multiple-choice": A_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
0
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Any ): """simple docstring""" print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) ,end="\t" ) else: print("INF" ,end="\t" ) print() def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = [[float("inf" ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): for j in range(__lowerCAmelCase ): A_ = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowerCAmelCase ): # looping through rows of graph array for i in range(__lowerCAmelCase ): # looping through columns of graph array for j in range(__lowerCAmelCase ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): A_ = dist[i][k] + dist[k][j] _print_dist(__lowerCAmelCase ,__lowerCAmelCase ) return dist, v if __name__ == "__main__": __a :List[Any] = int(input('Enter number of vertices: ')) __a :Union[str, Any] = int(input('Enter number of edges: ')) __a :Dict = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): __a :Any = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) __a :Tuple = int(input('Enter source:')) __a :int = int(input('Enter destination:')) __a :Dict = float(input('Enter weight:')) __a :List[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
353
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __a :List[str] = logging.get_logger(__name__) __a :Union[str, Any] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class _a ( a__ , a__ ): """simple docstring""" _lowerCamelCase : Dict = 'bit' _lowerCamelCase : Union[str, Any] = ['preactivation', 'bottleneck'] _lowerCamelCase : Any = ['SAME', 'VALID'] def __init__( self : List[Any] , UpperCAmelCase : Dict=3 , UpperCAmelCase : str=64 , UpperCAmelCase : str=[256, 512, 1024, 2048] , UpperCAmelCase : str=[3, 4, 6, 3] , UpperCAmelCase : str="preactivation" , UpperCAmelCase : Dict="relu" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=32 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : int=1 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Dict , ): super().__init__(**_lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A_ = global_padding.upper() else: raise ValueError(f'''Padding strategy {global_padding} not supported''' ) A_ = num_channels A_ = embedding_size A_ = hidden_sizes A_ = depths A_ = layer_type A_ = hidden_act A_ = global_padding A_ = num_groups A_ = drop_path_rate A_ = embedding_dynamic_padding A_ = output_stride A_ = width_factor A_ = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )] A_ = get_aligned_output_features_output_indices( out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
354
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = FileLock(str(tmpdir / "foo.lock" ) ) A_ = FileLock(str(tmpdir / "foo.lock" ) ) A_ = 0.01 with locka.acquire(): with pytest.raises(__a ): A_ = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = 'a' * 1000 + '.lock' A_ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 255 A_ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
355
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
0
from scipy.stats import pearsonr import datasets __a :Dict = """ Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. """ __a :Dict = """ Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results['pearsonr'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric(\"pearsonr\") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) ['p-value', 'pearsonr'] >>> print(round(results['pearsonr'], 2)) -0.74 >>> print(round(results['p-value'], 2)) 0.15 """ __a :Optional[int] = """ @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __A ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , ) def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any]=False ): if return_pvalue: A_ = pearsonr(UpperCAmelCase , UpperCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
356
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :int = logging.get_logger(__name__) __a :Tuple = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Optional[int] = '''timesformer''' def __init__( self : Optional[int] , UpperCAmelCase : Tuple=224 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : str=768 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : int=12 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Any=0.02 , UpperCAmelCase : Union[str, Any]=1E-6 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]="divided_space_time" , UpperCAmelCase : Dict=0 , **UpperCAmelCase : str , ): super().__init__(**_snake_case ) A_ = image_size A_ = patch_size A_ = num_channels A_ = num_frames A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = qkv_bias A_ = attention_type A_ = drop_path_rate
357
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __a :Optional[Any] = logging.get_logger(__name__) class _a ( snake_case_ ): """simple docstring""" def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
329
0
import pytest import datasets # Import fixture modules as plugins __a :Union[str, Any] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" config.addinivalue_line("markers" ,"torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=lowerCamelCase_ ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ): """simple docstring""" A_ = tmp_path_factory.getbasetemp() / """cache""" A_ = test_hf_cache_home / """datasets""" A_ = test_hf_cache_home / """metrics""" A_ = test_hf_cache_home / """modules""" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" ,str(lowerCamelCase_ ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" ,str(lowerCamelCase_ ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" ,str(lowerCamelCase_ ) ) A_ = test_hf_datasets_cache / """downloads""" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" ,str(lowerCamelCase_ ) ) A_ = test_hf_datasets_cache / """downloads""" / """extracted""" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" ,str(lowerCamelCase_ ) ) @pytest.fixture(autouse=lowerCamelCase_ ,scope="session" ) def __snake_case ( ): """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=lowerCamelCase_ ) def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" ,lowerCamelCase_ ) @pytest.fixture def __snake_case ( __UpperCamelCase : str ): """simple docstring""" monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" ,lowerCamelCase_ )
358
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _a : """simple docstring""" @staticmethod def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ): pass @is_pipeline_test @require_vision class _a ( unittest.TestCase ): """simple docstring""" @require_torch def __A ( self : List[str] ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(UpperCAmelCase ) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @require_tf def __A ( self : int ): A_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], [ {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, {"score": 0.333, "label": ANY(UpperCAmelCase )}, ], ] , ) @slow @require_torch def __A ( self : Any ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def __A ( self : Optional[Any] ): A_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(UpperCAmelCase ) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
329
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : List[Any] ): A_ = tempfile.mkdtemp() # fmt: off A_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) A_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] A_ = {"unk_token": "<unk>"} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__lowercase ) ) A_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } A_ = os.path.join(self.tmpdirname , __lowercase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__lowercase , __lowercase ) def __A ( self : int , **UpperCAmelCase : Tuple ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def __A ( self : Tuple , **UpperCAmelCase : Dict ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase ) def __A ( self : Tuple , **UpperCAmelCase : str ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase ) def __A ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def __A ( self : Any ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Dict ): A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = self.get_image_processor() A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_slow.save_pretrained(self.tmpdirname ) A_ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase ) A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) processor_fast.save_pretrained(self.tmpdirname ) A_ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowercase ) self.assertIsInstance(processor_fast.tokenizer , __lowercase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowercase ) self.assertIsInstance(processor_fast.image_processor , __lowercase ) def __A ( self : int ): A_ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 ) A_ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowercase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowercase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowercase ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) A_ = self.prepare_image_inputs() A_ = image_processor(__lowercase , return_tensors="np" ) A_ = processor(images=__lowercase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) A_ = "lower newer" A_ = processor(text=__lowercase ) A_ = tokenizer(__lowercase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__lowercase ): processor() def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(__lowercase ) A_ = tokenizer.batch_decode(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=__lowercase , images=__lowercase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
359
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ): """simple docstring""" A_ = [] for _ in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ): """simple docstring""" A_ = [] for step in range(__UpperCamelCase ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: A_ = os.path.join(__UpperCamelCase ,"schedule.bin" ) torch.save(scheduler.state_dict() ,__UpperCamelCase ) A_ = torch.load(__UpperCamelCase ) scheduler.load_state_dict(__UpperCamelCase ) return lrs @require_torch class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def __A ( self : Dict ): A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase ) A_ = torch.tensor([0.4, 0.2, -0.5] ) A_ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping A_ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , ) for _ in range(1000 ): A_ = criterion(UpperCAmelCase , UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None _lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None _lowerCamelCase : Any = 1_0 def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ): self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) ) for a, b in zip(UpperCAmelCase , UpperCAmelCase ): self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase ) def __A ( self : List[Any] ): A_ = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) A_ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): A_ , A_ = data A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) A_ = unwrap_schedule(UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) A_ = scheduler_func(self.optimizer , **UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class _a : """simple docstring""" def __init__( self : List[str] , UpperCAmelCase : List[str] ): A_ = fn def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ): return self.fn(*UpperCAmelCase , **UpperCAmelCase ) @classmethod def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = list(map(self , scheduler.lr_lambdas ) )
329
0
import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __a :List[str] = random.Random() def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[str]=1.0 ,__UpperCamelCase : Any=None ,__UpperCamelCase : Optional[int]=None ): """simple docstring""" if rng is None: A_ = global_rng A_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _a ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Optional[int]=400 , UpperCAmelCase : Optional[int]=2000 , UpperCAmelCase : Dict=1 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Union[str, Any]=16000 , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , ): A_ = parent A_ = batch_size A_ = min_seq_length A_ = max_seq_length A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A_ = feature_size A_ = padding_value A_ = sampling_rate A_ = return_attention_mask A_ = do_normalize def __A ( self : Any ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self : Tuple , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=False ): def _flatten(UpperCAmelCase : List[str] ): return list(itertools.chain(*snake_case__ ) ) if equal_length: A_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size A_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A_ = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs class _a ( A_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : int = WavaVecaFeatureExtractor def __A ( self : Tuple ): A_ = WavaVecaFeatureExtractionTester(self ) def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] ): self.assertTrue(np.all(np.mean(snake_case__ , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case__ , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : List[Any] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input A_ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values A_ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) # Test batched A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)] A_ = np.asarray(snake_case__ ) A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) def __A ( self : str ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 1600, None] for max_length, padding in zip(snake_case__ , snake_case__ ): A_ = feat_extract(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors="np" ) A_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self : List[Any] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = range(800 , 1400 , 200 ) A_ = [floats_list((1, x) )[0] for x in lengths] A_ = ["longest", "max_length", "do_not_pad"] A_ = [None, 1600, None] for max_length, padding in zip(snake_case__ , snake_case__ ): A_ = feat_extract(snake_case__ , max_length=snake_case__ , padding=snake_case__ ) A_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __A ( self : Optional[int] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feat_extract( snake_case__ , truncation=snake_case__ , max_length=1000 , padding="max_length" , return_tensors="np" ) A_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self : Union[str, Any] ): A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feat_extract( snake_case__ , truncation=snake_case__ , max_length=1000 , padding="longest" , return_tensors="np" ) A_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A_ = feat_extract( snake_case__ , truncation=snake_case__ , max_length=2000 , padding="longest" , return_tensors="np" ) A_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def __A ( self : Tuple ): import torch A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) A_ = np.random.rand(100 ).astype(np.floataa ) A_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: A_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) A_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def __A ( self : Any ): for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: A_ = WavaVecaConfig.from_pretrained(snake_case__ ) A_ = WavaVecaFeatureExtractor.from_pretrained(snake_case__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
360
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing """simple docstring""" return x.sum() def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing """simple docstring""" return i + 1 @dataclass class _a : """simple docstring""" _lowerCamelCase : int _lowerCamelCase : str class _a ( snake_case_ ): """simple docstring""" def __A ( self : Dict ): A_ = {} A_ = [] A_ = 1 A_ = [1, 2] A_ = {"a": 1, "b": 2} A_ = {"a": [1, 2], "b": [3, 4]} A_ = {"a": {"1": 1}, "b": 2} A_ = {"a": 1, "b": 2, "c": 3, "d": 4} A_ = {} A_ = [] A_ = 2 A_ = [2, 3] A_ = {"a": 2, "b": 3} A_ = {"a": [2, 3], "b": [4, 5]} A_ = {"a": {"1": 2}, "b": 3} A_ = {"a": 2, "b": 3, "c": 4, "d": 5} self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase ) A_ = 2 self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )} A_ = {"a": 2, "b": 0, "c": 2} A_ = { "a": np.eye(2 ).astype(UpperCAmelCase ), "b": np.zeros(3 ).astype(UpperCAmelCase ), "c": np.ones(2 ).astype(UpperCAmelCase ), } self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase ) def __A ( self : List[str] ): A_ = {"a": 1, "b": 2} A_ = {"a": 3, "b": 4} A_ = {"a": 5, "b": 6} A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase ) def __A ( self : Any ): class _a : """simple docstring""" _lowerCamelCase : int = 'bar' A_ = Foo() self.assertEqual(foo.my_attr , "bar" ) with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ): self.assertEqual(foo.my_attr , "BAR" ) self.assertEqual(foo.my_attr , "bar" ) @pytest.mark.parametrize( "iterable_length, num_proc, expected_num_proc" ,[ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] ,) def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ): """simple docstring""" with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch( "datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool: A_ = {f'''{i}''': i for i in range(__UpperCamelCase )} A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _a ( snake_case_ ): """simple docstring""" @require_tf def __A ( self : Union[str, Any] ): import tensorflow as tf from tensorflow.keras import layers A_ = layers.Dense(2 ) def gen_random_output(): A_ = tf.random.uniform((1, 3) ) return model(UpperCAmelCase ).numpy() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_tensorflow=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __A ( self : Optional[int] ): import torch def gen_random_output(): A_ = torch.nn.Linear(3 , 2 ) A_ = torch.rand(1 , 3 ) return model(UpperCAmelCase ).detach().numpy() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() with temp_seed(42 , set_pytorch=UpperCAmelCase ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __A ( self : Any ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): A_ = gen_random_output() with temp_seed(42 ): A_ = gen_random_output() A_ = gen_random_output() np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("input_data" ,[{}] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).data assert output_data == input_data @pytest.mark.parametrize( "data, expected_output" ,[ ({}, []), ([], []), ("foo", ["foo"]), (["foo", "bar"], ["foo", "bar"]), ([["foo", "bar"]], ["foo", "bar"]), ([[["foo"], ["bar"]]], ["foo", "bar"]), ([[["foo"], "bar"]], ["foo", "bar"]), ({"a": 1, "b": 2}, [1, 2]), ({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]), ({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]), ({"a": {"1": 1}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": 2}, [1, 2]), ({"a": {"1": [1]}, "b": [2]}, [1, 2]), ] ,) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ): """simple docstring""" A_ = NestedDataStructure(__UpperCamelCase ).flatten() assert output == expected_output def __snake_case ( ): """simple docstring""" A_ = A(x=1 ,y="foobar" ) A_ = {"x": 1, "y": "foobar"} assert asdict(__UpperCamelCase ) == expected_output A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]} A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]} assert asdict(__UpperCamelCase ) == expected_output with pytest.raises(__UpperCamelCase ): asdict([1, A(x=10 ,y="foo" )] ) def __snake_case ( __UpperCamelCase : str ): """simple docstring""" return text.split() def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def __snake_case ( ): """simple docstring""" with Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) ) assert out.count("hello" ) == 10 assert out.count("there" ) == 10 assert len(__UpperCamelCase ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: A_ = [] for yield_time, content in iflatmap_unordered( __UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__UpperCamelCase ) assert out.count("a" ) == 2 assert out.count("b" ) == 2 assert len(__UpperCamelCase ) == 4
329
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __a :str = logging.get_logger(__name__) class _a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[Any] ): warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , _a , ) super().__init__(*_a , **_a )
361
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def __snake_case ( __UpperCamelCase : str ): """simple docstring""" for char in word: A_ = ord(__UpperCamelCase ) if not _is_chinese_char(__UpperCamelCase ): return 0 return 1 def __snake_case ( __UpperCamelCase : List[str] ): """simple docstring""" A_ = set() for token in tokens: A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase ) if chinese_word: word_set.add(__UpperCamelCase ) A_ = list(__UpperCamelCase ) return word_list def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] ) A_ = bert_tokens A_ , A_ = 0, len(__UpperCamelCase ) while start < end: A_ = True if is_chinese(bert_word[start] ): A_ = min(end - start ,__UpperCamelCase ) for i in range(__UpperCamelCase ,1 ,-1 ): A_ = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 ,start + i ): A_ = "##" + bert_word[j] A_ = start + i A_ = False break if single_word: start += 1 return bert_word def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ): """simple docstring""" A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0] A_ = [get_chinese_word(__UpperCamelCase ) for r in res] ltp_res.extend(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for i in range(0 ,len(__UpperCamelCase ) ,100 ): A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) A_ = [] for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ): A_ = [] for id in input_ids: A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase ) input_tokens.append(__UpperCamelCase ) A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase ) A_ = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__UpperCamelCase ): if token[:2] == "##": A_ = token[2:] # save chinese tokens' pos if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ): ref_id.append(__UpperCamelCase ) ref_ids.append(__UpperCamelCase ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) return ref_ids def __snake_case ( __UpperCamelCase : Dict ): """simple docstring""" with open(args.file_name ,"r" ,encoding="utf-8" ) as f: A_ = f.readlines() A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A_ = LTP(args.ltp ) # faster in GPU device A_ = BertTokenizer.from_pretrained(args.bert ) A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) with open(args.save_path ,"w" ,encoding="utf-8" ) as f: A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(__UpperCamelCase ) if __name__ == "__main__": __a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __a :Dict = parser.parse_args() main(args)
329
0
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __a :Optional[Any] = logging.get_logger(__name__) class _a : def __init__( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ): A_ = question_encoder A_ = generator A_ = self.question_encoder def __A ( self : Tuple , UpperCAmelCase : str ): if os.path.isfile(UpperCAmelCase ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "question_encoder_tokenizer" ) A_ = os.path.join(UpperCAmelCase , "generator_tokenizer" ) self.question_encoder.save_pretrained(UpperCAmelCase ) self.generator.save_pretrained(UpperCAmelCase ) @classmethod def __A ( cls : Union[str, Any] , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer A_ = kwargs.pop("config" , UpperCAmelCase ) if config is None: A_ = RagConfig.from_pretrained(UpperCAmelCase ) A_ = AutoTokenizer.from_pretrained( UpperCAmelCase , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) A_ = AutoTokenizer.from_pretrained( UpperCAmelCase , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=UpperCAmelCase , generator=UpperCAmelCase ) def __call__( self : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : int ): return self.current_tokenizer(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ): return self.generator.batch_decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ): return self.generator.decode(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.question_encoder def __A ( self : int ): A_ = self.generator def __A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = None , UpperCAmelCase : Tuple = None , UpperCAmelCase : Dict = "longest" , UpperCAmelCase : int = None , UpperCAmelCase : str = True , **UpperCAmelCase : Optional[Any] , ): warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , UpperCAmelCase , ) if max_length is None: A_ = self.current_tokenizer.model_max_length A_ = self( UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: A_ = self.current_tokenizer.model_max_length A_ = self( text_target=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase , ) A_ = labels['input_ids'] return model_inputs
362
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def __snake_case ( __UpperCamelCase : Features ): """simple docstring""" A_ = np.inf def set_batch_size(__UpperCamelCase : FeatureType ) -> None: nonlocal batch_size if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary": A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(__UpperCamelCase ,__UpperCamelCase ) return None if batch_size is np.inf else batch_size class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ): super().__init__( UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , ) A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths} A_ = _PACKAGED_DATASETS_MODULES["parquet"][1] A_ = Parquet( cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , ) def __A ( self : Optional[Any] ): # Build iterable dataset if self.streaming: A_ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ = None A_ = None A_ = None A_ = None self.builder.download_and_prepare( download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , ) A_ = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class _a : """simple docstring""" def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ): A_ = dataset A_ = path_or_buf A_ = batch_size or get_writer_batch_size(dataset.features ) A_ = parquet_writer_kwargs def __A ( self : int ): A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , "wb+" ) as buffer: A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) else: A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs ) return written def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ): A_ = 0 A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase ) A_ = self.dataset.features.arrow_schema A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase ) for offset in logging.tqdm( range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ): A_ = query_table( table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(UpperCAmelCase ) written += batch.nbytes writer.close() return written
329
0
import os import numpy import onnx def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ): """simple docstring""" A_ = a.name A_ = b.name A_ = """""" A_ = """""" A_ = a == b A_ = name_a A_ = name_b return res def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCamelCase ,_lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g ,_lowerCamelCase ,_lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g ,_lowerCamelCase ,_lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g ,_lowerCamelCase ,_lowerCamelCase ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = list(model.graph.initializer ) A_ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A_ = inits[i].name A_ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph ,_lowerCamelCase ,_lowerCamelCase ) def __snake_case ( __UpperCamelCase : Optional[int] ): """simple docstring""" A_ = os.path.dirname(_lowerCamelCase ) A_ = os.path.basename(_lowerCamelCase ) A_ = onnx.load(os.path.join(_lowerCamelCase ,_lowerCamelCase ) ) A_ = list(model.graph.initializer ) A_ = set() A_ = {} A_ = [] A_ = 0 for i in range(len(_lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 ,len(_lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] ,inits[j] ): dup_set.add(_lowerCamelCase ) dup_set.add(_lowerCamelCase ) A_ = inits[j].data_type A_ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("unexpected data type: " ,_lowerCamelCase ) total_reduced_size += mem_size A_ = inits[i].name A_ = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCamelCase ) else: A_ = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " ,total_reduced_size / 1024 / 1024 / 1024 ,"GB" ) A_ = sorted(_lowerCamelCase ) _remove_dup_initializers_from_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) A_ = """optimized_""" + model_file_name A_ = os.path.join(_lowerCamelCase ,_lowerCamelCase ) onnx.save(_lowerCamelCase ,_lowerCamelCase ) return new_model
363
from __future__ import annotations def __snake_case ( __UpperCamelCase : int = 4 ): """simple docstring""" A_ = abs(__UpperCamelCase ) or 4 return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )] def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_column(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(__UpperCamelCase ) ) # OR.. reverse_column(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" return reverse_column(transpose(__UpperCamelCase ) ) # OR.. transpose(reverse_row(matrix)) def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = matrix[::-1] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" A_ = [x[::-1] for x in matrix] return matrix def __snake_case ( __UpperCamelCase : list[list[int]] ): """simple docstring""" for i in matrix: print(*__UpperCamelCase ) if __name__ == "__main__": __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) __a :Any = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
329
0
import math __a :str = 10 __a :Dict = 7 __a :Tuple = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : Tuple = 20 ): """simple docstring""" A_ = math.comb(a_ ,a_ ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,a_ ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
364
from ..utils import DummyObject, requires_backends class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Any = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : Dict = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) class _a ( metaclass=snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx'] def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ): requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ): requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ): requires_backends(cls , ["torch", "transformers", "onnx"] )
329
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :int = logging.get_logger(__name__) __a :List[Any] = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _a ( __lowercase ): """simple docstring""" _lowerCamelCase : List[str] = "luke" def __init__( self : str , UpperCAmelCase : Any=50267 , UpperCAmelCase : str=500000 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Dict=256 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : str=12 , UpperCAmelCase : List[str]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[Any]=512 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Dict=0 , UpperCAmelCase : Any=2 , **UpperCAmelCase : str , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) A_ = vocab_size A_ = entity_vocab_size A_ = hidden_size A_ = entity_emb_size A_ = num_hidden_layers A_ = num_attention_heads A_ = hidden_act A_ = intermediate_size A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = initializer_range A_ = layer_norm_eps A_ = use_entity_aware_attention A_ = classifier_dropout
365
import itertools import math def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case ( ): """simple docstring""" A_ = 2 while True: if is_prime(__UpperCamelCase ): yield num num += 1 def __snake_case ( __UpperCamelCase : int = 1_0001 ): """simple docstring""" return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
329
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _a ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod @abstractmethod def __A ( UpperCAmelCase : List[str] ): raise NotImplementedError() @abstractmethod def __A ( self : Tuple ): raise NotImplementedError()
366
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ): A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = 99 A_ = 384 A_ = 2 A_ = 4 A_ = 37 A_ = "gelu" A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.02 A_ = 3 A_ = 4 A_ = 128 A_ = 2 A_ = 9 A_ = 1 A_ = None def __A ( self : Optional[int] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ): A_ = TFConvBertModel(config=UpperCAmelCase ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = [input_ids, input_mask] A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ): A_ = TFConvBertForMaskedLM(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ): A_ = self.num_labels A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ): A_ = self.num_choices A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = self.num_labels A_ = TFConvBertForTokenClassification(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ): A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase ) A_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : List[str] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) _lowerCamelCase : Any = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : Dict = False def __A ( self : List[str] ): A_ = TFConvBertModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Tuple ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase ) def __A ( self : Dict ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : str ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = True if hasattr(UpperCAmelCase , "use_cache" ): A_ = True A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) for model_class in self.all_model_classes: A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) A_ = model_class(UpperCAmelCase ) A_ = len(model(UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase ) A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" ) A_ = tf.keras.models.load_model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) if self.is_encoder_decoder: A_ = outputs["encoder_hidden_states"] A_ = outputs["encoder_attentions"] else: A_ = outputs["hidden_states"] A_ = outputs["attentions"] self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) A_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __A ( self : List[str] ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Any ): A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase ) def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ): A_ = len(UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) A_ = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ): A_ = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: A_ = True A_ = False A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) A_ = len(UpperCAmelCase ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) if self.is_encoder_decoder: A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_decoder_attentions_output(UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) # Check attention is always last and order is fine A_ = True A_ = True A_ = model_class(UpperCAmelCase ) A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase ) check_encoder_attentions_output(UpperCAmelCase ) @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ): A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) A_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase ) A_ = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
329
0
from math import pow, sqrt def __snake_case ( *__UpperCamelCase : float ): """simple docstring""" A_ = len(a_ ) > 0 and all(value > 0.0 for value in values ) return result def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ) else ValueError("Input Error: Molar mass values must greater than 0." ) ) def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) ) def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 ) if validate(a_ ,a_ ,a_ ) else ValueError( "Input Error: Molar mass and effusion rate values must greater than 0." ) )
367
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Dict = logging.get_logger(__name__) __a :int = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : List[Any] = 'realm' def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase ) # Common config A_ = vocab_size A_ = max_position_embeddings A_ = hidden_size A_ = retriever_proj_size A_ = num_hidden_layers A_ = num_attention_heads A_ = num_candidates A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Reader config A_ = span_hidden_size A_ = max_span_width A_ = reader_layer_norm_eps A_ = reader_beam_size A_ = reader_seq_len # Retrieval config A_ = num_block_records A_ = searcher_beam_size
329
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __a :Tuple = logging.get_logger(__name__) __a :Dict = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off __a :Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377, 1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211, 4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786, 1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791, 1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409, 3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361 ] __a :Optional[int] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627, 3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647, 7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793, 1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675, 2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865, 4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362 ] class _a ( _UpperCamelCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'whisper' _lowerCamelCase : Any = ['past_key_values'] _lowerCamelCase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=51865 , UpperCAmelCase : Optional[Any]=80 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Dict=1536 , UpperCAmelCase : Any=1536 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Tuple=50257 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=256 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=1500 , UpperCAmelCase : str=448 , UpperCAmelCase : Union[str, Any]=50256 , UpperCAmelCase : int=50256 , UpperCAmelCase : Optional[int]=50256 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=[220, 50256] , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Tuple=256 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : List[Any]=0.05 , UpperCAmelCase : Any=10 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Dict=10 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : str=7 , **UpperCAmelCase : str , ): A_ = vocab_size A_ = num_mel_bins A_ = d_model A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_layers A_ = decoder_attention_heads A_ = decoder_ffn_dim A_ = encoder_ffn_dim A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = max_source_positions A_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. A_ = classifier_proj_size A_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks A_ = median_filter_width super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) class _a ( _UpperCamelCase ): """simple docstring""" @property def __A ( self : int ): A_ = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: A_ = {0: "batch"} else: A_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs" ) return common_inputs def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : Tuple = False , UpperCAmelCase : str = None , UpperCAmelCase : Optional[Any] = 22050 , UpperCAmelCase : int = 5.0 , UpperCAmelCase : str = 220 , ): A_ = OrderedDict() A_ = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , ) A_ = encoder_inputs["input_features"].shape[2] A_ = encoder_sequence_length // 2 if self.use_past else seq_length A_ = super().generate_dummy_inputs( preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = encoder_inputs.pop("input_features" ) A_ = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: A_ = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def __A ( self : Tuple ): return 1E-3
368
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a :Optional[Any] = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ): """simple docstring""" A_ = original_name.split("." )[0] A_ = key.split("." ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] ) A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] ) A_ = orig_block_num - offset A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def __snake_case ( __UpperCamelCase : Any ): """simple docstring""" A_ = OrderedDict() A_ , A_ = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): A_ = key.replace("network" ,"poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 A_ = key[: key.find("proj" )] A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' ) A_ = key.replace("proj" ,"projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: A_ = "poolformer.encoder." + key if "mlp.fc1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" ) if "mlp.fc2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" ) if "norm1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" ) if "norm2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" ) if "layer_scale_1" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" ) if "layer_scale_2" in key: A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" ) if "head" in key: A_ = key.replace("head" ,"classifier" ) A_ = value return new_state_dict def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return image @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ): """simple docstring""" A_ = PoolFormerConfig() # set attributes based on model_name A_ = "huggingface/label-files" A_ = model_name[-3:] A_ = 1000 A_ = "imagenet-1k-id2label.json" A_ = (1, 1000) # set config attributes A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} if size == "s12": A_ = [2, 2, 6, 2] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s24": A_ = [4, 4, 12, 4] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 0.9 elif size == "s36": A_ = [6, 6, 18, 6] A_ = [64, 128, 320, 512] A_ = 4.0 A_ = 1E-6 A_ = 0.9 elif size == "m36": A_ = [6, 6, 18, 6] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 elif size == "m48": A_ = [8, 8, 24, 8] A_ = [96, 192, 384, 768] A_ = 4.0 A_ = 1E-6 A_ = 0.95 else: raise ValueError(f'''Size {size} not supported''' ) # load image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) # Prepare image A_ = prepare_img() A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values logger.info(f'''Converting model {model_name}...''' ) # load original state dict A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) ) # rename keys A_ = rename_keys(__UpperCamelCase ) # create HuggingFace model and load state dict A_ = PoolFormerForImageClassification(__UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) model.eval() # Define image processor A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values # forward pass A_ = model(__UpperCamelCase ) A_ = outputs.logits # define expected logit slices for different models if size == "s12": A_ = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A_ = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A_ = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A_ = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A_ = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 ) # finally, save model and image processor logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __a :int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
329
0
from collections import deque class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ): A_ = process_name # process name A_ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time A_ = arrival_time A_ = burst_time # remaining burst time A_ = 0 # total time of the process wait in ready queue A_ = 0 # time from arrival time to completion time class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , ): # total number of mlfq's queues A_ = number_of_queues # time slice of queues that round robin algorithm applied A_ = time_slices # unfinished process is in this ready_queue A_ = queue # current time A_ = current_time # finished process is in this sequence queue A_ = deque() def __A ( self : Optional[int] ): A_ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple ): A_ = [] for i in range(len(_lowerCamelCase ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __A ( self : Dict , UpperCAmelCase : List[str] ): A_ = [] for i in range(len(_lowerCamelCase ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __A ( self : int , UpperCAmelCase : str ): A_ = [] for i in range(len(_lowerCamelCase ) ): completion_times.append(queue[i].stop_time ) return completion_times def __A ( self : Dict , UpperCAmelCase : Dict ): return [q.burst_time for q in queue] def __A ( self : Any , UpperCAmelCase : str ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __A ( self : Dict , UpperCAmelCase : List[Any] ): A_ = deque() # sequence deque of finished process while len(_lowerCamelCase ) != 0: A_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(_lowerCamelCase ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 A_ = 0 # set the process's turnaround time because it is finished A_ = self.current_time - cp.arrival_time # set the completion time A_ = self.current_time # add the process to queue that has finished queue finished.append(_lowerCamelCase ) self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ): A_ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(_lowerCamelCase ) ): A_ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(_lowerCamelCase ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time A_ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(_lowerCamelCase ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished A_ = 0 # set the finish time A_ = self.current_time # update the process' turnaround time because it is finished A_ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(_lowerCamelCase ) self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __A ( self : Optional[Any] ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): A_ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest __a :Optional[int] = Process('P1', 0, 53) __a :Any = Process('P2', 0, 17) __a :Optional[Any] = Process('P3', 0, 68) __a :int = Process('P4', 0, 24) __a :Dict = 3 __a :List[Any] = [17, 25] __a :int = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])}) __a :str = Process('P1', 0, 53) __a :str = Process('P2', 0, 17) __a :str = Process('P3', 0, 68) __a :Tuple = Process('P4', 0, 24) __a :Optional[Any] = 3 __a :List[Any] = [17, 25] __a :Optional[int] = deque([Pa, Pa, Pa, Pa]) __a :Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0) __a :int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F"waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print completion times of processes(P1, P2, P3, P4) print( F"completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print total turnaround times of processes(P1, P2, P3, P4) print( F"turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}" ) # print sequence of finished processes print( F"sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}" )
369
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : torch.FloatTensor _lowerCamelCase : Optional[torch.FloatTensor] = None def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Any ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : int ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) A_ = [] for i in range(__UpperCamelCase ): A_ = i / num_diffusion_timesteps A_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) ) return torch.tensor(__UpperCamelCase ,dtype=torch.floataa ) class _a ( snake_case_ , snake_case_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ): if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) A_ = betas_for_alpha_bar(UpperCAmelCase ) A_ = 1.0 - self.betas A_ = torch.cumprod(self.alphas , dim=0 ) A_ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A_ = 1.0 # setable values A_ = None A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() ) A_ = variance_type def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ): return sample def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ): A_ = num_inference_steps A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase ) def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ): if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A_ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A_ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) ) A_ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A_ = variance.log() A_ = beta.log() A_ = (predicted_variance + 1) / 2 A_ = frac * max_log + (1 - frac) * min_log return variance def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ): A_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 ) else: A_ = None # 1. compute alphas, betas if prev_timestep is None: A_ = t - 1 A_ = self.alphas_cumprod[t] A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A_ = 1 - alpha_prod_t A_ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A_ = self.betas[t] A_ = self.alphas[t] else: A_ = 1 - alpha_prod_t / alpha_prod_t_prev A_ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A_ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: A_ = torch.clamp( UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A_ = 0 if t > 0: A_ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device ) A_ = self._get_variance( UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , ) if self.variance_type == "fixed_small_log": A_ = variance elif self.variance_type == "learned_range": A_ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' " for the UnCLIPScheduler." ) A_ = variance * variance_noise A_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase ) def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ): # Make sure alphas_cumprod and timestep have same device and dtype as original_samples A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A_ = timesteps.to(original_samples.device ) A_ = alphas_cumprod[timesteps] ** 0.5 A_ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_alpha_prod.unsqueeze(-1 ) A_ = (1 - alphas_cumprod[timesteps]) ** 0.5 A_ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
329
0
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a :Optional[Any] = logging.get_logger(__name__) __a :str = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __a :Dict = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __a :Tuple = { 'ctrl': 256, } __a :Dict = { 'Pregnancy': 16_8629, 'Christianity': 7675, 'Explain': 10_6423, 'Fitness': 6_3440, 'Saving': 6_3163, 'Ask': 2_7171, 'Ass': 9_5985, 'Joke': 16_3509, 'Questions': 4_5622, 'Thoughts': 4_9605, 'Retail': 5_2342, 'Feminism': 16_4338, 'Writing': 1_1992, 'Atheism': 19_2263, 'Netflix': 4_8616, 'Computing': 3_9639, 'Opinion': 4_3213, 'Alone': 4_4967, 'Funny': 5_8917, 'Gaming': 4_0358, 'Human': 4088, 'India': 1331, 'Joker': 7_7138, 'Diet': 3_6206, 'Legal': 1_1859, 'Norman': 4939, 'Tip': 7_2689, 'Weight': 5_2343, 'Movies': 4_6273, 'Running': 2_3425, 'Science': 2090, 'Horror': 3_7793, 'Confession': 6_0572, 'Finance': 1_2250, 'Politics': 1_6360, 'Scary': 19_1985, 'Support': 1_2654, 'Technologies': 3_2516, 'Teenage': 6_6160, 'Event': 3_2769, 'Learned': 6_7460, 'Notion': 18_2770, 'Wikipedia': 3_7583, 'Books': 6665, 'Extract': 7_6050, 'Confessions': 10_2701, 'Conspiracy': 7_5932, 'Links': 6_3674, 'Narcissus': 15_0425, 'Relationship': 5_4766, 'Relationships': 13_4796, 'Reviews': 4_1671, 'News': 4256, 'Translation': 2_6820, 'multilingual': 12_8406, } def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = set() A_ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A_ = char A_ = set(__SCREAMING_SNAKE_CASE ) return pairs class _a ( __UpperCamelCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : str = CONTROL_CODES def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : int="<unk>" , **UpperCAmelCase : str ): super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase ) with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle: A_ = json.load(_lowerCAmelCase ) A_ = {v: k for k, v in self.encoder.items()} with open(_lowerCAmelCase , encoding="utf-8" ) as merges_handle: A_ = merges_handle.read().split("\n" )[1:-1] A_ = [tuple(merge.split() ) for merge in merges] A_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) A_ = {} @property def __A ( self : Dict ): return len(self.encoder ) def __A ( self : Any ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self : Optional[Any] , UpperCAmelCase : Tuple ): if token in self.cache: return self.cache[token] A_ = tuple(_lowerCAmelCase ) A_ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) A_ = get_pairs(_lowerCAmelCase ) if not pairs: return token while True: A_ = min(_lowerCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break A_ = bigram A_ = [] A_ = 0 while i < len(_lowerCAmelCase ): try: A_ = word.index(_lowerCAmelCase , _lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A_ = j if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A_ = tuple(_lowerCAmelCase ) A_ = new_word if len(_lowerCAmelCase ) == 1: break else: A_ = get_pairs(_lowerCAmelCase ) A_ = """@@ """.join(_lowerCAmelCase ) A_ = word[:-4] A_ = word return word def __A ( self : List[str] , UpperCAmelCase : Optional[int] ): A_ = [] A_ = re.findall(R"\S+\n?" , _lowerCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(" " ) ) ) return split_tokens def __A ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ): return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) ) def __A ( self : int , UpperCAmelCase : List[str] ): return self.decoder.get(_lowerCAmelCase , self.unk_token ) def __A ( self : str , UpperCAmelCase : Tuple ): A_ = """ """.join(_lowerCAmelCase ).replace("@@ " , "" ).strip() return out_string def __A ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return A_ = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + "\n" ) A_ = 0 with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) A_ = token_index writer.write(" ".join(_lowerCAmelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
370
from math import isqrt, loga def __snake_case ( __UpperCamelCase : int ): """simple docstring""" A_ = [True] * max_number for i in range(2 ,isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ): A_ = False return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]] def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ): """simple docstring""" A_ = degree * loga(__UpperCamelCase ) A_ = int(__UpperCamelCase ) A_ = calculate_prime_numbers(__UpperCamelCase ) A_ = 0 A_ = 0 A_ = len(__UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"{solution() = }")
329
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __a :Tuple = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : Dict=None ,__UpperCamelCase : Any=None ,__UpperCamelCase : str=None ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Tuple=None ,): """simple docstring""" if attention_mask is None: A_ = np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: A_ = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: A_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=13 , UpperCAmelCase : int=7 , UpperCAmelCase : str=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : int=99 , UpperCAmelCase : str=16 , UpperCAmelCase : Dict=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Dict=0.02 , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = eos_token_id A_ = pad_token_id A_ = bos_token_id A_ = initializer_range def __A ( self : List[str] ): A_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A_ = shift_tokens_right(lowercase_ , 1 , 2 ) A_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) A_ = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def __A ( self : Dict ): A_ = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ): A_ = 20 A_ = model_class_name(lowercase_ ) A_ = model.encode(inputs_dict["input_ids"] ) A_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) A_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) A_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A_ = model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) A_ = model.decode(lowercase_ , lowercase_ ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def __A ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ): A_ = 20 A_ = model_class_name(lowercase_ ) A_ = model.encode(inputs_dict["input_ids"] ) A_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) A_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) A_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ = model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) A_ = model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) A_ = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = 9_9 def __A ( self : List[str] ): A_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A_ = input_ids.shape[0] A_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __A ( self : List[str] ): A_ = self._get_config_and_data() A_ = FlaxBlenderbotForConditionalGeneration(lowercase_ ) A_ = lm_model(input_ids=lowercase_ ) A_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def __A ( self : str ): A_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A_ = FlaxBlenderbotForConditionalGeneration(lowercase_ ) A_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A_ = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) A_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowercase_ ) def __A ( self : Any ): A_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A_ = shift_tokens_right(lowercase_ , 1 , 2 ) A_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() A_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _a ( _UpperCAmelCase , unittest.TestCase , _UpperCAmelCase ): """simple docstring""" _lowerCamelCase : Tuple = True _lowerCamelCase : Union[str, Any] = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) _lowerCamelCase : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __A ( self : Dict ): A_ = FlaxBlenderbotModelTester(self ) def __A ( self : List[str] ): A_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = self._prepare_for_class(lowercase_ , lowercase_ ) A_ = model_class(lowercase_ ) @jax.jit def encode_jitted(UpperCAmelCase : str , UpperCAmelCase : Tuple=None , **UpperCAmelCase : str ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest("JIT Enabled" ): A_ = encode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __A ( self : Any ): A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ = model_class(lowercase_ ) A_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) A_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest("JIT Enabled" ): A_ = decode_jitted(**lowercase_ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): A_ = decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __A ( self : List[str] ): for model_class_name in self.all_model_classes: A_ = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A_ = np.ones((1, 1) ) * model.config.eos_token_id A_ = model(lowercase_ ) self.assertIsNotNone(lowercase_ ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def __A ( self : Optional[int] ): A_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25} A_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True} A_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=lowercase_ ) A_ = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) A_ = ["""Sam"""] A_ = tokenizer(lowercase_ , return_tensors="jax" ) A_ = model.generate(**lowercase_ , **lowercase_ ) A_ = """Sam is a great name. It means \"sun\" in Gaelic.""" A_ = tokenizer.batch_decode(lowercase_ , **lowercase_ ) assert generated_txt[0].strip() == tgt_text
371
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __a :str = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ): """simple docstring""" A_ = RobertaPreLayerNormConfig.from_pretrained( __UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] ) # convert state_dict A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) ) A_ = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("roberta." ): A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ): continue A_ = tensor_value A_ = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) # convert tokenizer A_ = AutoTokenizer.from_pretrained(__UpperCamelCase ) tokenizer.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __a :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
329
0
from heapq import heappop, heappush import numpy as np def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : bool ,): """simple docstring""" A_ , A_ = grid.shape A_ = [-1, 1, 0, 0] A_ = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] A_ , A_ = [(0, source)], set() A_ = np.full((rows, cols) ,np.inf ) A_ = 0 A_ = np.empty((rows, cols) ,dtype=__a ) A_ = None while queue: ((A_) , (A_)) = heappop(__a ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: A_ = [] while (x, y) != source: path.append((x, y) ) A_ , A_ = predecessors[x, y] path.append(__a ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__a ) ): A_ , A_ = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: A_ = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__a ,(dist + 1, (nx, ny)) ) A_ = dist + 1 A_ = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
350
from maths.prime_factors import prime_factors def __snake_case ( __UpperCamelCase : int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = f'''Input value of [number={number}] must be an integer''' raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
329
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __a :Union[str, Any] = 'src/transformers' __a :Any = 'docs/source/en/tasks' def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[Any] ): """simple docstring""" with open(__lowerCamelCase ,"r" ,encoding="utf-8" ,newline="\n" ) as f: A_ = f.readlines() # Find the start prompt. A_ = 0 while not lines[start_index].startswith(__lowerCamelCase ): start_index += 1 start_index += 1 A_ = start_index while not lines[end_index].startswith(__lowerCamelCase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __a :str = direct_transformers_import(TRANSFORMERS_PATH) __a :str = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __a :Optional[int] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def __snake_case ( __UpperCamelCase : str ): """simple docstring""" A_ = TASK_GUIDE_TO_MODELS[task_guide] A_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowerCamelCase ,set() ) A_ = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : str=False ): """simple docstring""" A_ = _find_text_in_file( filename=os.path.join(__lowerCamelCase ,__lowerCamelCase ) ,start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" ,end_prompt="<!--End of the generated tip-->" ,) A_ = get_model_list_for_task(__lowerCamelCase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowerCamelCase ,__lowerCamelCase ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' " to fix this." ) if __name__ == "__main__": __a :Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __a :Any = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
351
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __a :int = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __a :Any = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') __a :Tuple = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') __a :str = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') __a :List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') __a :Any = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
329
0
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __a :Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __a :str = 25_6047 __a :Union[str, Any] = 25_6145 @require_sentencepiece @require_tokenizers class _a ( __snake_case , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Optional[Any] = NllbTokenizer _lowerCamelCase : str = NllbTokenizerFast _lowerCamelCase : List[Any] = True _lowerCamelCase : str = True _lowerCamelCase : Union[str, Any] = {} def __A ( self : str ): super().setUp() # We have a SentencePiece fixture for testing A_ = NllbTokenizer(a_ , keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self : int ): A_ = NllbTokenizer(a_ , keep_accents=a_ ) A_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) A_ = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A_ = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def __A ( self : str ): A_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) A_ = self.tokenizer_class.from_pretrained(a_ , **a_ ) A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(a_ ) A_ = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) A_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(a_ , a_ ) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(a_ ) A_ = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=True A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(a_ , legacy_format=a_ ) A_ = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files self.assertSequenceEqual(a_ , a_ ) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(a_ ) A_ = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=False A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(a_ , legacy_format=a_ ) A_ = tokenizer_p.save_pretrained(a_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(a_ ) A_ = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) @require_torch def __A ( self : int ): if not self.test_seqaseq: return A_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Longer text that will definitely require truncation. A_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] A_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: A_ = tokenizer.prepare_seqaseq_batch( src_texts=a_ , tgt_texts=a_ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified A_ = tokenizer.prepare_seqaseq_batch( a_ , tgt_texts=a_ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) A_ = tokenizer.prepare_seqaseq_batch( src_texts=a_ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , a_ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def __A ( self : List[str] ): pass def __A ( self : Tuple ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = [AddedToken("<special>" , lstrip=a_ )] A_ = self.rust_tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , **a_ ) A_ = tokenizer_r.encode("Hey this is a <special> token" ) A_ = tokenizer_r.encode("<special>" , add_special_tokens=a_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: A_ = self.rust_tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , **a_ , ) A_ = self.tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , **a_ ) A_ = tokenizer_p.encode("Hey this is a <special> token" ) A_ = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , a_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _a ( unittest.TestCase ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 'facebook/nllb-200-distilled-600M' _lowerCamelCase : Union[str, Any] = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _lowerCamelCase : Optional[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _lowerCamelCase : int = [ 2_5_6_0_4_7, 1_6_2_9_7, 1_3_4_4_0_8, 8_1_6_5, 2_4_8_0_6_6, 1_4_7_3_4, 9_5_0, 1_1_3_5, 1_0_5_7_2_1, 3_5_7_3, 8_3, 2_7_3_5_2, 1_0_8, 4_9_4_8_6, 2, ] @classmethod def __A ( cls : Dict ): A_ = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) A_ = 1 return cls def __A ( self : Tuple ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 256001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 256002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 256057 ) def __A ( self : Tuple ): A_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a_ ) def __A ( self : Optional[int] ): self.assertIn(a_ , self.tokenizer.all_special_ids ) # fmt: off A_ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: on A_ = self.tokenizer.decode(a_ , skip_special_tokens=a_ ) A_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ ) self.assertNotIn(self.tokenizer.eos_token , a_ ) def __A ( self : Optional[int] ): A_ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , a_ ) A_ = 10 A_ = self.tokenizer(a_ , max_length=a_ , truncation=a_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , a_ ) self.assertEqual(len(a_ ) , a_ ) def __A ( self : List[Any] ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [256203, 3] ) def __A ( self : List[str] ): A_ = tempfile.mkdtemp() A_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) A_ = NllbTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a_ ) @require_torch def __A ( self : Any ): A_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) A_ = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(a_ , a_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) A_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a_ ) self.assertEqual(a_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __A ( self : List[str] ): A_ = self.tokenizer(self.src_text , padding=a_ , truncation=a_ , max_length=3 , return_tensors="pt" ) A_ = self.tokenizer( text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=10 , return_tensors="pt" ) A_ = targets['''input_ids'''] A_ = shift_tokens_right( a_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self : Optional[Any] ): A_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(a_ ) , { # A, test, EOS, en_XX "input_ids": [[256047, 70, 7356, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 256057, } , ) @require_torch def __A ( self : Any ): A_ = True A_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] ) A_ = False A_ = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
352
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a :Union[str, Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[int] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
329
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Any = logging.get_logger(__name__) __a :List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class _a ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" _lowerCamelCase : Any = 'mvp' _lowerCamelCase : Optional[int] = ['past_key_values'] _lowerCamelCase : Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=50267 , UpperCAmelCase : int=1024 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Any=4096 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Union[str, Any]=4096 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Any=1024 , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=True , UpperCAmelCase : Any=1 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=100 , UpperCAmelCase : Tuple=800 , **UpperCAmelCase : Any , ): A_ = vocab_size A_ = max_position_embeddings A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = classifier_dropout A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = use_prompt A_ = prompt_length A_ = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , snake_case__ ): A_ = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' "The config can simply be saved and uploaded again to be fixed." )
353
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __snake_case ( __UpperCamelCase : Union[str, Any] ): """simple docstring""" if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ): return False return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule ) def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ): """simple docstring""" A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) A_ = is_compiled_module(__UpperCamelCase ) if is_compiled: A_ = model A_ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = model.module if not keep_fpaa_wrapper: A_ = getattr(__UpperCamelCase ,"forward" ) A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase ) if original_forward is not None: while hasattr(__UpperCamelCase ,"__wrapped__" ): A_ = forward.__wrapped__ if forward == original_forward: break A_ = forward if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ): convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase ) if is_compiled: A_ = model A_ = compiled_model return model def __snake_case ( ): """simple docstring""" PartialState().wait_for_everyone() def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(__UpperCamelCase ,__UpperCamelCase ) elif PartialState().local_process_index == 0: torch.save(__UpperCamelCase ,__UpperCamelCase ) @contextmanager def __snake_case ( **__UpperCamelCase : Any ): """simple docstring""" for key, value in kwargs.items(): A_ = str(__UpperCamelCase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __snake_case ( __UpperCamelCase : Optional[Any] ): """simple docstring""" if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ): A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase ) if hasattr(__UpperCamelCase ,"__qualname__" ): return obj.__qualname__ if hasattr(__UpperCamelCase ,"__name__" ): return obj.__name__ return str(__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ): """simple docstring""" for key, value in source.items(): if isinstance(__UpperCamelCase ,__UpperCamelCase ): A_ = destination.setdefault(__UpperCamelCase ,{} ) merge_dicts(__UpperCamelCase ,__UpperCamelCase ) else: A_ = value return destination def __snake_case ( __UpperCamelCase : int = None ): """simple docstring""" if port is None: A_ = 2_9500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
329
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a :List[str] = { 'configuration_table_transformer': [ 'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TableTransformerConfig', 'TableTransformerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TableTransformerForObjectDetection', 'TableTransformerModel', 'TableTransformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : int ): A_ = tempfile.mkdtemp() A_ = BlipImageProcessor() A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer def __A ( self : Optional[Any] , **UpperCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Dict ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : Any ): A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Dict ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : Optional[Any] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
329
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _a : """simple docstring""" def __init__( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : int=16 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple=36 , UpperCAmelCase : int="gelu" , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Dict=512 , UpperCAmelCase : str=16 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=4 , UpperCAmelCase : str=None , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def __A ( self : Union[str, Any] ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : Optional[Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , ) def __A ( self : Any ): A_ = self.get_config() A_ = 300 return config def __A ( self : Optional[int] ): ( A_ ) = self.prepare_config_and_inputs() A_ = True A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ): A_ = MraModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) A_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) A_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , ): A_ = True A_ = MraModel(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , ) A_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , ) A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Any ): A_ = MraForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : str ): A_ = MraForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ): A_ = self.num_labels A_ = MraForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] ): A_ = self.num_labels A_ = MraForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] ): A_ = self.num_choices A_ = MraForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ = model( SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self : List[Any] ): A_ = self.prepare_config_and_inputs() ( A_ ) = config_and_inputs A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _lowerCamelCase : Tuple = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : List[str] = False _lowerCamelCase : List[Any] = False _lowerCamelCase : List[Any] = False _lowerCamelCase : Optional[int] = False _lowerCamelCase : List[Any] = () def __A ( self : Tuple ): A_ = MraModelTester(self ) A_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def __A ( self : List[str] ): self.config_tester.run_common_tests() def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __A ( self : str ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __A ( self : int ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ ) @slow def __A ( self : Any ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = MraModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="MRA does not output attentions" ) def __A ( self : List[str] ): return @require_torch class _a ( unittest.TestCase ): """simple docstring""" @slow def __A ( self : List[str] ): A_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" ) A_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A_ = model(SCREAMING_SNAKE_CASE_ )[0] A_ = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) A_ = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def __A ( self : Any ): A_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" ) A_ = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): A_ = model(SCREAMING_SNAKE_CASE_ )[0] A_ = 50265 A_ = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) A_ = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def __A ( self : Optional[Any] ): A_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" ) A_ = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): A_ = model(SCREAMING_SNAKE_CASE_ )[0] A_ = 50265 A_ = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ ) A_ = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
355
import math __a :Union[str, Any] = 10 __a :Union[str, Any] = 7 __a :int = BALLS_PER_COLOUR * NUM_COLOURS def __snake_case ( __UpperCamelCase : int = 20 ): """simple docstring""" A_ = math.comb(__UpperCamelCase ,__UpperCamelCase ) A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase ) A_ = NUM_COLOURS * (1 - missing_colour / total) return f'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
329
0
from __future__ import annotations __a :Optional[Any] = [True] * 100_0001 __a :List[str] = 2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): __a :Dict = False i += 1 def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return seive[n] def __snake_case ( __UpperCamelCase : int ): """simple docstring""" return any(digit in "02468" for digit in str(lowercase__ ) ) def __snake_case ( __UpperCamelCase : int = 100_0000 ): """simple docstring""" A_ = [2] # result already includes the number 2. for num in range(3 ,limit + 1 ,2 ): if is_prime(lowercase__ ) and not contains_an_even_digit(lowercase__ ): A_ = str(lowercase__ ) A_ = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase__ ) )] if all(is_prime(lowercase__ ) for i in list_nums ): result.append(lowercase__ ) return result def __snake_case ( ): """simple docstring""" return len(find_circular_primes() ) if __name__ == "__main__": print(F"{len(find_circular_primes()) = }")
356
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __a :Optional[Any] = logging.get_logger(__name__) __a :Any = {'vocab_file': 'vocab.txt'} __a :Any = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } __a :List[str] = { 'YituTech/conv-bert-base': 512, 'YituTech/conv-bert-medium-small': 512, 'YituTech/conv-bert-small': 512, } __a :List[str] = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = VOCAB_FILES_NAMES _lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = ConvBertTokenizer def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ): super().__init__( UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars ): A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**UpperCAmelCase ) A_ = do_lower_case def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ): A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ): A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase )
329
0