code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
__a :List[Any] = random.Random()
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=1.0 ,__UpperCamelCase : str=None ,__UpperCamelCase : Union[str, Any]=None ):
"""simple docstring"""
if rng is None:
A_ = global_rng
A_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : str=7 , UpperCAmelCase : List[str]=400 , UpperCAmelCase : Tuple=2000 , UpperCAmelCase : Optional[Any]=24 , UpperCAmelCase : Union[str, Any]=24 , UpperCAmelCase : str=0.0 , UpperCAmelCase : str=16000 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[Any]=True , ):
A_ = parent
A_ = batch_size
A_ = min_seq_length
A_ = max_seq_length
A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A_ = feature_size
A_ = num_mel_bins
A_ = padding_value
A_ = sampling_rate
A_ = return_attention_mask
A_ = do_normalize
def __A ( self : List[str] ):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __A ( self : str , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[Any]=False ):
def _flatten(UpperCAmelCase : int ):
return list(itertools.chain(*UpperCAmelCase ) )
if equal_length:
A_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A_ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A_ = [np.asarray(UpperCAmelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Dict = SpeechaTextFeatureExtractor if is_speech_available() else None
def __A ( self : Dict ):
A_ = SpeechaTextFeatureExtractionTester(self )
def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] ):
self.assertTrue(np.all(np.mean(UpperCAmelCase , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) )
def __A ( self : Optional[Any] ):
# Tests that all call wrap to encode_plus and batch_encode_plus
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = [np.asarray(UpperCAmelCase ) for speech_input in speech_inputs]
# Test feature size
A_ = feature_extractor(UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
A_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features
A_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
# Test batched
A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features
A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features
for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A_ = np.asarray(UpperCAmelCase )
A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features
A_ = feature_extractor(UpperCAmelCase , return_tensors="np" ).input_features
for enc_seq_a, enc_seq_a in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertTrue(np.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
def __A ( self : Dict ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = ["longest", "max_length", "do_not_pad"]
A_ = [None, 16, None]
for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ):
A_ = feature_extractor(
UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , return_attention_mask=UpperCAmelCase )
A_ = inputs.input_features
A_ = inputs.attention_mask
A_ = [np.sum(UpperCAmelCase ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __A ( self : Any ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = ["longest", "max_length", "do_not_pad"]
A_ = [None, 16, None]
for max_length, padding in zip(UpperCAmelCase , UpperCAmelCase ):
A_ = feature_extractor(
UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase )
A_ = inputs.input_features
A_ = inputs.attention_mask
A_ = [np.sum(UpperCAmelCase ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def __A ( self : Any ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = feature_extractor(
UpperCAmelCase , padding="max_length" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , )
A_ = inputs.input_features
A_ = inputs.attention_mask
A_ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def __A ( self : Union[str, Any] ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = feature_extractor(
UpperCAmelCase , padding="longest" , max_length=4 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , )
A_ = inputs.input_features
A_ = inputs.attention_mask
A_ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = feature_extractor(
UpperCAmelCase , padding="longest" , max_length=16 , truncation=UpperCAmelCase , return_tensors="np" , return_attention_mask=UpperCAmelCase , )
A_ = inputs.input_features
A_ = inputs.attention_mask
A_ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def __A ( self : Optional[int] ):
import torch
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = np.random.rand(100 , 32 ).astype(np.floataa )
A_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
A_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __A ( self : Optional[Any] , UpperCAmelCase : int ):
from datasets import load_dataset
A_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" )
# automatic decoding with librispeech
A_ = ds.sort("id" ).select(range(UpperCAmelCase ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def __A ( self : str ):
# fmt: off
A_ = np.array([
-1.5_745, -1.7_713, -1.7_020, -1.6_069, -1.2_250, -1.1_105, -0.9_072, -0.8_241,
-1.2_310, -0.8_098, -0.3_320, -0.4_101, -0.7_985, -0.4_996, -0.8_213, -0.9_128,
-1.0_420, -1.1_286, -1.0_440, -0.7_999, -0.8_405, -1.2_275, -1.5_443, -1.4_625,
] )
# fmt: on
A_ = self._load_datasamples(1 )
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = feature_extractor(UpperCAmelCase , return_tensors="pt" ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase , atol=1E-4 ) )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
from collections.abc import Callable
def __snake_case ( __UpperCamelCase : Callable[[float], float] ,__UpperCamelCase : float ,__UpperCamelCase : float ):
"""simple docstring"""
A_ = a
A_ = b
if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function
return a
elif function(__UpperCamelCase ) == 0:
return b
elif (
function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("could not find root in given interval." )
else:
A_ = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(__UpperCamelCase ) == 0:
return mid
elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0:
A_ = mid
else:
A_ = mid
A_ = start + (end - start) / 2.0
return mid
def __snake_case ( __UpperCamelCase : float ):
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
class _a :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : Any ):
# we need a list not a string, so do something to change the type
A_ = arr.split("," )
def __A ( self : Union[str, Any] ):
A_ = [int(self.array[0] )] * len(self.array )
A_ = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
A_ = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
A_ = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
__a :str = input('please input some numbers:')
__a :int = SubArray(whole_array)
__a :Any = array.solve_sub_array()
print(('the results is:', re))
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b"
A_ = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b"
A_ = max(len(__UpperCamelCase ) ,len(__UpperCamelCase ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) ,b_binary.zfill(__UpperCamelCase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
def __snake_case ( __UpperCamelCase : int = 5000_0000 ):
"""simple docstring"""
A_ = set()
A_ = int((limit - 24) ** (1 / 2) )
A_ = set(range(3 ,prime_square_limit + 1 ,2 ) )
primes.add(2 )
for p in range(3 ,prime_square_limit + 1 ,2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p ,prime_square_limit + 1 ,__UpperCamelCase ) ) )
for primea in primes:
A_ = primea * primea
for primea in primes:
A_ = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
A_ = primea * primea * primea * primea
A_ = square + cube + tetr
if total >= limit:
break
ret.add(__UpperCamelCase )
return len(__UpperCamelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
import os
import tempfile
import unittest
import numpy as np
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline
@require_flax
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Union[str, Any] ):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
A_ = FlaxDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase , cache_dir=UpperCAmelCase )
A_ = [t[-1] for t in os.walk(os.path.join(UpperCAmelCase , os.listdir(UpperCAmelCase )[0] , "snapshots" ) )]
A_ = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a PyTorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin
assert not any(f.endswith(".bin" ) for f in files )
@slow
@require_flax
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Dict ):
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe" , safety_checker=UpperCAmelCase )
A_ = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
A_ = jax.random.PRNGKey(0 )
A_ = 4
A_ = jax.device_count()
A_ = num_samples * [prompt]
A_ = pipeline.prepare_inputs(UpperCAmelCase )
# shard inputs and rng
A_ = replicate(UpperCAmelCase )
A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 64, 64, 3)
if jax.device_count() == 8:
assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3
assert np.abs(np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1
A_ = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) )
assert len(UpperCAmelCase ) == num_samples
def __A ( self : Union[str, Any] ):
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="flax" , safety_checker=UpperCAmelCase )
A_ = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
A_ = jax.random.PRNGKey(0 )
A_ = 50
A_ = jax.device_count()
A_ = num_samples * [prompt]
A_ = pipeline.prepare_inputs(UpperCAmelCase )
# shard inputs and rng
A_ = replicate(UpperCAmelCase )
A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3
assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1
def __A ( self : List[str] ):
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase )
A_ = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
A_ = jax.random.PRNGKey(0 )
A_ = 50
A_ = jax.device_count()
A_ = num_samples * [prompt]
A_ = pipeline.prepare_inputs(UpperCAmelCase )
# shard inputs and rng
A_ = replicate(UpperCAmelCase )
A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3
assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1
def __A ( self : Union[str, Any] ):
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa )
A_ = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
A_ = jax.random.PRNGKey(0 )
A_ = 50
A_ = jax.device_count()
A_ = num_samples * [prompt]
A_ = pipeline.prepare_inputs(UpperCAmelCase )
# shard inputs and rng
A_ = replicate(UpperCAmelCase )
A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3
assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1
def __A ( self : Dict ):
A_ = FlaxDDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , set_alpha_to_one=UpperCAmelCase , steps_offset=1 , )
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , scheduler=UpperCAmelCase , safety_checker=UpperCAmelCase , )
A_ = scheduler.create_state()
A_ = scheduler_state
A_ = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
A_ = jax.random.PRNGKey(0 )
A_ = 50
A_ = jax.device_count()
A_ = num_samples * [prompt]
A_ = pipeline.prepare_inputs(UpperCAmelCase )
# shard inputs and rng
A_ = replicate(UpperCAmelCase )
A_ = jax.random.split(UpperCAmelCase , UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
if jax.device_count() == 8:
assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3
assert np.abs((np.abs(UpperCAmelCase , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1
def __A ( self : str ):
A_ = (
"A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of"
" field, close up, split lighting, cinematic"
)
A_ = jax.device_count()
A_ = num_samples * [prompt]
A_ = jax.random.split(jax.random.PRNGKey(0 ) , UpperCAmelCase )
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , )
A_ = replicate(UpperCAmelCase )
A_ = pipeline.prepare_inputs(UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images.shape == (num_samples, 1, 512, 512, 3)
A_ = images[2, 0, 256, 10:17, 1]
# With memory efficient attention
A_ , A_ = FlaxStableDiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4" , revision="bf16" , dtype=jnp.bfloataa , safety_checker=UpperCAmelCase , use_memory_efficient_attention=UpperCAmelCase , )
A_ = replicate(UpperCAmelCase )
A_ = pipeline.prepare_inputs(UpperCAmelCase )
A_ = shard(UpperCAmelCase )
A_ = pipeline(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , jit=UpperCAmelCase ).images
assert images_eff.shape == (num_samples, 1, 512, 512, 3)
A_ = images[2, 0, 256, 10:17, 1]
# I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum`
# over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now.
assert abs(slice_eff - slice ).max() < 1E-2
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :int = logging.get_logger(__name__)
__a :int = {
'huggingface/time-series-transformer-tourism-monthly': (
'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json'
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = 'time_series_transformer'
_lowerCamelCase : Optional[int] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self : str , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : str = "student_t" , UpperCAmelCase : str = "nll" , UpperCAmelCase : int = 1 , UpperCAmelCase : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCAmelCase : Optional[Union[str, bool]] = "mean" , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : Optional[List[int]] = None , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : bool = True , UpperCAmelCase : str = "gelu" , UpperCAmelCase : int = 64 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 100 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : Union[str, Any]=True , **UpperCAmelCase : List[str] , ):
# time series specific configuration
A_ = prediction_length
A_ = context_length or prediction_length
A_ = distribution_output
A_ = loss
A_ = input_size
A_ = num_time_features
A_ = lags_sequence
A_ = scaling
A_ = num_dynamic_real_features
A_ = num_static_real_features
A_ = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
"The cardinality should be a list of the same length as `num_static_categorical_features`" )
A_ = cardinality
else:
A_ = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(UpperCAmelCase ) != num_static_categorical_features:
raise ValueError(
"The embedding dimension should be a list of the same length as `num_static_categorical_features`" )
A_ = embedding_dimension
else:
A_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
A_ = num_parallel_samples
# Transformer architecture configuration
A_ = input_size * len(UpperCAmelCase ) + self._number_of_features
A_ = d_model
A_ = encoder_attention_heads
A_ = decoder_attention_heads
A_ = encoder_ffn_dim
A_ = decoder_ffn_dim
A_ = encoder_layers
A_ = decoder_layers
A_ = dropout
A_ = attention_dropout
A_ = activation_dropout
A_ = encoder_layerdrop
A_ = decoder_layerdrop
A_ = activation_function
A_ = init_std
A_ = use_cache
super().__init__(is_encoder_decoder=UpperCAmelCase , **UpperCAmelCase )
@property
def __A ( self : str ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
from collections import defaultdict
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = first_str.lower().strip()
A_ = second_str.lower().strip()
# Remove whitespace
A_ = first_str.replace(" " ,"" )
A_ = second_str.replace(" " ,"" )
# Strings of different lengths are not anagrams
if len(__UpperCamelCase ) != len(__UpperCamelCase ):
return False
# Default values for count should be 0
A_ = defaultdict(__UpperCamelCase )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(__UpperCamelCase ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
__a :Any = input('Enter the first string ').strip()
__a :Any = input('Enter the second string ').strip()
__a :Optional[int] = check_anagrams(input_a, input_b)
print(F"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
import requests
__a :List[Any] = '' # <-- Put your OpenWeatherMap appid here!
__a :str = 'https://api.openweathermap.org/data/2.5/'
def __snake_case ( __UpperCamelCase : str = "Chicago" ,__UpperCamelCase : str = APPID ):
"""simple docstring"""
return requests.get(URL_BASE + "weather" ,params=locals() ).json()
def __snake_case ( __UpperCamelCase : str = "Kolkata, India" ,__UpperCamelCase : str = APPID ):
"""simple docstring"""
return requests.get(URL_BASE + "forecast" ,params=locals() ).json()
def __snake_case ( __UpperCamelCase : float = 55.68 ,__UpperCamelCase : float = 12.57 ,__UpperCamelCase : str = APPID ):
"""simple docstring"""
return requests.get(URL_BASE + "onecall" ,params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
__a :Tuple = input('Enter a location:').strip()
if location:
pprint(current_weather(location))
else:
break
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
import inspect
import unittest
from typing import List
import numpy as np
from transformers import EfficientFormerConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
)
from transformers.models.efficientformer.modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import EfficientFormerImageProcessor
class _a :
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int = 13 , UpperCAmelCase : int = 64 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 3 , UpperCAmelCase : bool = True , UpperCAmelCase : bool = True , UpperCAmelCase : int = 128 , UpperCAmelCase : int=[16, 32, 64, 128] , UpperCAmelCase : int = 7 , UpperCAmelCase : int = 4 , UpperCAmelCase : int = 37 , UpperCAmelCase : str = "gelu" , UpperCAmelCase : float = 0.1 , UpperCAmelCase : float = 0.1 , UpperCAmelCase : int = 10 , UpperCAmelCase : float = 0.02 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 128 , UpperCAmelCase : List[int] = [2, 2, 2, 2] , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , ):
A_ = parent
A_ = batch_size
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = is_training
A_ = use_labels
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = type_sequence_label_size
A_ = initializer_range
A_ = encoder_stride
A_ = num_attention_outputs
A_ = embed_dim
A_ = embed_dim + 1
A_ = resolution
A_ = depths
A_ = hidden_sizes
A_ = dim
A_ = mlp_expansion_ratio
def __A ( self : Dict ):
A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = self.get_config()
return config, pixel_values, labels
def __A ( self : Dict ):
return EfficientFormerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , )
def __A ( self : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ):
A_ = TFEfficientFormerModel(config=UpperCAmelCase )
A_ = model(UpperCAmelCase , training=UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ):
A_ = self.type_sequence_label_size
A_ = TFEfficientFormerForImageClassification(UpperCAmelCase )
A_ = model(UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A_ = 1
A_ = TFEfficientFormerForImageClassification(UpperCAmelCase )
A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self : Any ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ = config_and_inputs
A_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : List[Any] = (
(
TFEfficientFormerModel,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerForImageClassification,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Union[str, Any] = (
{
'feature-extraction': TFEfficientFormerModel,
'image-classification': (
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
),
}
if is_tf_available()
else {}
)
_lowerCamelCase : Optional[Any] = False
_lowerCamelCase : Tuple = False
_lowerCamelCase : Dict = False
_lowerCamelCase : Tuple = False
_lowerCamelCase : Optional[int] = False
def __A ( self : int ):
A_ = TFEfficientFormerModelTester(self )
A_ = ConfigTester(
self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def __A ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="EfficientFormer does not use inputs_embeds" )
def __A ( self : Union[str, Any] ):
pass
@unittest.skip(reason="EfficientFormer does not support input and output embeddings" )
def __A ( self : List[str] ):
pass
def __A ( self : List[str] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = model_class(UpperCAmelCase )
A_ = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ = [*signature.parameters.keys()]
A_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def __A ( self : List[Any] ):
def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ):
A_ = model_class(UpperCAmelCase )
A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase )
A_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
if hasattr(self.model_tester , "encoder_seq_length" ):
A_ = self.model_tester.encoder_seq_length
if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1:
A_ = seq_length * self.model_tester.chunk_length
else:
A_ = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
if config.is_encoder_decoder:
A_ = outputs.decoder_hidden_states
self.asseretIsInstance(UpperCAmelCase , (list, tuple) )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "decoder_seq_length" , UpperCAmelCase )
self.assertListEqual(
list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , )
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int]=False ):
A_ = super()._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
if return_labels:
if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
@unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" )
def __A ( self : Optional[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
@slow
def __A ( self : Dict ):
for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "seq_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "encoder_seq_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "chunk_length" , UpperCAmelCase )
if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ):
A_ = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase )
A_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) , training=UpperCAmelCase )
A_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_attention_outputs )
if chunk_length is not None:
self.assertListEqual(
list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , )
else:
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , )
def __A ( self : int ):
# We use a simplified version of this test for EfficientFormer because it requires training=False
# and Keras refuses to let us force that during functional construction
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Prepare our model
A_ = model_class(UpperCAmelCase )
# These are maximally general inputs for the model, with multiple None dimensions
# Hopefully this will catch any conditionals that fail for flexible shapes
A_ = {
key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase )
for key, val in model.input_signature.items()
if key in model.dummy_inputs
}
A_ = model(UpperCAmelCase )
self.assertTrue(outputs_dict is not None )
def __snake_case ( ):
"""simple docstring"""
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : List[str] ):
return (
EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" )
if is_vision_available()
else None
)
@slow
def __A ( self : List[Any] ):
A_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" )
# forward pass
A_ = model(**UpperCAmelCase , training=UpperCAmelCase )
# verify the logits
A_ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
A_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self : Any ):
A_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained(
"snap-research/efficientformer-l1-300" )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="tf" )
# forward pass
A_ = model(**UpperCAmelCase , training=UpperCAmelCase )
# verify the logits
A_ = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
A_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
from random import shuffle
import tensorflow as tf
from numpy import array
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = int(__UpperCamelCase )
assert noofclusters < len(__UpperCamelCase )
# Find out the dimensionality
A_ = len(vectors[0] )
# Will help select random centroids from among the available vectors
A_ = list(range(len(__UpperCamelCase ) ) )
shuffle(__UpperCamelCase )
# GRAPH OF COMPUTATION
# We initialize a new graph and set it as the default during each run
# of this algorithm. This ensures that as this function is called
# multiple times, the default graph doesn't keep getting crowded with
# unused ops and Variables from previous function calls.
A_ = tf.Graph()
with graph.as_default():
# SESSION OF COMPUTATION
A_ = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
A_ = [
tf.Variable(vectors[vector_indices[i]] ) for i in range(__UpperCamelCase )
]
##These nodes will assign the centroid Variables the appropriate
##values
A_ = tf.placeholder("float64" ,[dim] )
A_ = []
for centroid in centroids:
cent_assigns.append(tf.assign(__UpperCamelCase ,__UpperCamelCase ) )
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
A_ = [tf.Variable(0 ) for i in range(len(__UpperCamelCase ) )]
##These nodes will assign an assignment Variable the appropriate
##value
A_ = tf.placeholder("int32" )
A_ = []
for assignment in assignments:
cluster_assigns.append(tf.assign(__UpperCamelCase ,__UpperCamelCase ) )
##Now lets construct the node that will compute the mean
# The placeholder for the input
A_ = tf.placeholder("float" ,[None, dim] )
# The Node/op takes the input and computes a mean along the 0th
# dimension, i.e. the list of input vectors
A_ = tf.reduce_mean(__UpperCamelCase ,0 )
##Node for computing Euclidean distances
# Placeholders for input
A_ = tf.placeholder("float" ,[dim] )
A_ = tf.placeholder("float" ,[dim] )
A_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(__UpperCamelCase ,__UpperCamelCase ) ,2 ) ) )
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
# Placeholder for input
A_ = tf.placeholder("float" ,[noofclusters] )
A_ = tf.argmin(__UpperCamelCase ,0 )
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
A_ = tf.initialize_all_variables()
# Initialize all variables
sess.run(__UpperCamelCase )
##CLUSTERING ITERATIONS
# Now perform the Expectation-Maximization steps of K-Means clustering
# iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion.
A_ = 100
for _ in range(__UpperCamelCase ):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
# Iterate over each vector
for vector_n in range(len(__UpperCamelCase ) ):
A_ = vectors[vector_n]
# Compute Euclidean distance between this vector and each
# centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
# cluster assignment node.
A_ = [
sess.run(__UpperCamelCase ,feed_dict={va: vect, va: sess.run(__UpperCamelCase )} )
for centroid in centroids
]
# Now use the cluster assignment node, with the distances
# as the input
A_ = sess.run(
__UpperCamelCase ,feed_dict={centroid_distances: distances} )
# Now assign the value to the appropriate state variable
sess.run(
cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} )
##MAXIMIZATION STEP
# Based on the expected state computed from the Expectation Step,
# compute the locations of the centroids so as to maximize the
# overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(__UpperCamelCase ):
# Collect all the vectors assigned to this cluster
A_ = [
vectors[i]
for i in range(len(__UpperCamelCase ) )
if sess.run(assignments[i] ) == cluster_n
]
# Compute new centroid location
A_ = sess.run(
__UpperCamelCase ,feed_dict={mean_input: array(__UpperCamelCase )} )
# Assign value to appropriate variable
sess.run(
cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} )
# Return centroids and assignments
A_ = sess.run(__UpperCamelCase )
A_ = sess.run(__UpperCamelCase )
return centroids, assignments
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
if b == 0:
return (1, 0)
((A_) , (A_)) = extended_euclid(__UpperCamelCase ,a % b )
A_ = a // b
return (y, x - k * y)
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
((A_) , (A_)) = extended_euclid(__UpperCamelCase ,__UpperCamelCase )
A_ = na * na
A_ = ra * x * na + ra * y * na
return (n % m + m) % m
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
((A_) , (A_)) = extended_euclid(__UpperCamelCase ,__UpperCamelCase )
if b < 0:
A_ = (b % n + n) % n
return b
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
A_ , A_ = invert_modulo(__UpperCamelCase ,__UpperCamelCase ), invert_modulo(__UpperCamelCase ,__UpperCamelCase )
A_ = na * na
A_ = ra * x * na + ra * y * na
return (n % m + m) % m
if __name__ == "__main__":
from doctest import testmod
testmod(name='chinese_remainder_theorem', verbose=True)
testmod(name='chinese_remainder_theorem2', verbose=True)
testmod(name='invert_modulo', verbose=True)
testmod(name='extended_euclid', verbose=True)
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__a :Optional[Any] = logging.get_logger(__name__)
__a :Optional[Any] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__a :List[str] = {
'vocab_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'
},
'merges_file': {
'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'
},
'tokenizer_config_file': {
'facebook/blenderbot_small-90M': (
'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'
)
},
}
__a :List[str] = {'facebook/blenderbot_small-90M': 512}
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
A_ = set()
A_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A_ = char
A_ = set(__UpperCamelCase )
return pairs
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES
_lowerCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : List[Any] = ['input_ids', 'attention_mask']
def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any="__start__" , UpperCAmelCase : Any="__end__" , UpperCAmelCase : Tuple="__unk__" , UpperCAmelCase : int="__null__" , **UpperCAmelCase : Dict , ):
super().__init__(unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , pad_token=UpperCAmelCase , **UpperCAmelCase )
with open(UpperCAmelCase , encoding="utf-8" ) as vocab_handle:
A_ = json.load(UpperCAmelCase )
A_ = {v: k for k, v in self.encoder.items()}
with open(UpperCAmelCase , encoding="utf-8" ) as merges_handle:
A_ = merges_handle.read().split("\n" )[1:-1]
A_ = [tuple(merge.split() ) for merge in merges]
A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
A_ = {}
@property
def __A ( self : Tuple ):
return len(self.encoder )
def __A ( self : Union[str, Any] ):
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : str , UpperCAmelCase : str ):
if token in self.cache:
return self.cache[token]
A_ = re.sub("([.,!?()])" , R" \1" , UpperCAmelCase )
A_ = re.sub("(')" , R" \1 " , UpperCAmelCase )
A_ = re.sub(R"\s{2,}" , " " , UpperCAmelCase )
if "\n" in token:
A_ = token.replace("\n" , " __newln__" )
A_ = token.split(" " )
A_ = []
for token in tokens:
if not len(UpperCAmelCase ):
continue
A_ = token.lower()
A_ = tuple(UpperCAmelCase )
A_ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
A_ = get_pairs(UpperCAmelCase )
if not pairs:
words.append(UpperCAmelCase )
continue
while True:
A_ = min(UpperCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(UpperCAmelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
A_ , A_ = bigram
A_ = []
A_ = 0
while i < len(UpperCAmelCase ):
try:
A_ = word.index(UpperCAmelCase , UpperCAmelCase )
new_word.extend(word[i:j] )
A_ = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A_ = tuple(UpperCAmelCase )
A_ = new_word
if len(UpperCAmelCase ) == 1:
break
else:
A_ = get_pairs(UpperCAmelCase )
A_ = "@@ ".join(UpperCAmelCase )
A_ = word[:-4]
A_ = word
words.append(UpperCAmelCase )
return " ".join(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : str ):
A_ = []
A_ = re.findall(R"\S+\n?" , UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(UpperCAmelCase ).split(" " ) ) )
return split_tokens
def __A ( self : Any , UpperCAmelCase : str ):
A_ = token.lower()
return self.encoder.get(UpperCAmelCase , self.encoder.get(self.unk_token ) )
def __A ( self : int , UpperCAmelCase : int ):
return self.decoder.get(UpperCAmelCase , self.unk_token )
def __A ( self : Union[str, Any] , UpperCAmelCase : List[str] ):
A_ = " ".join(UpperCAmelCase ).replace("@@ " , "" ).strip()
return out_string
def __A ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(UpperCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
A_ = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
A_ = os.path.join(
UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase , ensure_ascii=UpperCAmelCase ) + "\n" )
A_ = 0
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
A_ = token_index
writer.write(" ".join(UpperCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class _a ( snake_case_ ):
"""simple docstring"""
@staticmethod
@abstractmethod
def __A ( UpperCAmelCase : ArgumentParser ):
raise NotImplementedError()
@abstractmethod
def __A ( self : int ):
raise NotImplementedError()
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__a :Union[str, Any] = {
'configuration_efficientformer': [
'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientFormerConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Dict = ['EfficientFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[Any] = [
'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientFormerForImageClassification',
'EfficientFormerForImageClassificationWithTeacher',
'EfficientFormerModel',
'EfficientFormerPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Tuple = [
'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFEfficientFormerForImageClassification',
'TFEfficientFormerForImageClassificationWithTeacher',
'TFEfficientFormerModel',
'TFEfficientFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
__a :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
from collections import defaultdict
from math import ceil, sqrt
def __snake_case ( __UpperCamelCase : int = 100_0000 ,__UpperCamelCase : int = 10 ):
"""simple docstring"""
A_ = defaultdict(__UpperCamelCase )
for outer_width in range(3 ,(t_limit // 4) + 2 ):
if outer_width * outer_width > t_limit:
A_ = max(
ceil(sqrt(outer_width * outer_width - t_limit ) ) ,1 )
else:
A_ = 1
hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2
for hole_width in range(__UpperCamelCase ,outer_width - 1 ,2 ):
count[outer_width * outer_width - hole_width * hole_width] += 1
return sum(1 for n in count.values() if 1 <= n <= 10 )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class _a :
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=99 , UpperCAmelCase : Union[str, Any]=13 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : Optional[int]=7 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Any=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=2 , UpperCAmelCase : Any=32 , UpperCAmelCase : Dict=4 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Dict=None , ):
A_ = parent
A_ = batch_size
A_ = decoder_seq_length
# For common tests
A_ = self.decoder_seq_length
A_ = is_training
A_ = use_attention_mask
A_ = use_labels
A_ = vocab_size
A_ = d_model
A_ = d_model
A_ = decoder_layers
A_ = decoder_layers
A_ = decoder_ffn_dim
A_ = decoder_attention_heads
A_ = decoder_attention_heads
A_ = eos_token_id
A_ = bos_token_id
A_ = pad_token_id
A_ = decoder_start_token_id
A_ = use_cache
A_ = max_position_embeddings
A_ = None
A_ = decoder_seq_length
A_ = 2
A_ = 1
def __A ( self : List[Any] ):
A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
A_ = None
if self.use_attention_mask:
A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
A_ = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def __A ( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , ):
A_ = True
A_ = TrOCRDecoder(config=UpperCAmelCase ).to(UpperCAmelCase ).eval()
A_ = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
A_ = model(UpperCAmelCase , use_cache=UpperCAmelCase )
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase , use_cache=UpperCAmelCase )
self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) )
self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 )
A_ = outputs["past_key_values"]
# create hypothetical next token and extent to next_input_ids
A_ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
A_ = torch.cat([input_ids, next_tokens] , dim=-1 )
A_ = model(UpperCAmelCase )["last_hidden_state"]
A_ = model(UpperCAmelCase , past_key_values=UpperCAmelCase )["last_hidden_state"]
# select random slice
A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A_ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
A_ = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 )
def __A ( self : int ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ , A_ = config_and_inputs
A_ = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class _a ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
_lowerCamelCase : Tuple = (TrOCRForCausalLM,) if is_torch_available() else ()
_lowerCamelCase : List[str] = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {}
_lowerCamelCase : Dict = True
_lowerCamelCase : Dict = False
def __A ( self : Optional[int] ):
A_ = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCAmelCase )
A_ = ConfigTester(self , config_class=UpperCAmelCase )
def __A ( self : Optional[int] ):
pass
def __A ( self : Union[str, Any] ):
pass
def __A ( self : int ):
pass
def __A ( self : Union[str, Any] ):
self.config_tester.run_common_tests()
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCAmelCase )
def __A ( self : Any ):
return
@unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :)
def __A ( self : List[str] ):
pass
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = 0
A_ = 0
while num > 0:
A_ = num % 8
A_ = octal + (remainder * math.floor(math.pow(10 ,__UpperCamelCase ) ))
counter += 1
A_ = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f'''0o{int(__UpperCamelCase )}'''
def __snake_case ( ):
"""simple docstring"""
print("\n2 in octal is:" )
print(decimal_to_octal(2 ) ) # = 2
print("\n8 in octal is:" )
print(decimal_to_octal(8 ) ) # = 10
print("\n65 in octal is:" )
print(decimal_to_octal(65 ) ) # = 101
print("\n216 in octal is:" )
print(decimal_to_octal(216 ) ) # = 330
print("\n512 in octal is:" )
print(decimal_to_octal(512 ) ) # = 1000
print("\n" )
if __name__ == "__main__":
main()
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
assert isinstance(__UpperCamelCase ,__UpperCamelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" ,[False, True] )
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize(
"features" ,[
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
A_ = features.copy() if features else default_expected_features
A_ = (
Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
A_ = ParquetDatasetReader(__UpperCamelCase ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] )
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[str] ,__UpperCamelCase : Dict ):
"""simple docstring"""
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ,split=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize("path_type" ,[str, list] )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : str ,__UpperCamelCase : Any ):
"""simple docstring"""
if issubclass(__UpperCamelCase ,__UpperCamelCase ):
A_ = parquet_path
elif issubclass(__UpperCamelCase ,__UpperCamelCase ):
A_ = [parquet_path]
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_dataset(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : List[Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str]=("train",) ):
"""simple docstring"""
assert isinstance(__UpperCamelCase ,__UpperCamelCase )
for split in splits:
A_ = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize("keep_in_memory" ,[False, True] )
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Tuple ):
"""simple docstring"""
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
A_ = ParquetDatasetReader(
{"train": parquet_path} ,cache_dir=__UpperCamelCase ,keep_in_memory=__UpperCamelCase ).read()
_check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize(
"features" ,[
None,
{"col_1": "string", "col_2": "int64", "col_3": "float64"},
{"col_1": "string", "col_2": "string", "col_3": "string"},
{"col_1": "int32", "col_2": "int32", "col_3": "int32"},
{"col_1": "float32", "col_2": "float32", "col_3": "float32"},
] ,)
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
A_ = features.copy() if features else default_expected_features
A_ = (
Features({feature: Value(__UpperCamelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
A_ = ParquetDatasetReader({"train": parquet_path} ,features=__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase )
@pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] )
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if split:
A_ = {split: parquet_path}
else:
A_ = "train"
A_ = {"train": parquet_path, "test": parquet_path}
A_ = tmp_path / "cache"
A_ = {"col_1": "string", "col_2": "int64", "col_3": "float64"}
A_ = ParquetDatasetReader(__UpperCamelCase ,cache_dir=__UpperCamelCase ).read()
_check_parquet_datasetdict(__UpperCamelCase ,__UpperCamelCase ,splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = ParquetDatasetWriter(__UpperCamelCase ,tmp_path / "foo.parquet" )
assert writer.write() > 0
A_ = pq.ParquetFile(tmp_path / "foo.parquet" )
A_ = pf.read()
assert dataset.data.table == output_table
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = str(shared_datadir / "test_image_rgb.jpg" )
A_ = {"image": [image_path]}
A_ = Features({"image": Image()} )
A_ = Dataset.from_dict(__UpperCamelCase ,features=__UpperCamelCase )
A_ = ParquetDatasetWriter(__UpperCamelCase ,tmp_path / "foo.parquet" )
assert writer.write() > 0
A_ = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) )
assert dataset.features == reloaded_dataset.features
A_ = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) ,streaming=__UpperCamelCase ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
"feature, expected" ,[
(Features({"foo": Value("int32" )} ), None),
(Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ):
"""simple docstring"""
assert get_writer_batch_size(__UpperCamelCase ) == expected
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class _a :
"""simple docstring"""
_lowerCamelCase : int = XGLMConfig
_lowerCamelCase : Dict = {}
_lowerCamelCase : Tuple = 'gelu'
def __init__( self : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : str=14 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]=99 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Optional[int]=0.02 , ):
A_ = parent
A_ = batch_size
A_ = seq_length
A_ = is_training
A_ = use_input_mask
A_ = use_labels
A_ = vocab_size
A_ = d_model
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = ffn_dim
A_ = activation_function
A_ = activation_dropout
A_ = attention_dropout
A_ = max_position_embeddings
A_ = initializer_range
A_ = None
A_ = 0
A_ = 2
A_ = 1
def __A ( self : Union[str, Any] ):
return XGLMConfig.from_pretrained("facebook/xglm-564M" )
def __A ( self : Union[str, Any] ):
A_ = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = self.get_config()
A_ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def __A ( self : Tuple ):
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase , )
def __A ( self : Union[str, Any] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {
"input_ids": input_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Tuple = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_lowerCamelCase : str = (TFXGLMForCausalLM,) if is_tf_available() else ()
_lowerCamelCase : List[str] = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
_lowerCamelCase : Any = False
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Optional[Any] = False
def __A ( self : Optional[Any] ):
A_ = TFXGLMModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , n_embd=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
@slow
def __A ( self : str ):
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = TFXGLMModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skip(reason="Currently, model embeddings are going to undergo a major refactor." )
def __A ( self : str ):
super().test_resize_token_embeddings()
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : int , UpperCAmelCase : Tuple=True ):
A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
A_ = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
A_ = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
A_ = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase )
@slow
def __A ( self : int ):
A_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
tf.random.set_seed(0 )
A_ = tokenizer("Today is a nice day and" , return_tensors="tf" )
A_ = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(":/CPU:0" ):
A_ = model.generate(UpperCAmelCase , do_sample=UpperCAmelCase , seed=[7, 0] )
A_ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase )
A_ = (
"Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due"
)
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
@slow
def __A ( self : str ):
A_ = TFXGLMForCausalLM.from_pretrained("facebook/xglm-564M" )
A_ = XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
A_ = "left"
# use different length sentences to test batching
A_ = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When",
"Hello, my dog is a little",
]
A_ = tokenizer(UpperCAmelCase , return_tensors="tf" , padding=UpperCAmelCase )
A_ = inputs["input_ids"]
A_ = model.generate(input_ids=UpperCAmelCase , attention_mask=inputs["attention_mask"] , max_new_tokens=12 )
A_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids
A_ = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 )
A_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids
A_ = model.generate(input_ids=UpperCAmelCase , max_new_tokens=12 )
A_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
A_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase )
A_ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase )
A_ = [
"This is an extremelly long sentence that only exists to test the ability of the model to cope with "
"left-padding, such as in batched generation. The output for the sequence below should be the same "
"regardless of whether left padding is applied or not. When left padding is applied, the sequence will be "
"a single",
"Hello, my dog is a little bit of a shy one, but he is very friendly",
]
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , [non_padded_sentence, padded_sentence] )
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
__a :List[Any] = logging.get_logger(__name__)
__a :int = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = 'perceiver'
def __init__( self : str , UpperCAmelCase : Any=256 , UpperCAmelCase : str=1280 , UpperCAmelCase : str=768 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Dict=26 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : List[Any]=8 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]="kv" , UpperCAmelCase : str=1 , UpperCAmelCase : Union[str, Any]=1 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : str=1E-12 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[Any]=262 , UpperCAmelCase : Dict=2048 , UpperCAmelCase : List[Any]=56 , UpperCAmelCase : Dict=[368, 496] , UpperCAmelCase : int=16 , UpperCAmelCase : Optional[int]=1920 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : str=[1, 16, 224, 224] , **UpperCAmelCase : List[Any] , ):
super().__init__(**UpperCAmelCase )
A_ = num_latents
A_ = d_latents
A_ = d_model
A_ = num_blocks
A_ = num_self_attends_per_block
A_ = num_self_attention_heads
A_ = num_cross_attention_heads
A_ = qk_channels
A_ = v_channels
A_ = cross_attention_shape_for_attention
A_ = self_attention_widening_factor
A_ = cross_attention_widening_factor
A_ = hidden_act
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = layer_norm_eps
A_ = use_query_residual
# masked language modeling attributes
A_ = vocab_size
A_ = max_position_embeddings
# image classification attributes
A_ = image_size
# flow attributes
A_ = train_size
# multimodal autoencoding attributes
A_ = num_frames
A_ = audio_samples_per_frame
A_ = samples_per_patch
A_ = output_shape
class _a ( snake_case_ ):
"""simple docstring"""
@property
def __A ( self : Union[str, Any] ):
if self.task == "multiple-choice":
A_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
A_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
] )
@property
def __A ( self : List[Any] ):
return 1E-4
def __A ( self : Dict , UpperCAmelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 40 , UpperCAmelCase : int = 40 , ):
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(UpperCAmelCase , UpperCAmelCase ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A_ = compute_effective_axis_dimension(
UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
A_ = preprocessor.num_special_tokens_to_add(UpperCAmelCase )
A_ = compute_effective_axis_dimension(
UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
A_ = [" ".join(["a"] ) * seq_length] * batch_size
A_ = dict(preprocessor(UpperCAmelCase , return_tensors=UpperCAmelCase ) )
A_ = inputs.pop("input_ids" )
return inputs
elif isinstance(UpperCAmelCase , UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
A_ = compute_effective_axis_dimension(UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch )
A_ = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) )
A_ = inputs.pop("pixel_values" )
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : int = RobertaTokenizer
_lowerCamelCase : List[Any] = RobertaTokenizerFast
_lowerCamelCase : List[Any] = True
_lowerCamelCase : int = {'cls_token': '<s>'}
def __A ( self : Any ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
A_ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) )
A_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
A_ = {"unk_token": "<unk>"}
A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(UpperCAmelCase ) )
def __A ( self : Tuple , **UpperCAmelCase : Dict ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def __A ( self : Dict , **UpperCAmelCase : int ):
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase )
def __A ( self : Dict , UpperCAmelCase : str ):
A_ = "lower newer"
A_ = "lower newer"
return input_text, output_text
def __A ( self : Optional[int] ):
A_ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
A_ = "lower newer"
A_ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"]
A_ = tokenizer.tokenize(UpperCAmelCase ) # , add_prefix_space=True)
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokens + [tokenizer.unk_token]
A_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , UpperCAmelCase )
def __A ( self : str ):
A_ = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=UpperCAmelCase ) , [0, 31414, 232, 328, 2] )
self.assertListEqual(
tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=UpperCAmelCase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , )
@slow
def __A ( self : Optional[Any] ):
A_ = self.tokenizer_class.from_pretrained("roberta-base" )
A_ = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase )
A_ = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase )
A_ = tokenizer.encode(
"sequence builders" , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase )
A_ = tokenizer.encode(
"sequence builders" , "multi-sequence build" , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase )
A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __A ( self : int ):
A_ = self.get_tokenizer()
A_ = "Encode this sequence."
A_ = tokenizer.byte_encoder[" ".encode("utf-8" )[0]]
# Testing encoder arguments
A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase , add_prefix_space=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
tokenizer.add_special_tokens({"bos_token": "<s>"} )
A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
# Testing spaces after special tokens
A_ = "<mask>"
tokenizer.add_special_tokens(
{"mask_token": AddedToken(UpperCAmelCase , lstrip=UpperCAmelCase , rstrip=UpperCAmelCase )} ) # mask token has a left space
A_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase )
A_ = "Encode <mask> sequence"
A_ = "Encode <mask>sequence"
A_ = tokenizer.encode(UpperCAmelCase )
A_ = encoded.index(UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.encode(UpperCAmelCase )
A_ = encoded.index(UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : List[str] ):
pass
def __A ( self : Dict ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
A_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase )
A_ = "A, <mask> AllenNLP sentence."
A_ = tokenizer_r.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
A_ = tokenizer_p.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , )
A_ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] )
A_ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
self.assertSequenceEqual(
UpperCAmelCase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
def __A ( self : Dict ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
A_ = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
A_ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["add_prefix_space"] , UpperCAmelCase )
self.assertEqual(post_processor_state["add_prefix_space"] , UpperCAmelCase )
self.assertEqual(post_processor_state["trim_offsets"] , UpperCAmelCase )
def __A ( self : int ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A_ = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
A_ = f'''{text_of_1_token} {text_of_1_token}'''
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase ) + 1, len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(UpperCAmelCase ), len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
A_ = f''' {text}'''
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ) + 1, 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
A_ = self.rust_tokenizer_class.from_pretrained(
UpperCAmelCase , use_fast=UpperCAmelCase , add_prefix_space=UpperCAmelCase , trim_offsets=UpperCAmelCase )
A_ = tokenizer_r(UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(UpperCAmelCase ), 1 + len(UpperCAmelCase ) + 1 + len(UpperCAmelCase )) , )
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
import inspect
import unittest
from transformers import MobileViTVaConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel
from transformers.models.mobilevitva.modeling_mobilevitva import (
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST,
make_divisible,
)
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Optional[int] ):
A_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(UpperCAmelCase , "width_multiplier" ) )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Optional[int]=64 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=3 , UpperCAmelCase : Any="swish" , UpperCAmelCase : Tuple=3 , UpperCAmelCase : int=32 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Dict=10 , UpperCAmelCase : List[str]=None , UpperCAmelCase : int=0.25 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Tuple=0.0 , ):
A_ = parent
A_ = batch_size
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = make_divisible(512 * width_multiplier , divisor=8 )
A_ = hidden_act
A_ = conv_kernel_size
A_ = output_stride
A_ = classifier_dropout_prob
A_ = use_labels
A_ = is_training
A_ = num_labels
A_ = initializer_range
A_ = scope
A_ = width_multiplier
A_ = ffn_dropout
A_ = attn_dropout
def __A ( self : List[Any] ):
A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.num_labels )
A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
A_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def __A ( self : Union[str, Any] ):
return MobileViTVaConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ):
A_ = MobileViTVaModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : Tuple ):
A_ = self.num_labels
A_ = MobileViTVaForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] ):
A_ = self.num_labels
A_ = MobileViTVaForSemanticSegmentation(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ , A_ = config_and_inputs
A_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation)
if is_torch_available()
else ()
)
_lowerCamelCase : Tuple = (
{
'feature-extraction': MobileViTVaModel,
'image-classification': MobileViTVaForImageClassification,
'image-segmentation': MobileViTVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_lowerCamelCase : int = False
_lowerCamelCase : int = False
_lowerCamelCase : List[str] = False
_lowerCamelCase : List[Any] = False
def __A ( self : Union[str, Any] ):
A_ = MobileViTVaModelTester(self )
A_ = MobileViTVaConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViTV2 does not use inputs_embeds" )
def __A ( self : Tuple ):
pass
@unittest.skip(reason="MobileViTV2 does not support input and output embeddings" )
def __A ( self : Tuple ):
pass
@unittest.skip(reason="MobileViTV2 does not output attentions" )
def __A ( self : List[Any] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." )
def __A ( self : List[Any] ):
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def __A ( self : Union[str, Any] ):
pass
def __A ( self : Optional[int] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = model_class(UpperCAmelCase )
A_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ = [*signature.parameters.keys()]
A_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : List[str] ):
def check_hidden_states_output(UpperCAmelCase : Tuple , UpperCAmelCase : Tuple , UpperCAmelCase : Any ):
A_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
A_ = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = outputs.hidden_states
A_ = 5
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
# MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
A_ = 2
for i in range(len(UpperCAmelCase ) ):
self.assertListEqual(
list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , )
divisor *= 2
self.assertEqual(self.model_tester.output_stride , divisor // 2 )
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A_ = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def __A ( self : Any ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@slow
def __A ( self : List[str] ):
for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = MobileViTVaModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __snake_case ( ):
"""simple docstring"""
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : int ):
return (
MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" )
if is_vision_available()
else None
)
@slow
def __A ( self : Optional[Any] ):
A_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to(
UpperCAmelCase )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
# verify the logits
A_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
A_ = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self : Any ):
A_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
A_ = model.to(UpperCAmelCase )
A_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
A_ = outputs.logits
# verify the logits
A_ = torch.Size((1, 21, 32, 32) )
self.assertEqual(logits.shape , UpperCAmelCase )
A_ = torch.tensor(
[
[[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]],
[[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]],
[[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]],
] , device=UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self : Union[str, Any] ):
A_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
A_ = model.to(UpperCAmelCase )
A_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" )
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
A_ = outputs.logits.detach().cpu()
A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(50, 60)] )
A_ = torch.Size((50, 60) )
self.assertEqual(segmentation[0].shape , UpperCAmelCase )
A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase )
A_ = torch.Size((32, 32) )
self.assertEqual(segmentation[0].shape , UpperCAmelCase )
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Any = logging.get_logger(__name__)
__a :Optional[Any] = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = 'cvt'
def __init__( self : Tuple , UpperCAmelCase : int=3 , UpperCAmelCase : int=[7, 3, 3] , UpperCAmelCase : Optional[int]=[4, 2, 2] , UpperCAmelCase : Dict=[2, 1, 1] , UpperCAmelCase : Dict=[64, 192, 384] , UpperCAmelCase : Union[str, Any]=[1, 3, 6] , UpperCAmelCase : int=[1, 2, 10] , UpperCAmelCase : Union[str, Any]=[4.0, 4.0, 4.0] , UpperCAmelCase : Tuple=[0.0, 0.0, 0.0] , UpperCAmelCase : Any=[0.0, 0.0, 0.0] , UpperCAmelCase : Optional[Any]=[0.0, 0.0, 0.1] , UpperCAmelCase : Tuple=[True, True, True] , UpperCAmelCase : List[str]=[False, False, True] , UpperCAmelCase : str=["dw_bn", "dw_bn", "dw_bn"] , UpperCAmelCase : str=[3, 3, 3] , UpperCAmelCase : Dict=[1, 1, 1] , UpperCAmelCase : Optional[Any]=[2, 2, 2] , UpperCAmelCase : Optional[int]=[1, 1, 1] , UpperCAmelCase : Dict=[1, 1, 1] , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , **UpperCAmelCase : Dict , ):
super().__init__(**UpperCAmelCase )
A_ = num_channels
A_ = patch_sizes
A_ = patch_stride
A_ = patch_padding
A_ = embed_dim
A_ = num_heads
A_ = depth
A_ = mlp_ratio
A_ = attention_drop_rate
A_ = drop_rate
A_ = drop_path_rate
A_ = qkv_bias
A_ = cls_token
A_ = qkv_projection_method
A_ = kernel_qkv
A_ = padding_kv
A_ = stride_kv
A_ = padding_q
A_ = stride_q
A_ = initializer_range
A_ = layer_norm_eps
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
__a :Optional[int] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
try:
with open(__UpperCamelCase ,"rb" ) as flax_state_f:
A_ = from_bytes(__UpperCamelCase ,flax_state_f.read() )
except UnpicklingError as e:
try:
with open(__UpperCamelCase ) as f:
if f.read().startswith("version" ):
raise OSError(
"You seem to have cloned a repository without having git-lfs installed. Please"
" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"
" folder you cloned." )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f'''Unable to convert {model_file} to Flax deserializable object. ''' )
return load_flax_weights_in_pytorch_model(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ):
"""simple docstring"""
try:
import torch # noqa: F401
except ImportError:
logger.error(
"Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"
" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"
" instructions." )
raise
# check if we have bf16 weights
A_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCamelCase : x.dtype == jnp.bfloataa ,__UpperCamelCase ) ).values()
if any(__UpperCamelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` "
"before loading those in PyTorch model." )
A_ = jax.tree_util.tree_map(
lambda __UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params ,__UpperCamelCase )
A_ = ""
A_ = flatten_dict(__UpperCamelCase ,sep="." )
A_ = pt_model.state_dict()
# keep track of unexpected & missing keys
A_ = []
A_ = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
A_ = flax_key_tuple.split("." )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
A_ = flax_key_tuple_array[:-1] + ["weight"]
A_ = jnp.transpose(__UpperCamelCase ,(3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
A_ = flax_key_tuple_array[:-1] + ["weight"]
A_ = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
A_ = flax_key_tuple_array[:-1] + ["weight"]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(__UpperCamelCase ):
A_ = (
flax_key_tuple_string.replace("_0" ,".0" )
.replace("_1" ,".1" )
.replace("_2" ,".2" )
.replace("_3" ,".3" )
.replace("_4" ,".4" )
.replace("_5" ,".5" )
.replace("_6" ,".6" )
.replace("_7" ,".7" )
.replace("_8" ,".8" )
.replace("_9" ,".9" )
)
A_ = ".".join(__UpperCamelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected '''
f'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
else:
# add weight to pytorch dict
A_ = np.asarray(__UpperCamelCase ) if not isinstance(__UpperCamelCase ,np.ndarray ) else flax_tensor
A_ = torch.from_numpy(__UpperCamelCase )
# remove from missing keys
missing_keys.remove(__UpperCamelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(__UpperCamelCase )
pt_model.load_state_dict(__UpperCamelCase )
# re-transform missing_keys to list
A_ = list(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
logger.warning(
"Some weights of the Flax model were not used when initializing the PyTorch model"
f''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing'''
f''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture'''
" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"
f''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect'''
" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"
" FlaxBertForSequenceClassification model)." )
if len(__UpperCamelCase ) > 0:
logger.warning(
f'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly'''
f''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to'''
" use it for predictions and inference." )
return pt_model
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
import tensorflow as tf
from ...tf_utils import shape_list
class _a ( tf.keras.layers.Layer ):
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any=1 , UpperCAmelCase : int=False , **UpperCAmelCase : int ):
super().__init__(**UpperCAmelCase )
A_ = vocab_size
A_ = d_embed
A_ = d_proj
A_ = cutoffs + [vocab_size]
A_ = [0] + self.cutoffs
A_ = div_val
A_ = self.cutoffs[0]
A_ = len(self.cutoffs ) - 1
A_ = self.shortlist_size + self.n_clusters
A_ = keep_order
A_ = []
A_ = []
def __A ( self : List[str] , UpperCAmelCase : Any ):
if self.n_clusters > 0:
A_ = self.add_weight(
shape=(self.n_clusters, self.d_embed) , initializer="zeros" , trainable=UpperCAmelCase , name="cluster_weight" )
A_ = self.add_weight(
shape=(self.n_clusters,) , initializer="zeros" , trainable=UpperCAmelCase , name="cluster_bias" )
if self.div_val == 1:
for i in range(len(self.cutoffs ) ):
if self.d_proj != self.d_embed:
A_ = self.add_weight(
shape=(self.d_embed, self.d_proj) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_projs_._{i}''' , )
self.out_projs.append(UpperCAmelCase )
else:
self.out_projs.append(UpperCAmelCase )
A_ = self.add_weight(
shape=(self.vocab_size, self.d_embed) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._weight''' , )
A_ = self.add_weight(
shape=(self.vocab_size,) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._bias''' , )
self.out_layers.append((weight, bias) )
else:
for i in range(len(self.cutoffs ) ):
A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
A_ = self.d_embed // (self.div_val**i)
A_ = self.add_weight(
shape=(d_emb_i, self.d_proj) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_projs_._{i}''' )
self.out_projs.append(UpperCAmelCase )
A_ = self.add_weight(
shape=(r_idx - l_idx, d_emb_i) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._weight''' , )
A_ = self.add_weight(
shape=(r_idx - l_idx,) , initializer="zeros" , trainable=UpperCAmelCase , name=f'''out_layers_._{i}_._bias''' , )
self.out_layers.append((weight, bias) )
super().build(UpperCAmelCase )
@staticmethod
def __A ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Tuple=None ):
A_ = x
if proj is not None:
A_ = tf.einsum("ibd,ed->ibe" , UpperCAmelCase , UpperCAmelCase )
return tf.einsum("ibd,nd->ibn" , UpperCAmelCase , UpperCAmelCase ) + b
@staticmethod
def __A ( UpperCAmelCase : int , UpperCAmelCase : Tuple ):
A_ = shape_list(UpperCAmelCase )
A_ = tf.range(lp_size[0] , dtype=target.dtype )
A_ = tf.stack([r, target] , 1 )
return tf.gather_nd(UpperCAmelCase , UpperCAmelCase )
def __A ( self : int , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=True , UpperCAmelCase : Tuple=False ):
A_ = 0
if self.n_clusters == 0:
A_ = self._logit(UpperCAmelCase , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] )
if target is not None:
A_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=UpperCAmelCase , logits=UpperCAmelCase )
A_ = tf.nn.log_softmax(UpperCAmelCase , axis=-1 )
else:
A_ = shape_list(UpperCAmelCase )
A_ = []
A_ = tf.zeros(hidden_sizes[:2] )
for i in range(len(self.cutoffs ) ):
A_ , A_ = self.cutoff_ends[i], self.cutoff_ends[i + 1]
if target is not None:
A_ = (target >= l_idx) & (target < r_idx)
A_ = tf.where(UpperCAmelCase )
A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase ) - l_idx
if self.div_val == 1:
A_ = self.out_layers[0][0][l_idx:r_idx]
A_ = self.out_layers[0][1][l_idx:r_idx]
else:
A_ = self.out_layers[i][0]
A_ = self.out_layers[i][1]
if i == 0:
A_ = tf.concat([cur_W, self.cluster_weight] , 0 )
A_ = tf.concat([cur_b, self.cluster_bias] , 0 )
A_ = self._logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.out_projs[0] )
A_ = tf.nn.log_softmax(UpperCAmelCase )
out.append(head_logprob[..., : self.cutoffs[0]] )
if target is not None:
A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase )
A_ = self._gather_logprob(UpperCAmelCase , UpperCAmelCase )
else:
A_ = self._logit(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.out_projs[i] )
A_ = tf.nn.log_softmax(UpperCAmelCase )
A_ = self.cutoffs[0] + i - 1 # No probability for the head cluster
A_ = head_logprob[..., cluster_prob_idx, None] + tail_logprob
out.append(UpperCAmelCase )
if target is not None:
A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase )
A_ = tf.boolean_mask(UpperCAmelCase , UpperCAmelCase )
A_ = self._gather_logprob(UpperCAmelCase , UpperCAmelCase )
cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1]
if target is not None:
loss += tf.scatter_nd(UpperCAmelCase , -cur_logprob , shape_list(UpperCAmelCase ) )
A_ = tf.concat(UpperCAmelCase , axis=-1 )
if target is not None:
if return_mean:
A_ = tf.reduce_mean(UpperCAmelCase )
# Add the training-time loss value to the layer using `self.add_loss()`.
self.add_loss(UpperCAmelCase )
# Log the loss as a metric (we could log arbitrary metrics,
# including different metrics for training and inference.
self.add_metric(UpperCAmelCase , name=self.name , aggregation="mean" if return_mean else "" )
return out
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
import unittest
from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
__a :Optional[Any] = get_tests_dir('fixtures/spiece.model')
@require_sentencepiece
@require_tokenizers
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Any = DebertaVaTokenizer
_lowerCamelCase : int = DebertaVaTokenizerFast
_lowerCamelCase : int = True
_lowerCamelCase : Any = True
def __A ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
A_ = DebertaVaTokenizer(UpperCAmelCase , unk_token="<unk>" )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self : Union[str, Any] , UpperCAmelCase : str ):
A_ = "this is a test"
A_ = "this is a test"
return input_text, output_text
def __A ( self : List[Any] ):
A_ = "<pad>"
A_ = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase ) , UpperCAmelCase )
def __A ( self : int ):
A_ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<pad>" )
self.assertEqual(vocab_keys[1] , "<unk>" )
self.assertEqual(vocab_keys[-1] , "[PAD]" )
self.assertEqual(len(UpperCAmelCase ) , 30001 )
def __A ( self : Tuple ):
self.assertEqual(self.get_tokenizer().vocab_size , 30000 )
def __A ( self : List[str] ):
# fmt: off
A_ = " \tHeLLo!how \n Are yoU? "
A_ = ["▁hello", "!", "how", "▁are", "▁you", "?"]
# fmt: on
A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def __A ( self : Optional[int] ):
pass
@unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." )
def __A ( self : Optional[Any] ):
pass
def __A ( self : Optional[Any] ):
# fmt: off
A_ = "I was born in 92000, and this is falsé."
A_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
A_ = DebertaVaTokenizer(UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Any ):
# fmt: off
A_ = "I was born in 92000, and this is falsé."
A_ = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
# fmt: off
A_ = "I was born in 92000, and this is falsé."
A_ = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
# fmt: off
A_ = "I was born in 92000, and this is falsé."
A_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ]
# fmt: on
A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : List[str] ):
# fmt: off
A_ = " \tHeLLo!how \n Are yoU? "
A_ = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"]
# fmt: on
A_ = DebertaVaTokenizer(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , do_lower_case=UpperCAmelCase , split_by_punct=UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_tokenizer()
A_ = self.get_rust_tokenizer()
A_ = "I was born in 92000, and this is falsé."
A_ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
A_ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
A_ = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = self.get_rust_tokenizer()
A_ = tokenizer.encode(UpperCAmelCase )
A_ = rust_tokenizer.encode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Union[str, Any] ):
A_ = "This is a test"
A_ = [13, 1, 4398, 25, 21, 1289]
A_ = ["▁", "T", "his", "▁is", "▁a", "▁test"]
A_ = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"]
A_ = DebertaVaTokenizer(UpperCAmelCase , keep_accents=UpperCAmelCase )
A_ = DebertaVaTokenizerFast(UpperCAmelCase , keep_accents=UpperCAmelCase )
A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = rust_tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
# fmt: off
A_ = "I was born in 92000, and this is falsé."
A_ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9]
A_ = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ]
A_ = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ]
# fmt: on
A_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = rust_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = rust_tokenizer.tokenize(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
A_ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = DebertaVaTokenizer(UpperCAmelCase )
A_ = tokenizer.encode("sequence builders" )
A_ = tokenizer.encode("multi-sequence build" )
A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase )
A_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase )
self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCAmelCase )
self.assertEqual(
[tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCAmelCase , )
@slow
def __A ( self : List[Any] ):
# fmt: off
A_ = {"input_ids": [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=UpperCAmelCase , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
import operator as op
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = []
A_ = lambda __UpperCamelCase ,__UpperCamelCase : int(x / y ) # noqa: E731 integer division operation
A_ = {
"^": op.pow,
"*": op.mul,
"/": div,
"+": op.add,
"-": op.sub,
} # operators & their respective operation
# print table header
print("Symbol".center(8 ) ,"Action".center(12 ) ,"Stack" ,sep=" | " )
print("-" * (30 + len(__UpperCamelCase )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__UpperCamelCase ) # append x to stack
# output in tabular format
print(x.rjust(8 ) ,("push(" + x + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " )
else:
A_ = stack.pop() # pop stack
# output in tabular format
print("".rjust(8 ) ,("pop(" + b + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " )
A_ = stack.pop() # pop stack
# output in tabular format
print("".rjust(8 ) ,("pop(" + a + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " )
stack.append(
str(opr[x](int(__UpperCamelCase ) ,int(__UpperCamelCase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) ,("push(" + a + x + b + ")").ljust(12 ) ,",".join(__UpperCamelCase ) ,sep=" | " ,)
return int(stack[0] )
if __name__ == "__main__":
__a :Dict = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix))
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
from __future__ import annotations
from collections import deque
class _a :
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : list[str] ):
A_ = []
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []} )
for keyword in keywords:
self.add_keyword(UpperCAmelCase )
self.set_fail_transitions()
def __A ( self : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : str ):
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def __A ( self : List[Any] , UpperCAmelCase : str ):
A_ = 0
for character in keyword:
A_ = self.find_next_state(UpperCAmelCase , UpperCAmelCase )
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
A_ = len(self.adlist ) - 1
else:
A_ = next_state
self.adlist[current_state]["output"].append(UpperCAmelCase )
def __A ( self : str ):
A_ = deque()
for node in self.adlist[0]["next_states"]:
q.append(UpperCAmelCase )
A_ = 0
while q:
A_ = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(UpperCAmelCase )
A_ = self.adlist[r]["fail_state"]
while (
self.find_next_state(UpperCAmelCase , self.adlist[child]["value"] ) is None
and state != 0
):
A_ = self.adlist[state]["fail_state"]
A_ = self.find_next_state(
UpperCAmelCase , self.adlist[child]["value"] )
if self.adlist[child]["fail_state"] is None:
A_ = 0
A_ = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def __A ( self : Tuple , UpperCAmelCase : str ):
A_ = {} # returns a dict with keywords and list of its occurrences
A_ = 0
for i in range(len(UpperCAmelCase ) ):
while (
self.find_next_state(UpperCAmelCase , string[i] ) is None
and current_state != 0
):
A_ = self.adlist[current_state]["fail_state"]
A_ = self.find_next_state(UpperCAmelCase , string[i] )
if next_state is None:
A_ = 0
else:
A_ = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
A_ = []
result[key].append(i - len(UpperCAmelCase ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
from string import ascii_uppercase
__a :Dict = {char: i for i, char in enumerate(ascii_uppercase)}
__a :int = dict(enumerate(ascii_uppercase))
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = len(__UpperCamelCase )
A_ = 0
while True:
if x == i:
A_ = 0
if len(__UpperCamelCase ) == len(__UpperCamelCase ):
break
key += key[i]
i += 1
return key
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = ""
A_ = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
A_ = (dicta[letter] - dicta[key_new[i]]) % 26
i += 1
cipher_text += dicta[x]
return cipher_text
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = ""
A_ = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
A_ = (dicta[letter] + dicta[key_new[i]] + 26) % 26
i += 1
or_txt += dicta[x]
return or_txt
def __snake_case ( ):
"""simple docstring"""
A_ = "THE GERMAN ATTACK"
A_ = "SECRET"
A_ = generate_key(__UpperCamelCase ,__UpperCamelCase )
A_ = cipher_text(__UpperCamelCase ,__UpperCamelCase )
print(f'''Encrypted Text = {s}''' )
print(f'''Original Text = {original_text(__UpperCamelCase ,__UpperCamelCase )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
from typing import List
import numpy as np
def __snake_case ( __UpperCamelCase : dict ):
"""simple docstring"""
A_ = {key: len(__UpperCamelCase ) for key, value in gen_kwargs.items() if isinstance(__UpperCamelCase ,__UpperCamelCase )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"Sharding is ambiguous for this dataset: "
+ "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"
+ "\n".join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() )
+ "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, "
+ "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."
) )
A_ = max(lists_lengths.values() ,default=0 )
return max(1 ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = []
for group_idx in range(__UpperCamelCase ):
A_ = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
A_ = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
A_ = range(__UpperCamelCase ,start + num_shards_to_add )
shards_indices_per_group.append(__UpperCamelCase )
return shards_indices_per_group
def __snake_case ( __UpperCamelCase : dict ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = _number_of_shards_in_gen_kwargs(__UpperCamelCase )
if num_shards == 1:
return [dict(__UpperCamelCase )]
else:
A_ = _distribute_shards(num_shards=__UpperCamelCase ,max_num_jobs=__UpperCamelCase )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(__UpperCamelCase ,__UpperCamelCase )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(__UpperCamelCase ) )
]
def __snake_case ( __UpperCamelCase : List[dict] ):
"""simple docstring"""
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] ,__UpperCamelCase )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def __snake_case ( __UpperCamelCase : np.random.Generator ,__UpperCamelCase : dict ):
"""simple docstring"""
A_ = {len(__UpperCamelCase ) for value in gen_kwargs.values() if isinstance(__UpperCamelCase ,__UpperCamelCase )}
A_ = {}
for size in list_sizes:
A_ = list(range(__UpperCamelCase ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
A_ = dict(__UpperCamelCase )
for key, value in shuffled_kwargs.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = [value[i] for i in indices_per_size[len(__UpperCamelCase )]]
return shuffled_kwargs
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__a :Tuple = logging.get_logger(__name__)
class _a ( enum.Enum ):
"""simple docstring"""
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[int] = 1
@add_end_docstrings(snake_case_ )
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = 'generated'
def __init__( self : List[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : str ):
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def __A ( self : str , UpperCAmelCase : int=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : Any , ):
A_ = {}
if truncation is not None:
A_ = truncation
A_ = generate_kwargs
A_ = {}
if return_tensors is not None and return_type is None:
A_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
A_ = return_type
if clean_up_tokenization_spaces is not None:
A_ = clean_up_tokenization_spaces
if stop_sequence is not None:
A_ = self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase )
if len(UpperCAmelCase ) > 1:
warnings.warn(
"Stopping on a multiple token sequence is not yet supported on transformers. The first token of"
" the stop sequence will be used as the stop sequence string in the interim." )
A_ = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def __A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ):
return True
def __A ( self : Dict , *UpperCAmelCase : Tuple , UpperCAmelCase : List[str] ):
A_ = self.model.config.prefix if self.model.config.prefix is not None else ""
if isinstance(args[0] , UpperCAmelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("Please make sure that the tokenizer has a pad_token_id when using a batch input" )
A_ = ([prefix + arg for arg in args[0]],)
A_ = True
elif isinstance(args[0] , UpperCAmelCase ):
A_ = (prefix + args[0],)
A_ = False
else:
raise ValueError(
f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' )
A_ = self.tokenizer(*UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
A_ = super().__call__(*UpperCAmelCase , **UpperCAmelCase )
if (
isinstance(args[0] , UpperCAmelCase )
and all(isinstance(UpperCAmelCase , UpperCAmelCase ) for el in args[0] )
and all(len(UpperCAmelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def __A ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any=TruncationStrategy.DO_NOT_TRUNCATE , **UpperCAmelCase : str ):
A_ = self._parse_and_tokenize(UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase )
return inputs
def __A ( self : Dict , UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
if self.framework == "pt":
A_ , A_ = model_inputs["input_ids"].shape
elif self.framework == "tf":
A_ , A_ = tf.shape(model_inputs["input_ids"] ).numpy()
A_ = generate_kwargs.get("min_length" , self.model.config.min_length )
A_ = generate_kwargs.get("max_length" , self.model.config.max_length )
self.check_inputs(UpperCAmelCase , generate_kwargs["min_length"] , generate_kwargs["max_length"] )
A_ = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
A_ = output_ids.shape[0]
if self.framework == "pt":
A_ = output_ids.reshape(UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
A_ = tf.reshape(UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int]=ReturnType.TEXT , UpperCAmelCase : Tuple=False ):
A_ = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
A_ = {f'''{self.return_name}_token_ids''': output_ids}
elif return_type == ReturnType.TEXT:
A_ = {
f'''{self.return_name}_text''': self.tokenizer.decode(
UpperCAmelCase , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
}
records.append(UpperCAmelCase )
return records
@add_end_docstrings(snake_case_ )
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 'summary'
def __call__( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[str] ):
return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : int , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ):
if max_length < min_length:
logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' )
if input_length < max_length:
logger.warning(
f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '''
"a summarization task, where outputs shorter than the input are typically wanted, you might "
f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' )
@add_end_docstrings(snake_case_ )
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 'translation'
def __A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : int ):
if input_length > 0.9 * max_length:
logger.warning(
f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '''
"increasing your max_length manually, e.g. translator('...', max_length=400)" )
return True
def __A ( self : str , *UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str]=TruncationStrategy.DO_NOT_TRUNCATE , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None ):
if getattr(self.tokenizer , "_build_translation_inputs" , UpperCAmelCase ):
return self.tokenizer._build_translation_inputs(
*UpperCAmelCase , return_tensors=self.framework , truncation=UpperCAmelCase , src_lang=UpperCAmelCase , tgt_lang=UpperCAmelCase )
else:
return super()._parse_and_tokenize(*UpperCAmelCase , truncation=UpperCAmelCase )
def __A ( self : Optional[int] , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None , **UpperCAmelCase : List[Any] ):
A_ , A_ , A_ = super()._sanitize_parameters(**UpperCAmelCase )
if src_lang is not None:
A_ = src_lang
if tgt_lang is not None:
A_ = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
A_ = kwargs.get("task" , self.task )
A_ = task.split("_" )
if task and len(UpperCAmelCase ) == 4:
# translation, XX, to YY
A_ = items[1]
A_ = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[str] , *UpperCAmelCase : Any , **UpperCAmelCase : Any ):
return super().__call__(*UpperCAmelCase , **UpperCAmelCase )
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
__a :List[str] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ):
warnings.warn(
"The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use SegformerImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
import unittest
from transformers import GPTNeoXJapaneseConfig, is_torch_available
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=True , UpperCAmelCase : int=True , UpperCAmelCase : int=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Union[str, Any]=5 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : int=0.0 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Tuple=512 , UpperCAmelCase : Union[str, Any]=16 , UpperCAmelCase : str=2 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : str=3 , UpperCAmelCase : Optional[Any]=4 , UpperCAmelCase : Union[str, Any]=None , ):
A_ = parent
A_ = batch_size
A_ = seq_length
A_ = is_training
A_ = use_input_mask
A_ = use_token_type_ids
A_ = use_labels
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_multiple_size
A_ = hidden_act
A_ = hidden_dropout
A_ = attention_dropout
A_ = weight_tying
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = type_sequence_label_size
A_ = initializer_range
A_ = num_labels
A_ = num_choices
A_ = scope
def __A ( self : str ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = self.get_config()
return config, input_ids, input_mask, token_labels
def __A ( self : Dict ):
return GPTNeoXJapaneseConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , )
def __A ( self : Tuple ):
A_ , A_ , A_ , A_ = self.prepare_config_and_inputs()
A_ = True
return config, input_ids, input_mask, token_labels
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Dict ):
A_ = GPTNeoXJapaneseModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = True
A_ = GPTNeoXJapaneseModel(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any] ):
A_ = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ):
A_ = True
A_ = GPTNeoXJapaneseForCausalLM(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
# first forward pass
A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , use_cache=UpperCAmelCase )
A_ = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
A_ = ids_tensor((self.batch_size, 3) , config.vocab_size )
A_ = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
A_ = torch.cat([input_ids, next_tokens] , dim=-1 )
A_ = torch.cat([input_mask, next_mask] , dim=-1 )
A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , output_hidden_states=UpperCAmelCase )
A_ = output_from_no_past["hidden_states"][0]
A_ = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , output_hidden_states=UpperCAmelCase , )["hidden_states"][0]
# select random slice
A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item()
A_ = output_from_no_past[:, -3:, random_slice_idx].detach()
A_ = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1E-3 ) )
def __A ( self : str ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ , A_ = config_and_inputs
A_ = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else ()
_lowerCamelCase : Any = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else ()
_lowerCamelCase : Union[str, Any] = (
{'feature-extraction': GPTNeoXJapaneseModel, 'text-generation': GPTNeoXJapaneseForCausalLM}
if is_torch_available()
else {}
)
_lowerCamelCase : Any = False
_lowerCamelCase : Optional[Any] = False
_lowerCamelCase : List[Any] = False
_lowerCamelCase : List[str] = False
def __A ( self : Any ):
A_ = GPTNeoXJapaneseModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : List[Any] ):
self.config_tester.run_common_tests()
def __A ( self : List[Any] ):
A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : int ):
A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
# This regression test was failing with PyTorch < 1.3
A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs_for_decoder()
A_ = None
self.model_tester.create_and_check_model_as_decoder(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : List[str] ):
A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*UpperCAmelCase )
@slow
def __A ( self : Any ):
A_ = "abeja/gpt-neox-japanese-2.7b"
A_ = ["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"]
A_ = [
"データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。",
"100年後に必要とされる会社は、「人」が中心の会社です。",
"フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。",
"国境の長いトンネルを抜けると、そこは雪国だった。",
"美味しい日本食といえば、やっぱりお寿司ですよね。",
]
A_ = GPTNeoXJapaneseTokenizer.from_pretrained(UpperCAmelCase )
A_ = GPTNeoXJapaneseForCausalLM.from_pretrained(UpperCAmelCase )
A_ = []
for prompt in prompts:
A_ = tokenizer(UpperCAmelCase , return_tensors="pt" ).input_ids
A_ = model.generate(UpperCAmelCase , max_length=50 )
A_ = tokenizer.batch_decode(UpperCAmelCase , skip_special_tokens=UpperCAmelCase )
predicted_outputs += generated_string
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Optional[int] ):
# A mock response for an HTTP head request to emulate server down
A_ = mock.Mock()
A_ = 500
A_ = {}
A_ = HTTPError
A_ = {}
# Download this model to make sure it's in the cache.
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head:
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def __A ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
A_ = mock.Mock()
A_ = 500
A_ = {}
A_ = HTTPError
A_ = {}
# Download this model to make sure it's in the cache.
A_ = GPTaTokenizerFast.from_pretrained("gpt2" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=UpperCAmelCase ) as mock_head:
A_ = GPTaTokenizerFast.from_pretrained("gpt2" )
# This check we did call the fake head request
mock_head.assert_called()
def __A ( self : Any ):
# This test is for deprecated behavior and can be removed in v5
try:
A_ = tempfile.mktemp()
with open(UpperCAmelCase , "wb" ) as f:
http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , UpperCAmelCase )
A_ = AlbertTokenizer.from_pretrained(UpperCAmelCase )
finally:
os.remove(UpperCAmelCase )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("tokenizer.json" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("tokenizer.json" , "wb" ) as f:
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , UpperCAmelCase )
A_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("tokenizer.json" )
def __A ( self : List[str] ):
# This test is for deprecated behavior and can be removed in v5
A_ = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" )
@is_staging_test
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : int = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou']
@classmethod
def __A ( cls : List[Any] ):
A_ = TOKEN
HfFolder.save_token(UpperCAmelCase )
@classmethod
def __A ( cls : List[str] ):
try:
delete_repo(token=cls._token , repo_id="test-tokenizer" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" )
except HTTPError:
pass
def __A ( self : Dict ):
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = os.path.join(UpperCAmelCase , "vocab.txt" )
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
A_ = BertTokenizer(UpperCAmelCase )
tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token )
A_ = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="test-tokenizer" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(UpperCAmelCase , repo_id="test-tokenizer" , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
A_ = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def __A ( self : str ):
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = os.path.join(UpperCAmelCase , "vocab.txt" )
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
A_ = BertTokenizer(UpperCAmelCase )
tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token )
A_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
UpperCAmelCase , repo_id="valid_org/test-tokenizer-org" , push_to_hub=UpperCAmelCase , use_auth_token=self._token )
A_ = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def __A ( self : Optional[int] ):
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = os.path.join(UpperCAmelCase , "vocab.txt" )
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
A_ = CustomTokenizer(UpperCAmelCase )
# No fast custom tokenizer
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
A_ = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
A_ = os.path.join(UpperCAmelCase , "vocab.txt" )
with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
A_ = BertTokenizerFast.from_pretrained(UpperCAmelCase )
bert_tokenizer.save_pretrained(UpperCAmelCase )
A_ = CustomTokenizerFast.from_pretrained(UpperCAmelCase )
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
A_ = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" )
A_ = AutoTokenizer.from_pretrained(
f'''{USER}/test-dynamic-tokenizer''' , use_fast=UpperCAmelCase , trust_remote_code=UpperCAmelCase )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : List[str] ):
A_ = Trie()
trie.add("Hello 友達" )
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} )
trie.add("Hello" )
trie.data
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} )
def __A ( self : Dict ):
A_ = Trie()
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] )
trie.add("[CLS]" )
trie.add("extra_id_1" )
trie.add("extra_id_100" )
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] )
def __A ( self : int ):
A_ = Trie()
trie.add("A" )
self.assertEqual(trie.split("ABC" ) , ["A", "BC"] )
self.assertEqual(trie.split("BCA" ) , ["BC", "A"] )
def __A ( self : List[Any] ):
A_ = Trie()
trie.add("TOKEN]" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def __A ( self : Tuple ):
A_ = Trie()
trie.add("A" )
trie.add("P" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def __A ( self : Optional[Any] ):
A_ = Trie()
trie.add("AB" )
trie.add("B" )
trie.add("C" )
self.assertEqual(trie.split("ABC" ) , ["AB", "C"] )
def __A ( self : Optional[int] ):
A_ = Trie()
trie.add("ABC" )
trie.add("B" )
trie.add("CD" )
self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] )
def __A ( self : Optional[int] ):
# Even if the offsets are wrong, we necessarily output correct string
# parts.
A_ = Trie()
A_ = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(UpperCAmelCase , ["AB", "C"] )
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : float = 1 / 1_2345 ):
"""simple docstring"""
A_ = 0
A_ = 0
A_ = 3
while True:
A_ = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(__UpperCamelCase ):
A_ = int(__UpperCamelCase )
total_partitions += 1
if check_partition_perfect(__UpperCamelCase ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(__UpperCamelCase )
integer += 1
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = ['image_processor', 'tokenizer']
_lowerCamelCase : List[str] = 'ChineseCLIPImageProcessor'
_lowerCamelCase : List[Any] = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self : str , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Optional[Any] ):
A_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , UpperCAmelCase , )
A_ = kwargs.pop("feature_extractor" )
A_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(UpperCAmelCase , UpperCAmelCase )
A_ = self.image_processor
def __call__( self : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Optional[int]=None , **UpperCAmelCase : Optional[Any] ):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none." )
if text is not None:
A_ = self.tokenizer(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if images is not None:
A_ = self.image_processor(UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase )
if text is not None and images is not None:
A_ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**UpperCAmelCase ) , tensor_type=UpperCAmelCase )
def __A ( self : Union[str, Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[int] ):
return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : List[Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : List[Any] ):
return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase )
@property
def __A ( self : Any ):
A_ = self.tokenizer.model_input_names
A_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def __A ( self : List[Any] ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , )
return self.image_processor_class
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
def get_masked_lm_array(__UpperCamelCase : str ):
A_ = f'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase )
if "kernel" in name:
A_ = array.transpose()
return torch.from_numpy(__UpperCamelCase )
def get_encoder_array(__UpperCamelCase : str ):
A_ = f'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase )
if "kernel" in name:
A_ = array.transpose()
return torch.from_numpy(__UpperCamelCase )
def get_encoder_layer_array(__UpperCamelCase : int ,__UpperCamelCase : str ):
A_ = f'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase )
if "kernel" in name:
A_ = array.transpose()
return torch.from_numpy(__UpperCamelCase )
def get_encoder_attention_layer_array(__UpperCamelCase : int ,__UpperCamelCase : str ,__UpperCamelCase : Any ):
A_ = f'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE'''
A_ = tf.train.load_variable(__UpperCamelCase ,__UpperCamelCase )
A_ = array.reshape(__UpperCamelCase )
if "kernel" in name:
A_ = array.transpose()
return torch.from_numpy(__UpperCamelCase )
print(f'''Loading model based on config from {config_path}...''' )
A_ = BertConfig.from_json_file(__UpperCamelCase )
A_ = BertForMaskedLM(__UpperCamelCase )
# Layers
for layer_index in range(0 ,config.num_hidden_layers ):
A_ = model.bert.encoder.layer[layer_index]
# Self-attention
A_ = layer.attention.self
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_query_dense/kernel" ,self_attn.query.weight.data.shape )
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_query_dense/bias" ,self_attn.query.bias.data.shape )
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_key_dense/kernel" ,self_attn.key.weight.data.shape )
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_key_dense/bias" ,self_attn.key.bias.data.shape )
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_value_dense/kernel" ,self_attn.value.weight.data.shape )
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_value_dense/bias" ,self_attn.value.bias.data.shape )
# Self-attention Output
A_ = layer.attention.output
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_output_dense/kernel" ,self_output.dense.weight.data.shape )
A_ = get_encoder_attention_layer_array(
__UpperCamelCase ,"_output_dense/bias" ,self_output.dense.bias.data.shape )
A_ = get_encoder_layer_array(__UpperCamelCase ,"_attention_layer_norm/gamma" )
A_ = get_encoder_layer_array(__UpperCamelCase ,"_attention_layer_norm/beta" )
# Intermediate
A_ = layer.intermediate
A_ = get_encoder_layer_array(__UpperCamelCase ,"_intermediate_dense/kernel" )
A_ = get_encoder_layer_array(__UpperCamelCase ,"_intermediate_dense/bias" )
# Output
A_ = layer.output
A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_dense/kernel" )
A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_dense/bias" )
A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_layer_norm/gamma" )
A_ = get_encoder_layer_array(__UpperCamelCase ,"_output_layer_norm/beta" )
# Embeddings
A_ = get_encoder_array("_position_embedding_layer/embeddings" )
A_ = get_encoder_array("_type_embedding_layer/embeddings" )
A_ = get_encoder_array("_embedding_norm_layer/gamma" )
A_ = get_encoder_array("_embedding_norm_layer/beta" )
# LM Head
A_ = model.cls.predictions.transform
A_ = get_masked_lm_array("dense/kernel" )
A_ = get_masked_lm_array("dense/bias" )
A_ = get_masked_lm_array("layer_norm/gamma" )
A_ = get_masked_lm_array("layer_norm/beta" )
A_ = get_masked_lm_array("embedding_table" )
# Pooling
A_ = BertPooler(config=__UpperCamelCase )
A_ = get_encoder_array("_pooler_layer/kernel" )
A_ = get_encoder_array("_pooler_layer/bias" )
# Export final model
model.save_pretrained(__UpperCamelCase )
# Integration test - should load without any errors ;)
A_ = BertForMaskedLM.from_pretrained(__UpperCamelCase )
print(new_model.eval() )
print("Model conversion was done sucessfully!" )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow Token Dropping checkpoint path.'
)
parser.add_argument(
'--bert_config_file',
type=str,
required=True,
help='The config json file corresponding to the BERT model. This specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path',
type=str,
required=True,
help='Path to the output PyTorch model.',
)
__a :Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a :str = logging.get_logger(__name__)
__a :Union[str, Any] = {
'facebook/deit-base-distilled-patch16-224': (
'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json'
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = 'deit'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[int]=768 , UpperCAmelCase : Any=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[int]=3072 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : Tuple=224 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : int=3 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Union[str, Any]=16 , **UpperCAmelCase : Optional[int] , ):
super().__init__(**UpperCAmelCase )
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = layer_norm_eps
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = qkv_bias
A_ = encoder_stride
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : str = version.parse('1.11' )
@property
def __A ( self : Union[str, Any] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def __A ( self : Dict ):
return 1E-4
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
__a :Union[str, Any] = logging.getLogger(__name__)
def __snake_case ( ):
"""simple docstring"""
A_ = argparse.ArgumentParser(
description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." )
parser.add_argument(
"--dataset_name" ,type=__UpperCamelCase ,default="wikitext" ,help="Name of the training. Explore datasets at: hf.co/datasets." ,)
parser.add_argument(
"--dataset_config" ,type=__UpperCamelCase ,default="wikitext-103-raw-v1" ,help="Configuration name of the dataset." )
parser.add_argument(
"--tokenizer_name_or_path" ,type=__UpperCamelCase ,default="sayakpaul/unigram-tokenizer-wikitext" ,help="Tokenizer identifier. Can be a local filepath or a Hub identifier." ,)
parser.add_argument(
"--shard_size" ,type=__UpperCamelCase ,default=1000 ,help="Number of entries to go in a single shard." ,)
parser.add_argument("--split" ,type=__UpperCamelCase ,default="train" ,choices=["train", "test", "validation"] )
parser.add_argument(
"--limit" ,default=__UpperCamelCase ,type=__UpperCamelCase ,help="Limit the number of shards (used for debugging)." ,)
parser.add_argument(
"--max_length" ,type=__UpperCamelCase ,default=512 ,help="Maximum sequence length. For training on TPUs, it helps to have a maximum"
" sequence length that is a multiple of 8." ,)
parser.add_argument(
"--output_dir" ,default="tf-tpu" ,type=__UpperCamelCase ,help="Output directory where the TFRecord shards will be saved. If the"
" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"
" shards will be directly saved to a Google Cloud Storage bucket." ,)
A_ = parser.parse_args()
return args
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
def fn(__UpperCamelCase : Union[str, Any] ):
return tokenizer(examples["text"] )
return fn
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = []
for i in range(len(tokenized_data["input_ids"] ) ):
A_ = {
"input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ),
"attention_mask": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ),
}
A_ = tf.train.Features(feature=__UpperCamelCase )
A_ = tf.train.Example(features=__UpperCamelCase )
A_ = example.SerializeToString()
records.append(__UpperCamelCase )
return records
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = datasets.load_dataset(args.dataset_name ,args.dataset_config ,split=args.split )
if args.limit is not None:
A_ = min(len(__UpperCamelCase ) ,args.limit )
A_ = dataset.select(range(__UpperCamelCase ) )
print(f'''Limiting the dataset to {args.limit} entries.''' )
A_ = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
A_ = os.path.join(args.output_dir ,args.split )
if not os.path.exists(__UpperCamelCase ):
os.makedirs(__UpperCamelCase )
else:
A_ = os.path.join(args.output_dir ,args.split )
# Tokenize the whole dataset at once.
A_ = tokenize_function(__UpperCamelCase )
A_ = dataset.map(__UpperCamelCase ,batched=__UpperCamelCase ,num_proc=4 ,remove_columns=["text"] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(__UpperCamelCase : Any ):
# Concatenate all texts.
A_ = {k: sum(examples[k] ,[] ) for k in examples.keys()}
A_ = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
A_ = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
A_ = {
k: [t[i : i + args.max_length] for i in range(0 ,__UpperCamelCase ,args.max_length )]
for k, t in concatenated_examples.items()
}
return result
A_ = dataset_tokenized.map(__UpperCamelCase ,batched=__UpperCamelCase ,batch_size=1000 ,num_proc=4 )
A_ = 0
A_ = 0
for shard in range(0 ,len(__UpperCamelCase ) ,args.shard_size ):
A_ = grouped_dataset[shard : shard + args.shard_size]
A_ = len(dataset_snapshot["input_ids"] )
A_ = os.path.join(__UpperCamelCase ,f'''dataset-{shard_count}-{records_containing}.tfrecord''' )
A_ = get_serialized_examples(__UpperCamelCase )
with tf.io.TFRecordWriter(__UpperCamelCase ) as out_file:
for i in range(len(__UpperCamelCase ) ):
A_ = serialized_examples[i]
out_file.write(__UpperCamelCase )
print("Wrote file {} containing {} records".format(__UpperCamelCase ,__UpperCamelCase ) )
shard_count += 1
total_records += records_containing
with open(f'''split-{args.split}-records-count.txt''' ,"w" ) as f:
print(f'''Total {args.split} records: {total_records}''' ,file=__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = parse_args()
main(args)
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : int , UpperCAmelCase : Tuple , UpperCAmelCase : str=7 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Optional[Any]=400 , UpperCAmelCase : Dict=True , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[int]=[0.5, 0.5, 0.5] , UpperCAmelCase : Tuple=[0.5, 0.5, 0.5] , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[int]=1 / 255 , UpperCAmelCase : Tuple=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
A_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333}
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = min_resolution
A_ = max_resolution
A_ = do_resize
A_ = size
A_ = do_normalize
A_ = image_mean
A_ = image_std
A_ = do_rescale
A_ = rescale_factor
A_ = do_pad
def __A ( self : Optional[int] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False ):
if not batched:
A_ = image_inputs[0]
if isinstance(UpperCAmelCase , Image.Image ):
A_ , A_ = image.size
else:
A_ , A_ = image.shape[1], image.shape[2]
if w < h:
A_ = int(self.size["shortest_edge"] * h / w )
A_ = self.size["shortest_edge"]
elif w > h:
A_ = self.size["shortest_edge"]
A_ = int(self.size["shortest_edge"] * w / h )
else:
A_ = self.size["shortest_edge"]
A_ = self.size["shortest_edge"]
else:
A_ = []
for image in image_inputs:
A_ , A_ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
A_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[0] )[0]
A_ = max(UpperCAmelCase , key=lambda UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = DetaImageProcessor if is_vision_available() else None
def __A ( self : List[Any] ):
A_ = DetaImageProcessingTester(self )
@property
def __A ( self : Union[str, Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : List[str] ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_rescale" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_pad" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
def __A ( self : Optional[Any] ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} )
self.assertEqual(image_processor.do_pad , UpperCAmelCase )
def __A ( self : Optional[Any] ):
pass
def __A ( self : Tuple ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self : Dict ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __A ( self : Optional[int] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
A_ , A_ = self.image_processor_tester.get_expected_values(UpperCAmelCase , batched=UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __A ( self : Any ):
# prepare image and target
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f:
A_ = json.loads(f.read() )
A_ = {"image_id": 39769, "annotations": target}
# encode them
A_ = DetaImageProcessor()
A_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , return_tensors="pt" )
# verify pixel values
A_ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase )
A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) )
# verify area
A_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) )
# verify boxes
A_ = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase )
A_ = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) )
# verify image_id
A_ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) )
# verify is_crowd
A_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) )
# verify class_labels
A_ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) )
# verify orig_size
A_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) )
# verify size
A_ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
@slow
def __A ( self : Dict ):
# prepare image, target and masks_path
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f:
A_ = json.loads(f.read() )
A_ = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target}
A_ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" )
# encode them
A_ = DetaImageProcessor(format="coco_panoptic" )
A_ = image_processing(images=UpperCAmelCase , annotations=UpperCAmelCase , masks_path=UpperCAmelCase , return_tensors="pt" )
# verify pixel values
A_ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["pixel_values"].shape , UpperCAmelCase )
A_ = torch.tensor([0.2_796, 0.3_138, 0.3_481] )
self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , UpperCAmelCase , atol=1E-4 ) )
# verify area
A_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] )
self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , UpperCAmelCase ) )
# verify boxes
A_ = torch.Size([6, 4] )
self.assertEqual(encoding["labels"][0]["boxes"].shape , UpperCAmelCase )
A_ = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] )
self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , UpperCAmelCase , atol=1E-3 ) )
# verify image_id
A_ = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , UpperCAmelCase ) )
# verify is_crowd
A_ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , UpperCAmelCase ) )
# verify class_labels
A_ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , UpperCAmelCase ) )
# verify masks
A_ = 822873
self.assertEqual(encoding["labels"][0]["masks"].sum().item() , UpperCAmelCase )
# verify orig_size
A_ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , UpperCAmelCase ) )
# verify size
A_ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , UpperCAmelCase ) )
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__a :Tuple = {
'configuration_longformer': [
'LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'LongformerConfig',
'LongformerOnnxConfig',
],
'tokenization_longformer': ['LongformerTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :List[str] = ['LongformerTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :int = [
'LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongformerForMaskedLM',
'LongformerForMultipleChoice',
'LongformerForQuestionAnswering',
'LongformerForSequenceClassification',
'LongformerForTokenClassification',
'LongformerModel',
'LongformerPreTrainedModel',
'LongformerSelfAttention',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Tuple = [
'TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFLongformerForMaskedLM',
'TFLongformerForMultipleChoice',
'TFLongformerForQuestionAnswering',
'TFLongformerForSequenceClassification',
'TFLongformerForTokenClassification',
'TFLongformerModel',
'TFLongformerPreTrainedModel',
'TFLongformerSelfAttention',
]
if TYPE_CHECKING:
from .configuration_longformer import (
LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
LongformerConfig,
LongformerOnnxConfig,
)
from .tokenization_longformer import LongformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_longformer_fast import LongformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longformer import (
LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
LongformerForMaskedLM,
LongformerForMultipleChoice,
LongformerForQuestionAnswering,
LongformerForSequenceClassification,
LongformerForTokenClassification,
LongformerModel,
LongformerPreTrainedModel,
LongformerSelfAttention,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_longformer import (
TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLongformerForMaskedLM,
TFLongformerForMultipleChoice,
TFLongformerForQuestionAnswering,
TFLongformerForSequenceClassification,
TFLongformerForTokenClassification,
TFLongformerModel,
TFLongformerPreTrainedModel,
TFLongformerSelfAttention,
)
else:
import sys
__a :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
__a :str = {
'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.',
'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.',
'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-',
'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----',
'2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...',
'8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.',
':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.',
'?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-',
'(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/'
} # Exclamation mark is not in ITU-R recommendation
# fmt: on
__a :Dict = {value: key for key, value in MORSE_CODE_DICT.items()}
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return " ".join(MORSE_CODE_DICT[char] for char in message.upper() )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return "".join(REVERSE_DICT[char] for char in message.split() )
def __snake_case ( ):
"""simple docstring"""
A_ = "Morse code here!"
print(__UpperCamelCase )
A_ = encrypt(__UpperCamelCase )
print(__UpperCamelCase )
A_ = decrypt(__UpperCamelCase )
print(__UpperCamelCase )
if __name__ == "__main__":
main()
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[int] , UpperCAmelCase : str = "▁" , UpperCAmelCase : bool = True , UpperCAmelCase : Union[str, AddedToken] = "<unk>" , UpperCAmelCase : Union[str, AddedToken] = "</s>" , UpperCAmelCase : Union[str, AddedToken] = "<pad>" , ):
A_ = {
"pad": {"id": 0, "token": pad_token},
"eos": {"id": 1, "token": eos_token},
"unk": {"id": 2, "token": unk_token},
}
A_ = [None] * len(self.special_tokens )
for token_dict in self.special_tokens.values():
A_ = token_dict["token"]
A_ = Tokenizer(Unigram() )
A_ = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(" {2,}" ) , " " ),
normalizers.Lowercase(),
] )
A_ = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=UpperCAmelCase , add_prefix_space=UpperCAmelCase ),
pre_tokenizers.Digits(individual_digits=UpperCAmelCase ),
pre_tokenizers.Punctuation(),
] )
A_ = decoders.Metaspace(replacement=UpperCAmelCase , add_prefix_space=UpperCAmelCase )
A_ = TemplateProcessing(
single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , )
A_ = {
"model": "SentencePieceUnigram",
"replacement": replacement,
"add_prefix_space": add_prefix_space,
}
super().__init__(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : int = 8000 , UpperCAmelCase : bool = True , ):
A_ = trainers.UnigramTrainer(
vocab_size=UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase , )
if isinstance(UpperCAmelCase , UpperCAmelCase ):
A_ = [files]
self._tokenizer.train(UpperCAmelCase , trainer=UpperCAmelCase )
self.add_unk_id()
def __A ( self : Tuple , UpperCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCAmelCase : int = 8000 , UpperCAmelCase : bool = True , ):
A_ = trainers.UnigramTrainer(
vocab_size=UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase , )
self._tokenizer.train_from_iterator(UpperCAmelCase , trainer=UpperCAmelCase )
self.add_unk_id()
def __A ( self : Tuple ):
A_ = json.loads(self._tokenizer.to_str() )
A_ = self.special_tokens["unk"]["id"]
A_ = Tokenizer.from_str(json.dumps(UpperCAmelCase ) )
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :int = logging.get_logger(__name__)
__a :int = {
'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json',
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = 'mra'
def __init__( self : Optional[Any] , UpperCAmelCase : Union[str, Any]=50265 , UpperCAmelCase : int=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : int=12 , UpperCAmelCase : int=3072 , UpperCAmelCase : Dict="gelu" , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[Any]=512 , UpperCAmelCase : Any=1 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : List[str]=1E-5 , UpperCAmelCase : Dict="absolute" , UpperCAmelCase : str=4 , UpperCAmelCase : int="full" , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Dict=0 , UpperCAmelCase : int=1 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Optional[Any]=2 , **UpperCAmelCase : Union[str, Any] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
A_ = position_embedding_type
A_ = block_per_row
A_ = approx_mode
A_ = initial_prior_first_n_blocks
A_ = initial_prior_diagonal_n_blocks
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__a :Optional[int] = {
'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'],
'convert_funnel_original_tf_checkpoint_to_pytorch': [],
'tokenization_funnel': ['FunnelTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Any = ['FunnelTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :int = [
'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST',
'FunnelBaseModel',
'FunnelForMaskedLM',
'FunnelForMultipleChoice',
'FunnelForPreTraining',
'FunnelForQuestionAnswering',
'FunnelForSequenceClassification',
'FunnelForTokenClassification',
'FunnelModel',
'FunnelPreTrainedModel',
'load_tf_weights_in_funnel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :str = [
'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFFunnelBaseModel',
'TFFunnelForMaskedLM',
'TFFunnelForMultipleChoice',
'TFFunnelForPreTraining',
'TFFunnelForQuestionAnswering',
'TFFunnelForSequenceClassification',
'TFFunnelForTokenClassification',
'TFFunnelModel',
'TFFunnelPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig
from .tokenization_funnel import FunnelTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_funnel_fast import FunnelTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_funnel import (
FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
FunnelBaseModel,
FunnelForMaskedLM,
FunnelForMultipleChoice,
FunnelForPreTraining,
FunnelForQuestionAnswering,
FunnelForSequenceClassification,
FunnelForTokenClassification,
FunnelModel,
FunnelPreTrainedModel,
load_tf_weights_in_funnel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_funnel import (
TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
TFFunnelPreTrainedModel,
)
else:
import sys
__a :Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a :Optional[Any] = logging.get_logger(__name__)
__a :Optional[Any] = {
'facebook/data2vec-text-base': 'https://huggingface.co/data2vec/resolve/main/config.json',
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'data2vec-text'
def __init__( self : Optional[int] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[Any]=768 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : Tuple=3072 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Tuple=512 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : List[Any]=1E-12 , UpperCAmelCase : Tuple=1 , UpperCAmelCase : Any=0 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : int="absolute" , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=None , **UpperCAmelCase : Optional[int] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = hidden_act
A_ = intermediate_size
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = initializer_range
A_ = layer_norm_eps
A_ = position_embedding_type
A_ = use_cache
A_ = classifier_dropout
class _a ( snake_case_ ):
"""simple docstring"""
@property
def __A ( self : Dict ):
if self.task == "multiple-choice":
A_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
A_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 329 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 1 |
import math
import qiskit
def __snake_case ( __UpperCamelCase : int = 1 ,__UpperCamelCase : int = 1 ,__UpperCamelCase : int = 1 ):
"""simple docstring"""
if (
isinstance(__UpperCamelCase ,__UpperCamelCase )
or isinstance(__UpperCamelCase ,__UpperCamelCase )
or isinstance(__UpperCamelCase ,__UpperCamelCase )
):
raise TypeError("inputs must be integers." )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("inputs must be positive." )
if (
(math.floor(__UpperCamelCase ) != input_a)
or (math.floor(__UpperCamelCase ) != input_a)
or (math.floor(__UpperCamelCase ) != carry_in)
):
raise ValueError("inputs must be exact integers." )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("inputs must be less or equal to 2." )
# build registers
A_ = qiskit.QuantumRegister(4 ,"qr" )
A_ = qiskit.ClassicalRegister(2 ,"cr" )
# list the entries
A_ = [input_a, input_a, carry_in]
A_ = qiskit.QuantumCircuit(__UpperCamelCase ,__UpperCamelCase )
for i in range(0 ,3 ):
if entry[i] == 2:
quantum_circuit.h(__UpperCamelCase ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(__UpperCamelCase ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(__UpperCamelCase ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 ,1 ,3 ) # ccx = toffoli gate
quantum_circuit.cx(0 ,1 )
quantum_circuit.ccx(1 ,2 ,3 )
quantum_circuit.cx(1 ,2 )
quantum_circuit.cx(0 ,1 )
quantum_circuit.measure([2, 3] ,__UpperCamelCase ) # measure the last two qbits
A_ = qiskit.Aer.get_backend("aer_simulator" )
A_ = qiskit.execute(__UpperCamelCase ,__UpperCamelCase ,shots=1000 )
return job.result().get_counts(__UpperCamelCase )
if __name__ == "__main__":
print(F"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
| 329 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[int] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int]=False ,__UpperCamelCase : List[Any]=False ,__UpperCamelCase : int=False ):
"""simple docstring"""
A_ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
("text_embeddings.word_embeddings.weight", "vilt.embeddings.text_embeddings.word_embeddings.weight"),
(
"text_embeddings.position_embeddings.weight",
"vilt.embeddings.text_embeddings.position_embeddings.weight",
),
("text_embeddings.position_ids", "vilt.embeddings.text_embeddings.position_ids"),
(
"text_embeddings.token_type_embeddings.weight",
"vilt.embeddings.text_embeddings.token_type_embeddings.weight",
),
("text_embeddings.LayerNorm.weight", "vilt.embeddings.text_embeddings.LayerNorm.weight"),
("text_embeddings.LayerNorm.bias", "vilt.embeddings.text_embeddings.LayerNorm.bias"),
# patch embeddings
("transformer.cls_token", "vilt.embeddings.cls_token"),
("transformer.patch_embed.proj.weight", "vilt.embeddings.patch_embeddings.projection.weight"),
("transformer.patch_embed.proj.bias", "vilt.embeddings.patch_embeddings.projection.bias"),
("transformer.pos_embed", "vilt.embeddings.position_embeddings"),
# token type embeddings
("token_type_embeddings.weight", "vilt.embeddings.token_type_embeddings.weight"),
] )
# final layernorm + pooler
rename_keys.extend(
[
("transformer.norm.weight", "vilt.layernorm.weight"),
("transformer.norm.bias", "vilt.layernorm.bias"),
("pooler.dense.weight", "vilt.pooler.dense.weight"),
("pooler.dense.bias", "vilt.pooler.dense.bias"),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
("vqa_classifier.0.weight", "classifier.0.weight"),
("vqa_classifier.0.bias", "classifier.0.bias"),
("vqa_classifier.1.weight", "classifier.1.weight"),
("vqa_classifier.1.bias", "classifier.1.bias"),
("vqa_classifier.3.weight", "classifier.3.weight"),
("vqa_classifier.3.bias", "classifier.3.bias"),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
("nlvr2_classifier.0.weight", "classifier.0.weight"),
("nlvr2_classifier.0.bias", "classifier.0.bias"),
("nlvr2_classifier.1.weight", "classifier.1.weight"),
("nlvr2_classifier.1.bias", "classifier.1.bias"),
("nlvr2_classifier.3.weight", "classifier.3.weight"),
("nlvr2_classifier.3.bias", "classifier.3.bias"),
] )
else:
pass
return rename_keys
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
A_ = "vilt."
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A_ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' )
A_ = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
A_ = in_proj_weight[
: config.hidden_size, :
]
A_ = in_proj_bias[: config.hidden_size]
A_ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A_ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A_ = in_proj_weight[
-config.hidden_size :, :
]
A_ = in_proj_bias[-config.hidden_size :]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = ["head.weight", "head.bias"]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Dict ):
"""simple docstring"""
A_ = dct.pop(__UpperCamelCase )
A_ = val
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = ViltConfig(image_size=384 ,patch_size=32 ,tie_word_embeddings=__UpperCamelCase )
A_ = False
A_ = False
A_ = False
A_ = False
if "vqa" in checkpoint_url:
A_ = True
A_ = 3129
A_ = "huggingface/label-files"
A_ = "vqa2-id2label.json"
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
A_ = ViltForQuestionAnswering(__UpperCamelCase )
elif "nlvr" in checkpoint_url:
A_ = True
A_ = 2
A_ = {0: "False", 1: "True"}
A_ = {v: k for k, v in config.idalabel.items()}
A_ = 3
A_ = ViltForImagesAndTextClassification(__UpperCamelCase )
elif "irtr" in checkpoint_url:
A_ = True
A_ = ViltForImageAndTextRetrieval(__UpperCamelCase )
elif "mlm_itm" in checkpoint_url:
A_ = True
A_ = ViltForMaskedLM(__UpperCamelCase )
else:
raise ValueError("Unknown model type" )
# load state_dict of original model, remove and rename some keys
A_ = torch.hub.load_state_dict_from_url(__UpperCamelCase ,map_location="cpu" )["state_dict"]
A_ = create_rename_keys(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
for src, dest in rename_keys:
rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase )
if mlm_model or irtr_model:
A_ = ["itm_score.fc.weight", "itm_score.fc.bias"]
for k in ignore_keys:
state_dict.pop(__UpperCamelCase ,__UpperCamelCase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A_ , A_ = model.load_state_dict(__UpperCamelCase ,strict=__UpperCamelCase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(__UpperCamelCase )
# Define processor
A_ = ViltImageProcessor(size=384 )
A_ = BertTokenizer.from_pretrained("bert-base-uncased" )
A_ = ViltProcessor(__UpperCamelCase ,__UpperCamelCase )
# Forward pass on example inputs (image + text)
if nlvr_model:
A_ = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" ,stream=__UpperCamelCase ).raw )
A_ = Image.open(requests.get("https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg" ,stream=__UpperCamelCase ).raw )
A_ = (
"The left image contains twice the number of dogs as the right image, and at least two dogs in total are"
" standing."
)
A_ = processor(__UpperCamelCase ,__UpperCamelCase ,return_tensors="pt" )
A_ = processor(__UpperCamelCase ,__UpperCamelCase ,return_tensors="pt" )
A_ = model(
input_ids=encoding_a.input_ids ,pixel_values=encoding_a.pixel_values ,pixel_values_a=encoding_a.pixel_values ,)
else:
A_ = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg" ,stream=__UpperCamelCase ).raw )
if mlm_model:
A_ = "a bunch of [MASK] laying on a [MASK]."
else:
A_ = "How many cats are there?"
A_ = processor(__UpperCamelCase ,__UpperCamelCase ,return_tensors="pt" )
A_ = model(**__UpperCamelCase )
# Verify outputs
if mlm_model:
A_ = torch.Size([1, 11, 3_0522] )
A_ = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] ,__UpperCamelCase ,atol=1E-4 )
# verify masked token prediction equals "cats"
A_ = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A_ = torch.Size([1, 3129] )
A_ = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] ,__UpperCamelCase ,atol=1E-4 )
# verify vqa prediction equals "2"
A_ = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A_ = torch.Size([1, 2] )
A_ = torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] ,__UpperCamelCase ,atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__a :Any = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 329 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 1 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class _a :
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : str=100 , UpperCAmelCase : Optional[int]=13 , UpperCAmelCase : Dict=30 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : str=3 , UpperCAmelCase : int=True , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : int=4 , UpperCAmelCase : Any=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=10 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Any=[0, 1, 2, 3] , ):
A_ = parent
A_ = 100
A_ = batch_size
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = is_training
A_ = use_labels
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = type_sequence_label_size
A_ = initializer_range
A_ = scope
A_ = out_indices
A_ = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
A_ = (image_size // patch_size) ** 2
A_ = num_patches + 1
def __A ( self : int ):
A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
A_ = self.get_config()
return config, pixel_values, labels, pixel_labels
def __A ( self : Dict ):
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def __A ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ):
A_ = BeitModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ):
A_ = BeitForMaskedImageModeling(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] ):
A_ = self.type_sequence_label_size
A_ = BeitForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
A_ = 1
A_ = BeitForImageClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __A ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] ):
A_ = self.num_labels
A_ = BeitForSemanticSegmentation(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
A_ = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
A_ = model(UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def __A ( self : Dict ):
A_ = self.prepare_config_and_inputs()
A_ , A_ , A_ , A_ = config_and_inputs
A_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
_lowerCamelCase : int = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : List[str] = False
_lowerCamelCase : Dict = False
def __A ( self : str ):
A_ = BeitModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def __A ( self : int ):
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def __A ( self : Optional[int] ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def __A ( self : Union[str, Any] ):
pass
def __A ( self : int ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = model_class(UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCAmelCase , nn.Linear ) )
def __A ( self : Union[str, Any] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A_ = model_class(UpperCAmelCase )
A_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A_ = [*signature.parameters.keys()]
A_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase )
def __A ( self : Any ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
def __A ( self : Union[str, Any] ):
if not self.model_tester.is_training:
return
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling]:
continue
A_ = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = model(**UpperCAmelCase ).loss
loss.backward()
def __A ( self : List[Any] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
A_ = False
A_ = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(UpperCAmelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
A_ = model_class(UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(UpperCAmelCase )
model.train()
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase , return_labels=UpperCAmelCase )
A_ = model(**UpperCAmelCase ).loss
loss.backward()
def __A ( self : Optional[Any] ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = _config_zero_init(UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def __A ( self : Dict ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = BeitModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __snake_case ( ):
"""simple docstring"""
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def __A ( self : Dict ):
A_ = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCAmelCase )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).pixel_values.to(UpperCAmelCase )
# prepare bool_masked_pos
A_ = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(pixel_values=UpperCAmelCase , bool_masked_pos=UpperCAmelCase )
A_ = outputs.logits
# verify the logits
A_ = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , UpperCAmelCase )
A_ = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCAmelCase , atol=1E-2 ) )
@slow
def __A ( self : List[str] ):
A_ = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCAmelCase )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
A_ = outputs.logits
# verify the logits
A_ = torch.Size((1, 1000) )
self.assertEqual(logits.shape , UpperCAmelCase )
A_ = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
A_ = 281
self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase )
@slow
def __A ( self : Any ):
A_ = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
UpperCAmelCase )
A_ = self.default_image_processor
A_ = prepare_img()
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
A_ = outputs.logits
# verify the logits
A_ = torch.Size((1, 21841) )
self.assertEqual(logits.shape , UpperCAmelCase )
A_ = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase , atol=1E-4 ) )
A_ = 2396
self.assertEqual(logits.argmax(-1 ).item() , UpperCAmelCase )
@slow
def __A ( self : Any ):
A_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
A_ = model.to(UpperCAmelCase )
A_ = BeitImageProcessor(do_resize=UpperCAmelCase , size=640 , do_center_crop=UpperCAmelCase )
A_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
A_ = Image.open(ds[0]["file"] )
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
A_ = outputs.logits
# verify the logits
A_ = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , UpperCAmelCase )
A_ = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
A_ = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=UpperCAmelCase , )
else:
A_ = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
@slow
def __A ( self : Optional[Any] ):
A_ = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
A_ = model.to(UpperCAmelCase )
A_ = BeitImageProcessor(do_resize=UpperCAmelCase , size=640 , do_center_crop=UpperCAmelCase )
A_ = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
A_ = Image.open(ds[0]["file"] )
A_ = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase )
# forward pass
with torch.no_grad():
A_ = model(**UpperCAmelCase )
A_ = outputs.logits.detach().cpu()
A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase , target_sizes=[(500, 300)] )
A_ = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , UpperCAmelCase )
A_ = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase )
A_ = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , UpperCAmelCase )
| 329 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 1 |
from collections.abc import Generator
def __snake_case ( ):
"""simple docstring"""
A_ , A_ = 0, 1
while True:
A_ , A_ = b, a + b
yield b
def __snake_case ( __UpperCamelCase : int = 1000 ):
"""simple docstring"""
A_ = 1
A_ = fibonacci_generator()
while len(str(next(__UpperCamelCase ) ) ) < n:
answer += 1
return answer + 1
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 329 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__a :Dict = logging.get_logger(__name__)
__a :List[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = 'imagegpt'
_lowerCamelCase : Tuple = ['past_key_values']
_lowerCamelCase : Tuple = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : List[str] , UpperCAmelCase : List[Any]=512 + 1 , UpperCAmelCase : Optional[int]=32 * 32 , UpperCAmelCase : str=512 , UpperCAmelCase : Union[str, Any]=24 , UpperCAmelCase : str=8 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : List[str]="quick_gelu" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Tuple=1E-5 , UpperCAmelCase : str=0.02 , UpperCAmelCase : int=True , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : Optional[int]=False , **UpperCAmelCase : int , ):
A_ = vocab_size
A_ = n_positions
A_ = n_embd
A_ = n_layer
A_ = n_head
A_ = n_inner
A_ = activation_function
A_ = resid_pdrop
A_ = embd_pdrop
A_ = attn_pdrop
A_ = layer_norm_epsilon
A_ = initializer_range
A_ = scale_attn_weights
A_ = use_cache
A_ = scale_attn_by_inverse_layer_idx
A_ = reorder_and_upcast_attn
A_ = tie_word_embeddings
super().__init__(tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase )
class _a ( snake_case_ ):
"""simple docstring"""
@property
def __A ( self : Dict ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def __A ( self : List[str] , UpperCAmelCase : "FeatureExtractionMixin" , UpperCAmelCase : int = 1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional["TensorType"] = None , UpperCAmelCase : int = 3 , UpperCAmelCase : int = 32 , UpperCAmelCase : int = 32 , ):
A_ = self._generate_dummy_images(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = dict(preprocessor(images=UpperCAmelCase , return_tensors=UpperCAmelCase ) )
return inputs
| 329 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 1 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('1.0.0a'):
raise Exception('requires fairseq >= 1.0.0a')
logging.set_verbosity_info()
__a :Tuple = logging.get_logger(__name__)
__a :Optional[Any] = 'Hello world! cécé herlolip'
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : bool ):
"""simple docstring"""
A_ = FairseqRobertaModel.from_pretrained(__UpperCamelCase )
roberta.eval() # disable dropout
A_ = roberta.model.encoder.sentence_encoder
A_ = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings ,hidden_size=roberta.cfg.model.encoder_embed_dim ,num_hidden_layers=roberta.cfg.model.encoder_layers ,num_attention_heads=roberta.cfg.model.encoder_attention_heads ,intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim ,max_position_embeddings=514 ,type_vocab_size=1 ,layer_norm_eps=1E-5 ,)
if classification_head:
A_ = roberta.model.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our RoBERTa config:" ,__UpperCamelCase )
A_ = XLMRobertaXLForSequenceClassification(__UpperCamelCase ) if classification_head else XLMRobertaXLForMaskedLM(__UpperCamelCase )
model.eval()
# Now let's copy all the weights.
# Embeddings
A_ = roberta_sent_encoder.embed_tokens.weight
A_ = roberta_sent_encoder.embed_positions.weight
A_ = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
A_ = roberta_sent_encoder.layer_norm.weight
A_ = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
A_ = model.roberta.encoder.layer[i]
A_ = roberta_sent_encoder.layers[i]
A_ = layer.attention
A_ = roberta_layer.self_attn_layer_norm.weight
A_ = roberta_layer.self_attn_layer_norm.bias
# self attention
A_ = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
A_ = roberta_layer.self_attn.q_proj.weight
A_ = roberta_layer.self_attn.q_proj.bias
A_ = roberta_layer.self_attn.k_proj.weight
A_ = roberta_layer.self_attn.k_proj.bias
A_ = roberta_layer.self_attn.v_proj.weight
A_ = roberta_layer.self_attn.v_proj.bias
# self-attention output
A_ = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
A_ = roberta_layer.self_attn.out_proj.weight
A_ = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
A_ = roberta_layer.final_layer_norm.weight
A_ = roberta_layer.final_layer_norm.bias
# intermediate
A_ = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
A_ = roberta_layer.fca.weight
A_ = roberta_layer.fca.bias
# output
A_ = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
A_ = roberta_layer.fca.weight
A_ = roberta_layer.fca.bias
# end of layer
if classification_head:
A_ = roberta.model.classification_heads["mnli"].dense.weight
A_ = roberta.model.classification_heads["mnli"].dense.bias
A_ = roberta.model.classification_heads["mnli"].out_proj.weight
A_ = roberta.model.classification_heads["mnli"].out_proj.bias
else:
# LM Head
A_ = roberta.model.encoder.lm_head.dense.weight
A_ = roberta.model.encoder.lm_head.dense.bias
A_ = roberta.model.encoder.lm_head.layer_norm.weight
A_ = roberta.model.encoder.lm_head.layer_norm.bias
A_ = roberta.model.encoder.lm_head.weight
A_ = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
A_ = roberta.encode(__UpperCamelCase ).unsqueeze(0 ) # batch of size 1
A_ = model(__UpperCamelCase )[0]
if classification_head:
A_ = roberta.model.classification_heads["mnli"](roberta.extract_features(__UpperCamelCase ) )
else:
A_ = roberta.model(__UpperCamelCase )[0]
print(our_output.shape ,their_output.shape )
A_ = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
A_ = torch.allclose(__UpperCamelCase ,__UpperCamelCase ,atol=1E-3 )
print("Do both models output the same tensors?" ,"🔥" if success else "💩" )
if not success:
raise Exception("Something went wRoNg" )
pathlib.Path(__UpperCamelCase ).mkdir(parents=__UpperCamelCase ,exist_ok=__UpperCamelCase )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--classification_head', action='store_true', help='Whether to convert a final classification head.'
)
__a :Optional[int] = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 329 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 1 |
from math import isqrt
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 10**8 ):
"""simple docstring"""
A_ = calculate_prime_numbers(max_number // 2 )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Any = logging.get_logger(__name__)
__a :Optional[int] = {
'microsoft/swinv2-tiny-patch4-window8-256': (
'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'
),
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = 'swinv2'
_lowerCamelCase : Any = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Union[str, Any] , UpperCAmelCase : Dict=224 , UpperCAmelCase : Dict=4 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : Optional[Any]=[2, 2, 6, 2] , UpperCAmelCase : int=[3, 6, 12, 24] , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Any=4.0 , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[int]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=0.1 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Tuple=False , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Any=1E-5 , UpperCAmelCase : Optional[int]=32 , **UpperCAmelCase : Any , ):
super().__init__(**UpperCAmelCase )
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = embed_dim
A_ = depths
A_ = len(UpperCAmelCase )
A_ = num_heads
A_ = window_size
A_ = mlp_ratio
A_ = qkv_bias
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = drop_path_rate
A_ = hidden_act
A_ = use_absolute_embeddings
A_ = layer_norm_eps
A_ = initializer_range
A_ = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
A_ = int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) )
A_ = (0, 0, 0, 0)
| 329 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 1 |
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
__a :Dict = logging.get_logger(__name__)
__a :Optional[int] = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
'constant': get_constant_schedule,
'constant_w_warmup': get_constant_schedule_with_warmup,
}
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : Dict=None , UpperCAmelCase : Tuple=None , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[str] ):
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if config is None:
assert isinstance(self.model , UpperCAmelCase ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f''' {self.model.__class__}'''
)
A_ = self.model.config
else:
A_ = config
A_ = data_args
A_ = self.config.tgt_vocab_size if isinstance(self.config , UpperCAmelCase ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'''
" padding.." )
if self.args.label_smoothing == 0:
A_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
A_ = label_smoothed_nll_loss
def __A ( self : Optional[int] , UpperCAmelCase : int ):
if self.optimizer is None:
A_ = ["bias", "LayerNorm.weight"]
A_ = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
"weight_decay": self.args.weight_decay,
},
{
"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
"weight_decay": 0.0,
},
]
A_ = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
A_ = Adafactor
A_ = {"scale_parameter": False, "relative_step": False}
else:
A_ = AdamW
A_ = {
"betas": (self.args.adam_betaa, self.args.adam_betaa),
"eps": self.args.adam_epsilon,
}
A_ = self.args.learning_rate
if self.sharded_ddp:
A_ = OSS(
params=UpperCAmelCase , optim=UpperCAmelCase , **UpperCAmelCase , )
else:
A_ = optimizer_cls(UpperCAmelCase , **UpperCAmelCase )
if self.lr_scheduler is None:
A_ = self._get_lr_scheduler(UpperCAmelCase )
else: # ignoring --lr_scheduler
logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." )
def __A ( self : int , UpperCAmelCase : Optional[int] ):
A_ = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
A_ = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
A_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
A_ = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=UpperCAmelCase )
return scheduler
def __A ( self : Optional[Any] ):
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] ):
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0]
A_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
A_ , A_ = model(**UpperCAmelCase , labels=UpperCAmelCase , use_cache=UpperCAmelCase )[:2]
else:
# compute label smoothed loss
A_ = model(**UpperCAmelCase , use_cache=UpperCAmelCase )[0]
A_ = torch.nn.functional.log_softmax(UpperCAmelCase , dim=-1 )
A_ , A_ = self.loss_fn(UpperCAmelCase , UpperCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def __A ( self : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any ):
A_ = inputs.pop("labels" )
A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return loss
def __A ( self : Any , UpperCAmelCase : nn.Module , UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , UpperCAmelCase : bool , UpperCAmelCase : Optional[List[str]] = None , ):
A_ = self._prepare_inputs(UpperCAmelCase )
A_ = {
"max_length": self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
"num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
A_ = self.model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **UpperCAmelCase , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] )
A_ = inputs.pop("labels" )
with torch.no_grad():
# compute loss on predict data
A_ , A_ = self._compute_loss(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
A_ = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
A_ = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
A_ = self._pad_tensors_to_max_len(UpperCAmelCase , gen_kwargs["max_length"] )
return (loss, logits, labels)
def __A ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ):
# If PAD token is not defined at least EOS token has to be defined
A_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
"Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be"
f''' padded to `max_length`={max_length}''' )
A_ = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
A_ = tensor
return padded_tensor
| 329 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 1 |
import numpy as np
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Dict ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : Any ,__UpperCamelCase : int ):
"""simple docstring"""
A_ = int(np.ceil((x_end - xa) / h ) )
A_ = np.zeros((n + 1,) )
A_ = ya
A_ = xa
for k in range(__UpperCamelCase ):
A_ = f(__UpperCamelCase ,y[k] )
A_ = f(x + 0.5 * h ,y[k] + 0.5 * h * ka )
A_ = f(x + 0.5 * h ,y[k] + 0.5 * h * ka )
A_ = f(x + h ,y[k] + h * ka )
A_ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : str=7 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=18 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : List[Any]=400 , UpperCAmelCase : List[Any]=True , UpperCAmelCase : List[Any]=None , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=[0.5, 0.5, 0.5] , UpperCAmelCase : str=[0.5, 0.5, 0.5] , ):
A_ = parent
A_ = batch_size
A_ = num_channels
A_ = image_size
A_ = min_resolution
A_ = max_resolution
A_ = do_resize
A_ = size if size is not None else {"height": 18, "width": 20}
A_ = do_thumbnail
A_ = do_align_axis
A_ = do_pad
A_ = do_normalize
A_ = image_mean
A_ = image_std
def __A ( self : Dict ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _a ( snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = DonutImageProcessor if is_vision_available() else None
def __A ( self : int ):
A_ = DonutImageProcessingTester(self )
@property
def __A ( self : int ):
return self.image_processor_tester.prepare_image_processor_dict()
def __A ( self : Optional[Any] ):
A_ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "size" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_thumbnail" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_align_long_axis" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_pad" ) )
self.assertTrue(hasattr(UpperCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(UpperCAmelCase , "image_std" ) )
def __A ( self : Any ):
A_ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 18, "width": 20} )
A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
# Previous config had dimensions in (width, height) order
A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"height": 84, "width": 42} )
def __A ( self : int ):
pass
@is_flaky()
def __A ( self : List[Any] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , Image.Image )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
@is_flaky()
def __A ( self : Any ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , numpify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , np.ndarray )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
@is_flaky()
def __A ( self : Union[str, Any] ):
# Initialize image_processing
A_ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase , torchify=UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase , torch.Tensor )
# Test not batched input
A_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
# Test batched
A_ = image_processing(UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["height"],
self.image_processor_tester.size["width"],
) , )
| 329 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 1 |
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = AutoConfig.from_pretrained(__UpperCamelCase )
A_ = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCamelCase )
A_ = checkpoints.load_tax_checkpoint(__UpperCamelCase )
A_ = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"]
if config.model_type == "t5":
A_ = "SelfAttention"
if config.model_type == "longt5" and config.encoder_attention_type == "local":
A_ = "LocalSelfAttention"
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
A_ = "TransientGlobalSelfAttention"
else:
raise ValueError(
"Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`"
" attribute with a value from ['local', 'transient-global]." )
# Encoder
for layer_index in range(config.num_layers ):
A_ = f'''layers_{str(__UpperCamelCase )}'''
# Self-Attention
A_ = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"]
A_ = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"]
A_ = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"]
A_ = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"]
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
A_ = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"]
# Layer Normalization
A_ = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"]
if split_mlp_wi:
A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"]
A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"]
A_ = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
A_ = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
A_ = flax_model.params["encoder"]["block"][str(__UpperCamelCase )]["layer"]
A_ = tax_attention_key
A_ = tax_attention_out
A_ = tax_attention_query
A_ = tax_attention_value
A_ = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
A_ = tax_global_layer_norm
if split_mlp_wi:
A_ = tax_mlp_wi_a
A_ = tax_mlp_wi_a
else:
A_ = tax_mlp_wi
A_ = tax_mlp_wo
A_ = tax_mlp_layer_norm
A_ = flax_model_encoder_layer_block
# Only for layer 0:
A_ = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T
A_ = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
A_ = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T
A_ = tax_encoder_global_rel_embedding
# Assigning
A_ = tax_model["target"]["encoder"]["encoder_norm"]["scale"]
A_ = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
A_ = f'''layers_{str(__UpperCamelCase )}'''
# Self-Attention
A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"]
A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"]
A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"]
A_ = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"]
# Layer Normalization
A_ = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][
"scale"
]
# Encoder-Decoder-Attention
A_ = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"]
A_ = tax_enc_dec_attention_module["key"]["kernel"]
A_ = tax_enc_dec_attention_module["out"]["kernel"]
A_ = tax_enc_dec_attention_module["query"]["kernel"]
A_ = tax_enc_dec_attention_module["value"]["kernel"]
# Layer Normalization
A_ = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"]
# MLP
if split_mlp_wi:
A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"]
A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"]
else:
A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"]
A_ = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"]
# Layer Normalization
A_ = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"]
# Assigning
A_ = flax_model.params["decoder"]["block"][str(__UpperCamelCase )]["layer"]
A_ = tax_attention_key
A_ = tax_attention_out
A_ = tax_attention_query
A_ = tax_attention_value
A_ = tax_pre_attention_layer_norm
A_ = tax_enc_dec_attention_key
A_ = tax_enc_dec_attention_out
A_ = tax_enc_dec_attention_query
A_ = tax_enc_dec_attention_value
A_ = tax_cross_layer_norm
if split_mlp_wi:
A_ = tax_mlp_wi_a
A_ = tax_mlp_wi_a
else:
A_ = tax_mlp_wi
A_ = tax_mlp_wo
A_ = txa_mlp_layer_norm
A_ = flax_model_decoder_layer_block
# Decoder Normalization
A_ = tax_model["target"]["decoder"]["decoder_norm"]["scale"]
A_ = txa_decoder_norm
# Only for layer 0:
A_ = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T
A_ = tax_decoder_rel_embedding
# Token Embeddings
A_ = tax_model["target"]["token_embedder"]["embedding"]
A_ = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
A_ = tax_model["target"]["decoder"]["logits_dense"]["kernel"]
flax_model.save_pretrained(__UpperCamelCase )
print("T5X Model was sucessfully converted!" )
if __name__ == "__main__":
__a :int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.'
)
parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.')
parser.add_argument(
'--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.'
)
__a :List[Any] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 329 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 1 |
from numpy import exp, pi, sqrt
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : float = 0.0 ,__UpperCamelCase : float = 1.0 ):
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 1 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 1 |
def __snake_case ( __UpperCamelCase : list[list[float]] ):
"""simple docstring"""
A_ = []
for data in source_data:
for i, el in enumerate(__UpperCamelCase ):
if len(__UpperCamelCase ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(__UpperCamelCase ) )
return data_lists
def __snake_case ( __UpperCamelCase : list[list[float]] ,__UpperCamelCase : list[int] ):
"""simple docstring"""
A_ = []
for dlist, weight in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase )
A_ = max(__UpperCamelCase )
A_ = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
A_ = f'''Invalid weight of {weight:f} provided'''
raise ValueError(__UpperCamelCase )
score_lists.append(__UpperCamelCase )
return score_lists
def __snake_case ( __UpperCamelCase : list[list[float]] ):
"""simple docstring"""
A_ = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(__UpperCamelCase ):
A_ = final_scores[j] + ele
return final_scores
def __snake_case ( __UpperCamelCase : list[list[float]] ,__UpperCamelCase : list[int] ):
"""simple docstring"""
A_ = get_data(__UpperCamelCase )
A_ = calculate_each_score(__UpperCamelCase ,__UpperCamelCase )
A_ = generate_final_scores(__UpperCamelCase )
# append scores to source data
for i, ele in enumerate(__UpperCamelCase ):
source_data[i].append(__UpperCamelCase )
return source_data
| 329 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = [0] * len(__UpperCamelCase )
for i in range(1 ,len(__UpperCamelCase ) ):
# use last results for better performance - dynamic programming
A_ = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
A_ = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
A_ = j
return prefix_result
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return max(prefix_function(__UpperCamelCase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 1 |
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
__a :Dict = 'sshleifer/bart-tiny-random'
__a :Optional[Any] = 'patrickvonplaten/t5-tiny-random'
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __A ( self : Optional[int] ):
return AutoConfig.from_pretrained(UpperCAmelCase )
def __A ( self : Union[str, Any] ):
A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def __A ( self : int ):
A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase )
def __A ( self : Optional[int] ):
A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=UpperCAmelCase )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def __A ( self : Tuple ):
A_ , *A_ = create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def __A ( self : str ):
with self.assertRaises(UpperCAmelCase ):
create_student_by_copying_alternating_layers(UpperCAmelCase , tempfile.mkdtemp() , e=UpperCAmelCase , d=UpperCAmelCase )
| 329 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 1 |
from __future__ import annotations
from typing import TypedDict
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : str
_lowerCamelCase : int
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError("The parameter s type must be str." )
return [s[i:] + s[:i] for i in range(len(__UpperCamelCase ) )]
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError("The parameter s type must be str." )
if not s:
raise ValueError("The parameter s must not be empty." )
A_ = all_rotations(__UpperCamelCase )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
A_ = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(__UpperCamelCase ),
}
return response
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
raise TypeError("The parameter bwt_string type must be str." )
if not bwt_string:
raise ValueError("The parameter bwt_string must not be empty." )
try:
A_ = int(__UpperCamelCase )
except ValueError:
raise TypeError(
"The parameter idx_original_string type must be int or passive"
" of cast to int." )
if idx_original_string < 0:
raise ValueError("The parameter idx_original_string must not be lower than 0." )
if idx_original_string >= len(__UpperCamelCase ):
raise ValueError(
"The parameter idx_original_string must be lower than" " len(bwt_string)." )
A_ = [""] * len(__UpperCamelCase )
for _ in range(len(__UpperCamelCase ) ):
for i in range(len(__UpperCamelCase ) ):
A_ = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
__a :Any = 'Provide a string that I will generate its BWT transform: '
__a :Dict = input(entry_msg).strip()
__a :List[Any] = bwt_transform(s)
print(
F"Burrows Wheeler transform for string '{s}' results "
F"in '{result['bwt_string']}'"
)
__a :List[str] = reverse_bwt(result['bwt_string'], result['idx_original_string'])
print(
F"Reversing Burrows Wheeler transform for entry '{result['bwt_string']}' "
F"we get original string '{original_string}'"
)
| 329 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=snake_case_ )
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : str = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
_lowerCamelCase : ClassVar[Features] = Features({'text': Value('string' )} )
_lowerCamelCase : ClassVar[Features] = Features({} )
_lowerCamelCase : str = "text"
@property
def __A ( self : str ):
return {self.text_column: "text"}
| 329 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 1 |
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class _a ( snake_case_ ):
"""simple docstring"""
def __lt__( self : Dict , UpperCAmelCase : Optional[Any] ):
return self[-1] < other[-1]
def __eq__( self : Dict , UpperCAmelCase : Optional[Any] ):
return self[-1] == other[-1]
def __snake_case ( __UpperCamelCase : list ):
"""simple docstring"""
A_ = []
# sort into stacks
for element in collection:
A_ = Stack([element] )
A_ = bisect_left(__UpperCamelCase ,__UpperCamelCase )
if i != len(__UpperCamelCase ):
stacks[i].append(__UpperCamelCase )
else:
stacks.append(__UpperCamelCase )
# use a heap-based merge to merge stack efficiently
A_ = merge(*(reversed(__UpperCamelCase ) for stack in stacks) )
return collection
if __name__ == "__main__":
__a :int = input('Enter numbers separated by a comma:\n').strip()
__a :Dict = [int(item) for item in user_input.split(',')]
print(patience_sort(unsorted))
| 329 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 1 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 1 |
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : int ):
"""simple docstring"""
return "\n".join(
f'''{number} * {i} = {number * i}''' for i in range(1 ,number_of_terms + 1 ) )
if __name__ == "__main__":
print(multiplication_table(number=5, number_of_terms=10))
| 350 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__a :Optional[int] = logging.get_logger(__name__)
__a :str = {
'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json',
}
class _a ( A__ , A__ ):
"""simple docstring"""
_lowerCamelCase : List[str] = "focalnet"
def __init__( self : Optional[Any] , UpperCAmelCase : str=224 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : str=3 , UpperCAmelCase : Dict=96 , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : str=[192, 384, 768, 768] , UpperCAmelCase : List[str]=[2, 2, 6, 2] , UpperCAmelCase : Any=[2, 2, 2, 2] , UpperCAmelCase : List[str]=[3, 3, 3, 3] , UpperCAmelCase : Tuple="gelu" , UpperCAmelCase : Any=4.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Any=1E-4 , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Tuple=1E-5 , UpperCAmelCase : Any=32 , UpperCAmelCase : int=None , UpperCAmelCase : str=None , **UpperCAmelCase : Optional[Any] , ):
super().__init__(**__A )
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = embed_dim
A_ = use_conv_embed
A_ = hidden_sizes
A_ = depths
A_ = focal_levels
A_ = focal_windows
A_ = hidden_act
A_ = mlp_ratio
A_ = hidden_dropout_prob
A_ = drop_path_rate
A_ = use_layerscale
A_ = layerscale_value
A_ = use_post_layernorm
A_ = use_post_layernorm_in_modulation
A_ = normalize_modulator
A_ = initializer_range
A_ = layer_norm_eps
A_ = encoder_stride
A_ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
A_ = get_aligned_output_features_output_indices(
out_features=__A , out_indices=__A , stage_names=self.stage_names )
| 351 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__a :int = logging.get_logger(__name__)
__a :Optional[Any] = {
'xlm-mlm-en-2048': 'https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json',
'xlm-mlm-ende-1024': 'https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json',
'xlm-mlm-enfr-1024': 'https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json',
'xlm-mlm-enro-1024': 'https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json',
'xlm-mlm-tlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json',
'xlm-mlm-xnli15-1024': 'https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json',
'xlm-clm-enfr-1024': 'https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json',
'xlm-clm-ende-1024': 'https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json',
'xlm-mlm-17-1280': 'https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json',
'xlm-mlm-100-1280': 'https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json',
}
class _a ( _UpperCAmelCase ):
"""simple docstring"""
_lowerCamelCase : int = "xlm"
_lowerCamelCase : List[Any] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self : Union[str, Any] , UpperCAmelCase : Any=30145 , UpperCAmelCase : List[str]=2048 , UpperCAmelCase : Any=12 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Tuple=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : Tuple=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=1 , UpperCAmelCase : str=True , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : List[str]=2048**-0.5 , UpperCAmelCase : List[Any]=1E-12 , UpperCAmelCase : str=0.02 , UpperCAmelCase : Optional[Any]=0 , UpperCAmelCase : Any=1 , UpperCAmelCase : int=2 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[Any]=5 , UpperCAmelCase : int=True , UpperCAmelCase : Dict="first" , UpperCAmelCase : Tuple=True , UpperCAmelCase : Dict=None , UpperCAmelCase : int=True , UpperCAmelCase : str=0.1 , UpperCAmelCase : Optional[int]=5 , UpperCAmelCase : Tuple=5 , UpperCAmelCase : str=0 , UpperCAmelCase : str=0 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=0 , **UpperCAmelCase : int , ):
A_ = vocab_size
A_ = emb_dim
A_ = n_layers
A_ = n_heads
A_ = dropout
A_ = attention_dropout
A_ = gelu_activation
A_ = sinusoidal_embeddings
A_ = causal
A_ = asm
A_ = n_langs
A_ = use_lang_emb
A_ = layer_norm_eps
A_ = bos_index
A_ = eos_index
A_ = pad_index
A_ = unk_index
A_ = mask_index
A_ = is_encoder
A_ = max_position_embeddings
A_ = embed_init_std
A_ = init_std
A_ = summary_type
A_ = summary_use_proj
A_ = summary_activation
A_ = summary_proj_to_labels
A_ = summary_first_dropout
A_ = start_n_top
A_ = end_n_top
A_ = mask_token_id
A_ = lang_id
if "n_words" in kwargs:
A_ = kwargs['''n_words''']
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
class _a ( _UpperCAmelCase ):
"""simple docstring"""
@property
def __A ( self : Union[str, Any] ):
if self.task == "multiple-choice":
A_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A_ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 352 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 0 |
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : Any ):
"""simple docstring"""
print("\nThe shortest path matrix using Floyd Warshall algorithm\n" )
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
if dist[i][j] != float("inf" ):
print(int(dist[i][j] ) ,end="\t" )
else:
print("INF" ,end="\t" )
print()
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = [[float("inf" ) for _ in range(__lowerCAmelCase )] for _ in range(__lowerCAmelCase )]
for i in range(__lowerCAmelCase ):
for j in range(__lowerCAmelCase ):
A_ = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(__lowerCAmelCase ):
# looping through rows of graph array
for i in range(__lowerCAmelCase ):
# looping through columns of graph array
for j in range(__lowerCAmelCase ):
if (
dist[i][k] != float("inf" )
and dist[k][j] != float("inf" )
and dist[i][k] + dist[k][j] < dist[i][j]
):
A_ = dist[i][k] + dist[k][j]
_print_dist(__lowerCAmelCase ,__lowerCAmelCase )
return dist, v
if __name__ == "__main__":
__a :List[Any] = int(input('Enter number of vertices: '))
__a :Union[str, Any] = int(input('Enter number of edges: '))
__a :Dict = [[float('inf') for i in range(v)] for j in range(v)]
for i in range(v):
__a :Any = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('\nEdge ', i + 1)
__a :Tuple = int(input('Enter source:'))
__a :int = int(input('Enter destination:'))
__a :Dict = float(input('Enter weight:'))
__a :List[Any] = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 353 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__a :List[str] = logging.get_logger(__name__)
__a :Union[str, Any] = {
'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json',
}
class _a ( a__ , a__ ):
"""simple docstring"""
_lowerCamelCase : Dict = 'bit'
_lowerCamelCase : Union[str, Any] = ['preactivation', 'bottleneck']
_lowerCamelCase : Any = ['SAME', 'VALID']
def __init__( self : List[Any] , UpperCAmelCase : Dict=3 , UpperCAmelCase : str=64 , UpperCAmelCase : str=[256, 512, 1024, 2048] , UpperCAmelCase : str=[3, 4, 6, 3] , UpperCAmelCase : str="preactivation" , UpperCAmelCase : Dict="relu" , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=32 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : Optional[int]=32 , UpperCAmelCase : int=1 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : Tuple=None , **UpperCAmelCase : Dict , ):
super().__init__(**_lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
A_ = global_padding.upper()
else:
raise ValueError(f'''Padding strategy {global_padding} not supported''' )
A_ = num_channels
A_ = embedding_size
A_ = hidden_sizes
A_ = depths
A_ = layer_type
A_ = hidden_act
A_ = global_padding
A_ = num_groups
A_ = drop_path_rate
A_ = embedding_dynamic_padding
A_ = output_stride
A_ = width_factor
A_ = ['''stem'''] + [f'''stage{idx}''' for idx in range(1 , len(_lowerCamelCase ) + 1 )]
A_ = get_aligned_output_features_output_indices(
out_features=_lowerCamelCase , out_indices=_lowerCamelCase , stage_names=self.stage_names )
| 354 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 0 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = FileLock(str(tmpdir / "foo.lock" ) )
A_ = FileLock(str(tmpdir / "foo.lock" ) )
A_ = 0.01
with locka.acquire():
with pytest.raises(__a ):
A_ = time.time()
locka.acquire(__a )
assert time.time() - _start > timeout
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = 'a' * 1000 + '.lock'
A_ = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith(".lock" )
assert not locka._lock_file.endswith(__a )
assert len(os.path.basename(locka._lock_file ) ) <= 255
A_ = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(__a ):
locka.acquire(0 )
| 355 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 0 |
from scipy.stats import pearsonr
import datasets
__a :Dict = """
Pearson correlation coefficient and p-value for testing non-correlation.
The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.
"""
__a :Dict = """
Args:
predictions (`list` of `int`): Predicted class labels, as returned by a model.
references (`list` of `int`): Ground truth labels.
return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.
Returns:
pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.
p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.
Examples:
Example 1-A simple example using only predictions and references.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])
>>> print(round(results['pearsonr'], 2))
-0.74
Example 2-The same as Example 1, but that also returns the `p-value`.
>>> pearsonr_metric = datasets.load_metric(\"pearsonr\")
>>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)
>>> print(sorted(list(results.keys())))
['p-value', 'pearsonr']
>>> print(round(results['pearsonr'], 2))
-0.74
>>> print(round(results['p-value'], 2))
0.15
"""
__a :Optional[int] = """
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, Ilhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Antonio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _a ( datasets.Metric ):
"""simple docstring"""
def __A ( self : List[Any] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
} ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"] , )
def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional[Any]=False ):
if return_pvalue:
A_ = pearsonr(UpperCAmelCase , UpperCAmelCase )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(UpperCAmelCase , UpperCAmelCase )[0] )}
| 356 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :int = logging.get_logger(__name__)
__a :Tuple = {
"facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json",
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = '''timesformer'''
def __init__( self : Optional[int] , UpperCAmelCase : Tuple=224 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : int=3 , UpperCAmelCase : Optional[int]=8 , UpperCAmelCase : str=768 , UpperCAmelCase : List[str]=12 , UpperCAmelCase : int=12 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu" , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Any=0.02 , UpperCAmelCase : Union[str, Any]=1E-6 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]="divided_space_time" , UpperCAmelCase : Dict=0 , **UpperCAmelCase : str , ):
super().__init__(**_snake_case )
A_ = image_size
A_ = patch_size
A_ = num_channels
A_ = num_frames
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = layer_norm_eps
A_ = qkv_bias
A_ = attention_type
A_ = drop_path_rate
| 357 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
__a :Optional[Any] = logging.get_logger(__name__)
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : List[str] , *UpperCAmelCase : int , **UpperCAmelCase : Optional[int] ):
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 329 | 0 |
import pytest
import datasets
# Import fixture modules as plugins
__a :Union[str, Any] = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec']
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ["integration", "unit"] ):
continue
item.add_marker(pytest.mark.unit )
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
config.addinivalue_line("markers" ,"torchaudio_latest: mark test to run with torchaudio>=0.12" )
@pytest.fixture(autouse=lowerCamelCase_ )
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = tmp_path_factory.getbasetemp() / """cache"""
A_ = test_hf_cache_home / """datasets"""
A_ = test_hf_cache_home / """metrics"""
A_ = test_hf_cache_home / """modules"""
monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" ,str(lowerCamelCase_ ) )
monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" ,str(lowerCamelCase_ ) )
monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" ,str(lowerCamelCase_ ) )
A_ = test_hf_datasets_cache / """downloads"""
monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" ,str(lowerCamelCase_ ) )
A_ = test_hf_datasets_cache / """downloads""" / """extracted"""
monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" ,str(lowerCamelCase_ ) )
@pytest.fixture(autouse=lowerCamelCase_ ,scope="session" )
def __snake_case ( ):
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=lowerCamelCase_ )
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" ,lowerCamelCase_ )
@pytest.fixture
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" ,lowerCamelCase_ )
| 358 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _a :
"""simple docstring"""
@staticmethod
def __A ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Union[str, Any] ):
pass
@is_pipeline_test
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
@require_torch
def __A ( self : List[str] ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(UpperCAmelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@require_tf
def __A ( self : int ):
A_ = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
A_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
[
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
{"score": 0.333, "label": ANY(UpperCAmelCase )},
],
] , )
@slow
@require_torch
def __A ( self : Any ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def __A ( self : Optional[Any] ):
A_ = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
A_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
A_ = image_classifier(UpperCAmelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
A_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(UpperCAmelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
| 329 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : List[Any] ):
A_ = tempfile.mkdtemp()
# fmt: off
A_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
A_ = dict(zip(__lowercase , range(len(__lowercase ) ) ) )
A_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""]
A_ = {"unk_token": "<unk>"}
A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowercase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(__lowercase ) )
A_ = {
"do_resize": True,
"size": 20,
"do_center_crop": True,
"crop_size": 18,
"do_normalize": True,
"image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073],
"image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711],
}
A_ = os.path.join(self.tmpdirname , __lowercase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__lowercase , __lowercase )
def __A ( self : int , **UpperCAmelCase : Tuple ):
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowercase )
def __A ( self : Tuple , **UpperCAmelCase : Dict ):
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowercase )
def __A ( self : Tuple , **UpperCAmelCase : str ):
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowercase )
def __A ( self : List[Any] ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Any ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(__lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Dict ):
A_ = self.get_tokenizer()
A_ = self.get_rust_tokenizer()
A_ = self.get_image_processor()
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_slow.save_pretrained(self.tmpdirname )
A_ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowercase )
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
processor_fast.save_pretrained(self.tmpdirname )
A_ = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __lowercase )
self.assertIsInstance(processor_fast.tokenizer , __lowercase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __lowercase )
self.assertIsInstance(processor_fast.image_processor , __lowercase )
def __A ( self : int ):
A_ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=__lowercase , padding_value=1.0 )
A_ = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowercase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowercase )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
A_ = self.prepare_image_inputs()
A_ = image_processor(__lowercase , return_tensors="np" )
A_ = processor(images=__lowercase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
A_ = "lower newer"
A_ = processor(text=__lowercase )
A_ = tokenizer(__lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with pytest.raises(__lowercase ):
processor()
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(__lowercase )
A_ = tokenizer.batch_decode(__lowercase )
self.assertListEqual(__lowercase , __lowercase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = CLIPProcessor(tokenizer=__lowercase , image_processor=__lowercase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=__lowercase , images=__lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 359 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Dict=10 ):
"""simple docstring"""
A_ = []
for _ in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Tuple=10 ):
"""simple docstring"""
A_ = []
for step in range(__UpperCamelCase ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
A_ = os.path.join(__UpperCamelCase ,"schedule.bin" )
torch.save(scheduler.state_dict() ,__UpperCamelCase )
A_ = torch.load(__UpperCamelCase )
scheduler.load_state_dict(__UpperCamelCase )
return lrs
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : Any , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def __A ( self : Dict ):
A_ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCAmelCase )
A_ = torch.tensor([0.4, 0.2, -0.5] )
A_ = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
A_ = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCAmelCase , weight_decay=0.0 , relative_step=UpperCAmelCase , scale_parameter=UpperCAmelCase , warmup_init=UpperCAmelCase , )
for _ in range(1000 ):
A_ = criterion(UpperCAmelCase , UpperCAmelCase )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[int] = nn.Linear(5_0 , 5_0 ) if is_torch_available() else None
_lowerCamelCase : Any = AdamW(m.parameters() , lr=1_0.0 ) if is_torch_available() else None
_lowerCamelCase : Any = 1_0
def __A ( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=None ):
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for a, b in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertAlmostEqual(UpperCAmelCase , UpperCAmelCase , delta=UpperCAmelCase , msg=UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
A_ = {
get_constant_schedule: ({}, [10.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714],
),
}
for scheduler_func, data in scheds.items():
A_ , A_ = data
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
A_ = unwrap_schedule(UpperCAmelCase , self.num_steps )
self.assertListAlmostEqual(
UpperCAmelCase , UpperCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , )
A_ = scheduler_func(self.optimizer , **UpperCAmelCase )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(UpperCAmelCase ) # wrap to test picklability of the schedule
A_ = unwrap_and_save_reload_schedule(UpperCAmelCase , self.num_steps )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' )
class _a :
"""simple docstring"""
def __init__( self : List[str] , UpperCAmelCase : List[str] ):
A_ = fn
def __call__( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : Optional[Any] ):
return self.fn(*UpperCAmelCase , **UpperCAmelCase )
@classmethod
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = list(map(self , scheduler.lr_lambdas ) )
| 329 | 0 |
import itertools
import random
import unittest
import numpy as np
from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor
from transformers.testing_utils import require_torch, slow
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__a :List[str] = random.Random()
def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : List[str]=1.0 ,__UpperCamelCase : Any=None ,__UpperCamelCase : Optional[int]=None ):
"""simple docstring"""
if rng is None:
A_ = global_rng
A_ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class _a ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : List[str]=7 , UpperCAmelCase : Optional[int]=400 , UpperCAmelCase : Optional[int]=2000 , UpperCAmelCase : Dict=1 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : Union[str, Any]=16000 , UpperCAmelCase : str=True , UpperCAmelCase : Optional[Any]=True , ):
A_ = parent
A_ = batch_size
A_ = min_seq_length
A_ = max_seq_length
A_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A_ = feature_size
A_ = padding_value
A_ = sampling_rate
A_ = return_attention_mask
A_ = do_normalize
def __A ( self : Any ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __A ( self : Tuple , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=False ):
def _flatten(UpperCAmelCase : List[str] ):
return list(itertools.chain(*snake_case__ ) )
if equal_length:
A_ = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
A_ = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A_ = [np.asarray(snake_case__ ) for x in speech_inputs]
return speech_inputs
class _a ( A_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : int = WavaVecaFeatureExtractor
def __A ( self : Tuple ):
A_ = WavaVecaFeatureExtractionTester(self )
def __A ( self : Tuple , UpperCAmelCase : Union[str, Any] ):
self.assertTrue(np.all(np.mean(snake_case__ , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(snake_case__ , axis=0 ) - 1 ) < 1E-3 ) )
def __A ( self : List[Any] ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = [np.asarray(snake_case__ ) for speech_input in speech_inputs]
# Test not batched input
A_ = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values
A_ = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values
self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
# Test batched
A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values
A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ):
self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
A_ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A_ = np.asarray(snake_case__ )
A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values
A_ = feat_extract(snake_case__ , return_tensors="np" ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ):
self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
def __A ( self : str ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = ["longest", "max_length", "do_not_pad"]
A_ = [None, 1600, None]
for max_length, padding in zip(snake_case__ , snake_case__ ):
A_ = feat_extract(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors="np" )
A_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self.assertTrue(input_values[0][800:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self.assertTrue(input_values[0][1000:].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def __A ( self : List[Any] ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = range(800 , 1400 , 200 )
A_ = [floats_list((1, x) )[0] for x in lengths]
A_ = ["longest", "max_length", "do_not_pad"]
A_ = [None, 1600, None]
for max_length, padding in zip(snake_case__ , snake_case__ ):
A_ = feat_extract(snake_case__ , max_length=snake_case__ , padding=snake_case__ )
A_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0][:800] )
self._check_zero_mean_unit_variance(input_values[1][:1000] )
self._check_zero_mean_unit_variance(input_values[2][:1200] )
def __A ( self : Optional[int] ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = feat_extract(
snake_case__ , truncation=snake_case__ , max_length=1000 , padding="max_length" , return_tensors="np" )
A_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1] )
self._check_zero_mean_unit_variance(input_values[2] )
def __A ( self : Union[str, Any] ):
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = feat_extract(
snake_case__ , truncation=snake_case__ , max_length=1000 , padding="longest" , return_tensors="np" )
A_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertTrue(input_values.shape == (3, 1000) )
A_ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A_ = feat_extract(
snake_case__ , truncation=snake_case__ , max_length=2000 , padding="longest" , return_tensors="np" )
A_ = processed.input_values
self._check_zero_mean_unit_variance(input_values[0, :800] )
self._check_zero_mean_unit_variance(input_values[1, :1000] )
self._check_zero_mean_unit_variance(input_values[2] )
# make sure that if max_length > longest -> then pad to longest
self.assertTrue(input_values.shape == (3, 1200) )
@require_torch
def __A ( self : Tuple ):
import torch
A_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
A_ = np.random.rand(100 ).astype(np.floataa )
A_ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
A_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
A_ = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
@slow
@require_torch
def __A ( self : Any ):
for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST:
A_ = WavaVecaConfig.from_pretrained(snake_case__ )
A_ = WavaVecaFeatureExtractor.from_pretrained(snake_case__ )
# only "layer" feature extraction norm should make use of
# attention_mask
self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
| 360 |
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def __snake_case ( __UpperCamelCase : Optional[int] ): # picklable for multiprocessing
"""simple docstring"""
return x.sum()
def __snake_case ( __UpperCamelCase : List[str] ): # picklable for multiprocessing
"""simple docstring"""
return i + 1
@dataclass
class _a :
"""simple docstring"""
_lowerCamelCase : int
_lowerCamelCase : str
class _a ( snake_case_ ):
"""simple docstring"""
def __A ( self : Dict ):
A_ = {}
A_ = []
A_ = 1
A_ = [1, 2]
A_ = {"a": 1, "b": 2}
A_ = {"a": [1, 2], "b": [3, 4]}
A_ = {"a": {"1": 1}, "b": 2}
A_ = {"a": 1, "b": 2, "c": 3, "d": 4}
A_ = {}
A_ = []
A_ = 2
A_ = [2, 3]
A_ = {"a": 2, "b": 3}
A_ = {"a": [2, 3], "b": [4, 5]}
A_ = {"a": {"1": 2}, "b": 3}
A_ = {"a": 2, "b": 3, "c": 4, "d": 5}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase ) , UpperCAmelCase )
A_ = 2
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
A_ = {"a": np.eye(2 ), "b": np.zeros(3 ), "c": np.ones(2 )}
A_ = {"a": 2, "b": 0, "c": 2}
A_ = {
"a": np.eye(2 ).astype(UpperCAmelCase ),
"b": np.zeros(3 ).astype(UpperCAmelCase ),
"c": np.ones(2 ).astype(UpperCAmelCase ),
}
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ) , UpperCAmelCase )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(UpperCAmelCase , UpperCAmelCase , map_numpy=UpperCAmelCase , num_proc=UpperCAmelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(UpperCAmelCase ): # can't pickle a local lambda
map_nested(lambda UpperCAmelCase : x + 1 , UpperCAmelCase , num_proc=UpperCAmelCase )
def __A ( self : List[str] ):
A_ = {"a": 1, "b": 2}
A_ = {"a": 3, "b": 4}
A_ = {"a": 5, "b": 6}
A_ = sorted([("a", (1, 3, 5)), ("b", (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) , UpperCAmelCase )
def __A ( self : Any ):
class _a :
"""simple docstring"""
_lowerCamelCase : int = 'bar'
A_ = Foo()
self.assertEqual(foo.my_attr , "bar" )
with temporary_assignment(UpperCAmelCase , "my_attr" , "BAR" ):
self.assertEqual(foo.my_attr , "BAR" )
self.assertEqual(foo.my_attr , "bar" )
@pytest.mark.parametrize(
"iterable_length, num_proc, expected_num_proc" ,[
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
] ,)
def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with patch("datasets.utils.py_utils._single_map_nested" ) as mock_single_map_nested, patch(
"datasets.parallel.parallel.Pool" ) as mock_multiprocessing_pool:
A_ = {f'''{i}''': i for i in range(__UpperCamelCase )}
A_ = map_nested(lambda __UpperCamelCase : x + 10 ,__UpperCamelCase ,num_proc=__UpperCamelCase ,parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class _a ( snake_case_ ):
"""simple docstring"""
@require_tf
def __A ( self : Union[str, Any] ):
import tensorflow as tf
from tensorflow.keras import layers
A_ = layers.Dense(2 )
def gen_random_output():
A_ = tf.random.uniform((1, 3) )
return model(UpperCAmelCase ).numpy()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_tensorflow=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def __A ( self : Optional[int] ):
import torch
def gen_random_output():
A_ = torch.nn.Linear(3 , 2 )
A_ = torch.rand(1 , 3 )
return model(UpperCAmelCase ).detach().numpy()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
with temp_seed(42 , set_pytorch=UpperCAmelCase ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def __A ( self : Any ):
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
A_ = gen_random_output()
with temp_seed(42 ):
A_ = gen_random_output()
A_ = gen_random_output()
np.testing.assert_equal(UpperCAmelCase , UpperCAmelCase )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize("input_data" ,[{}] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).data
assert output_data == input_data
@pytest.mark.parametrize(
"data, expected_output" ,[
({}, []),
([], []),
("foo", ["foo"]),
(["foo", "bar"], ["foo", "bar"]),
([["foo", "bar"]], ["foo", "bar"]),
([[["foo"], ["bar"]]], ["foo", "bar"]),
([[["foo"], "bar"]], ["foo", "bar"]),
({"a": 1, "b": 2}, [1, 2]),
({"a": [1, 2], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[1, 2]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[[3], [4]]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [[3, 4]]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, 4]}, [1, 2, 3, 4]),
({"a": [[[1], [2]]], "b": [3, [4]]}, [1, 2, 3, 4]),
({"a": {"1": 1}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": 2}, [1, 2]),
({"a": {"1": [1]}, "b": [2]}, [1, 2]),
] ,)
def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Any ):
"""simple docstring"""
A_ = NestedDataStructure(__UpperCamelCase ).flatten()
assert output == expected_output
def __snake_case ( ):
"""simple docstring"""
A_ = A(x=1 ,y="foobar" )
A_ = {"x": 1, "y": "foobar"}
assert asdict(__UpperCamelCase ) == expected_output
A_ = {"a": {"b": A(x=10 ,y="foo" )}, "c": [A(x=20 ,y="bar" )]}
A_ = {"a": {"b": {"x": 10, "y": "foo"}}, "c": [{"x": 20, "y": "bar"}]}
assert asdict(__UpperCamelCase ) == expected_output
with pytest.raises(__UpperCamelCase ):
asdict([1, A(x=10 ,y="foo" )] )
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
return text.split()
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def __snake_case ( ):
"""simple docstring"""
with Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
A_ = list(iflatmap_unordered(__UpperCamelCase ,_split_text ,kwargs_iterable=[{"text": "hello there"}] * 10 ) )
assert out.count("hello" ) == 10
assert out.count("there" ) == 10
assert len(__UpperCamelCase ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
A_ = []
for yield_time, content in iflatmap_unordered(
__UpperCamelCase ,_aseconds_generator_of_aitems_with_timing ,kwargs_iterable=[{"content": "a"}, {"content": "b"}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(__UpperCamelCase )
assert out.count("a" ) == 2
assert out.count("b" ) == 2
assert len(__UpperCamelCase ) == 4
| 329 | 0 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__a :str = logging.get_logger(__name__)
class _a ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
def __init__( self : str , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[Any] ):
warnings.warn(
"The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use DeformableDetrImageProcessor instead." , _a , )
super().__init__(*_a , **_a )
| 361 |
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __snake_case ( __UpperCamelCase : List[Any] ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
for char in word:
A_ = ord(__UpperCamelCase )
if not _is_chinese_char(__UpperCamelCase ):
return 0
return 1
def __snake_case ( __UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = set()
for token in tokens:
A_ = len(__UpperCamelCase ) > 1 and is_chinese(__UpperCamelCase )
if chinese_word:
word_set.add(__UpperCamelCase )
A_ = list(__UpperCamelCase )
return word_list
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
A_ = max([len(__UpperCamelCase ) for w in chinese_word_set] )
A_ = bert_tokens
A_ , A_ = 0, len(__UpperCamelCase )
while start < end:
A_ = True
if is_chinese(bert_word[start] ):
A_ = min(end - start ,__UpperCamelCase )
for i in range(__UpperCamelCase ,1 ,-1 ):
A_ = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 ,start + i ):
A_ = "##" + bert_word[j]
A_ = start + i
A_ = False
break
if single_word:
start += 1
return bert_word
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : LTP ,__UpperCamelCase : BertTokenizer ):
"""simple docstring"""
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = ltp_tokenizer.seg(lines[i : i + 100] )[0]
A_ = [get_chinese_word(__UpperCamelCase ) for r in res]
ltp_res.extend(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for i in range(0 ,len(__UpperCamelCase ) ,100 ):
A_ = bert_tokenizer(lines[i : i + 100] ,add_special_tokens=__UpperCamelCase ,truncation=__UpperCamelCase ,max_length=512 )
bert_res.extend(res["input_ids"] )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
A_ = []
for input_ids, chinese_word in zip(__UpperCamelCase ,__UpperCamelCase ):
A_ = []
for id in input_ids:
A_ = bert_tokenizer._convert_id_to_token(__UpperCamelCase )
input_tokens.append(__UpperCamelCase )
A_ = add_sub_symbol(__UpperCamelCase ,__UpperCamelCase )
A_ = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCamelCase ):
if token[:2] == "##":
A_ = token[2:]
# save chinese tokens' pos
if len(__UpperCamelCase ) == 1 and _is_chinese_char(ord(__UpperCamelCase ) ):
ref_id.append(__UpperCamelCase )
ref_ids.append(__UpperCamelCase )
assert len(__UpperCamelCase ) == len(__UpperCamelCase )
return ref_ids
def __snake_case ( __UpperCamelCase : Dict ):
"""simple docstring"""
with open(args.file_name ,"r" ,encoding="utf-8" ) as f:
A_ = f.readlines()
A_ = [line.strip() for line in data if len(__UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
A_ = LTP(args.ltp ) # faster in GPU device
A_ = BertTokenizer.from_pretrained(args.bert )
A_ = prepare_ref(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
with open(args.save_path ,"w" ,encoding="utf-8" ) as f:
A_ = [json.dumps(__UpperCamelCase ) + "\n" for ref in ref_ids]
f.writelines(__UpperCamelCase )
if __name__ == "__main__":
__a :List[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path'
)
parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer')
parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res')
__a :Dict = parser.parse_args()
main(args)
| 329 | 0 |
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
__a :Optional[Any] = logging.get_logger(__name__)
class _a :
def __init__( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] ):
A_ = question_encoder
A_ = generator
A_ = self.question_encoder
def __A ( self : Tuple , UpperCAmelCase : str ):
if os.path.isfile(UpperCAmelCase ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "question_encoder_tokenizer" )
A_ = os.path.join(UpperCAmelCase , "generator_tokenizer" )
self.question_encoder.save_pretrained(UpperCAmelCase )
self.generator.save_pretrained(UpperCAmelCase )
@classmethod
def __A ( cls : Union[str, Any] , UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ):
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
A_ = kwargs.pop("config" , UpperCAmelCase )
if config is None:
A_ = RagConfig.from_pretrained(UpperCAmelCase )
A_ = AutoTokenizer.from_pretrained(
UpperCAmelCase , config=config.question_encoder , subfolder="question_encoder_tokenizer" )
A_ = AutoTokenizer.from_pretrained(
UpperCAmelCase , config=config.generator , subfolder="generator_tokenizer" )
return cls(question_encoder=UpperCAmelCase , generator=UpperCAmelCase )
def __call__( self : Tuple , *UpperCAmelCase : int , **UpperCAmelCase : int ):
return self.current_tokenizer(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Optional[int] , *UpperCAmelCase : Any , **UpperCAmelCase : Optional[int] ):
return self.generator.batch_decode(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : Tuple , *UpperCAmelCase : List[str] , **UpperCAmelCase : Union[str, Any] ):
return self.generator.decode(*UpperCAmelCase , **UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.question_encoder
def __A ( self : int ):
A_ = self.generator
def __A ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = None , UpperCAmelCase : Tuple = None , UpperCAmelCase : Dict = "longest" , UpperCAmelCase : int = None , UpperCAmelCase : str = True , **UpperCAmelCase : Optional[Any] , ):
warnings.warn(
"`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the "
"regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` "
"context manager to prepare your targets. See the documentation of your specific tokenizer for more "
"details" , UpperCAmelCase , )
if max_length is None:
A_ = self.current_tokenizer.model_max_length
A_ = self(
UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , max_length=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
A_ = self.current_tokenizer.model_max_length
A_ = self(
text_target=UpperCAmelCase , add_special_tokens=UpperCAmelCase , return_tensors=UpperCAmelCase , padding=UpperCAmelCase , max_length=UpperCAmelCase , truncation=UpperCAmelCase , **UpperCAmelCase , )
A_ = labels['input_ids']
return model_inputs
| 362 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def __snake_case ( __UpperCamelCase : Features ):
"""simple docstring"""
A_ = np.inf
def set_batch_size(__UpperCamelCase : FeatureType ) -> None:
nonlocal batch_size
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(__UpperCamelCase ,__UpperCamelCase ) and feature.dtype == "binary":
A_ = min(__UpperCamelCase ,config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(__UpperCamelCase ,__UpperCamelCase )
return None if batch_size is np.inf else batch_size
class _a ( snake_case_ ):
"""simple docstring"""
def __init__( self : Tuple , UpperCAmelCase : NestedDataStructureLike[PathLike] , UpperCAmelCase : Optional[NamedSplit] = None , UpperCAmelCase : Optional[Features] = None , UpperCAmelCase : str = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : Tuple , ):
super().__init__(
UpperCAmelCase , split=UpperCAmelCase , features=UpperCAmelCase , cache_dir=UpperCAmelCase , keep_in_memory=UpperCAmelCase , streaming=UpperCAmelCase , num_proc=UpperCAmelCase , **UpperCAmelCase , )
A_ = path_or_paths if isinstance(UpperCAmelCase , UpperCAmelCase ) else {self.split: path_or_paths}
A_ = _PACKAGED_DATASETS_MODULES["parquet"][1]
A_ = Parquet(
cache_dir=UpperCAmelCase , data_files=UpperCAmelCase , features=UpperCAmelCase , hash=UpperCAmelCase , **UpperCAmelCase , )
def __A ( self : Optional[Any] ):
# Build iterable dataset
if self.streaming:
A_ = self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
A_ = None
A_ = None
A_ = None
A_ = None
self.builder.download_and_prepare(
download_config=UpperCAmelCase , download_mode=UpperCAmelCase , verification_mode=UpperCAmelCase , base_path=UpperCAmelCase , num_proc=self.num_proc , )
A_ = self.builder.as_dataset(
split=self.split , verification_mode=UpperCAmelCase , in_memory=self.keep_in_memory )
return dataset
class _a :
"""simple docstring"""
def __init__( self : Any , UpperCAmelCase : Dataset , UpperCAmelCase : Union[PathLike, BinaryIO] , UpperCAmelCase : Optional[int] = None , **UpperCAmelCase : List[Any] , ):
A_ = dataset
A_ = path_or_buf
A_ = batch_size or get_writer_batch_size(dataset.features )
A_ = parquet_writer_kwargs
def __A ( self : int ):
A_ = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , "wb+" ) as buffer:
A_ = self._write(file_obj=UpperCAmelCase , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
else:
A_ = self._write(file_obj=self.path_or_buf , batch_size=UpperCAmelCase , **self.parquet_writer_kwargs )
return written
def __A ( self : Tuple , UpperCAmelCase : BinaryIO , UpperCAmelCase : int , **UpperCAmelCase : Optional[Any] ):
A_ = 0
A_ = parquet_writer_kwargs.pop("path_or_buf" , UpperCAmelCase )
A_ = self.dataset.features.arrow_schema
A_ = pq.ParquetWriter(UpperCAmelCase , schema=UpperCAmelCase , **UpperCAmelCase )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , UpperCAmelCase ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating parquet from Arrow format" , ):
A_ = query_table(
table=self.dataset._data , key=slice(UpperCAmelCase , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(UpperCAmelCase )
written += batch.nbytes
writer.close()
return written
| 329 | 0 |
import os
import numpy
import onnx
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
A_ = a.name
A_ = b.name
A_ = """"""
A_ = """"""
A_ = a == b
A_ = name_a
A_ = name_b
return res
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(_lowerCamelCase ,_lowerCamelCase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g ,_lowerCamelCase ,_lowerCamelCase )
_graph_replace_input_with(node_proto.attribute[1].g ,_lowerCamelCase ,_lowerCamelCase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g ,_lowerCamelCase ,_lowerCamelCase )
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : Tuple ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : int ,__UpperCamelCase : List[str] ):
"""simple docstring"""
A_ = list(model.graph.initializer )
A_ = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
A_ = inits[i].name
A_ = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph ,_lowerCamelCase ,_lowerCamelCase )
def __snake_case ( __UpperCamelCase : Optional[int] ):
"""simple docstring"""
A_ = os.path.dirname(_lowerCamelCase )
A_ = os.path.basename(_lowerCamelCase )
A_ = onnx.load(os.path.join(_lowerCamelCase ,_lowerCamelCase ) )
A_ = list(model.graph.initializer )
A_ = set()
A_ = {}
A_ = []
A_ = 0
for i in range(len(_lowerCamelCase ) ):
if i in dup_set:
continue
for j in range(i + 1 ,len(_lowerCamelCase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] ,inits[j] ):
dup_set.add(_lowerCamelCase )
dup_set.add(_lowerCamelCase )
A_ = inits[j].data_type
A_ = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("unexpected data type: " ,_lowerCamelCase )
total_reduced_size += mem_size
A_ = inits[i].name
A_ = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(_lowerCamelCase )
else:
A_ = [name_j]
ind_to_replace.append((j, i) )
print("total reduced size: " ,total_reduced_size / 1024 / 1024 / 1024 ,"GB" )
A_ = sorted(_lowerCamelCase )
_remove_dup_initializers_from_model(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
A_ = """optimized_""" + model_file_name
A_ = os.path.join(_lowerCamelCase ,_lowerCamelCase )
onnx.save(_lowerCamelCase ,_lowerCamelCase )
return new_model
| 363 |
from __future__ import annotations
def __snake_case ( __UpperCamelCase : int = 4 ):
"""simple docstring"""
A_ = abs(__UpperCamelCase ) or 4
return [[1 + x + y * row_size for x in range(__UpperCamelCase )] for y in range(__UpperCamelCase )]
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_column(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_row(reverse_column(__UpperCamelCase ) )
# OR.. reverse_column(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
return reverse_column(transpose(__UpperCamelCase ) )
# OR.. transpose(reverse_row(matrix))
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [list(__UpperCamelCase ) for x in zip(*__UpperCamelCase )]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = matrix[::-1]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
A_ = [x[::-1] for x in matrix]
return matrix
def __snake_case ( __UpperCamelCase : list[list[int]] ):
"""simple docstring"""
for i in matrix:
print(*__UpperCamelCase )
if __name__ == "__main__":
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__a :Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix))
| 329 | 0 |
import math
__a :str = 10
__a :Dict = 7
__a :Tuple = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : Tuple = 20 ):
"""simple docstring"""
A_ = math.comb(a_ ,a_ )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,a_ )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 364 |
from ..utils import DummyObject, requires_backends
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Dict , *UpperCAmelCase : List[Any] , **UpperCAmelCase : Tuple ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = ['torch', 'transformers', 'onnx']
def __init__( self : Optional[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Any = ['torch', 'transformers', 'onnx']
def __init__( self : Dict , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[int] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[str] = ['torch', 'transformers', 'onnx']
def __init__( self : List[Any] , *UpperCAmelCase : List[Any] , **UpperCAmelCase : int ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Any , *UpperCAmelCase : List[Any] , **UpperCAmelCase : str ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Dict = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : int , **UpperCAmelCase : Tuple ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : str , **UpperCAmelCase : Dict ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : int , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
class _a ( metaclass=snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = ['torch', 'transformers', 'onnx']
def __init__( self : str , *UpperCAmelCase : str , **UpperCAmelCase : List[Any] ):
requires_backends(self , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : List[Any] , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any] ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
@classmethod
def __A ( cls : Optional[int] , *UpperCAmelCase : List[str] , **UpperCAmelCase : int ):
requires_backends(cls , ["torch", "transformers", "onnx"] )
| 329 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :int = logging.get_logger(__name__)
__a :List[Any] = {
'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json',
'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json',
}
class _a ( __lowercase ):
"""simple docstring"""
_lowerCamelCase : List[str] = "luke"
def __init__( self : str , UpperCAmelCase : Any=50267 , UpperCAmelCase : str=500000 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Dict=256 , UpperCAmelCase : Tuple=12 , UpperCAmelCase : str=12 , UpperCAmelCase : List[str]=3072 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[Any]=512 , UpperCAmelCase : List[str]=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[Any]=1 , UpperCAmelCase : Dict=0 , UpperCAmelCase : Any=2 , **UpperCAmelCase : str , ):
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
A_ = vocab_size
A_ = entity_vocab_size
A_ = hidden_size
A_ = entity_emb_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = hidden_act
A_ = intermediate_size
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = initializer_range
A_ = layer_norm_eps
A_ = use_entity_aware_attention
A_ = classifier_dropout
| 365 |
import itertools
import math
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 ,int(math.sqrt(__UpperCamelCase ) + 1 ) ,6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def __snake_case ( ):
"""simple docstring"""
A_ = 2
while True:
if is_prime(__UpperCamelCase ):
yield num
num += 1
def __snake_case ( __UpperCamelCase : int = 1_0001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator() ,nth - 1 ,__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 0 |
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class _a ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
@staticmethod
@abstractmethod
def __A ( UpperCAmelCase : List[str] ):
raise NotImplementedError()
@abstractmethod
def __A ( self : Tuple ):
raise NotImplementedError()
| 366 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str]=13 , UpperCAmelCase : Tuple=7 , UpperCAmelCase : int=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Union[str, Any]=True , UpperCAmelCase : List[str]=True , UpperCAmelCase : Optional[Any]=99 , UpperCAmelCase : str=32 , UpperCAmelCase : Dict=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[int]=37 , UpperCAmelCase : Optional[int]="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : int=16 , UpperCAmelCase : Any=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Union[str, Any]=4 , UpperCAmelCase : List[Any]=None , ):
A_ = parent
A_ = 13
A_ = 7
A_ = True
A_ = True
A_ = True
A_ = True
A_ = 99
A_ = 384
A_ = 2
A_ = 4
A_ = 37
A_ = "gelu"
A_ = 0.1
A_ = 0.1
A_ = 512
A_ = 16
A_ = 2
A_ = 0.02
A_ = 3
A_ = 4
A_ = 128
A_ = 2
A_ = 9
A_ = 1
A_ = None
def __A ( self : Optional[int] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int ):
A_ = TFConvBertModel(config=UpperCAmelCase )
A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
A_ = [input_ids, input_mask]
A_ = model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Tuple ):
A_ = TFConvBertForMaskedLM(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Dict , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = TFConvBertForSequenceClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Any , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str ):
A_ = self.num_choices
A_ = TFConvBertForMultipleChoice(config=UpperCAmelCase )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
A_ = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = self.num_labels
A_ = TFConvBertForTokenClassification(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str ):
A_ = TFConvBertForQuestionAnswering(config=UpperCAmelCase )
A_ = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
A_ = model(UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : List[str] ):
A_ = self.prepare_config_and_inputs()
(
(
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) , (
A_
) ,
) = config_and_inputs
A_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class _a ( snake_case_ , snake_case_ , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
_lowerCamelCase : Any = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
_lowerCamelCase : Dict = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : Dict = False
def __A ( self : List[str] ):
A_ = TFConvBertModelTester(self )
A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 )
def __A ( self : Tuple ):
self.config_tester.run_common_tests()
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase )
@slow
def __A ( self : str ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = True
if hasattr(UpperCAmelCase , "use_cache" ):
A_ = True
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
for model_class in self.all_model_classes:
A_ = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
A_ = model_class(UpperCAmelCase )
A_ = len(model(UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCAmelCase , saved_model=UpperCAmelCase )
A_ = os.path.join(UpperCAmelCase , "saved_model" , "1" )
A_ = tf.keras.models.load_model(UpperCAmelCase )
A_ = model(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = outputs["encoder_hidden_states"]
A_ = outputs["encoder_attentions"]
else:
A_ = outputs["hidden_states"]
A_ = outputs["attentions"]
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
A_ = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(UpperCAmelCase ) , UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def __A ( self : List[str] ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(UpperCAmelCase )
def __A ( self : Any ):
A_ , A_ = self.model_tester.prepare_config_and_inputs_for_common()
A_ = True
A_ = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
A_ = getattr(self.model_tester , "key_length" , UpperCAmelCase )
def check_decoder_attentions_output(UpperCAmelCase : Optional[int] ):
A_ = len(UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
A_ = outputs.decoder_attentions
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(UpperCAmelCase : Optional[Any] ):
A_ = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
A_ = True
A_ = False
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
A_ = len(UpperCAmelCase )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
if self.is_encoder_decoder:
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_decoder_attentions_output(UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
# Check attention is always last and order is fine
A_ = True
A_ = True
A_ = model_class(UpperCAmelCase )
A_ = model(self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , UpperCAmelCase )
check_encoder_attentions_output(UpperCAmelCase )
@require_tf
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : Dict ):
A_ = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
A_ = tf.constant([[0, 1, 2, 3, 4, 5]] )
A_ = model(UpperCAmelCase )[0]
A_ = [1, 6, 768]
self.assertEqual(output.shape , UpperCAmelCase )
A_ = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 )
| 329 | 0 |
from math import pow, sqrt
def __snake_case ( *__UpperCamelCase : float ):
"""simple docstring"""
A_ = len(a_ ) > 0 and all(value > 0.0 for value in values )
return result
def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ):
"""simple docstring"""
return (
round(sqrt(molar_mass_a / molar_mass_a ) ,6 )
if validate(a_ ,a_ )
else ValueError("Input Error: Molar mass values must greater than 0." )
)
def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ):
"""simple docstring"""
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) ,6 )
if validate(a_ ,a_ ,a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ):
"""simple docstring"""
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) ,6 )
if validate(a_ ,a_ ,a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ):
"""simple docstring"""
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a ,2 ) ,6 )
if validate(a_ ,a_ ,a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
def __snake_case ( __UpperCamelCase : float ,__UpperCamelCase : float ,__UpperCamelCase : float ):
"""simple docstring"""
return (
round(pow(effusion_rate_a / effusion_rate_a ,2 ) / molar_mass ,6 )
if validate(a_ ,a_ ,a_ )
else ValueError(
"Input Error: Molar mass and effusion rate values must greater than 0." )
)
| 367 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Dict = logging.get_logger(__name__)
__a :int = {
'google/realm-cc-news-pretrained-embedder': (
'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-encoder': (
'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-scorer': (
'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json'
),
'google/realm-cc-news-pretrained-openqa': (
'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json'
),
'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json',
'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json',
'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json',
'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json',
# See all REALM models at https://huggingface.co/models?filter=realm
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : List[Any] = 'realm'
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any]=30522 , UpperCAmelCase : List[str]=768 , UpperCAmelCase : Optional[Any]=128 , UpperCAmelCase : str=12 , UpperCAmelCase : Dict=12 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=3072 , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : List[Any]=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : int=512 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Union[str, Any]=0.02 , UpperCAmelCase : Union[str, Any]=1E-12 , UpperCAmelCase : List[Any]=256 , UpperCAmelCase : Optional[int]=10 , UpperCAmelCase : List[str]=1E-3 , UpperCAmelCase : Any=5 , UpperCAmelCase : List[Any]=320 , UpperCAmelCase : Optional[Any]=13353718 , UpperCAmelCase : Tuple=5000 , UpperCAmelCase : List[str]=1 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Union[str, Any]=2 , **UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
# Common config
A_ = vocab_size
A_ = max_position_embeddings
A_ = hidden_size
A_ = retriever_proj_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = num_candidates
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = initializer_range
A_ = type_vocab_size
A_ = layer_norm_eps
# Reader config
A_ = span_hidden_size
A_ = max_span_width
A_ = reader_layer_norm_eps
A_ = reader_beam_size
A_ = reader_seq_len
# Retrieval config
A_ = num_block_records
A_ = searcher_beam_size
| 329 | 0 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
__a :Tuple = logging.get_logger(__name__)
__a :Dict = {
'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json',
}
# fmt: off
__a :Tuple = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 1_0563, 1_0786,
1_1420, 1_1709, 1_1907, 1_3163, 1_3697, 1_3700, 1_4808, 1_5306, 1_6410, 1_6791,
1_7992, 1_9203, 1_9510, 2_0724, 2_2305, 2_2935, 2_7007, 3_0109, 3_0420, 3_3409,
3_4949, 4_0283, 4_0493, 4_0549, 4_7282, 4_9146, 5_0257, 5_0359, 5_0360, 5_0361
]
__a :Optional[int] = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 1_0428, 1_0929, 1_1938, 1_2033, 1_2331, 1_2562, 1_3793,
1_4157, 1_4635, 1_5265, 1_5618, 1_6553, 1_6604, 1_8362, 1_8956, 2_0075, 2_1675,
2_2520, 2_6130, 2_6161, 2_6435, 2_8279, 2_9464, 3_1650, 3_2302, 3_2470, 3_6865,
4_2863, 4_7425, 4_9870, 5_0254, 5_0258, 5_0360, 5_0361, 5_0362
]
class _a ( _UpperCamelCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 'whisper'
_lowerCamelCase : Any = ['past_key_values']
_lowerCamelCase : Optional[int] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=51865 , UpperCAmelCase : Optional[Any]=80 , UpperCAmelCase : Dict=6 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : List[Any]=6 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Dict=1536 , UpperCAmelCase : Any=1536 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Tuple=50257 , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : List[Any]="gelu" , UpperCAmelCase : str=256 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : List[str]=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : int=False , UpperCAmelCase : Union[str, Any]=1500 , UpperCAmelCase : str=448 , UpperCAmelCase : Union[str, Any]=50256 , UpperCAmelCase : int=50256 , UpperCAmelCase : Optional[int]=50256 , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[int]=[220, 50256] , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Tuple=256 , UpperCAmelCase : List[Any]=False , UpperCAmelCase : List[Any]=0.05 , UpperCAmelCase : Any=10 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Dict=10 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : str=7 , **UpperCAmelCase : str , ):
A_ = vocab_size
A_ = num_mel_bins
A_ = d_model
A_ = encoder_layers
A_ = encoder_attention_heads
A_ = decoder_layers
A_ = decoder_attention_heads
A_ = decoder_ffn_dim
A_ = encoder_ffn_dim
A_ = dropout
A_ = attention_dropout
A_ = activation_dropout
A_ = activation_function
A_ = init_std
A_ = encoder_layerdrop
A_ = decoder_layerdrop
A_ = use_cache
A_ = encoder_layers
A_ = scale_embedding # scale factor will be sqrt(d_model) if True
A_ = max_source_positions
A_ = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
A_ = classifier_proj_size
A_ = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A_ = apply_spec_augment
A_ = mask_time_prob
A_ = mask_time_length
A_ = mask_time_min_masks
A_ = mask_feature_prob
A_ = mask_feature_length
A_ = mask_feature_min_masks
A_ = median_filter_width
super().__init__(
pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , decoder_start_token_id=_SCREAMING_SNAKE_CASE , suppress_tokens=_SCREAMING_SNAKE_CASE , begin_suppress_tokens=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , )
class _a ( _UpperCamelCase ):
"""simple docstring"""
@property
def __A ( self : int ):
A_ = OrderedDict(
[
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
] )
if self.use_past:
A_ = {0: "batch"}
else:
A_ = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction="inputs" )
return common_inputs
def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : List[str] = -1 , UpperCAmelCase : Tuple = False , UpperCAmelCase : str = None , UpperCAmelCase : Optional[Any] = 22050 , UpperCAmelCase : int = 5.0 , UpperCAmelCase : str = 220 , ):
A_ = OrderedDict()
A_ = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , time_duration=_SCREAMING_SNAKE_CASE , frequency=_SCREAMING_SNAKE_CASE , )
A_ = encoder_inputs["input_features"].shape[2]
A_ = encoder_sequence_length // 2 if self.use_past else seq_length
A_ = super().generate_dummy_inputs(
preprocessor.tokenizer , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
A_ = encoder_inputs.pop("input_features" )
A_ = decoder_inputs.pop("decoder_input_ids" )
if "past_key_values" in decoder_inputs:
A_ = decoder_inputs.pop("past_key_values" )
return dummy_inputs
@property
def __A ( self : Tuple ):
return 1E-3
| 368 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__a :Optional[Any] = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Any ,__UpperCamelCase : List[str] ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
A_ = original_name.split("." )[0]
A_ = key.split("." )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 2] )
A_ = int(key_list[key_list.index(__UpperCamelCase ) - 1] )
A_ = orig_block_num - offset
A_ = key.replace(f'''{orig_block_num}.{layer_num}.{original_name}''' ,f'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def __snake_case ( __UpperCamelCase : Any ):
"""simple docstring"""
A_ = OrderedDict()
A_ , A_ = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
A_ = key.replace("network" ,"poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
A_ = key[: key.find("proj" )]
A_ = key.replace(__UpperCamelCase ,f'''patch_embeddings.{total_embed_found}.''' )
A_ = key.replace("proj" ,"projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
A_ = "poolformer.encoder." + key
if "mlp.fc1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc1" ,"output.conv1" )
if "mlp.fc2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"mlp.fc2" ,"output.conv2" )
if "norm1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm1" ,"before_norm" )
if "norm2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"norm2" ,"after_norm" )
if "layer_scale_1" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_1" ,"layer_scale_1" )
if "layer_scale_2" in key:
A_ = replace_key_with_offset(__UpperCamelCase ,__UpperCamelCase ,"layer_scale_2" ,"layer_scale_2" )
if "head" in key:
A_ = key.replace("head" ,"classifier" )
A_ = value
return new_state_dict
def __snake_case ( ):
"""simple docstring"""
A_ = "http://images.cocodataset.org/val2017/000000039769.jpg"
A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw )
return image
@torch.no_grad()
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : List[str] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
A_ = PoolFormerConfig()
# set attributes based on model_name
A_ = "huggingface/label-files"
A_ = model_name[-3:]
A_ = 1000
A_ = "imagenet-1k-id2label.json"
A_ = (1, 1000)
# set config attributes
A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) )
A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()}
A_ = idalabel
A_ = {v: k for k, v in idalabel.items()}
if size == "s12":
A_ = [2, 2, 6, 2]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s24":
A_ = [4, 4, 12, 4]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 0.9
elif size == "s36":
A_ = [6, 6, 18, 6]
A_ = [64, 128, 320, 512]
A_ = 4.0
A_ = 1E-6
A_ = 0.9
elif size == "m36":
A_ = [6, 6, 18, 6]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
elif size == "m48":
A_ = [8, 8, 24, 8]
A_ = [96, 192, 384, 768]
A_ = 4.0
A_ = 1E-6
A_ = 0.95
else:
raise ValueError(f'''Size {size} not supported''' )
# load image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
# Prepare image
A_ = prepare_img()
A_ = image_processor(images=__UpperCamelCase ,return_tensors="pt" ).pixel_values
logger.info(f'''Converting model {model_name}...''' )
# load original state dict
A_ = torch.load(__UpperCamelCase ,map_location=torch.device("cpu" ) )
# rename keys
A_ = rename_keys(__UpperCamelCase )
# create HuggingFace model and load state dict
A_ = PoolFormerForImageClassification(__UpperCamelCase )
model.load_state_dict(__UpperCamelCase )
model.eval()
# Define image processor
A_ = PoolFormerImageProcessor(crop_pct=__UpperCamelCase )
A_ = image_processor(images=prepare_img() ,return_tensors="pt" ).pixel_values
# forward pass
A_ = model(__UpperCamelCase )
A_ = outputs.logits
# define expected logit slices for different models
if size == "s12":
A_ = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A_ = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A_ = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A_ = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A_ = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(f'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] ,__UpperCamelCase ,atol=1E-2 )
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__a :int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 329 | 0 |
from collections import deque
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] ):
A_ = process_name # process name
A_ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
A_ = arrival_time
A_ = burst_time # remaining burst time
A_ = 0 # total time of the process wait in ready queue
A_ = 0 # time from arrival time to completion time
class _a :
"""simple docstring"""
def __init__( self : str , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Tuple , ):
# total number of mlfq's queues
A_ = number_of_queues
# time slice of queues that round robin algorithm applied
A_ = time_slices
# unfinished process is in this ready_queue
A_ = queue
# current time
A_ = current_time
# finished process is in this sequence queue
A_ = deque()
def __A ( self : Optional[int] ):
A_ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def __A ( self : Union[str, Any] , UpperCAmelCase : Tuple ):
A_ = []
for i in range(len(_lowerCamelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def __A ( self : Dict , UpperCAmelCase : List[str] ):
A_ = []
for i in range(len(_lowerCamelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def __A ( self : int , UpperCAmelCase : str ):
A_ = []
for i in range(len(_lowerCamelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def __A ( self : Dict , UpperCAmelCase : Dict ):
return [q.burst_time for q in queue]
def __A ( self : Any , UpperCAmelCase : str ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def __A ( self : Dict , UpperCAmelCase : List[Any] ):
A_ = deque() # sequence deque of finished process
while len(_lowerCamelCase ) != 0:
A_ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_lowerCamelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
A_ = 0
# set the process's turnaround time because it is finished
A_ = self.current_time - cp.arrival_time
# set the completion time
A_ = self.current_time
# add the process to queue that has finished queue
finished.append(_lowerCamelCase )
self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def __A ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : int ):
A_ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_lowerCamelCase ) ):
A_ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_lowerCamelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
A_ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_lowerCamelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
A_ = 0
# set the finish time
A_ = self.current_time
# update the process' turnaround time because it is finished
A_ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_lowerCamelCase )
self.finish_queue.extend(_lowerCamelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def __A ( self : Optional[Any] ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
A_ = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
__a :Optional[int] = Process('P1', 0, 53)
__a :Any = Process('P2', 0, 17)
__a :Optional[Any] = Process('P3', 0, 68)
__a :int = Process('P4', 0, 24)
__a :Dict = 3
__a :List[Any] = [17, 25]
__a :int = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'queue': deque([Pa, Pa, Pa, Pa])})
__a :str = Process('P1', 0, 53)
__a :str = Process('P2', 0, 17)
__a :str = Process('P3', 0, 68)
__a :Tuple = Process('P4', 0, 24)
__a :Optional[Any] = 3
__a :List[Any] = [17, 25]
__a :Optional[int] = deque([Pa, Pa, Pa, Pa])
__a :Union[str, Any] = MLFQ(number_of_queues, time_slices, queue, 0)
__a :int = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F"waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}"
)
# print completion times of processes(P1, P2, P3, P4)
print(
F"completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}"
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F"turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}"
)
# print sequence of finished processes
print(
F"sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}"
)
| 369 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : torch.FloatTensor
_lowerCamelCase : Optional[torch.FloatTensor] = None
def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : Any=0.999 ,__UpperCamelCase : Any="cosine" ,):
"""simple docstring"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : int ):
return math.exp(t * -12.0 )
else:
raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
A_ = []
for i in range(__UpperCamelCase ):
A_ = i / num_diffusion_timesteps
A_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) ,__UpperCamelCase ) )
return torch.tensor(__UpperCamelCase ,dtype=torch.floataa )
class _a ( snake_case_ , snake_case_ ):
"""simple docstring"""
@register_to_config
def __init__( self : Optional[int] , UpperCAmelCase : int = 1000 , UpperCAmelCase : str = "fixed_small_log" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[float] = 1.0 , UpperCAmelCase : str = "epsilon" , UpperCAmelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
A_ = betas_for_alpha_bar(UpperCAmelCase )
A_ = 1.0 - self.betas
A_ = torch.cumprod(self.alphas , dim=0 )
A_ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
A_ = 1.0
# setable values
A_ = None
A_ = torch.from_numpy(np.arange(0 , UpperCAmelCase )[::-1].copy() )
A_ = variance_type
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None ):
return sample
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Union[str, torch.device] = None ):
A_ = num_inference_steps
A_ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
A_ = (np.arange(0 , UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
A_ = torch.from_numpy(UpperCAmelCase ).to(UpperCAmelCase )
def __A ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str=None , UpperCAmelCase : Any=None , UpperCAmelCase : List[Any]=None ):
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
A_ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
A_ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
A_ = torch.log(torch.clamp(UpperCAmelCase , min=1E-20 ) )
A_ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
A_ = variance.log()
A_ = beta.log()
A_ = (predicted_variance + 1) / 2
A_ = frac * max_log + (1 - frac) * min_log
return variance
def __A ( self : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : int , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Dict=None , UpperCAmelCase : bool = True , ):
A_ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
A_ , A_ = torch.split(UpperCAmelCase , sample.shape[1] , dim=1 )
else:
A_ = None
# 1. compute alphas, betas
if prev_timestep is None:
A_ = t - 1
A_ = self.alphas_cumprod[t]
A_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
A_ = 1 - alpha_prod_t
A_ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
A_ = self.betas[t]
A_ = self.alphas[t]
else:
A_ = 1 - alpha_prod_t / alpha_prod_t_prev
A_ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
A_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
A_ = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
A_ = torch.clamp(
UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
A_ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
A_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
A_ = 0
if t > 0:
A_ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=UpperCAmelCase , device=model_output.device )
A_ = self._get_variance(
UpperCAmelCase , predicted_variance=UpperCAmelCase , prev_timestep=UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
A_ = variance
elif self.variance_type == "learned_range":
A_ = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
A_ = variance * variance_noise
A_ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=UpperCAmelCase , pred_original_sample=UpperCAmelCase )
def __A ( self : Optional[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
A_ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
A_ = timesteps.to(original_samples.device )
A_ = alphas_cumprod[timesteps] ** 0.5
A_ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_alpha_prod.unsqueeze(-1 )
A_ = (1 - alphas_cumprod[timesteps]) ** 0.5
A_ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
A_ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
A_ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 329 | 0 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__a :Optional[Any] = logging.get_logger(__name__)
__a :str = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
__a :Dict = {
'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'},
'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'},
}
__a :Tuple = {
'ctrl': 256,
}
__a :Dict = {
'Pregnancy': 16_8629,
'Christianity': 7675,
'Explain': 10_6423,
'Fitness': 6_3440,
'Saving': 6_3163,
'Ask': 2_7171,
'Ass': 9_5985,
'Joke': 16_3509,
'Questions': 4_5622,
'Thoughts': 4_9605,
'Retail': 5_2342,
'Feminism': 16_4338,
'Writing': 1_1992,
'Atheism': 19_2263,
'Netflix': 4_8616,
'Computing': 3_9639,
'Opinion': 4_3213,
'Alone': 4_4967,
'Funny': 5_8917,
'Gaming': 4_0358,
'Human': 4088,
'India': 1331,
'Joker': 7_7138,
'Diet': 3_6206,
'Legal': 1_1859,
'Norman': 4939,
'Tip': 7_2689,
'Weight': 5_2343,
'Movies': 4_6273,
'Running': 2_3425,
'Science': 2090,
'Horror': 3_7793,
'Confession': 6_0572,
'Finance': 1_2250,
'Politics': 1_6360,
'Scary': 19_1985,
'Support': 1_2654,
'Technologies': 3_2516,
'Teenage': 6_6160,
'Event': 3_2769,
'Learned': 6_7460,
'Notion': 18_2770,
'Wikipedia': 3_7583,
'Books': 6665,
'Extract': 7_6050,
'Confessions': 10_2701,
'Conspiracy': 7_5932,
'Links': 6_3674,
'Narcissus': 15_0425,
'Relationship': 5_4766,
'Relationships': 13_4796,
'Reviews': 4_1671,
'News': 4256,
'Translation': 2_6820,
'multilingual': 12_8406,
}
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = set()
A_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A_ = char
A_ = set(__SCREAMING_SNAKE_CASE )
return pairs
class _a ( __UpperCamelCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : str = CONTROL_CODES
def __init__( self : str , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : int="<unk>" , **UpperCAmelCase : str ):
super().__init__(unk_token=_lowerCAmelCase , **_lowerCAmelCase )
with open(_lowerCAmelCase , encoding="utf-8" ) as vocab_handle:
A_ = json.load(_lowerCAmelCase )
A_ = {v: k for k, v in self.encoder.items()}
with open(_lowerCAmelCase , encoding="utf-8" ) as merges_handle:
A_ = merges_handle.read().split("\n" )[1:-1]
A_ = [tuple(merge.split() ) for merge in merges]
A_ = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) )
A_ = {}
@property
def __A ( self : Dict ):
return len(self.encoder )
def __A ( self : Any ):
return dict(self.encoder , **self.added_tokens_encoder )
def __A ( self : Optional[Any] , UpperCAmelCase : Tuple ):
if token in self.cache:
return self.cache[token]
A_ = tuple(_lowerCAmelCase )
A_ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
A_ = get_pairs(_lowerCAmelCase )
if not pairs:
return token
while True:
A_ = min(_lowerCAmelCase , key=lambda UpperCAmelCase : self.bpe_ranks.get(_lowerCAmelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
A_ = bigram
A_ = []
A_ = 0
while i < len(_lowerCAmelCase ):
try:
A_ = word.index(_lowerCAmelCase , _lowerCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A_ = j
if word[i] == first and i < len(_lowerCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A_ = tuple(_lowerCAmelCase )
A_ = new_word
if len(_lowerCAmelCase ) == 1:
break
else:
A_ = get_pairs(_lowerCAmelCase )
A_ = """@@ """.join(_lowerCAmelCase )
A_ = word[:-4]
A_ = word
return word
def __A ( self : List[str] , UpperCAmelCase : Optional[int] ):
A_ = []
A_ = re.findall(R"\S+\n?" , _lowerCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(_lowerCAmelCase ).split(" " ) ) )
return split_tokens
def __A ( self : Optional[Any] , UpperCAmelCase : Optional[Any] ):
return self.encoder.get(_lowerCAmelCase , self.encoder.get(self.unk_token ) )
def __A ( self : int , UpperCAmelCase : List[str] ):
return self.decoder.get(_lowerCAmelCase , self.unk_token )
def __A ( self : str , UpperCAmelCase : Tuple ):
A_ = """ """.join(_lowerCAmelCase ).replace("@@ " , "" ).strip()
return out_string
def __A ( self : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
if not os.path.isdir(_lowerCAmelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
A_ = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
A_ = os.path.join(
_lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowerCAmelCase , ensure_ascii=_lowerCAmelCase ) + "\n" )
A_ = 0
with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
A_ = token_index
writer.write(" ".join(_lowerCAmelCase ) + "\n" )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 370 |
from math import isqrt, loga
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
A_ = [True] * max_number
for i in range(2 ,isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 ,__UpperCamelCase ,__UpperCamelCase ):
A_ = False
return [i for i in range(2 ,__UpperCamelCase ) if is_prime[i]]
def __snake_case ( __UpperCamelCase : int = 80_0800 ,__UpperCamelCase : int = 80_0800 ):
"""simple docstring"""
A_ = degree * loga(__UpperCamelCase )
A_ = int(__UpperCamelCase )
A_ = calculate_prime_numbers(__UpperCamelCase )
A_ = 0
A_ = 0
A_ = len(__UpperCamelCase ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F"{solution() = }")
| 329 | 0 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__a :Tuple = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Dict ,__UpperCamelCase : Dict=None ,__UpperCamelCase : Any=None ,__UpperCamelCase : str=None ,__UpperCamelCase : Optional[int]=None ,__UpperCamelCase : Union[str, Any]=None ,__UpperCamelCase : Tuple=None ,):
"""simple docstring"""
if attention_mask is None:
A_ = np.where(input_ids != config.pad_token_id ,1 ,0 )
if decoder_attention_mask is None:
A_ = np.where(decoder_input_ids != config.pad_token_id ,1 ,0 )
if head_mask is None:
A_ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
A_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
A_ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _a :
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict=13 , UpperCAmelCase : int=7 , UpperCAmelCase : str=True , UpperCAmelCase : List[str]=False , UpperCAmelCase : int=99 , UpperCAmelCase : str=16 , UpperCAmelCase : Dict=2 , UpperCAmelCase : str=4 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[str]="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : Optional[int]=0 , UpperCAmelCase : Dict=0.02 , ):
A_ = parent
A_ = batch_size
A_ = seq_length
A_ = is_training
A_ = use_labels
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = eos_token_id
A_ = pad_token_id
A_ = bos_token_id
A_ = initializer_range
def __A ( self : List[str] ):
A_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
A_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
A_ = shift_tokens_right(lowercase_ , 1 , 2 )
A_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , )
A_ = prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ )
return config, inputs_dict
def __A ( self : Dict ):
A_ = self.prepare_config_and_inputs()
return config, inputs_dict
def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] ):
A_ = 20
A_ = model_class_name(lowercase_ )
A_ = model.encode(inputs_dict["input_ids"] )
A_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
A_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
A_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
A_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A_ = model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
A_ = model.decode(
decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , )
A_ = model.decode(lowercase_ , lowercase_ )
A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
def __A ( self : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] ):
A_ = 20
A_ = model_class_name(lowercase_ )
A_ = model.encode(inputs_dict["input_ids"] )
A_ = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
A_ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
A_ = model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ )
A_ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
A_ = model.decode(
decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , )
A_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
A_ = model.decode(
decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , )
A_ = model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ )
A_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' )
@require_flax
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = 9_9
def __A ( self : List[str] ):
A_ = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
A_ = input_ids.shape[0]
A_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def __A ( self : List[str] ):
A_ = self._get_config_and_data()
A_ = FlaxBlenderbotForConditionalGeneration(lowercase_ )
A_ = lm_model(input_ids=lowercase_ )
A_ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape , lowercase_ )
def __A ( self : str ):
A_ = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
A_ = FlaxBlenderbotForConditionalGeneration(lowercase_ )
A_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
A_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
A_ = lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ )
A_ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape , lowercase_ )
def __A ( self : Any ):
A_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
A_ = shift_tokens_right(lowercase_ , 1 , 2 )
A_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
A_ = np.equal(lowercase_ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowercase_ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _a ( _UpperCAmelCase , unittest.TestCase , _UpperCAmelCase ):
"""simple docstring"""
_lowerCamelCase : Tuple = True
_lowerCamelCase : Union[str, Any] = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
_lowerCamelCase : Optional[int] = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def __A ( self : Dict ):
A_ = FlaxBlenderbotModelTester(self )
def __A ( self : List[str] ):
A_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A_ = self._prepare_for_class(lowercase_ , lowercase_ )
A_ = model_class(lowercase_ )
@jax.jit
def encode_jitted(UpperCAmelCase : str , UpperCAmelCase : Tuple=None , **UpperCAmelCase : str ):
return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ )
with self.subTest("JIT Enabled" ):
A_ = encode_jitted(**lowercase_ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
A_ = encode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
def __A ( self : Any ):
A_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
A_ = model_class(lowercase_ )
A_ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
A_ = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ):
return model.decode(
decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , )
with self.subTest("JIT Enabled" ):
A_ = decode_jitted(**lowercase_ ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
A_ = decode_jitted(**lowercase_ ).to_tuple()
self.assertEqual(len(lowercase_ ) , len(lowercase_ ) )
for jitted_output, output in zip(lowercase_ , lowercase_ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def __A ( self : List[str] ):
for model_class_name in self.all_model_classes:
A_ = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
A_ = np.ones((1, 1) ) * model.config.eos_token_id
A_ = model(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." )
@slow
def __A ( self : Optional[int] ):
A_ = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
A_ = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
A_ = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=lowercase_ )
A_ = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" )
A_ = ["""Sam"""]
A_ = tokenizer(lowercase_ , return_tensors="jax" )
A_ = model.generate(**lowercase_ , **lowercase_ )
A_ = """Sam is a great name. It means \"sun\" in Gaelic."""
A_ = tokenizer.batch_decode(lowercase_ , **lowercase_ )
assert generated_txt[0].strip() == tgt_text
| 371 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__a :str = logging.get_logger(__name__)
def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : str ):
"""simple docstring"""
A_ = RobertaPreLayerNormConfig.from_pretrained(
__UpperCamelCase ,architectures=["RobertaPreLayerNormForMaskedLM"] )
# convert state_dict
A_ = torch.load(hf_hub_download(repo_id=__UpperCamelCase ,filename="pytorch_model.bin" ) )
A_ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("roberta." ):
A_ = "roberta_prelayernorm." + tensor_key[len("roberta." ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(".self.LayerNorm.weight" ) or tensor_key.endswith(".self.LayerNorm.bias" ):
continue
A_ = tensor_value
A_ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=__UpperCamelCase ,config=__UpperCamelCase ,state_dict=__UpperCamelCase )
model.save_pretrained(__UpperCamelCase )
# convert tokenizer
A_ = AutoTokenizer.from_pretrained(__UpperCamelCase )
tokenizer.save_pretrained(__UpperCamelCase )
if __name__ == "__main__":
__a :Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
__a :Any = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 329 | 0 |
from heapq import heappop, heappush
import numpy as np
def __snake_case ( __UpperCamelCase : np.ndarray ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : tuple[int, int] ,__UpperCamelCase : bool ,):
"""simple docstring"""
A_ , A_ = grid.shape
A_ = [-1, 1, 0, 0]
A_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
A_ , A_ = [(0, source)], set()
A_ = np.full((rows, cols) ,np.inf )
A_ = 0
A_ = np.empty((rows, cols) ,dtype=__a )
A_ = None
while queue:
((A_) , (A_)) = heappop(__a )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
A_ = []
while (x, y) != source:
path.append((x, y) )
A_ , A_ = predecessors[x, y]
path.append(__a ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(__a ) ):
A_ , A_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
A_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(__a ,(dist + 1, (nx, ny)) )
A_ = dist + 1
A_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 350 |
from maths.prime_factors import prime_factors
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
if not isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = f'''Input value of [number={number}] must be an integer'''
raise TypeError(__UpperCamelCase )
if number < 1:
raise ValueError("Input must be a positive integer" )
return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 329 | 0 |
"""simple docstring"""
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
__a :Union[str, Any] = 'src/transformers'
__a :Any = 'docs/source/en/tasks'
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[Any] ):
"""simple docstring"""
with open(__lowerCamelCase ,"r" ,encoding="utf-8" ,newline="\n" ) as f:
A_ = f.readlines()
# Find the start prompt.
A_ = 0
while not lines[start_index].startswith(__lowerCamelCase ):
start_index += 1
start_index += 1
A_ = start_index
while not lines[end_index].startswith(__lowerCamelCase ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
__a :str = direct_transformers_import(TRANSFORMERS_PATH)
__a :str = {
'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
__a :Optional[int] = {
'summarization.md': ('nllb',),
'translation.md': ('nllb',),
}
def __snake_case ( __UpperCamelCase : str ):
"""simple docstring"""
A_ = TASK_GUIDE_TO_MODELS[task_guide]
A_ = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowerCamelCase ,set() )
A_ = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n"
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : str=False ):
"""simple docstring"""
A_ = _find_text_in_file(
filename=os.path.join(__lowerCamelCase ,__lowerCamelCase ) ,start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" ,end_prompt="<!--End of the generated tip-->" ,)
A_ = get_model_list_for_task(__lowerCamelCase )
if current_list != new_list:
if overwrite:
with open(os.path.join(__lowerCamelCase ,__lowerCamelCase ) ,"w" ,encoding="utf-8" ,newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'''
" to fix this." )
if __name__ == "__main__":
__a :Optional[int] = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
__a :Any = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 351 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
__a :int = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
__a :Any = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F"{len(upper_files)} files contain uppercase characters:")
print('\n'.join(upper_files) + '\n')
__a :Tuple = [file for file in filepaths if ' ' in file]
if space_files:
print(F"{len(space_files)} files contain space characters:")
print('\n'.join(space_files) + '\n')
__a :str = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F"{len(hyphen_files)} files contain hyphen characters:")
print('\n'.join(hyphen_files) + '\n')
__a :List[str] = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F"{len(nodir_files)} files are not in a directory:")
print('\n'.join(nodir_files) + '\n')
__a :Any = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 329 | 0 |
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
__a :Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
__a :str = 25_6047
__a :Union[str, Any] = 25_6145
@require_sentencepiece
@require_tokenizers
class _a ( __snake_case , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = NllbTokenizer
_lowerCamelCase : str = NllbTokenizerFast
_lowerCamelCase : List[Any] = True
_lowerCamelCase : str = True
_lowerCamelCase : Union[str, Any] = {}
def __A ( self : str ):
super().setUp()
# We have a SentencePiece fixture for testing
A_ = NllbTokenizer(a_ , keep_accents=a_ )
tokenizer.save_pretrained(self.tmpdirname )
def __A ( self : int ):
A_ = NllbTokenizer(a_ , keep_accents=a_ )
A_ = tokenizer.tokenize("This is a test" )
self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
A_ = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
A_ = tokenizer.convert_tokens_to_ids(a_ )
self.assertListEqual(
a_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
A_ = tokenizer.convert_ids_to_tokens(a_ )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
def __A ( self : str ):
A_ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A_ = self.rust_tokenizer_class.from_pretrained(a_ , **a_ )
A_ = self.tokenizer_class.from_pretrained(a_ , **a_ )
A_ = tempfile.mkdtemp()
A_ = tokenizer_r.save_pretrained(a_ )
A_ = tokenizer_p.save_pretrained(a_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
A_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(a_ , a_ )
# Checks everything loads correctly in the same way
A_ = tokenizer_r.from_pretrained(a_ )
A_ = tokenizer_p.from_pretrained(a_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a_ , a_ ) )
shutil.rmtree(a_ )
# Save tokenizer rust, legacy_format=True
A_ = tempfile.mkdtemp()
A_ = tokenizer_r.save_pretrained(a_ , legacy_format=a_ )
A_ = tokenizer_p.save_pretrained(a_ )
# Checks it save with the same files
self.assertSequenceEqual(a_ , a_ )
# Checks everything loads correctly in the same way
A_ = tokenizer_r.from_pretrained(a_ )
A_ = tokenizer_p.from_pretrained(a_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a_ , a_ ) )
shutil.rmtree(a_ )
# Save tokenizer rust, legacy_format=False
A_ = tempfile.mkdtemp()
A_ = tokenizer_r.save_pretrained(a_ , legacy_format=a_ )
A_ = tokenizer_p.save_pretrained(a_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A_ = tokenizer_r.from_pretrained(a_ )
A_ = tokenizer_p.from_pretrained(a_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a_ , a_ ) )
shutil.rmtree(a_ )
@require_torch
def __A ( self : int ):
if not self.test_seqaseq:
return
A_ = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Longer text that will definitely require truncation.
A_ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'''
''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'''
''' will only worsen the violence and misery for millions of people.''',
]
A_ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'''
''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'''
''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
try:
A_ = tokenizer.prepare_seqaseq_batch(
src_texts=a_ , tgt_texts=a_ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 10 )
# max_target_length will default to max_length if not specified
A_ = tokenizer.prepare_seqaseq_batch(
a_ , tgt_texts=a_ , max_length=3 , return_tensors="pt" )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
A_ = tokenizer.prepare_seqaseq_batch(
src_texts=a_ , max_length=3 , max_target_length=10 , return_tensors="pt" )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn("decoder_input_ids" , a_ )
@unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." )
def __A ( self : List[str] ):
pass
def __A ( self : Tuple ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
A_ = [AddedToken("<special>" , lstrip=a_ )]
A_ = self.rust_tokenizer_class.from_pretrained(
a_ , additional_special_tokens=a_ , **a_ )
A_ = tokenizer_r.encode("Hey this is a <special> token" )
A_ = tokenizer_r.encode("<special>" , add_special_tokens=a_ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
A_ = self.rust_tokenizer_class.from_pretrained(
a_ , additional_special_tokens=a_ , **a_ , )
A_ = self.tokenizer_class.from_pretrained(
a_ , additional_special_tokens=a_ , **a_ )
A_ = tokenizer_p.encode("Hey this is a <special> token" )
A_ = tokenizer_cr.encode("Hey this is a <special> token" )
self.assertEqual(a_ , a_ )
self.assertEqual(a_ , a_ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class _a ( unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Union[str, Any] = 'facebook/nllb-200-distilled-600M'
_lowerCamelCase : Union[str, Any] = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_lowerCamelCase : Optional[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_lowerCamelCase : int = [
2_5_6_0_4_7,
1_6_2_9_7,
1_3_4_4_0_8,
8_1_6_5,
2_4_8_0_6_6,
1_4_7_3_4,
9_5_0,
1_1_3_5,
1_0_5_7_2_1,
3_5_7_3,
8_3,
2_7_3_5_2,
1_0_8,
4_9_4_8_6,
2,
]
@classmethod
def __A ( cls : Dict ):
A_ = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" )
A_ = 1
return cls
def __A ( self : Tuple ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 256001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 256002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 256057 )
def __A ( self : Tuple ):
A_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , a_ )
def __A ( self : Optional[int] ):
self.assertIn(a_ , self.tokenizer.all_special_ids )
# fmt: off
A_ = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047]
# fmt: on
A_ = self.tokenizer.decode(a_ , skip_special_tokens=a_ )
A_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ )
self.assertEqual(a_ , a_ )
self.assertNotIn(self.tokenizer.eos_token , a_ )
def __A ( self : Optional[int] ):
A_ = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , a_ )
A_ = 10
A_ = self.tokenizer(a_ , max_length=a_ , truncation=a_ ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , a_ )
self.assertEqual(len(a_ ) , a_ )
def __A ( self : List[Any] ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [256203, 3] )
def __A ( self : List[str] ):
A_ = tempfile.mkdtemp()
A_ = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(a_ )
A_ = NllbTokenizer.from_pretrained(a_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a_ )
@require_torch
def __A ( self : Any ):
A_ = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
A_ = shift_tokens_right(
batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] )
self.assertIsInstance(a_ , a_ )
self.assertEqual((2, 15) , batch.input_ids.shape )
self.assertEqual((2, 15) , batch.attention_mask.shape )
A_ = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , a_ )
self.assertEqual(a_ , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def __A ( self : List[str] ):
A_ = self.tokenizer(self.src_text , padding=a_ , truncation=a_ , max_length=3 , return_tensors="pt" )
A_ = self.tokenizer(
text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=10 , return_tensors="pt" )
A_ = targets['''input_ids''']
A_ = shift_tokens_right(
a_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def __A ( self : Optional[Any] ):
A_ = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" )
self.assertEqual(
nested_simplify(a_ ) , {
# A, test, EOS, en_XX
"input_ids": [[256047, 70, 7356, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 256057,
} , )
@require_torch
def __A ( self : Any ):
A_ = True
A_ = self.tokenizer(
"UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" )
self.assertEqual(
inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] )
A_ = False
A_ = self.tokenizer(
"UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" )
self.assertEqual(
inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
| 352 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__a :Union[str, Any] = {
'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'],
'tokenization_biogpt': ['BioGptTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :Optional[int] = [
'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BioGptForCausalLM',
'BioGptForTokenClassification',
'BioGptForSequenceClassification',
'BioGptModel',
'BioGptPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 329 | 0 |
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__a :Any = logging.get_logger(__name__)
__a :List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class _a ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
_lowerCamelCase : Any = 'mvp'
_lowerCamelCase : Optional[int] = ['past_key_values']
_lowerCamelCase : Any = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int]=50267 , UpperCAmelCase : int=1024 , UpperCAmelCase : Optional[int]=12 , UpperCAmelCase : Any=4096 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : Union[str, Any]=4096 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Optional[Any]="gelu" , UpperCAmelCase : Any=1024 , UpperCAmelCase : int=0.1 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : Dict=0.02 , UpperCAmelCase : Any=0.0 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=True , UpperCAmelCase : Any=1 , UpperCAmelCase : Tuple=0 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=2 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : List[str]=False , UpperCAmelCase : Dict=100 , UpperCAmelCase : Tuple=800 , **UpperCAmelCase : Any , ):
A_ = vocab_size
A_ = max_position_embeddings
A_ = d_model
A_ = encoder_ffn_dim
A_ = encoder_layers
A_ = encoder_attention_heads
A_ = decoder_ffn_dim
A_ = decoder_layers
A_ = decoder_attention_heads
A_ = dropout
A_ = attention_dropout
A_ = activation_dropout
A_ = activation_function
A_ = init_std
A_ = encoder_layerdrop
A_ = decoder_layerdrop
A_ = classifier_dropout
A_ = use_cache
A_ = encoder_layers
A_ = scale_embedding # scale factor will be sqrt(d_model) if True
A_ = use_prompt
A_ = prompt_length
A_ = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , snake_case__ ):
A_ = self.bos_token_id
warnings.warn(
f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '''
"The config can simply be saved and uploaded again to be fixed." )
| 353 |
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def __snake_case ( __UpperCamelCase : Union[str, Any] ):
"""simple docstring"""
if is_torch_version("<" ,"2.0.0" ) or not hasattr(__UpperCamelCase ,"_dynamo" ):
return False
return isinstance(__UpperCamelCase ,torch._dynamo.eval_frame.OptimizedModule )
def __snake_case ( __UpperCamelCase : List[str] ,__UpperCamelCase : bool = True ):
"""simple docstring"""
A_ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
A_ = is_compiled_module(__UpperCamelCase )
if is_compiled:
A_ = model
A_ = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = model.module
if not keep_fpaa_wrapper:
A_ = getattr(__UpperCamelCase ,"forward" )
A_ = model.__dict__.pop("_original_forward" ,__UpperCamelCase )
if original_forward is not None:
while hasattr(__UpperCamelCase ,"__wrapped__" ):
A_ = forward.__wrapped__
if forward == original_forward:
break
A_ = forward
if getattr(__UpperCamelCase ,"_converted_to_transformer_engine" ,__UpperCamelCase ):
convert_model(__UpperCamelCase ,to_transformer_engine=__UpperCamelCase )
if is_compiled:
A_ = model
A_ = compiled_model
return model
def __snake_case ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def __snake_case ( __UpperCamelCase : Optional[Any] ,__UpperCamelCase : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(__UpperCamelCase ,__UpperCamelCase )
elif PartialState().local_process_index == 0:
torch.save(__UpperCamelCase ,__UpperCamelCase )
@contextmanager
def __snake_case ( **__UpperCamelCase : Any ):
"""simple docstring"""
for key, value in kwargs.items():
A_ = str(__UpperCamelCase )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def __snake_case ( __UpperCamelCase : Optional[Any] ):
"""simple docstring"""
if not hasattr(__UpperCamelCase ,"__qualname__" ) and not hasattr(__UpperCamelCase ,"__name__" ):
A_ = getattr(__UpperCamelCase ,"__class__" ,__UpperCamelCase )
if hasattr(__UpperCamelCase ,"__qualname__" ):
return obj.__qualname__
if hasattr(__UpperCamelCase ,"__name__" ):
return obj.__name__
return str(__UpperCamelCase )
def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[Any] ):
"""simple docstring"""
for key, value in source.items():
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
A_ = destination.setdefault(__UpperCamelCase ,{} )
merge_dicts(__UpperCamelCase ,__UpperCamelCase )
else:
A_ = value
return destination
def __snake_case ( __UpperCamelCase : int = None ):
"""simple docstring"""
if port is None:
A_ = 2_9500
with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s:
return s.connect_ex(("localhost", port) ) == 0
| 329 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a :List[str] = {
'configuration_table_transformer': [
'TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'TableTransformerConfig',
'TableTransformerOnnxConfig',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a :int = [
'TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TableTransformerForObjectDetection',
'TableTransformerModel',
'TableTransformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
__a :str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 354 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _a ( unittest.TestCase ):
"""simple docstring"""
def __A ( self : int ):
A_ = tempfile.mkdtemp()
A_ = BlipImageProcessor()
A_ = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
A_ = BlipProcessor(UpperCAmelCase , UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def __A ( self : Optional[int] , **UpperCAmelCase : Union[str, Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).tokenizer
def __A ( self : Optional[Any] , **UpperCAmelCase : int ):
return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ).image_processor
def __A ( self : Any ):
shutil.rmtree(self.tmpdirname )
def __A ( self : Dict ):
A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __A ( self : Any ):
A_ = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 )
A_ = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , UpperCAmelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCAmelCase )
def __A ( self : Dict ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = self.prepare_image_inputs()
A_ = image_processor(UpperCAmelCase , return_tensors="np" )
A_ = processor(images=UpperCAmelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __A ( self : int ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = processor(text=UpperCAmelCase )
A_ = tokenizer(UpperCAmelCase , return_token_type_ids=UpperCAmelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __A ( self : Tuple ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(UpperCAmelCase ):
processor()
def __A ( self : Any ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
A_ = processor.batch_decode(UpperCAmelCase )
A_ = tokenizer.batch_decode(UpperCAmelCase )
self.assertListEqual(UpperCAmelCase , UpperCAmelCase )
def __A ( self : Optional[Any] ):
A_ = self.get_image_processor()
A_ = self.get_tokenizer()
A_ = BlipProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase )
A_ = "lower newer"
A_ = self.prepare_image_inputs()
A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
| 329 | 0 |
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _a :
"""simple docstring"""
def __init__( self : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Tuple=8 , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : int=16 , UpperCAmelCase : Dict=5 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple=36 , UpperCAmelCase : int="gelu" , UpperCAmelCase : str=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : Dict=512 , UpperCAmelCase : str=16 , UpperCAmelCase : List[Any]=2 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : Optional[Any]=3 , UpperCAmelCase : str=4 , UpperCAmelCase : str=None , ):
A_ = parent
A_ = batch_size
A_ = seq_length
A_ = is_training
A_ = use_input_mask
A_ = use_token_type_ids
A_ = use_labels
A_ = vocab_size
A_ = hidden_size
A_ = num_hidden_layers
A_ = num_attention_heads
A_ = intermediate_size
A_ = hidden_act
A_ = hidden_dropout_prob
A_ = attention_probs_dropout_prob
A_ = max_position_embeddings
A_ = type_vocab_size
A_ = type_sequence_label_size
A_ = initializer_range
A_ = num_labels
A_ = num_choices
A_ = scope
def __A ( self : Union[str, Any] ):
A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A_ = None
if self.use_input_mask:
A_ = random_attention_mask([self.batch_size, self.seq_length] )
A_ = None
if self.use_token_type_ids:
A_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A_ = None
A_ = None
A_ = None
if self.use_labels:
A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A_ = ids_tensor([self.batch_size] , self.num_choices )
A_ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __A ( self : Optional[Any] ):
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , )
def __A ( self : Any ):
A_ = self.get_config()
A_ = 300
return config
def __A ( self : Optional[int] ):
(
A_
) = self.prepare_config_and_inputs()
A_ = True
A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __A ( self : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ):
A_ = MraModel(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
A_ = model(SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
A_ = model(SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , ):
A_ = True
A_ = MraModel(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , encoder_attention_mask=SCREAMING_SNAKE_CASE_ , )
A_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , )
A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Any ):
A_ = MraForMaskedLM(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __A ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : str ):
A_ = MraForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , start_positions=SCREAMING_SNAKE_CASE_ , end_positions=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __A ( self : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int ):
A_ = self.num_labels
A_ = MraForSequenceClassification(SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __A ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] ):
A_ = self.num_labels
A_ = MraForTokenClassification(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = model(SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __A ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : str , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[int] ):
A_ = self.num_choices
A_ = MraForMultipleChoice(config=SCREAMING_SNAKE_CASE_ )
model.to(SCREAMING_SNAKE_CASE_ )
model.eval()
A_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
A_ = model(
SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , token_type_ids=SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __A ( self : List[Any] ):
A_ = self.prepare_config_and_inputs()
(
A_
) = config_and_inputs
A_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class _a ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
_lowerCamelCase : Tuple = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
_lowerCamelCase : List[str] = False
_lowerCamelCase : List[Any] = False
_lowerCamelCase : List[Any] = False
_lowerCamelCase : Optional[int] = False
_lowerCamelCase : List[Any] = ()
def __A ( self : Tuple ):
A_ = MraModelTester(self )
A_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=37 )
def __A ( self : List[str] ):
self.config_tester.run_common_tests()
def __A ( self : Optional[int] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
A_ = type
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ )
def __A ( self : List[Any] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ )
def __A ( self : str ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ )
def __A ( self : int ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ )
def __A ( self : Optional[int] ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ )
def __A ( self : Tuple ):
A_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE_ )
@slow
def __A ( self : Any ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A_ = MraModel.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
@unittest.skip(reason="MRA does not output attentions" )
def __A ( self : List[str] ):
return
@require_torch
class _a ( unittest.TestCase ):
"""simple docstring"""
@slow
def __A ( self : List[str] ):
A_ = MraModel.from_pretrained("uw-madison/mra-base-512-4" )
A_ = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A_ = model(SCREAMING_SNAKE_CASE_ )[0]
A_ = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
A_ = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
@slow
def __A ( self : Any ):
A_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" )
A_ = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
A_ = model(SCREAMING_SNAKE_CASE_ )[0]
A_ = 50265
A_ = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
A_ = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
@slow
def __A ( self : Optional[Any] ):
A_ = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" )
A_ = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
A_ = model(SCREAMING_SNAKE_CASE_ )[0]
A_ = 50265
A_ = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE_ )
A_ = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
| 355 |
import math
__a :Union[str, Any] = 10
__a :Union[str, Any] = 7
__a :int = BALLS_PER_COLOUR * NUM_COLOURS
def __snake_case ( __UpperCamelCase : int = 20 ):
"""simple docstring"""
A_ = math.comb(__UpperCamelCase ,__UpperCamelCase )
A_ = math.comb(NUM_BALLS - BALLS_PER_COLOUR ,__UpperCamelCase )
A_ = NUM_COLOURS * (1 - missing_colour / total)
return f'''{result:.9f}'''
if __name__ == "__main__":
print(solution(20))
| 329 | 0 |
from __future__ import annotations
__a :Optional[Any] = [True] * 100_0001
__a :List[str] = 2
while i * i <= 100_0000:
if seive[i]:
for j in range(i * i, 100_0001, i):
__a :Dict = False
i += 1
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
return seive[n]
def __snake_case ( __UpperCamelCase : int ):
"""simple docstring"""
return any(digit in "02468" for digit in str(lowercase__ ) )
def __snake_case ( __UpperCamelCase : int = 100_0000 ):
"""simple docstring"""
A_ = [2] # result already includes the number 2.
for num in range(3 ,limit + 1 ,2 ):
if is_prime(lowercase__ ) and not contains_an_even_digit(lowercase__ ):
A_ = str(lowercase__ )
A_ = [int(str_num[j:] + str_num[:j] ) for j in range(len(lowercase__ ) )]
if all(is_prime(lowercase__ ) for i in list_nums ):
result.append(lowercase__ )
return result
def __snake_case ( ):
"""simple docstring"""
return len(find_circular_primes() )
if __name__ == "__main__":
print(F"{len(find_circular_primes()) = }")
| 356 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__a :Optional[Any] = logging.get_logger(__name__)
__a :Any = {'vocab_file': 'vocab.txt'}
__a :Any = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__a :List[str] = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__a :List[str] = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class _a ( snake_case_ ):
"""simple docstring"""
_lowerCamelCase : Tuple = VOCAB_FILES_NAMES
_lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION
_lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowerCamelCase : Union[str, Any] = ConvBertTokenizer
def __init__( self : Optional[int] , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int="[UNK]" , UpperCAmelCase : str="[SEP]" , UpperCAmelCase : Union[str, Any]="[PAD]" , UpperCAmelCase : Tuple="[CLS]" , UpperCAmelCase : Tuple="[MASK]" , UpperCAmelCase : Any=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : List[str] , ):
super().__init__(
UpperCAmelCase , tokenizer_file=UpperCAmelCase , do_lower_case=UpperCAmelCase , unk_token=UpperCAmelCase , sep_token=UpperCAmelCase , pad_token=UpperCAmelCase , cls_token=UpperCAmelCase , mask_token=UpperCAmelCase , tokenize_chinese_chars=UpperCAmelCase , strip_accents=UpperCAmelCase , **UpperCAmelCase , )
A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , UpperCAmelCase ) != tokenize_chinese_chars
):
A_ = getattr(UpperCAmelCase , normalizer_state.pop("type" ) )
A_ = do_lower_case
A_ = strip_accents
A_ = tokenize_chinese_chars
A_ = normalizer_class(**UpperCAmelCase )
A_ = do_lower_case
def __A ( self : List[str] , UpperCAmelCase : Any , UpperCAmelCase : Dict=None ):
A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __A ( self : Optional[Any] , UpperCAmelCase : List[int] , UpperCAmelCase : Optional[List[int]] = None ):
A_ = [self.sep_token_id]
A_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __A ( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[str] = None ):
A_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase )
return tuple(UpperCAmelCase )
| 329 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.