code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import os
UpperCamelCase__ : Optional[int] = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
a = 0
a = 0
while index < len(snake_case_ ) - 1:
a = SYMBOLS[numerals[index]]
a = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
a = ''''''
a = num // 1_0_0_0
numerals += m_count * "M"
num %= 1_0_0_0
a = num // 1_0_0
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 1_0_0
a = num // 1_0
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 1_0
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "/p089_roman.txt" ) -> int:
"""simple docstring"""
a = 0
with open(os.path.dirname(snake_case_ ) + roman_numerals_filename ) as filea:
a = filea.readlines()
for line in lines:
a = line.strip()
a = parse_roman_numerals(snake_case_ )
a = generate_roman_numerals(snake_case_ )
savings += len(snake_case_ ) - len(snake_case_ )
return savings
if __name__ == "__main__":
print(F"{solution() = }")
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
stooge(snake_case_, 0, len(snake_case_ ) - 1 )
return arr
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a , a = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
# Recursively sort last 2/3 elements
stooge(snake_case_, i + t, (snake_case_) )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")]
print(stooge_sort(unsorted))
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list:
"""simple docstring"""
for i in range(len(snake_case_ ) - 1, 0, -1 ):
a = False
for j in range(snake_case_, 0, -1 ):
if unsorted[j] < unsorted[j - 1]:
a , a = unsorted[j - 1], unsorted[j]
a = True
for j in range(snake_case_ ):
if unsorted[j] > unsorted[j + 1]:
a , a = unsorted[j + 1], unsorted[j]
a = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase__ : Optional[Any] = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : str = [int(item) for item in user_input.split(""",""")]
print(F"{cocktail_shaker_sort(unsorted) = }")
| 330 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
UpperCamelCase__ : Union[str, Any] = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
UpperCamelCase__ : str = {
"""jukebox""": 512,
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token
super().__init__(
unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,)
a = version
a = max_n_lyric_tokens
a = n_genres
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
a = oov.replace(r'''\-\'''' ,r'''\-+\'''' )
a = regex.compile(__lowerCamelCase )
a = {v: k for k, v in self.artists_encoder.items()}
a = {v: k for k, v in self.genres_encoder.items()}
a = {v: k for k, v in self.lyrics_encoder.items()}
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists]
for genres in range(len(__lowerCamelCase ) ):
a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]]
a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return list(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = self._tokenize(__lowerCamelCase )
return artist, genre, lyrics
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ):
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
a = artists[idx].lower()
a = [genres[idx].lower()]
else:
a = self._normalize(artists[idx] ) + '''.v2'''
a = [
self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )}
a = 0
a = len(__lowerCamelCase ) + 1
a = self.vocab
a = {v: k for k, v in self.vocab.items()}
a = ''''''
else:
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
a = self._run_strip_accents(__lowerCamelCase )
a = lyrics.replace('''\\''' ,'''\n''' )
a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], []
return artists, genres, lyrics
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = unicodedata.normalize('''NFD''' ,__lowerCamelCase )
a = []
for char in text:
a = unicodedata.category(__lowerCamelCase )
if cat == "Mn":
continue
output.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = (
[chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )]
+ ['''.''']
)
a = frozenset(__lowerCamelCase )
a = re.compile(r'''_+''' )
a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' )
return text
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return " ".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = TensorType(__lowerCamelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
a = tf.constant
a = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
a = torch.tensor
a = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
a = jnp.array
a = _is_jax
else:
a = np.asarray
a = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
a = [inputs]
if not is_tensor(__lowerCamelCase ):
a = as_tensor(__lowerCamelCase )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ):
'''simple docstring'''
a = [0, 0, 0]
a = [artist] * len(self.version )
a = [genres] * len(self.version )
a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = [-INFINITY] * len(full_tokens[-1] )
a = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) )
return (artists_file, genres_file, lyrics_file)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ):
'''simple docstring'''
a = self.artists_decoder.get(__lowerCamelCase )
a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index]
a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index]
return artist, genres, lyrics
| 330 | 1 |
from numpy import exp, pi, sqrt
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 0.0, snake_case_ = 1.0 ) -> int:
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru"""
# Build
# borrowed from a test
UpperCamelCase__ : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab))))
UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase__ : Optional[Any] = Path(tmpdirname)
UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""]
UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""]
UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""]
with open(src_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, """w""") as fp:
fp.write("""\n""".join(merges))
UpperCamelCase__ : Dict = FSMTTokenizer(
langs=["""en""", """ru"""],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
UpperCamelCase__ : Union[str, Any] = FSMTConfig(
langs=["""ru""", """en"""],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
UpperCamelCase__ : Tuple = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[Any]:
"""simple docstring"""
a , a = [], []
while len(snake_case_ ) > 1:
a , a = min(snake_case_ ), max(snake_case_ )
start.append(snake_case_ )
end.append(snake_case_ )
collection.remove(snake_case_ )
collection.remove(snake_case_ )
end.reverse()
return start + collection + end
if __name__ == "__main__":
UpperCamelCase__ : List[Any] = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : List[Any] = [int(item) for item in user_input.split(""",""")]
print(*merge_sort(unsorted), sep=""",""")
| 330 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
UpperCamelCase__ : Optional[Any] = """bert-base-cased"""
UpperCamelCase__ : int = """fp16"""
UpperCamelCase__ : str = """bf16"""
UpperCamelCase__ : List[Any] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().setUp()
a = dict(
ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = F"""{i + 1}"""
a = strategy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = prefetch_policy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = state_dict_type
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = AutoModel.from_pretrained(__lowerCamelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
a = self.dist_env.copy()
a = policy
if policy == "TRANSFORMER_BASED_WRAP":
a = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
a = '''2000'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
a = self.dist_env.copy()
a = '''TRANSFORMER_BASED_WRAP'''
a = '''T5Layer'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCamelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) )
a = self.dist_env.copy()
a = '''SIZE_BASED_WRAP'''
a = '''0'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
a = self.dist_env.copy()
a = mp_dtype
with mockenv_context(**__lowerCamelCase ):
a = Accelerator()
if mp_dtype == "fp16":
a = torch.floataa
elif mp_dtype == "bf16":
a = torch.bfloataa
a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
a = self.dist_env.copy()
a = str(__lowerCamelCase ).lower()
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
a = 0.82
a = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
a = {
'''multi_gpu_fp16''': 32_00,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
a = 1_60
a = 1_60
a = inspect.getfile(accelerate.test_utils )
a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' )
a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
a = cmd.copy()
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''' )
else:
cmd_config.append('''--mixed_precision=fp16''' )
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(__lowerCamelCase ):
a = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
a = len(__lowerCamelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
a = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
a = cmd_config[:-1]
a = os.path.join(self.tmpdir ,'''epoch_0''' )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
a = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''] )
else:
cmd_config.extend(['''--mixed_precision=no'''] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''] )
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
| 330 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
UpperCamelCase__ : Union[str, Any] = {
"""configuration_altclip""": [
"""ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""AltCLIPConfig""",
"""AltCLIPTextConfig""",
"""AltCLIPVisionConfig""",
],
"""processing_altclip""": ["""AltCLIPProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Any = [
"""ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""AltCLIPPreTrainedModel""",
"""AltCLIPModel""",
"""AltCLIPTextModel""",
"""AltCLIPVisionModel""",
]
if TYPE_CHECKING:
from .configuration_altclip import (
ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
AltCLIPConfig,
AltCLIPTextConfig,
AltCLIPVisionConfig,
)
from .processing_altclip import AltCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_altclip import (
ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
AltCLIPModel,
AltCLIPPreTrainedModel,
AltCLIPTextModel,
AltCLIPVisionModel,
)
else:
import sys
UpperCamelCase__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 330 |
from __future__ import annotations
import os
from collections.abc import Mapping
UpperCamelCase__ : Any = tuple[int, int]
class lowerCamelCase_ :
def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ):
'''simple docstring'''
a = vertices
a = {
(min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items()
}
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ):
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
a = weight
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = Graph({min(self.vertices )} ,{} )
a = 42
a = 42
a = 42
a = 42
while len(subgraph.vertices ) < len(self.vertices ):
a = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
a = edge
a = weight
subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase )
return subgraph
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int:
"""simple docstring"""
a = os.path.abspath(os.path.dirname(snake_case_ ) )
a = os.path.join(snake_case_, snake_case_ )
a = {}
a = 42
a = 42
a = 42
with open(snake_case_ ) as f:
a = f.read().strip().split('''\n''' )
a = [line.split(''',''' ) for line in data]
for edgea in range(1, len(snake_case_ ) ):
for edgea in range(snake_case_ ):
if adjaceny_matrix[edgea][edgea] != "-":
a = int(adjaceny_matrix[edgea][edgea] )
a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ )
a = graph.prims_algorithm()
a = sum(graph.edges.values() )
a = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 330 | 1 |
from typing import Any
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[Any]:
"""simple docstring"""
if not input_list:
return []
a = [input_list.count(snake_case_ ) for value in input_list]
a = max(snake_case_ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(snake_case_ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__ : List[Any] = """RegNetConfig"""
# Base docstring
UpperCamelCase__ : Dict = """facebook/regnet-y-040"""
UpperCamelCase__ : int = [1, 1_088, 7, 7]
# Image classification docstring
UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040"""
UpperCamelCase__ : Dict = """tabby, tabby cat"""
UpperCamelCase__ : Dict = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,)
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
a = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = self.convolution(self.padding(__lowerCamelCase ) )
a = self.normalization(__lowerCamelCase )
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config.num_channels
a = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = shape_list(__lowerCamelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) )
a = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' )
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ):
'''simple docstring'''
return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase )
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
a = [
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ),
]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.pooler(__lowerCamelCase )
for layer_module in self.attention:
a = layer_module(__lowerCamelCase )
a = hidden_state * pooled
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
a = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ),
*[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ):
'''simple docstring'''
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) )
a = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ):
'''simple docstring'''
a = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
a = hidden_states + (hidden_state,)
a = stage_module(__lowerCamelCase )
if output_hidden_states:
a = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase )
@keras_serializable
class lowerCamelCase_ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config
a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' )
a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase )
a = self.encoder(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = encoder_outputs[0]
a = self.pooler(__lowerCamelCase )
# Change to NCHW output format have uniformity in the modules
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
SCREAMING_SNAKE_CASE_ = 'regnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
UpperCamelCase__ : Union[str, Any] = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
UpperCamelCase__ : List[str] = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , a_ , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , )
class lowerCamelCase_ ( a_ , a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = config.num_labels
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
# classification head
a = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = outputs.pooler_output if return_dict else outputs[1]
a = self.classifier[0](__lowerCamelCase )
a = self.classifier[1](__lowerCamelCase )
a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
| 330 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""google/realm-cc-news-pretrained-embedder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-encoder""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-scorer""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json"""
),
"""google/realm-cc-news-pretrained-openqa""": (
"""https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json"""
),
"""google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""",
"""google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""",
"""google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""",
"""google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""",
# See all REALM models at https://huggingface.co/models?filter=realm
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'realm'
def __init__( self : Optional[Any] ,__lowerCamelCase : Any=3_05_22 ,__lowerCamelCase : Optional[Any]=7_68 ,__lowerCamelCase : Tuple=1_28 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : int=12 ,__lowerCamelCase : Any=8 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : Optional[int]="gelu_new" ,__lowerCamelCase : Dict=0.1 ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : int=5_12 ,__lowerCamelCase : Dict=2 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : Any=1e-12 ,__lowerCamelCase : Optional[int]=2_56 ,__lowerCamelCase : List[Any]=10 ,__lowerCamelCase : List[Any]=1e-3 ,__lowerCamelCase : Any=5 ,__lowerCamelCase : str=3_20 ,__lowerCamelCase : Optional[int]=13_35_37_18 ,__lowerCamelCase : str=50_00 ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Optional[int]=0 ,__lowerCamelCase : Optional[Any]=2 ,**__lowerCamelCase : int ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
# Common config
a = vocab_size
a = max_position_embeddings
a = hidden_size
a = retriever_proj_size
a = num_hidden_layers
a = num_attention_heads
a = num_candidates
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = type_vocab_size
a = layer_norm_eps
# Reader config
a = span_hidden_size
a = max_span_width
a = reader_layer_norm_eps
a = reader_beam_size
a = reader_seq_len
# Retrieval config
a = num_block_records
a = searcher_beam_size
| 330 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'efficientformer'
def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_act
a = hidden_dropout_prob
a = hidden_sizes
a = num_hidden_layers
a = num_attention_heads
a = initializer_range
a = layer_norm_eps
a = patch_size
a = num_channels
a = depths
a = mlp_expansion_ratio
a = downsamples
a = dim
a = key_dim
a = attention_ratio
a = resolution
a = pool_size
a = downsample_patch_size
a = downsample_stride
a = downsample_pad
a = drop_path_rate
a = num_metaad_blocks
a = distillation
a = use_layer_scale
a = layer_scale_init_value
a = image_size
a = batch_norm_eps
| 330 | 1 |
import warnings
warnings.warn(
"""memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """
"""`from accelerate import find_executable_batch_size` to avoid this warning.""",
FutureWarning,
)
| 330 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
UpperCamelCase__ : Any = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
UpperCamelCase__ : Optional[Any] = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
UpperCamelCase__ : Optional[Any] = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : List[str] = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : Optional[int] = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
a = k.replace(snake_case_, snake_case_ )
return k
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
a = BigBirdPegasusConfig(**snake_case_ )
a = BigBirdPegasusForConditionalGeneration(snake_case_ )
a = torch_model.state_dict()
a = {}
# separating decoder weights
a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = DECODER_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = REMAINING_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
a = mapping['''model.embed_positions.weight''']
a = mapping.pop('''model.embed_positions.weight''' )
a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ )
a = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = tf.train.list_variables(snake_case_ )
a = {}
a = ['''global_step''']
for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ):
a = any(pat in name for pat in ignore_name )
if skip_key:
continue
a = tf.train.load_variable(snake_case_, snake_case_ )
a = array
return tf_weights
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = get_tf_weights_as_numpy(snake_case_ )
a = convert_bigbird_pegasus(snake_case_, snake_case_ )
torch_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : str = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
UpperCamelCase__ : int = parser.parse_args()
UpperCamelCase__ : Tuple = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 330 | 1 |
import unittest
from parameterized import parameterized
from transformers import OpenLlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel
class lowerCamelCase_ :
def __init__( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Tuple=13 ,__lowerCamelCase : str=7 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Optional[int]=False ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[Any]=99 ,__lowerCamelCase : int=32 ,__lowerCamelCase : Dict=5 ,__lowerCamelCase : Optional[int]=4 ,__lowerCamelCase : Optional[int]=37 ,__lowerCamelCase : Tuple="gelu" ,__lowerCamelCase : int=0.1 ,__lowerCamelCase : str=0.1 ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Any=16 ,__lowerCamelCase : List[Any]=2 ,__lowerCamelCase : Union[str, Any]=0.02 ,__lowerCamelCase : Any=3 ,__lowerCamelCase : str=4 ,__lowerCamelCase : int=None ,):
'''simple docstring'''
a = parent
a = batch_size
a = seq_length
a = is_training
a = use_input_mask
a = use_token_type_ids
a = use_labels
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = type_sequence_label_size
a = initializer_range
a = num_labels
a = num_choices
a = scope
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
a = None
if self.use_input_mask:
a = random_attention_mask([self.batch_size, self.seq_length] )
a = None
if self.use_token_type_ids:
a = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
a = None
a = None
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
a = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
a = ids_tensor([self.batch_size] ,self.num_choices )
a = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return OpenLlamaConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCamelCase ,initializer_range=self.initializer_range ,use_stable_embedding=__lowerCamelCase ,)
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = OpenLlamaModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )
a = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict ,__lowerCamelCase : Tuple ,__lowerCamelCase : Tuple ,):
'''simple docstring'''
a = True
a = OpenLlamaModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(
__lowerCamelCase ,attention_mask=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,)
a = model(
__lowerCamelCase ,attention_mask=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,)
a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[int] ,):
'''simple docstring'''
a = OpenLlamaForCausalLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,):
'''simple docstring'''
a = True
a = True
a = OpenLlamaForCausalLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
# first forward pass
a = model(
__lowerCamelCase ,attention_mask=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,use_cache=__lowerCamelCase ,)
a = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
a = ids_tensor((self.batch_size, 3) ,config.vocab_size )
a = ids_tensor((self.batch_size, 3) ,vocab_size=2 )
# append to next input_ids and
a = torch.cat([input_ids, next_tokens] ,dim=-1 )
a = torch.cat([input_mask, next_mask] ,dim=-1 )
a = model(
__lowerCamelCase ,attention_mask=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,)['''hidden_states'''][0]
a = model(
__lowerCamelCase ,attention_mask=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,past_key_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,)['''hidden_states'''][0]
# select random slice
a = ids_tensor((1,) ,output_from_past.shape[-1] ).item()
a = output_from_no_past[:, -3:, random_slice_idx].detach()
a = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-3 ) )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
(
(
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) , (
a
) ,
) = config_and_inputs
a = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( a_ , a_ , a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = (
(OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else ()
)
SCREAMING_SNAKE_CASE_ = (OpenLlamaForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ = (
{
'feature-extraction': OpenLlamaModel,
'text-classification': OpenLlamaForSequenceClassification,
'text-generation': OpenLlamaForCausalLM,
'zero-shot': OpenLlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = OpenLlamaModelTester(self )
a = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = 3
a = input_dict['''input_ids''']
a = input_ids.ne(1 ).to(__lowerCamelCase )
a = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
a = OpenLlamaForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,labels=__lowerCamelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = 3
a = '''single_label_classification'''
a = input_dict['''input_ids''']
a = input_ids.ne(1 ).to(__lowerCamelCase )
a = ids_tensor([self.model_tester.batch_size] ,self.model_tester.type_sequence_label_size )
a = OpenLlamaForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,labels=__lowerCamelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = 3
a = '''multi_label_classification'''
a = input_dict['''input_ids''']
a = input_ids.ne(1 ).to(__lowerCamelCase )
a = ids_tensor(
[self.model_tester.batch_size, config.num_labels] ,self.model_tester.type_sequence_label_size ).to(torch.float )
a = OpenLlamaForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,labels=__lowerCamelCase )
self.assertEqual(result.logits.shape ,(self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)] )
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = ids_tensor([1, 10] ,config.vocab_size )
a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] ,config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
a = OpenLlamaModel(__lowerCamelCase )
original_model.to(__lowerCamelCase )
original_model.eval()
a = original_model(__lowerCamelCase ).last_hidden_state
a = original_model(__lowerCamelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
a = {'''type''': scaling_type, '''factor''': 10.0}
a = OpenLlamaModel(__lowerCamelCase )
scaled_model.to(__lowerCamelCase )
scaled_model.eval()
a = scaled_model(__lowerCamelCase ).last_hidden_state
a = scaled_model(__lowerCamelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-5 ) )
| 330 |
import re
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 | 1 |
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if isinstance(snake_case_, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class lowerCamelCase_ :
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : float ):
'''simple docstring'''
a = np.abs((a - b) ).max()
self.assertLessEqual(__lowerCamelCase ,__lowerCamelCase ,F"""Difference between torch and flax is {diff} (>= {tol}).""" )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any]=None ,**__lowerCamelCase : Dict ):
'''simple docstring'''
a = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase ,__lowerCamelCase )
a = FlaxVisionTextDualEncoderModel(__lowerCamelCase )
a = model(input_ids=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase )
self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : str ,__lowerCamelCase : Any=None ,**__lowerCamelCase : str ):
'''simple docstring'''
a , a = self.get_vision_text_model(__lowerCamelCase ,__lowerCamelCase )
a = {'''vision_model''': vision_model, '''text_model''': text_model}
a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase )
a = model(input_ids=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase )
self.assertEqual(output['''text_embeds'''].shape ,(input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape ,(pixel_values.shape[0], model.config.projection_dim) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any]=None ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a , a = self.get_vision_text_model(__lowerCamelCase ,__lowerCamelCase )
a = {'''vision_model''': vision_model, '''text_model''': text_model}
a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase )
a = model(input_ids=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase )
a = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase )
a = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase )
a = model(input_ids=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase )
a = after_output[0]
a = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCamelCase ,1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : List[str] ,__lowerCamelCase : str ,__lowerCamelCase : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Any=None ,**__lowerCamelCase : str ):
'''simple docstring'''
a , a = self.get_vision_text_model(__lowerCamelCase ,__lowerCamelCase )
a = {'''vision_model''': vision_model, '''text_model''': text_model}
a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase )
a = model(
input_ids=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase ,output_attentions=__lowerCamelCase )
a = output.vision_model_output.attentions
self.assertEqual(len(__lowerCamelCase ) ,vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
a = to_atuple(vision_model.config.image_size )
a = to_atuple(vision_model.config.patch_size )
a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
a = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] ,(vision_config.num_attention_heads, seq_len, seq_len) )
a = output.text_model_output.attentions
self.assertEqual(len(__lowerCamelCase ) ,text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] ,(text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple ):
'''simple docstring'''
pt_model.to(__lowerCamelCase )
pt_model.eval()
# prepare inputs
a = inputs_dict
a = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
a = pt_model(**__lowerCamelCase ).to_tuple()
a = fx_model(**__lowerCamelCase ).to_tuple()
self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] ,pt_outputs[:4] ):
self.assert_almost_equals(__lowerCamelCase ,pt_output.numpy() ,4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__lowerCamelCase )
a = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ,from_pt=__lowerCamelCase )
a = fx_model_loaded(**__lowerCamelCase ).to_tuple()
self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] ,pt_outputs[:4] ):
self.assert_almost_equals(__lowerCamelCase ,pt_output.numpy() ,4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__lowerCamelCase )
a = VisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ,from_flax=__lowerCamelCase )
pt_model_loaded.to(__lowerCamelCase )
pt_model_loaded.eval()
with torch.no_grad():
a = pt_model_loaded(**__lowerCamelCase ).to_tuple()
self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) ,'''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] ,pt_outputs_loaded[:4] ):
self.assert_almost_equals(__lowerCamelCase ,pt_output_loaded.numpy() ,4e-2 )
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase ,__lowerCamelCase )
a = VisionTextDualEncoderModel(__lowerCamelCase )
a = FlaxVisionTextDualEncoderModel(__lowerCamelCase )
a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,__lowerCamelCase )
a = fx_state
self.check_pt_flax_equivalence(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Any ):
'''simple docstring'''
a = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase ,__lowerCamelCase )
a = VisionTextDualEncoderModel(__lowerCamelCase )
a = FlaxVisionTextDualEncoderModel(__lowerCamelCase )
a = load_flax_weights_in_pytorch_model(__lowerCamelCase ,fx_model.params )
self.check_pt_flax_equivalence(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
self.check_save_load(**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__lowerCamelCase )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a = config_inputs_dict.pop('''vision_config''' )
a = config_inputs_dict.pop('''text_config''' )
a = config_inputs_dict
self.check_equivalence_pt_to_flax(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
self.check_equivalence_flax_to_pt(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a , a = self.get_pretrained_model_and_inputs()
a = model_a(**__lowerCamelCase )
a = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__lowerCamelCase )
a = FlaxVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase )
a = model_a(**__lowerCamelCase )
a = after_outputs[0]
a = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCamelCase ,1e-5 )
@require_flax
class lowerCamelCase_ ( a_ , unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=__lowerCamelCase ,text_from_pt=__lowerCamelCase ,)
a = 13
a = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
a = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size )
a = random_attention_mask([batch_size, 4] )
a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ):
'''simple docstring'''
a = FlaxViTModel(__lowerCamelCase )
a = FlaxBertModel(__lowerCamelCase )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = FlaxViTModelTester(self )
a = FlaxBertModelTester(self )
a = vit_model_tester.prepare_config_and_inputs()
a = bert_model_tester.prepare_config_and_inputs()
a , a = vision_config_and_inputs
a , a , a , a = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class lowerCamelCase_ ( a_ , unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' ,'''hf-internal-testing/tiny-bert''' ,vision_from_pt=__lowerCamelCase ,text_from_pt=__lowerCamelCase ,)
a = 13
a = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
a = ids_tensor([batch_size, 4] ,model.config.text_config.vocab_size )
a = random_attention_mask([batch_size, 4] )
a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = FlaxCLIPVisionModel(__lowerCamelCase )
a = FlaxBertModel(__lowerCamelCase )
return vision_model, text_model
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = FlaxCLIPVisionModelTester(self )
a = FlaxBertModelTester(self )
a = clip_model_tester.prepare_config_and_inputs()
a = bert_model_tester.prepare_config_and_inputs()
a , a = vision_config_and_inputs
a , a , a , a = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' ,logit_scale_init_value=1.0 )
a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
a = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] ,images=__lowerCamelCase ,padding=__lowerCamelCase ,return_tensors='''np''' )
a = model(**__lowerCamelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape ,(inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape ,(inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) ,)
a = np.array([[1.2_284_727, 0.3_104_122]] )
self.assertTrue(np.allclose(outputs.logits_per_image ,__lowerCamelCase ,atol=1e-3 ) )
| 330 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count += 1
a = '''_'''
if count > 1:
return False
else:
return "".join(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
while True:
a = ['''$'''] * len(snake_case_ )
a = []
for i in range(len(snake_case_ ) ):
for j in range(i + 1, len(snake_case_ ) ):
a = compare_string(binary[i], binary[j] )
if k is False:
a = '''*'''
a = '''*'''
temp.append('''X''' )
for i in range(len(snake_case_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(snake_case_ ) == 0:
return pi
a = list(set(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
for minterm in minterms:
a = ''''''
for _ in range(snake_case_ ):
a = str(minterm % 2 ) + string
minterm //= 2
temp.append(snake_case_ )
return temp
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
a = [0] * len(snake_case_ )
for i in range(len(chart[0] ) ):
a = 0
a = -1
for j in range(len(snake_case_ ) ):
if chart[j][i] == 1:
count += 1
a = j
if count == 1:
a = 1
for i in range(len(snake_case_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(snake_case_ ) ):
a = 0
temp.append(prime_implicants[i] )
while True:
a = 0
a = -1
a = 0
for i in range(len(snake_case_ ) ):
a = chart[i].count(1 )
if count_n > max_n:
a = count_n
a = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(snake_case_ ) ):
a = 0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]:
"""simple docstring"""
a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )]
for i in range(len(snake_case_ ) ):
a = prime_implicants[i].count('''_''' )
for j in range(len(snake_case_ ) ):
if is_for_table(prime_implicants[i], binary[j], snake_case_ ):
a = 1
return chart
def SCREAMING_SNAKE_CASE__ ( ) -> None:
"""simple docstring"""
a = int(input('''Enter the no. of variables\n''' ) )
a = [
float(snake_case_ )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
a = decimal_to_binary(snake_case_, snake_case_ )
a = check(snake_case_ )
print('''Prime Implicants are:''' )
print(snake_case_ )
a = prime_implicant_chart(snake_case_, snake_case_ )
a = selection(snake_case_, snake_case_ )
print('''Essential Prime Implicants are:''' )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[list[int]]:
"""simple docstring"""
a = []
if len(snake_case_ ) == 1:
return [nums.copy()]
for _ in range(len(snake_case_ ) ):
a = nums.pop(0 )
a = permute(snake_case_ )
for perm in permutations:
perm.append(snake_case_ )
result.extend(snake_case_ )
nums.append(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[Any]:
"""simple docstring"""
def backtrack(snake_case_ ):
if start == len(snake_case_ ) - 1:
output.append(nums[:] )
else:
for i in range(snake_case_, len(snake_case_ ) ):
a , a = nums[i], nums[start]
backtrack(start + 1 )
a , a = nums[i], nums[start] # backtrack
a = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
UpperCamelCase__ : str = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 330 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 | 1 |
from collections import defaultdict
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> bool:
"""simple docstring"""
a = first_str.lower().strip()
a = second_str.lower().strip()
# Remove whitespace
a = first_str.replace(''' ''', '''''' )
a = second_str.replace(''' ''', '''''' )
# Strings of different lengths are not anagrams
if len(snake_case_ ) != len(snake_case_ ):
return False
# Default values for count should be 0
a = defaultdict(snake_case_ )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(snake_case_ ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
UpperCamelCase__ : int = input("""Enter the first string """).strip()
UpperCamelCase__ : Union[str, Any] = input("""Enter the second string """).strip()
UpperCamelCase__ : str = check_anagrams(input_a, input_b)
print(F"{input_a} and {input_b} are {'' if status else 'not '}anagrams.")
| 330 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=a_ )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} )
SCREAMING_SNAKE_CASE_ = Features({} )
SCREAMING_SNAKE_CASE_ = "text"
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return {self.text_column: "text"}
| 330 | 1 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 330 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : Union[str, Any] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'yolos'
def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = num_detection_tokens
a = use_mid_position_embeddings
a = auxiliary_loss
# Hungarian matcher
a = class_cost
a = bbox_cost
a = giou_cost
# Loss coefficients
a = bbox_loss_coefficient
a = giou_loss_coefficient
a = eos_coefficient
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return 12
| 330 | 1 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ : Union[str, Any] = 16
UpperCamelCase__ : Dict = 32
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(snake_case_ ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a = datasets.map(
snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(snake_case_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a = 1_6
elif accelerator.mixed_precision != "no":
a = 8
else:
a = None
return tokenizer.pad(
snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
a = DataLoader(
tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase__ : int = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1":
a = 2
# Initialize accelerator
a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = evaluate.load('''glue''', '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case_ )
def inner_training_loop(snake_case_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a = model.to(accelerator.device )
# Instantiate optimizer
a = AdamW(params=model.parameters(), lr=snake_case_ )
a , a = get_dataloaders(snake_case_, snake_case_ )
# Instantiate scheduler
a = get_linear_schedule_with_warmup(
optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a = model(**snake_case_ )
a = outputs.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a = model(**snake_case_ )
a = outputs.logits.argmax(dim=-1 )
a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case_, references=snake_case_, )
a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", snake_case_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(snake_case_, snake_case_ )
if __name__ == "__main__":
main()
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = ''''''
for i in table:
res += inp[i - 1]
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
return data[1:] + data[0]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = ''''''
for i in range(len(snake_case_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = int('''0b''' + data[0] + data[-1], 2 )
a = int('''0b''' + data[1:3], 2 )
return bin(s[row][col] )[2:]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = message[:4]
a = message[4:]
a = apply_table(snake_case_, snake_case_ )
a = xor(snake_case_, snake_case_ )
a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741
a = apply_sbox(snake_case_, temp[4:] )
a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741
a = '''0''' * (2 - len(snake_case_ )) + r
a = apply_table(l + r, snake_case_ )
a = xor(snake_case_, snake_case_ )
return temp + right
if __name__ == "__main__":
UpperCamelCase__ : int = input("""Enter 10 bit key: """)
UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """)
UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9]
UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
UpperCamelCase__ : Optional[int] = [2, 4, 3, 1]
UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table)
UpperCamelCase__ : str = temp[:5]
UpperCamelCase__ : List[Any] = temp[5:]
UpperCamelCase__ : Dict = left_shift(left)
UpperCamelCase__ : Any = left_shift(right)
UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : int = left_shift(right)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : Dict = left_shift(right)
UpperCamelCase__ : List[str] = apply_table(left + right, pa_table)
# encryption
UpperCamelCase__ : Tuple = apply_table(message, IP)
UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4]
UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Tuple = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP)
UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4]
UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Any = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 330 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : Union[str, Any] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'yolos'
def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = num_detection_tokens
a = use_mid_position_embeddings
a = auxiliary_loss
# Hungarian matcher
a = class_cost
a = bbox_cost
a = giou_cost
# Loss coefficients
a = bbox_loss_coefficient
a = giou_loss_coefficient
a = eos_coefficient
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return 12
| 330 |
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
a = '''The dog is cute and lives in the garden house'''
a = jnp.array([tokenizer.encode(__lowerCamelCase )] )
a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim
a = jnp.array(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
a = model(__lowerCamelCase )['''last_hidden_state''']
self.assertEqual(output.shape ,__lowerCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
| 330 | 1 |
import pytest
import datasets.config
from datasets.utils.info_utils import is_small_dataset
@pytest.mark.parametrize('''dataset_size''', [None, 4_0_0 * 2**2_0, 6_0_0 * 2**2_0] )
@pytest.mark.parametrize('''input_in_memory_max_size''', ['''default''', 0, 1_0_0 * 2**2_0, 9_0_0 * 2**2_0] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> str:
"""simple docstring"""
if input_in_memory_max_size != "default":
monkeypatch.setattr(datasets.config, '''IN_MEMORY_MAX_SIZE''', snake_case_ )
a = datasets.config.IN_MEMORY_MAX_SIZE
if input_in_memory_max_size == "default":
assert in_memory_max_size == 0
else:
assert in_memory_max_size == input_in_memory_max_size
if dataset_size and in_memory_max_size:
a = dataset_size < in_memory_max_size
else:
a = False
a = is_small_dataset(snake_case_ )
assert result == expected
| 330 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ : Union[str, Any] = 16
UpperCamelCase__ : Dict = 32
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(snake_case_ ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a = datasets.map(
snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(snake_case_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a = 1_6
elif accelerator.mixed_precision != "no":
a = 8
else:
a = None
return tokenizer.pad(
snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
a = DataLoader(
tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase__ : int = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1":
a = 2
# Initialize accelerator
a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = evaluate.load('''glue''', '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case_ )
def inner_training_loop(snake_case_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a = model.to(accelerator.device )
# Instantiate optimizer
a = AdamW(params=model.parameters(), lr=snake_case_ )
a , a = get_dataloaders(snake_case_, snake_case_ )
# Instantiate scheduler
a = get_linear_schedule_with_warmup(
optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a = model(**snake_case_ )
a = outputs.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a = model(**snake_case_ )
a = outputs.logits.argmax(dim=-1 )
a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case_, references=snake_case_, )
a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", snake_case_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(snake_case_, snake_case_ )
if __name__ == "__main__":
main()
| 330 | 1 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() )
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = metric_id
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() )
@pytest.mark.parametrize(
'''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
if "tmp_path" in args:
a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ):
func(*snake_case_ )
| 330 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCamelCase__ : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
a = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
a = UniSpeechSatConfig()
a = ''''''
if is_finetuned:
a = UniSpeechSatForCTC(snake_case_ )
else:
a = UniSpeechSatForPreTraining(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : int = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> bool:
"""simple docstring"""
a = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 330 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() )
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = metric_id
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() )
@pytest.mark.parametrize(
'''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
if "tmp_path" in args:
a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ):
func(*snake_case_ )
| 330 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
"""microsoft/unispeech-sat-base-100h-libri-ft""": (
"""https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json"""
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'unispeech-sat'
def __init__( self : Tuple ,__lowerCamelCase : str=32 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : Any=12 ,__lowerCamelCase : List[str]=30_72 ,__lowerCamelCase : List[str]="gelu" ,__lowerCamelCase : Optional[int]=0.1 ,__lowerCamelCase : Optional[int]=0.1 ,__lowerCamelCase : List[Any]=0.1 ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : List[str]=0.0 ,__lowerCamelCase : Dict=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[str]=1e-5 ,__lowerCamelCase : Optional[int]="group" ,__lowerCamelCase : Dict="gelu" ,__lowerCamelCase : int=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) ,__lowerCamelCase : str=(5, 2, 2, 2, 2, 2, 2) ,__lowerCamelCase : Optional[int]=(10, 3, 3, 3, 3, 2, 2) ,__lowerCamelCase : Optional[Any]=False ,__lowerCamelCase : List[Any]=1_28 ,__lowerCamelCase : Any=16 ,__lowerCamelCase : List[Any]=False ,__lowerCamelCase : str=True ,__lowerCamelCase : str=0.05 ,__lowerCamelCase : str=10 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : Any=0.0 ,__lowerCamelCase : Optional[Any]=10 ,__lowerCamelCase : str=0 ,__lowerCamelCase : Optional[int]=3_20 ,__lowerCamelCase : List[Any]=2 ,__lowerCamelCase : List[Any]=0.1 ,__lowerCamelCase : Union[str, Any]=1_00 ,__lowerCamelCase : Optional[Any]=2_56 ,__lowerCamelCase : Tuple=2_56 ,__lowerCamelCase : List[Any]=0.1 ,__lowerCamelCase : int="mean" ,__lowerCamelCase : Optional[int]=False ,__lowerCamelCase : int=False ,__lowerCamelCase : List[Any]=2_56 ,__lowerCamelCase : List[str]=(5_12, 5_12, 5_12, 5_12, 15_00) ,__lowerCamelCase : Optional[int]=(5, 3, 3, 1, 1) ,__lowerCamelCase : List[Any]=(1, 2, 3, 1, 1) ,__lowerCamelCase : str=5_12 ,__lowerCamelCase : Union[str, Any]=0 ,__lowerCamelCase : int=1 ,__lowerCamelCase : str=2 ,__lowerCamelCase : List[str]=5_04 ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase ,pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase )
a = hidden_size
a = feat_extract_norm
a = feat_extract_activation
a = list(__lowerCamelCase )
a = list(__lowerCamelCase )
a = list(__lowerCamelCase )
a = conv_bias
a = num_conv_pos_embeddings
a = num_conv_pos_embedding_groups
a = len(self.conv_dim )
a = num_hidden_layers
a = intermediate_size
a = hidden_act
a = num_attention_heads
a = hidden_dropout
a = attention_dropout
a = activation_dropout
a = feat_proj_dropout
a = final_dropout
a = layerdrop
a = layer_norm_eps
a = initializer_range
a = vocab_size
a = num_clusters
a = do_stable_layer_norm
a = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
a = apply_spec_augment
a = mask_time_prob
a = mask_time_length
a = mask_time_min_masks
a = mask_feature_prob
a = mask_feature_length
a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
a = num_codevectors_per_group
a = num_codevector_groups
a = contrastive_logits_temperature
a = feat_quantizer_dropout
a = num_negatives
a = codevector_dim
a = proj_codevector_dim
a = diversity_loss_weight
# ctc loss
a = ctc_loss_reduction
a = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
a = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
a = list(__lowerCamelCase )
a = list(__lowerCamelCase )
a = list(__lowerCamelCase )
a = xvector_output_dim
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return functools.reduce(operator.mul ,self.conv_stride ,1 )
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : str = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'luke'
def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
a = vocab_size
a = entity_vocab_size
a = hidden_size
a = entity_emb_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = use_entity_aware_attention
a = classifier_dropout
| 330 | 1 |
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowerCamelCase_ :
def __init__( self : Any ):
'''simple docstring'''
a = ''''''
a = ''''''
a = []
a = 0
a = 2_56
a = 0
a = 0
a = 0
a = 0
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ):
'''simple docstring'''
a = cva.imread(__lowerCamelCase ,0 )
a = copy.deepcopy(self.img )
a , a , a = plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] ,label='''x''' )
a = np.sum(__lowerCamelCase )
for i in range(len(__lowerCamelCase ) ):
a = x[i] / self.k
self.sk += prk
a = (self.L - 1) * self.sk
if self.rem != 0:
a = int(last % last )
a = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(__lowerCamelCase )
a = int(np.ma.count(self.img ) / self.img[1].size )
a = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
a = self.img[j][i]
if num != self.last_list[num]:
a = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' ,self.img )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
plt.hist(self.img.ravel() ,2_56 ,[0, 2_56] )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
cva.imshow('''Output-Image''' ,self.img )
cva.imshow('''Input-Image''' ,self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
UpperCamelCase__ : Optional[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""")
UpperCamelCase__ : Tuple = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 330 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None)
UpperCamelCase__ : Tuple = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase__ : List[Any] = df.iloc[:, 1:2]
UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1)
UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase__ : Optional[Any] = 10
UpperCamelCase__ : int = 5
UpperCamelCase__ : List[str] = 20
UpperCamelCase__ : Optional[int] = len_data - periods * look_back
UpperCamelCase__ : Union[str, Any] = actual_data[:division]
UpperCamelCase__ : str = actual_data[division - look_back :]
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], []
UpperCamelCase__ , UpperCamelCase__ : str = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase__ : List[str] = np.array(train_x)
UpperCamelCase__ : Optional[Any] = np.array(test_x)
UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase__ : Union[str, Any] = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="""mean_squared_error""", optimizer="""adam""")
UpperCamelCase__ : Tuple = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase__ : Tuple = model.predict(x_test)
| 330 | 1 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = 0.01
with locka.acquire():
with pytest.raises(snake_case_ ):
a = time.time()
locka.acquire(snake_case_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = '''a''' * 1_0_0_0 + '''.lock'''
a = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(snake_case_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5
a = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(snake_case_ ):
locka.acquire(0 )
| 330 | 1 |
class lowerCamelCase_ :
def __init__( self : Union[str, Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ):
'''simple docstring'''
a = None
a = None
a = graph
self._normalize_graph(__lowerCamelCase ,__lowerCamelCase )
a = len(__lowerCamelCase )
a = None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ):
'''simple docstring'''
if sources is int:
a = [sources]
if sinks is int:
a = [sinks]
if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) == 0:
return
a = sources[0]
a = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(__lowerCamelCase ) > 1 or len(__lowerCamelCase ) > 1:
a = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
a = len(self.graph ) + 1
for room in self.graph:
room.insert(0 ,0 )
self.graph.insert(0 ,[0] * size )
for i in sources:
a = max_input_flow
a = 0
a = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
a = max_input_flow
a = size - 1
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
if self.maximum_flow_algorithm is None:
raise Exception('''You need to set maximum flow algorithm before.''' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = algorithm(self )
class lowerCamelCase_ :
def __init__( self : int ,__lowerCamelCase : int ):
'''simple docstring'''
a = flow_network
a = flow_network.verticesCount
a = flow_network.sourceIndex
a = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
a = flow_network.graph
a = False
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
if not self.executed:
self._algorithm()
a = True
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
pass
class lowerCamelCase_ ( a_ ):
def __init__( self : Any ,__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(__lowerCamelCase )
# use this to save your result
a = -1
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
if not self.executed:
raise Exception('''You should execute algorithm before using its result!''' )
return self.maximum_flow
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[Any] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(__lowerCamelCase )
a = [[0] * self.verticies_count for i in range(self.verticies_count )]
a = [0] * self.verticies_count
a = [0] * self.verticies_count
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
a = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
a = 0
while i < len(__lowerCamelCase ):
a = vertices_list[i]
a = self.heights[vertex_index]
self.process_vertex(__lowerCamelCase )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 ,vertices_list.pop(__lowerCamelCase ) )
a = 0
else:
i += 1
a = sum(self.preflow[self.source_index] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : int ):
'''simple docstring'''
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(__lowerCamelCase ,__lowerCamelCase )
self.relabel(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = min(
self.excesses[from_index] ,self.graph[from_index][to_index] - self.preflow[from_index][to_index] ,)
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ):
'''simple docstring'''
a = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
a = self.heights[to_index]
if min_height is not None:
a = min_height + 1
if __name__ == "__main__":
UpperCamelCase__ : Union[str, Any] = [0]
UpperCamelCase__ : List[Any] = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
UpperCamelCase__ : List[Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
UpperCamelCase__ : Tuple = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
UpperCamelCase__ : str = flow_network.find_maximum_flow()
print(F"maximum flow is {maximum_flow}")
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : Dict = {
"""facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'vit_mae'
def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = decoder_num_attention_heads
a = decoder_hidden_size
a = decoder_num_hidden_layers
a = decoder_intermediate_size
a = mask_ratio
a = norm_pix_loss
| 330 | 1 |
import os
import sys
import unittest
UpperCamelCase__ : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
UpperCamelCase__ : Dict = os.path.join(git_repo_path, """src""", """transformers""")
UpperCamelCase__ : Optional[Any] = """
{0} = None
"""
UpperCamelCase__ : Union[str, Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
"""
UpperCamelCase__ : int = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' )
self.assertIsNone(__lowerCamelCase )
a = find_backend(''' if not is_tokenizers_available():''' )
self.assertEqual(__lowerCamelCase ,'''tokenizers''' )
a = find_backend(''' if not is_tensorflow_text_available():''' )
self.assertEqual(__lowerCamelCase ,'''tensorflow_text''' )
a = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' )
self.assertEqual(__lowerCamelCase ,'''sentencepiece_and_tokenizers''' )
a = find_backend(
''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' )
self.assertEqual(__lowerCamelCase ,'''sentencepiece_and_tensorflow_text''' )
a = find_backend(
''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' )
self.assertEqual(__lowerCamelCase ,'''sentencepiece_and_tokenizers_and_vision''' )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('''torch''' ,__lowerCamelCase )
self.assertIn('''tensorflow_text''' ,__lowerCamelCase )
self.assertIn('''sentencepiece_and_tokenizers''' ,__lowerCamelCase )
# Likewise, we can't assert on the exact content of a key
self.assertIn('''BertModel''' ,objects['''torch'''] )
self.assertIn('''TFBertModel''' ,objects['''tf'''] )
self.assertIn('''FlaxBertModel''' ,objects['''flax'''] )
self.assertIn('''BertModel''' ,objects['''torch'''] )
self.assertIn('''TFBertTokenizer''' ,objects['''tensorflow_text'''] )
self.assertIn('''convert_slow_tokenizer''' ,objects['''sentencepiece_and_tokenizers'''] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = create_dummy_object('''CONSTANT''' ,'''\'torch\'''' )
self.assertEqual(__lowerCamelCase ,'''\nCONSTANT = None\n''' )
a = create_dummy_object('''function''' ,'''\'torch\'''' )
self.assertEqual(
__lowerCamelCase ,'''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' )
a = '''
class FakeClass(metaclass=DummyObject):
_backends = \'torch\'
def __init__(self, *args, **kwargs):
requires_backends(self, \'torch\')
'''
a = create_dummy_object('''FakeClass''' ,'''\'torch\'''' )
self.assertEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = '''# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
CONSTANT = None
def function(*args, **kwargs):
requires_backends(function, ["torch"])
class FakeClass(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
'''
a = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} )
self.assertEqual(dummy_files['''torch'''] ,__lowerCamelCase )
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
stooge(snake_case_, 0, len(snake_case_ ) - 1 )
return arr
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a , a = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
# Recursively sort last 2/3 elements
stooge(snake_case_, i + t, (snake_case_) )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")]
print(stooge_sort(unsorted))
| 330 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = StableDiffusionXLImgaImgPipeline
SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'}
SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
torch.manual_seed(0 )
a = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,attention_head_dim=(2, 4) ,use_linear_projection=__lowerCamelCase ,addition_embed_type='''text_time''' ,addition_time_embed_dim=8 ,transformer_layers_per_block=(1, 2) ,projection_class_embeddings_input_dim=80 ,cross_attention_dim=64 ,)
a = EulerDiscreteScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,steps_offset=1 ,beta_schedule='''scaled_linear''' ,timestep_spacing='''leading''' ,)
torch.manual_seed(0 )
a = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_28 ,)
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act='''gelu''' ,projection_dim=32 ,)
a = CLIPTextModel(__lowerCamelCase )
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ,local_files_only=__lowerCamelCase )
a = CLIPTextModelWithProjection(__lowerCamelCase )
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ,local_files_only=__lowerCamelCase )
a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int]=0 ):
'''simple docstring'''
a = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
a = image / 2 + 0.5
if str(__lowerCamelCase ).startswith('''mps''' ):
a = torch.manual_seed(__lowerCamelCase )
else:
a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.75,
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = StableDiffusionXLImgaImgPipeline(**__lowerCamelCase )
a = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_dummy_inputs(__lowerCamelCase )
a = sd_pipe(**__lowerCamelCase ).images
a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
a = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = self.get_dummy_components()
a = StableDiffusionXLImgaImgPipeline(**__lowerCamelCase )
a = sd_pipe.to(__lowerCamelCase )
a = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
# forward without prompt embeds
a = self.get_dummy_inputs(__lowerCamelCase )
a = 3 * ['''this is a negative prompt''']
a = negative_prompt
a = 3 * [inputs['''prompt''']]
a = sd_pipe(**__lowerCamelCase )
a = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
a = self.get_dummy_inputs(__lowerCamelCase )
a = 3 * ['''this is a negative prompt''']
a = 3 * [inputs.pop('''prompt''' )]
(
(
a
) , (
a
) , (
a
) , (
a
) ,
) = sd_pipe.encode_prompt(__lowerCamelCase ,negative_prompt=__lowerCamelCase )
a = sd_pipe(
**__lowerCamelCase ,prompt_embeds=__lowerCamelCase ,negative_prompt_embeds=__lowerCamelCase ,pooled_prompt_embeds=__lowerCamelCase ,negative_pooled_prompt_embeds=__lowerCamelCase ,)
a = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@slow
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any]="cpu" ,__lowerCamelCase : Union[str, Any]=torch.floataa ,__lowerCamelCase : Union[str, Any]=0 ):
'''simple docstring'''
a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
a = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 4, 64, 64) )
a = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ,dtype=__lowerCamelCase )
a = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_inputs(__lowerCamelCase )
a = pipe(**__lowerCamelCase ).images
a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
a = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] )
assert np.abs(image_slice - expected_slice ).max() < 7e-3
| 330 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
UpperCamelCase__ : Union[str, Any] = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
UpperCamelCase__ : str = {
"""jukebox""": 512,
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token
super().__init__(
unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,)
a = version
a = max_n_lyric_tokens
a = n_genres
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
a = oov.replace(r'''\-\'''' ,r'''\-+\'''' )
a = regex.compile(__lowerCamelCase )
a = {v: k for k, v in self.artists_encoder.items()}
a = {v: k for k, v in self.genres_encoder.items()}
a = {v: k for k, v in self.lyrics_encoder.items()}
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists]
for genres in range(len(__lowerCamelCase ) ):
a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]]
a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return list(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = self._tokenize(__lowerCamelCase )
return artist, genre, lyrics
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ):
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
a = artists[idx].lower()
a = [genres[idx].lower()]
else:
a = self._normalize(artists[idx] ) + '''.v2'''
a = [
self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )}
a = 0
a = len(__lowerCamelCase ) + 1
a = self.vocab
a = {v: k for k, v in self.vocab.items()}
a = ''''''
else:
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
a = self._run_strip_accents(__lowerCamelCase )
a = lyrics.replace('''\\''' ,'''\n''' )
a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], []
return artists, genres, lyrics
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = unicodedata.normalize('''NFD''' ,__lowerCamelCase )
a = []
for char in text:
a = unicodedata.category(__lowerCamelCase )
if cat == "Mn":
continue
output.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = (
[chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )]
+ ['''.''']
)
a = frozenset(__lowerCamelCase )
a = re.compile(r'''_+''' )
a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' )
return text
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return " ".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = TensorType(__lowerCamelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
a = tf.constant
a = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
a = torch.tensor
a = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
a = jnp.array
a = _is_jax
else:
a = np.asarray
a = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
a = [inputs]
if not is_tensor(__lowerCamelCase ):
a = as_tensor(__lowerCamelCase )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ):
'''simple docstring'''
a = [0, 0, 0]
a = [artist] * len(self.version )
a = [genres] * len(self.version )
a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = [-INFINITY] * len(full_tokens[-1] )
a = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) )
return (artists_file, genres_file, lyrics_file)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ):
'''simple docstring'''
a = self.artists_decoder.get(__lowerCamelCase )
a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index]
a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index]
return artist, genres, lyrics
| 330 | 1 |
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Any:
"""simple docstring"""
a = []
for part_id in partition_order:
a = df.where(f"""SPARK_PARTITION_ID() = {part_id}""" ).collect()
for row_idx, row in enumerate(snake_case_ ):
expected_row_ids_and_row_dicts.append((f"""{part_id}_{row_idx}""", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE__ ( ) -> List[str]:
"""simple docstring"""
a = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
a = spark.range(1_0_0 ).repartition(1 )
a = Spark(snake_case_ )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=1_6 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 5_0
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]:
"""simple docstring"""
a = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
a = spark.range(1_0 ).repartition(2 )
a = [1, 0]
a = _generate_iterable_examples(snake_case_, snake_case_ ) # Reverse the partitions.
a = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_, snake_case_ )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
a , a = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]:
"""simple docstring"""
a = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
a = spark.range(1_0 ).repartition(1 )
a = SparkExamplesIterable(snake_case_ )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(snake_case_ ):
assert row_id == f"""0_{i}"""
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE__ ( ) -> Any:
"""simple docstring"""
a = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
a = spark.range(3_0 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('''numpy.random.Generator''' ) as generator_mock:
a = lambda snake_case_ : x.reverse()
a = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_, [2, 1, 0] )
a = SparkExamplesIterable(snake_case_ ).shuffle_data_sources(snake_case_ )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(snake_case_ ):
a , a = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE__ ( ) -> str:
"""simple docstring"""
a = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
a = spark.range(2_0 ).repartition(4 )
# Partitions 0 and 2
a = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=0, num_workers=2 )
assert shard_it_a.n_shards == 2
a = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_, [0, 2] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
a , a = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
a = SparkExamplesIterable(snake_case_ ).shard_data_sources(worker_id=1, num_workers=2 )
assert shard_it_a.n_shards == 2
a = _get_expected_row_ids_and_row_dicts_for_partition_order(snake_case_, [1, 3] )
for i, (row_id, row_dict) in enumerate(snake_case_ ):
a , a = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]:
"""simple docstring"""
a = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
a = spark.range(1_0_0 ).repartition(1 )
a = Spark(snake_case_ )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
| 330 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru"""
# Build
# borrowed from a test
UpperCamelCase__ : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab))))
UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase__ : Optional[Any] = Path(tmpdirname)
UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""]
UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""]
UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""]
with open(src_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, """w""") as fp:
fp.write("""\n""".join(merges))
UpperCamelCase__ : Dict = FSMTTokenizer(
langs=["""en""", """ru"""],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
UpperCamelCase__ : Union[str, Any] = FSMTConfig(
langs=["""ru""", """en"""],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
UpperCamelCase__ : Tuple = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 330 | 1 |
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
UpperCamelCase__ : Dict = """scheduler_config.json"""
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 5
SCREAMING_SNAKE_CASE_ = 6
SCREAMING_SNAKE_CASE_ = 7
SCREAMING_SNAKE_CASE_ = 8
SCREAMING_SNAKE_CASE_ = 9
SCREAMING_SNAKE_CASE_ = 10
SCREAMING_SNAKE_CASE_ = 11
SCREAMING_SNAKE_CASE_ = 12
SCREAMING_SNAKE_CASE_ = 13
SCREAMING_SNAKE_CASE_ = 14
@dataclass
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 42
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = SCHEDULER_CONFIG_NAME
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = True
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Dict ,__lowerCamelCase : Dict[str, Any] = None ,__lowerCamelCase : Optional[str] = None ,__lowerCamelCase : List[Any]=False ,**__lowerCamelCase : Any ,):
'''simple docstring'''
a , a , a = cls.load_config(
pretrained_model_name_or_path=__lowerCamelCase ,subfolder=__lowerCamelCase ,return_unused_kwargs=__lowerCamelCase ,return_commit_hash=__lowerCamelCase ,**__lowerCamelCase ,)
return cls.from_config(__lowerCamelCase ,return_unused_kwargs=__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, os.PathLike] ,__lowerCamelCase : bool = False ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
self.save_config(save_directory=__lowerCamelCase ,push_to_hub=__lowerCamelCase ,**__lowerCamelCase )
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] ):
'''simple docstring'''
a = list(set([cls.__name__] + cls._compatibles ) )
a = importlib.import_module(__name__.split('''.''' )[0] )
a = [
getattr(__lowerCamelCase ,__lowerCamelCase ) for c in compatible_classes_str if hasattr(__lowerCamelCase ,__lowerCamelCase )
]
return compatible_classes
| 330 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
UpperCamelCase__ : Optional[Any] = """bert-base-cased"""
UpperCamelCase__ : int = """fp16"""
UpperCamelCase__ : str = """bf16"""
UpperCamelCase__ : List[Any] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().setUp()
a = dict(
ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = F"""{i + 1}"""
a = strategy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = prefetch_policy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = state_dict_type
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = AutoModel.from_pretrained(__lowerCamelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
a = self.dist_env.copy()
a = policy
if policy == "TRANSFORMER_BASED_WRAP":
a = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
a = '''2000'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
a = self.dist_env.copy()
a = '''TRANSFORMER_BASED_WRAP'''
a = '''T5Layer'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCamelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) )
a = self.dist_env.copy()
a = '''SIZE_BASED_WRAP'''
a = '''0'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
a = self.dist_env.copy()
a = mp_dtype
with mockenv_context(**__lowerCamelCase ):
a = Accelerator()
if mp_dtype == "fp16":
a = torch.floataa
elif mp_dtype == "bf16":
a = torch.bfloataa
a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
a = self.dist_env.copy()
a = str(__lowerCamelCase ).lower()
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
a = 0.82
a = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
a = {
'''multi_gpu_fp16''': 32_00,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
a = 1_60
a = 1_60
a = inspect.getfile(accelerate.test_utils )
a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' )
a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
a = cmd.copy()
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''' )
else:
cmd_config.append('''--mixed_precision=fp16''' )
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(__lowerCamelCase ):
a = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
a = len(__lowerCamelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
a = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
a = cmd_config[:-1]
a = os.path.join(self.tmpdir ,'''epoch_0''' )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
a = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''] )
else:
cmd_config.extend(['''--mixed_precision=no'''] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''] )
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
| 330 | 1 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
UpperCamelCase__ : str = logging.get_logger(__name__)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'linear'
SCREAMING_SNAKE_CASE_ = 'cosine'
SCREAMING_SNAKE_CASE_ = 'cosine_with_restarts'
SCREAMING_SNAKE_CASE_ = 'polynomial'
SCREAMING_SNAKE_CASE_ = 'constant'
SCREAMING_SNAKE_CASE_ = 'constant_with_warmup'
SCREAMING_SNAKE_CASE_ = 'piecewise_constant'
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = -1 ) -> int:
"""simple docstring"""
return LambdaLR(snake_case_, lambda snake_case_ : 1, last_epoch=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = -1 ) -> Union[str, Any]:
"""simple docstring"""
def lr_lambda(snake_case_ ):
if current_step < num_warmup_steps:
return float(snake_case_ ) / float(max(1.0, snake_case_ ) )
return 1.0
return LambdaLR(snake_case_, snake_case_, last_epoch=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = -1 ) -> Tuple:
"""simple docstring"""
a = {}
a = step_rules.split(''',''' )
for rule_str in rule_list[:-1]:
a , a = rule_str.split(''':''' )
a = int(snake_case_ )
a = float(snake_case_ )
a = value
a = float(rule_list[-1] )
def create_rules_function(snake_case_, snake_case_ ):
def rule_func(snake_case_ ) -> float:
a = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(snake_case_ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
a = create_rules_function(snake_case_, snake_case_ )
return LambdaLR(snake_case_, snake_case_, last_epoch=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_=-1 ) -> Optional[Any]:
"""simple docstring"""
def lr_lambda(snake_case_ ):
if current_step < num_warmup_steps:
return float(snake_case_ ) / float(max(1, snake_case_ ) )
return max(
0.0, float(num_training_steps - current_step ) / float(max(1, num_training_steps - num_warmup_steps ) ) )
return LambdaLR(snake_case_, snake_case_, snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ = 0.5, snake_case_ = -1 ) -> Union[str, Any]:
"""simple docstring"""
def lr_lambda(snake_case_ ):
if current_step < num_warmup_steps:
return float(snake_case_ ) / float(max(1, snake_case_ ) )
a = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(snake_case_ ) * 2.0 * progress )) )
return LambdaLR(snake_case_, snake_case_, snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ = 1, snake_case_ = -1 ) -> Tuple:
"""simple docstring"""
def lr_lambda(snake_case_ ):
if current_step < num_warmup_steps:
return float(snake_case_ ) / float(max(1, snake_case_ ) )
a = float(current_step - num_warmup_steps ) / float(max(1, num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(snake_case_ ) * progress) % 1.0) )) )
return LambdaLR(snake_case_, snake_case_, snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_=1e-7, snake_case_=1.0, snake_case_=-1 ) -> int:
"""simple docstring"""
a = optimizer.defaults['''lr''']
if not (lr_init > lr_end):
raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" )
def lr_lambda(snake_case_ ):
if current_step < num_warmup_steps:
return float(snake_case_ ) / float(max(1, snake_case_ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
a = lr_init - lr_end
a = num_training_steps - num_warmup_steps
a = 1 - (current_step - num_warmup_steps) / decay_steps
a = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(snake_case_, snake_case_, snake_case_ )
UpperCamelCase__ : Dict = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = None, snake_case_ = None, snake_case_ = None, snake_case_ = 1, snake_case_ = 1.0, snake_case_ = -1, ) -> List[Any]:
"""simple docstring"""
a = SchedulerType(snake_case_ )
a = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(snake_case_, last_epoch=snake_case_ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(snake_case_, step_rules=snake_case_, last_epoch=snake_case_ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(snake_case_, num_warmup_steps=snake_case_, last_epoch=snake_case_ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
snake_case_, num_warmup_steps=snake_case_, num_training_steps=snake_case_, num_cycles=snake_case_, last_epoch=snake_case_, )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
snake_case_, num_warmup_steps=snake_case_, num_training_steps=snake_case_, power=snake_case_, last_epoch=snake_case_, )
return schedule_func(
snake_case_, num_warmup_steps=snake_case_, num_training_steps=snake_case_, last_epoch=snake_case_ )
| 330 |
from __future__ import annotations
import os
from collections.abc import Mapping
UpperCamelCase__ : Any = tuple[int, int]
class lowerCamelCase_ :
def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ):
'''simple docstring'''
a = vertices
a = {
(min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items()
}
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ):
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
a = weight
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = Graph({min(self.vertices )} ,{} )
a = 42
a = 42
a = 42
a = 42
while len(subgraph.vertices ) < len(self.vertices ):
a = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
a = edge
a = weight
subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase )
return subgraph
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int:
"""simple docstring"""
a = os.path.abspath(os.path.dirname(snake_case_ ) )
a = os.path.join(snake_case_, snake_case_ )
a = {}
a = 42
a = 42
a = 42
with open(snake_case_ ) as f:
a = f.read().strip().split('''\n''' )
a = [line.split(''',''' ) for line in data]
for edgea in range(1, len(snake_case_ ) ):
for edgea in range(snake_case_ ):
if adjaceny_matrix[edgea][edgea] != "-":
a = int(adjaceny_matrix[edgea][edgea] )
a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ )
a = graph.prims_algorithm()
a = sum(graph.edges.values() )
a = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 330 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
UpperCamelCase__ : Optional[int] = [
"""EAGER""",
"""AOT_EAGER""",
"""INDUCTOR""",
"""NVFUSER""",
"""AOT_NVFUSER""",
"""AOT_CUDAGRAPHS""",
"""OFI""",
"""FX2TRT""",
"""ONNXRT""",
"""IPEX""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None, snake_case_=None, snake_case_=None ) -> int:
"""simple docstring"""
a = True
while ask_again:
a = input(snake_case_ )
try:
if default is not None and len(snake_case_ ) == 0:
return default
return convert_value(snake_case_ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=[], snake_case_=None, snake_case_=0 ) -> int:
"""simple docstring"""
a = BulletMenu(snake_case_, snake_case_ )
a = menu.run(default_choice=snake_case_ )
return convert_value(snake_case_ ) if convert_value is not None else result
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = int(snake_case_ )
return ComputeEnvironment(['''LOCAL_MACHINE''', '''AMAZON_SAGEMAKER'''][value] )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
a = int(snake_case_ )
return DistributedType(['''NO''', '''MULTI_CPU''', '''MULTI_XPU''', '''MULTI_GPU''', '''MULTI_NPU''', '''TPU'''][value] )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = int(snake_case_ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
a = int(snake_case_ )
return PrecisionType(['''no''', '''fp16''', '''bf16''', '''fp8'''][value] )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]:
"""simple docstring"""
a = int(snake_case_ )
return SageMakerDistributedType(['''NO''', '''DATA_PARALLEL''', '''MODEL_PARALLEL'''][value] )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
return {"yes": True, "no": False}[value.lower()]
class lowerCamelCase_ ( argparse.RawDescriptionHelpFormatter ):
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int] ):
'''simple docstring'''
a = super()._format_usage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = usage.replace('''<command> [<args>] ''' ,'''''' )
return usage
| 330 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__ : List[Any] = """RegNetConfig"""
# Base docstring
UpperCamelCase__ : Dict = """facebook/regnet-y-040"""
UpperCamelCase__ : int = [1, 1_088, 7, 7]
# Image classification docstring
UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040"""
UpperCamelCase__ : Dict = """tabby, tabby cat"""
UpperCamelCase__ : Dict = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,)
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
a = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = self.convolution(self.padding(__lowerCamelCase ) )
a = self.normalization(__lowerCamelCase )
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config.num_channels
a = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = shape_list(__lowerCamelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) )
a = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' )
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ):
'''simple docstring'''
return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase )
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
a = [
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ),
]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.pooler(__lowerCamelCase )
for layer_module in self.attention:
a = layer_module(__lowerCamelCase )
a = hidden_state * pooled
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
a = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ),
*[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ):
'''simple docstring'''
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) )
a = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ):
'''simple docstring'''
a = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
a = hidden_states + (hidden_state,)
a = stage_module(__lowerCamelCase )
if output_hidden_states:
a = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase )
@keras_serializable
class lowerCamelCase_ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config
a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' )
a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase )
a = self.encoder(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = encoder_outputs[0]
a = self.pooler(__lowerCamelCase )
# Change to NCHW output format have uniformity in the modules
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
SCREAMING_SNAKE_CASE_ = 'regnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
UpperCamelCase__ : Union[str, Any] = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
UpperCamelCase__ : List[str] = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , a_ , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , )
class lowerCamelCase_ ( a_ , a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = config.num_labels
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
# classification head
a = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = outputs.pooler_output if return_dict else outputs[1]
a = self.classifier[0](__lowerCamelCase )
a = self.classifier[1](__lowerCamelCase )
a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
| 330 | 1 |
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from ...utils import deprecate
from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401
deprecate(
"""stable diffusion controlnet""",
"""0.22.0""",
"""Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""",
standard_warn=False,
stacklevel=3,
)
| 330 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'efficientformer'
def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_act
a = hidden_dropout_prob
a = hidden_sizes
a = num_hidden_layers
a = num_attention_heads
a = initializer_range
a = layer_norm_eps
a = patch_size
a = num_channels
a = depths
a = mlp_expansion_ratio
a = downsamples
a = dim
a = key_dim
a = attention_ratio
a = resolution
a = pool_size
a = downsample_patch_size
a = downsample_stride
a = downsample_pad
a = drop_path_rate
a = num_metaad_blocks
a = distillation
a = use_layer_scale
a = layer_scale_init_value
a = image_size
a = batch_norm_eps
| 330 | 1 |
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionTextToImagePipeline
from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device
UpperCamelCase__ : Any = False
class lowerCamelCase_ ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = VersatileDiffusionTextToImagePipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
# remove text_unet
pipe.remove_unused_weights()
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = '''A painting of a squirrel eating a burger '''
a = torch.manual_seed(0 )
a = pipe(
prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCamelCase )
a = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = generator.manual_seed(0 )
a = pipe(
prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='''numpy''' ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = VersatileDiffusionTextToImagePipeline.from_pretrained(
'''shi-labs/versatile-diffusion''' ,torch_dtype=torch.floataa )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = '''A painting of a squirrel eating a burger '''
a = torch.manual_seed(0 )
a = pipe(
prompt=__lowerCamelCase ,generator=__lowerCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='''numpy''' ).images
a = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 330 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
UpperCamelCase__ : Any = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
UpperCamelCase__ : Optional[Any] = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
UpperCamelCase__ : Optional[Any] = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : List[str] = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : Optional[int] = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
a = k.replace(snake_case_, snake_case_ )
return k
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
a = BigBirdPegasusConfig(**snake_case_ )
a = BigBirdPegasusForConditionalGeneration(snake_case_ )
a = torch_model.state_dict()
a = {}
# separating decoder weights
a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = DECODER_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = REMAINING_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
a = mapping['''model.embed_positions.weight''']
a = mapping.pop('''model.embed_positions.weight''' )
a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ )
a = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = tf.train.list_variables(snake_case_ )
a = {}
a = ['''global_step''']
for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ):
a = any(pat in name for pat in ignore_name )
if skip_key:
continue
a = tf.train.load_variable(snake_case_, snake_case_ )
a = array
return tf_weights
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = get_tf_weights_as_numpy(snake_case_ )
a = convert_bigbird_pegasus(snake_case_, snake_case_ )
torch_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : str = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
UpperCamelCase__ : int = parser.parse_args()
UpperCamelCase__ : Tuple = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 330 | 1 |
UpperCamelCase__ : str = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = set()
# keep track of all the paths to be checked
a = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
a = queue.pop(0 )
# get the last node from the path
a = path[-1]
if node not in explored:
a = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
a = list(snake_case_ )
new_path.append(snake_case_ )
queue.append(snake_case_ )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(snake_case_ )
# in case there's no path between the 2 nodes
return []
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
a = [start]
a = set(snake_case_ )
# Keep tab on distances from `start` node.
a = {start: 0, target: -1}
while queue:
a = queue.pop(0 )
if node == target:
a = (
dist[node] if dist[target] == -1 else min(dist[target], dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(snake_case_ )
queue.append(snake_case_ )
a = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
| 330 |
import re
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
UpperCamelCase__ : int = {
"""microsoft/swinv2-tiny-patch4-window8-256""": (
"""https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"""
),
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'swinv2'
SCREAMING_SNAKE_CASE_ = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self : Any ,__lowerCamelCase : Union[str, Any]=2_24 ,__lowerCamelCase : Any=4 ,__lowerCamelCase : int=3 ,__lowerCamelCase : List[Any]=96 ,__lowerCamelCase : str=[2, 2, 6, 2] ,__lowerCamelCase : Any=[3, 6, 12, 24] ,__lowerCamelCase : Dict=7 ,__lowerCamelCase : Optional[Any]=4.0 ,__lowerCamelCase : Any=True ,__lowerCamelCase : Optional[Any]=0.0 ,__lowerCamelCase : Dict=0.0 ,__lowerCamelCase : Optional[Any]=0.1 ,__lowerCamelCase : Dict="gelu" ,__lowerCamelCase : List[Any]=False ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[str]=1e-5 ,__lowerCamelCase : Any=32 ,**__lowerCamelCase : List[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = image_size
a = patch_size
a = num_channels
a = embed_dim
a = depths
a = len(__lowerCamelCase )
a = num_heads
a = window_size
a = mlp_ratio
a = qkv_bias
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = drop_path_rate
a = hidden_act
a = use_absolute_embeddings
a = layer_norm_eps
a = initializer_range
a = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
a = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) )
a = (0, 0, 0, 0)
| 330 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count += 1
a = '''_'''
if count > 1:
return False
else:
return "".join(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
while True:
a = ['''$'''] * len(snake_case_ )
a = []
for i in range(len(snake_case_ ) ):
for j in range(i + 1, len(snake_case_ ) ):
a = compare_string(binary[i], binary[j] )
if k is False:
a = '''*'''
a = '''*'''
temp.append('''X''' )
for i in range(len(snake_case_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(snake_case_ ) == 0:
return pi
a = list(set(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
for minterm in minterms:
a = ''''''
for _ in range(snake_case_ ):
a = str(minterm % 2 ) + string
minterm //= 2
temp.append(snake_case_ )
return temp
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
a = [0] * len(snake_case_ )
for i in range(len(chart[0] ) ):
a = 0
a = -1
for j in range(len(snake_case_ ) ):
if chart[j][i] == 1:
count += 1
a = j
if count == 1:
a = 1
for i in range(len(snake_case_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(snake_case_ ) ):
a = 0
temp.append(prime_implicants[i] )
while True:
a = 0
a = -1
a = 0
for i in range(len(snake_case_ ) ):
a = chart[i].count(1 )
if count_n > max_n:
a = count_n
a = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(snake_case_ ) ):
a = 0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]:
"""simple docstring"""
a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )]
for i in range(len(snake_case_ ) ):
a = prime_implicants[i].count('''_''' )
for j in range(len(snake_case_ ) ):
if is_for_table(prime_implicants[i], binary[j], snake_case_ ):
a = 1
return chart
def SCREAMING_SNAKE_CASE__ ( ) -> None:
"""simple docstring"""
a = int(input('''Enter the no. of variables\n''' ) )
a = [
float(snake_case_ )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
a = decimal_to_binary(snake_case_, snake_case_ )
a = check(snake_case_ )
print('''Prime Implicants are:''' )
print(snake_case_ )
a = prime_implicant_chart(snake_case_, snake_case_ )
a = selection(snake_case_, snake_case_ )
print('''Essential Prime Implicants are:''' )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 330 | 1 |
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
UpperCamelCase__ : Optional[Any] = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""")
@total_ordering
@dataclass
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a , a , a = _str_to_version_tuple(self.version_str )
def __repr__( self : Any ):
'''simple docstring'''
return F"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}"""
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
return self.major, self.minor, self.patch
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if isinstance(__lowerCamelCase ,__lowerCamelCase ):
return Version(__lowerCamelCase )
elif isinstance(__lowerCamelCase ,__lowerCamelCase ):
return other
raise TypeError(F"""{other} (type {type(__lowerCamelCase )}) cannot be compared to version.""" )
def __eq__( self : Union[str, Any] ,__lowerCamelCase : int ):
'''simple docstring'''
try:
a = self._validate_operand(__lowerCamelCase )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = self._validate_operand(__lowerCamelCase )
return self.tuple < other.tuple
def __hash__( self : str ):
'''simple docstring'''
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return self.version_str
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = _VERSION_REG.match(snake_case_ )
if not res:
raise ValueError(f"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" )
return tuple(int(snake_case_ ) for v in [res.group('''major''' ), res.group('''minor''' ), res.group('''patch''' )] )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
return ".".join(str(snake_case_ ) for v in version_tuple )
| 330 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float:
"""simple docstring"""
if principal <= 0:
raise Exception('''Principal borrowed must be > 0''' )
if rate_per_annum < 0:
raise Exception('''Rate of interest must be >= 0''' )
if years_to_repay <= 0 or not isinstance(snake_case_, snake_case_ ):
raise Exception('''Years to repay must be an integer > 0''' )
# Yearly rate is divided by 12 to get monthly rate
a = rate_per_annum / 1_2
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
a = years_to_repay * 1_2
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=a_ )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} )
SCREAMING_SNAKE_CASE_ = Features({} )
SCREAMING_SNAKE_CASE_ = "text"
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return {self.text_column: "text"}
| 330 | 1 |
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( snake_case_=None, snake_case_=None ) -> Union[str, Any]:
"""simple docstring"""
return field(default_factory=lambda: default, metadata=snake_case_ )
@dataclass
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = list_field(
default=[] , metadata={
'help': (
'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'
' of all available models'
)
} , )
SCREAMING_SNAKE_CASE_ = list_field(
default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} )
SCREAMING_SNAKE_CASE_ = list_field(
default=[8, 32, 1_28, 5_12] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Use FP16 to accelerate inference.'} )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Benchmark training of model'} )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Verbose memory tracing'} )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={
'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'
} , )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Trace memory line by line'} )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Save result to a CSV file'} )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Save all print statements in a log file'} )
SCREAMING_SNAKE_CASE_ = field(default=a_ , metadata={'help': 'Whether to print environment information'} )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={
'help': (
'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'
' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'
' for debugging / testing and on TPU.'
)
} , )
SCREAMING_SNAKE_CASE_ = field(
default=f"inference_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=f"inference_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=f"train_time_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=f"train_memory_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=f"env_info_{round(time() )}.csv" , metadata={'help': 'CSV filename used if saving environment information.'} , )
SCREAMING_SNAKE_CASE_ = field(
default=f"log_{round(time() )}.csv" , metadata={'help': 'Log filename used if print statements are saved in log.'} , )
SCREAMING_SNAKE_CASE_ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} )
SCREAMING_SNAKE_CASE_ = field(
default=a_ , metadata={
'help': (
'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'
' model weights.'
)
} , )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
warnings.warn(
F"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
''' are deprecated in general and it is advised to use external Benchmarking libraries '''
''' to benchmark Transformer models.''' ,__lowerCamelCase ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return json.dumps(dataclasses.asdict(self ) ,indent=2 )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
if len(self.models ) <= 0:
raise ValueError(
'''Please make sure you provide at least one model name / model identifier, *e.g.* `--models'''
''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' )
return self.models
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
if not self.multi_process:
return False
elif self.is_tpu:
logger.info('''Multiprocessing is currently not possible on TPU.''' )
return False
else:
return True
| 330 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : Union[str, Any] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'yolos'
def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = num_detection_tokens
a = use_mid_position_embeddings
a = auxiliary_loss
# Hungarian matcher
a = class_cost
a = bbox_cost
a = giou_cost
# Loss coefficients
a = bbox_loss_coefficient
a = giou_loss_coefficient
a = eos_coefficient
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return 12
| 330 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase__ : Union[str, Any] = {
"""configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""],
"""tokenization_lxmert""": ["""LxmertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[Any] = ["""LxmertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[str] = [
"""LxmertEncoder""",
"""LxmertForPreTraining""",
"""LxmertForQuestionAnswering""",
"""LxmertModel""",
"""LxmertPreTrainedModel""",
"""LxmertVisualFeatureEncoder""",
"""LxmertXLayer""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Tuple = [
"""TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFLxmertForPreTraining""",
"""TFLxmertMainLayer""",
"""TFLxmertModel""",
"""TFLxmertPreTrainedModel""",
"""TFLxmertVisualFeatureEncoder""",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = ''''''
for i in table:
res += inp[i - 1]
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
return data[1:] + data[0]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = ''''''
for i in range(len(snake_case_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = int('''0b''' + data[0] + data[-1], 2 )
a = int('''0b''' + data[1:3], 2 )
return bin(s[row][col] )[2:]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = message[:4]
a = message[4:]
a = apply_table(snake_case_, snake_case_ )
a = xor(snake_case_, snake_case_ )
a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741
a = apply_sbox(snake_case_, temp[4:] )
a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741
a = '''0''' * (2 - len(snake_case_ )) + r
a = apply_table(l + r, snake_case_ )
a = xor(snake_case_, snake_case_ )
return temp + right
if __name__ == "__main__":
UpperCamelCase__ : int = input("""Enter 10 bit key: """)
UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """)
UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9]
UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
UpperCamelCase__ : Optional[int] = [2, 4, 3, 1]
UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table)
UpperCamelCase__ : str = temp[:5]
UpperCamelCase__ : List[Any] = temp[5:]
UpperCamelCase__ : Dict = left_shift(left)
UpperCamelCase__ : Any = left_shift(right)
UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : int = left_shift(right)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : Dict = left_shift(right)
UpperCamelCase__ : List[str] = apply_table(left + right, pa_table)
# encryption
UpperCamelCase__ : Tuple = apply_table(message, IP)
UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4]
UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Tuple = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP)
UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4]
UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Any = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 330 | 1 |
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_="attention" ) -> str:
"""simple docstring"""
a = a = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] )
a = k_tmp.reshape(k_tmp.shape[0], k_tmp.shape[1] * k_tmp.shape[2] )
a = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] )
a = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1], o_tmp.shape[2] )
a = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] )
a = q_tmp.reshape(q_tmp.shape[0], q_tmp.shape[1] * q_tmp.shape[2] )
a = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] )
a = v_tmp.reshape(v_tmp.shape[0], v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_=False ) -> Union[str, Any]:
"""simple docstring"""
if split_mlp_wi:
a = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :]
a = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :]
a = (wi_a, wi_a)
else:
a = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :]
a = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :]
return wi, wo
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i]
def SCREAMING_SNAKE_CASE__ ( snake_case_, *, snake_case_, snake_case_, snake_case_ = False ) -> Optional[Any]:
"""simple docstring"""
a = traverse_util.flatten_dict(variables['''target'''] )
a = {'''/'''.join(snake_case_ ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
a = '''encoder/encoder/mlp/wi_0/kernel''' in old
print('''Split MLP:''', snake_case_ )
a = collections.OrderedDict()
# Shared embeddings.
a = old['''token_embedder/embedding''']
# Encoder.
for i in range(snake_case_ ):
# Block i, layer 0 (Self Attention).
a = tax_layer_norm_lookup(snake_case_, snake_case_, '''encoder''', '''pre_attention_layer_norm''' )
a , a , a , a = tax_attention_lookup(snake_case_, snake_case_, '''encoder''', '''attention''' )
a = layer_norm
a = k.T
a = o.T
a = q.T
a = v.T
# Block i, layer 1 (MLP).
a = tax_layer_norm_lookup(snake_case_, snake_case_, '''encoder''', '''pre_mlp_layer_norm''' )
a , a = tax_mlp_lookup(snake_case_, snake_case_, '''encoder''', snake_case_ )
a = layer_norm
if split_mlp_wi:
a = wi[0].T
a = wi[1].T
else:
a = wi.T
a = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
a = tax_relpos_bias_lookup(
snake_case_, snake_case_, '''encoder''' ).T
a = old['''encoder/encoder_norm/scale''']
if not scalable_attention:
a = tax_relpos_bias_lookup(
snake_case_, 0, '''encoder''' ).T
a = tax_relpos_bias_lookup(
snake_case_, 0, '''decoder''' ).T
if not is_encoder_only:
# Decoder.
for i in range(snake_case_ ):
# Block i, layer 0 (Self Attention).
a = tax_layer_norm_lookup(snake_case_, snake_case_, '''decoder''', '''pre_self_attention_layer_norm''' )
a , a , a , a = tax_attention_lookup(snake_case_, snake_case_, '''decoder''', '''self_attention''' )
a = layer_norm
a = k.T
a = o.T
a = q.T
a = v.T
# Block i, layer 1 (Cross Attention).
a = tax_layer_norm_lookup(snake_case_, snake_case_, '''decoder''', '''pre_cross_attention_layer_norm''' )
a , a , a , a = tax_attention_lookup(snake_case_, snake_case_, '''decoder''', '''encoder_decoder_attention''' )
a = layer_norm
a = k.T
a = o.T
a = q.T
a = v.T
# Block i, layer 2 (MLP).
a = tax_layer_norm_lookup(snake_case_, snake_case_, '''decoder''', '''pre_mlp_layer_norm''' )
a , a = tax_mlp_lookup(snake_case_, snake_case_, '''decoder''', snake_case_ )
a = layer_norm
if split_mlp_wi:
a = wi[0].T
a = wi[1].T
else:
a = wi.T
a = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
a = tax_relpos_bias_lookup(snake_case_, snake_case_, '''decoder''' ).T
a = old['''decoder/decoder_norm/scale''']
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
a = old['''decoder/logits_dense/kernel'''].T
return new
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
a = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
a = state_dict['''shared.weight''']
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
a = state_dict['''shared.weight''']
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print('''Using shared word embeddings as lm_head.''' )
a = state_dict['''shared.weight''']
return state_dict
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = checkpoints.load_tax_checkpoint(snake_case_ )
a = convert_tax_to_pytorch(
snake_case_, num_layers=config.num_layers, is_encoder_only=snake_case_, scalable_attention=snake_case_ )
a = make_state_dict(snake_case_, snake_case_ )
model.load_state_dict(snake_case_, strict=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ = False, snake_case_ = False, ) -> List[str]:
"""simple docstring"""
a = MTaConfig.from_json_file(snake_case_ )
print(f"""Building PyTorch model from configuration: {config}""" )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
a = UMTaEncoderModel(snake_case_ )
else:
a = UMTaForConditionalGeneration(snake_case_ )
# Load weights from tf checkpoint
load_tax_weights_in_ta(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Save pytorch-model
print(f"""Save PyTorch model to {pytorch_dump_path}""" )
model.save_pretrained(snake_case_ )
# Verify that we can load the checkpoint.
model.from_pretrained(snake_case_ )
print('''Done''' )
if __name__ == "__main__":
UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
UpperCamelCase__ : Optional[int] = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 330 |
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
a = '''The dog is cute and lives in the garden house'''
a = jnp.array([tokenizer.encode(__lowerCamelCase )] )
a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim
a = jnp.array(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
a = model(__lowerCamelCase )['''last_hidden_state''']
self.assertEqual(output.shape ,__lowerCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
| 330 | 1 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = 0.01
with locka.acquire():
with pytest.raises(snake_case_ ):
a = time.time()
locka.acquire(snake_case_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = '''a''' * 1_0_0_0 + '''.lock'''
a = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(snake_case_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5
a = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(snake_case_ ):
locka.acquire(0 )
| 330 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ : Union[str, Any] = 16
UpperCamelCase__ : Dict = 32
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(snake_case_ ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a = datasets.map(
snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(snake_case_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a = 1_6
elif accelerator.mixed_precision != "no":
a = 8
else:
a = None
return tokenizer.pad(
snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
a = DataLoader(
tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase__ : int = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1":
a = 2
# Initialize accelerator
a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = evaluate.load('''glue''', '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case_ )
def inner_training_loop(snake_case_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a = model.to(accelerator.device )
# Instantiate optimizer
a = AdamW(params=model.parameters(), lr=snake_case_ )
a , a = get_dataloaders(snake_case_, snake_case_ )
# Instantiate scheduler
a = get_linear_schedule_with_warmup(
optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a = model(**snake_case_ )
a = outputs.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a = model(**snake_case_ )
a = outputs.logits.argmax(dim=-1 )
a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case_, references=snake_case_, )
a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", snake_case_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(snake_case_, snake_case_ )
if __name__ == "__main__":
main()
| 330 | 1 |
from string import ascii_lowercase, ascii_uppercase
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if not sentence:
return ""
a = dict(zip(snake_case_, snake_case_ ) )
return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 330 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCamelCase__ : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
a = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
a = UniSpeechSatConfig()
a = ''''''
if is_finetuned:
a = UniSpeechSatForCTC(snake_case_ )
else:
a = UniSpeechSatForPreTraining(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : int = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330 | 1 |
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 330 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() )
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = metric_id
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() )
@pytest.mark.parametrize(
'''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
if "tmp_path" in args:
a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ):
func(*snake_case_ )
| 330 | 1 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None)
UpperCamelCase__ : Tuple = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase__ : List[Any] = df.iloc[:, 1:2]
UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1)
UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase__ : Optional[Any] = 10
UpperCamelCase__ : int = 5
UpperCamelCase__ : List[str] = 20
UpperCamelCase__ : Optional[int] = len_data - periods * look_back
UpperCamelCase__ : Union[str, Any] = actual_data[:division]
UpperCamelCase__ : str = actual_data[division - look_back :]
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], []
UpperCamelCase__ , UpperCamelCase__ : str = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase__ : List[str] = np.array(train_x)
UpperCamelCase__ : Optional[Any] = np.array(test_x)
UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase__ : Union[str, Any] = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="""mean_squared_error""", optimizer="""adam""")
UpperCamelCase__ : Tuple = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase__ : Tuple = model.predict(x_test)
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : str = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'luke'
def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
a = vocab_size
a = entity_vocab_size
a = hidden_size
a = entity_emb_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = use_entity_aware_attention
a = classifier_dropout
| 330 | 1 |
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
UNetaDConditionModel,
VideoToVideoSDPipeline,
)
from diffusers.utils import floats_tensor, is_xformers_available, skip_mps
from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
@skip_mps
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = VideoToVideoSDPipeline
SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'video'} ) - {'image', 'width', 'height'}
SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'video'} ) - {'image'}
SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'}
SCREAMING_SNAKE_CASE_ = False
# No `output_type`.
SCREAMING_SNAKE_CASE_ = frozenset(
[
'num_inference_steps',
'generator',
'latents',
'return_dict',
'callback',
'callback_steps',
] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
torch.manual_seed(0 )
a = UNetaDConditionModel(
block_out_channels=(32, 64, 64, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') ,up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') ,cross_attention_dim=32 ,attention_head_dim=4 ,)
a = DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=__lowerCamelCase ,set_alpha_to_one=__lowerCamelCase ,)
torch.manual_seed(0 )
a = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,sample_size=1_28 ,)
torch.manual_seed(0 )
a = CLIPTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act='''gelu''' ,projection_dim=5_12 ,)
a = CLIPTextModel(__lowerCamelCase )
a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str]=0 ):
'''simple docstring'''
a = floats_tensor((1, 3, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
if str(__lowerCamelCase ).startswith('''mps''' ):
a = torch.manual_seed(__lowerCamelCase )
else:
a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''video''': video,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''pt''',
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = VideoToVideoSDPipeline(**__lowerCamelCase )
a = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_dummy_inputs(__lowerCamelCase )
a = '''np'''
a = sd_pipe(**__lowerCamelCase ).frames
a = frames[0][-3:, -3:, -1]
assert frames[0].shape == (32, 32, 3)
a = np.array([1_06, 1_17, 1_13, 1_74, 1_37, 1_12, 1_48, 1_51, 1_31] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCamelCase ,expected_max_diff=5e-3 )
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
pass
@unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
return super().test_progress_bar()
@slow
@skip_mps
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' ,torch_dtype=torch.floataa )
pipe.enable_model_cpu_offload()
# 10 frames
a = torch.Generator(device='''cpu''' ).manual_seed(0 )
a = torch.randn((1, 10, 3, 10_24, 5_76) ,generator=__lowerCamelCase )
a = video.to('''cuda''' )
a = '''Spiderman is surfing'''
a = pipe(__lowerCamelCase ,video=__lowerCamelCase ,generator=__lowerCamelCase ,num_inference_steps=3 ,output_type='''pt''' ).frames
a = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] )
assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
| 330 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None)
UpperCamelCase__ : Tuple = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase__ : List[Any] = df.iloc[:, 1:2]
UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1)
UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase__ : Optional[Any] = 10
UpperCamelCase__ : int = 5
UpperCamelCase__ : List[str] = 20
UpperCamelCase__ : Optional[int] = len_data - periods * look_back
UpperCamelCase__ : Union[str, Any] = actual_data[:division]
UpperCamelCase__ : str = actual_data[division - look_back :]
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], []
UpperCamelCase__ , UpperCamelCase__ : str = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase__ : List[str] = np.array(train_x)
UpperCamelCase__ : Optional[Any] = np.array(test_x)
UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase__ : Union[str, Any] = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="""mean_squared_error""", optimizer="""adam""")
UpperCamelCase__ : Tuple = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase__ : Tuple = model.predict(x_test)
| 330 | 1 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
UpperCamelCase__ : int = _symbol_database.Default()
UpperCamelCase__ : Any = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
UpperCamelCase__ : List[Any] = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
UpperCamelCase__ : Tuple = None
UpperCamelCase__ : Optional[Any] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
UpperCamelCase__ : Dict = 45
UpperCamelCase__ : Dict = 1_581
UpperCamelCase__ : Optional[Any] = 1_517
UpperCamelCase__ : Any = 1_570
UpperCamelCase__ : Any = 1_584
UpperCamelCase__ : List[Any] = 1_793
UpperCamelCase__ : Tuple = 1_795
UpperCamelCase__ : int = 1_916
UpperCamelCase__ : List[str] = 1_864
UpperCamelCase__ : Tuple = 1_905
UpperCamelCase__ : List[str] = 1_919
UpperCamelCase__ : List[str] = 2_429
UpperCamelCase__ : List[Any] = 2_208
UpperCamelCase__ : str = 2_418
UpperCamelCase__ : Union[str, Any] = 2_323
UpperCamelCase__ : Optional[int] = 2_407
# @@protoc_insertion_point(module_scope)
| 330 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = 0.01
with locka.acquire():
with pytest.raises(snake_case_ ):
a = time.time()
locka.acquire(snake_case_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = '''a''' * 1_0_0_0 + '''.lock'''
a = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(snake_case_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5
a = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(snake_case_ ):
locka.acquire(0 )
| 330 | 1 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__ : List[Any] = """RegNetConfig"""
# Base docstring
UpperCamelCase__ : Dict = """facebook/regnet-y-040"""
UpperCamelCase__ : int = [1, 1_088, 7, 7]
# Image classification docstring
UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040"""
UpperCamelCase__ : Dict = """tabby, tabby cat"""
UpperCamelCase__ : Dict = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,)
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
a = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = self.convolution(self.padding(__lowerCamelCase ) )
a = self.normalization(__lowerCamelCase )
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config.num_channels
a = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = shape_list(__lowerCamelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) )
a = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' )
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ):
'''simple docstring'''
return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase )
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
a = [
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ),
]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.pooler(__lowerCamelCase )
for layer_module in self.attention:
a = layer_module(__lowerCamelCase )
a = hidden_state * pooled
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
a = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ),
*[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ):
'''simple docstring'''
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) )
a = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ):
'''simple docstring'''
a = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
a = hidden_states + (hidden_state,)
a = stage_module(__lowerCamelCase )
if output_hidden_states:
a = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase )
@keras_serializable
class lowerCamelCase_ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config
a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' )
a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase )
a = self.encoder(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = encoder_outputs[0]
a = self.pooler(__lowerCamelCase )
# Change to NCHW output format have uniformity in the modules
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
SCREAMING_SNAKE_CASE_ = 'regnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
UpperCamelCase__ : Union[str, Any] = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
UpperCamelCase__ : List[str] = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , a_ , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , )
class lowerCamelCase_ ( a_ , a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = config.num_labels
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
# classification head
a = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = outputs.pooler_output if return_dict else outputs[1]
a = self.classifier[0](__lowerCamelCase )
a = self.classifier[1](__lowerCamelCase )
a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : Dict = {
"""facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'vit_mae'
def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = decoder_num_attention_heads
a = decoder_hidden_size
a = decoder_num_hidden_layers
a = decoder_intermediate_size
a = mask_ratio
a = norm_pix_loss
| 330 | 1 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
UpperCamelCase__ : Dict = logging.get_logger(__name__)
class lowerCamelCase_ :
def __init__( self : Optional[int] ,__lowerCamelCase : str = None ,__lowerCamelCase : uuid.UUID = None ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : List[str]=None ):
'''simple docstring'''
if not conversation_id:
a = uuid.uuida()
if past_user_inputs is None:
a = []
if generated_responses is None:
a = []
a = conversation_id
a = past_user_inputs
a = generated_responses
a = text
def __eq__( self : str ,__lowerCamelCase : Any ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
F"""with: \"{text}\".""" )
a = text
else:
logger.warning(
F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
a = text
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
a = None
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
self.generated_responses.append(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs ,self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self : Tuple ):
'''simple docstring'''
a = F"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
a = '''user''' if is_user else '''bot'''
output += F"""{name} >> {text} \n"""
return output
@add_end_docstrings(
a_ , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Any ,*__lowerCamelCase : Union[str, Any] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
if self.tokenizer.pad_token_id is None:
a = self.tokenizer.eos_token
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : str=None ,__lowerCamelCase : int=None ,**__lowerCamelCase : Dict ):
'''simple docstring'''
a = {}
a = {}
a = {}
if min_length_for_response is not None:
a = min_length_for_response
if minimum_tokens is not None:
a = minimum_tokens
if "max_length" in generate_kwargs:
a = generate_kwargs['''max_length''']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
a = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(__lowerCamelCase )
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[Any] ,__lowerCamelCase : Union[Conversation, List[Conversation]] ,__lowerCamelCase : Union[str, Any]=0 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
a = super().__call__(__lowerCamelCase ,num_workers=__lowerCamelCase ,**__lowerCamelCase )
if isinstance(__lowerCamelCase ,__lowerCamelCase ) and len(__lowerCamelCase ) == 1:
return outputs[0]
return outputs
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Conversation ,__lowerCamelCase : int=32 ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' )
if conversation.new_user_input is None:
raise ValueError(
F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
'''Add user inputs with the conversation\'s `add_user_input` method''' )
if hasattr(self.tokenizer ,'''_build_conversation_input_ids''' ):
a = self.tokenizer._build_conversation_input_ids(__lowerCamelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
a = self._legacy_parse_and_tokenize(__lowerCamelCase )
if self.framework == "pt":
a = torch.LongTensor([input_ids] )
elif self.framework == "tf":
a = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict=10 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
a = generate_kwargs.get('''max_length''' ,self.model.config.max_length )
a = model_inputs['''input_ids'''].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
a = max_length - minimum_tokens
a = model_inputs['''input_ids'''][:, -trim:]
if "attention_mask" in model_inputs:
a = model_inputs['''attention_mask'''][:, -trim:]
a = model_inputs.pop('''conversation''' )
a = max_length
a = self.model.generate(**__lowerCamelCase ,**__lowerCamelCase )
if self.model.config.is_encoder_decoder:
a = 1
else:
a = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int=True ):
'''simple docstring'''
a = model_outputs['''output_ids''']
a = self.tokenizer.decode(
output_ids[0] ,skip_special_tokens=__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ,)
a = model_outputs['''conversation''']
conversation.mark_processed()
conversation.append_response(__lowerCamelCase )
return conversation
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Conversation ):
'''simple docstring'''
a = self.tokenizer.eos_token_id
a = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) )
if len(__lowerCamelCase ) > self.tokenizer.model_max_length:
a = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
stooge(snake_case_, 0, len(snake_case_ ) - 1 )
return arr
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a , a = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
# Recursively sort last 2/3 elements
stooge(snake_case_, i + t, (snake_case_) )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")]
print(stooge_sort(unsorted))
| 330 | 1 |
import colorsys
from PIL import Image # type: ignore
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float:
"""simple docstring"""
a = x
a = y
for step in range(snake_case_ ): # noqa: B007
a = a * a - b * b + x
a = 2 * a * b + y
a = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(snake_case_, 1, 1 ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 8_0_0, snake_case_ = 6_0_0, snake_case_ = -0.6, snake_case_ = 0, snake_case_ = 3.2, snake_case_ = 5_0, snake_case_ = True, ) -> Image.Image:
"""simple docstring"""
a = Image.new('''RGB''', (image_width, image_height) )
a = img.load()
# loop through the image-coordinates
for image_x in range(snake_case_ ):
for image_y in range(snake_case_ ):
# determine the figure-coordinates based on the image-coordinates
a = figure_width / image_width * image_height
a = figure_center_x + (image_x / image_width - 0.5) * figure_width
a = figure_center_y + (image_y / image_height - 0.5) * figure_height
a = get_distance(snake_case_, snake_case_, snake_case_ )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
a = get_color_coded_rgb(snake_case_ )
else:
a = get_black_and_white_rgb(snake_case_ )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
UpperCamelCase__ : Tuple = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 330 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
UpperCamelCase__ : Union[str, Any] = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
UpperCamelCase__ : str = {
"""jukebox""": 512,
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token
super().__init__(
unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,)
a = version
a = max_n_lyric_tokens
a = n_genres
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
a = oov.replace(r'''\-\'''' ,r'''\-+\'''' )
a = regex.compile(__lowerCamelCase )
a = {v: k for k, v in self.artists_encoder.items()}
a = {v: k for k, v in self.genres_encoder.items()}
a = {v: k for k, v in self.lyrics_encoder.items()}
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists]
for genres in range(len(__lowerCamelCase ) ):
a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]]
a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return list(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = self._tokenize(__lowerCamelCase )
return artist, genre, lyrics
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ):
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
a = artists[idx].lower()
a = [genres[idx].lower()]
else:
a = self._normalize(artists[idx] ) + '''.v2'''
a = [
self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )}
a = 0
a = len(__lowerCamelCase ) + 1
a = self.vocab
a = {v: k for k, v in self.vocab.items()}
a = ''''''
else:
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
a = self._run_strip_accents(__lowerCamelCase )
a = lyrics.replace('''\\''' ,'''\n''' )
a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], []
return artists, genres, lyrics
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = unicodedata.normalize('''NFD''' ,__lowerCamelCase )
a = []
for char in text:
a = unicodedata.category(__lowerCamelCase )
if cat == "Mn":
continue
output.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = (
[chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )]
+ ['''.''']
)
a = frozenset(__lowerCamelCase )
a = re.compile(r'''_+''' )
a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' )
return text
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return " ".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = TensorType(__lowerCamelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
a = tf.constant
a = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
a = torch.tensor
a = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
a = jnp.array
a = _is_jax
else:
a = np.asarray
a = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
a = [inputs]
if not is_tensor(__lowerCamelCase ):
a = as_tensor(__lowerCamelCase )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ):
'''simple docstring'''
a = [0, 0, 0]
a = [artist] * len(self.version )
a = [genres] * len(self.version )
a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = [-INFINITY] * len(full_tokens[-1] )
a = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) )
return (artists_file, genres_file, lyrics_file)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ):
'''simple docstring'''
a = self.artists_decoder.get(__lowerCamelCase )
a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index]
a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index]
return artist, genres, lyrics
| 330 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
UpperCamelCase__ : Any = TypeVar("""T""")
class lowerCamelCase_ ( Generic[T] ):
def __init__( self : Any ,__lowerCamelCase : T ):
'''simple docstring'''
a = data
a = None
def __str__( self : Any ):
'''simple docstring'''
return F"""{self.data}"""
class lowerCamelCase_ ( Generic[T] ):
def __init__( self : Union[str, Any] ):
'''simple docstring'''
a = None
def __iter__( self : List[str] ):
'''simple docstring'''
a = self.top
while node:
yield node.data
a = node.next
def __str__( self : str ):
'''simple docstring'''
return "->".join([str(__lowerCamelCase ) for item in self] )
def __len__( self : Optional[int] ):
'''simple docstring'''
return len(tuple(iter(self ) ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return self.top is None
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : T ):
'''simple docstring'''
a = Node(__lowerCamelCase )
if not self.is_empty():
a = self.top
a = node
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
if self.is_empty():
raise IndexError('''pop from empty stack''' )
assert isinstance(self.top ,__lowerCamelCase )
a = self.top
a = self.top.next
return pop_node.data
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
if self.is_empty():
raise IndexError('''peek from empty stack''' )
assert self.top is not None
return self.top.data
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 330 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru"""
# Build
# borrowed from a test
UpperCamelCase__ : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab))))
UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase__ : Optional[Any] = Path(tmpdirname)
UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""]
UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""]
UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""]
with open(src_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, """w""") as fp:
fp.write("""\n""".join(merges))
UpperCamelCase__ : Dict = FSMTTokenizer(
langs=["""en""", """ru"""],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
UpperCamelCase__ : Union[str, Any] = FSMTConfig(
langs=["""ru""", """en"""],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
UpperCamelCase__ : Tuple = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 330 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__ : List[str] = {
"""configuration_git""": ["""GIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GitConfig""", """GitVisionConfig"""],
"""processing_git""": ["""GitProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : Dict = [
"""GIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GitForCausalLM""",
"""GitModel""",
"""GitPreTrainedModel""",
"""GitVisionModel""",
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 330 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
UpperCamelCase__ : Optional[Any] = """bert-base-cased"""
UpperCamelCase__ : int = """fp16"""
UpperCamelCase__ : str = """bf16"""
UpperCamelCase__ : List[Any] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().setUp()
a = dict(
ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = F"""{i + 1}"""
a = strategy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = prefetch_policy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = state_dict_type
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = AutoModel.from_pretrained(__lowerCamelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
a = self.dist_env.copy()
a = policy
if policy == "TRANSFORMER_BASED_WRAP":
a = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
a = '''2000'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
a = self.dist_env.copy()
a = '''TRANSFORMER_BASED_WRAP'''
a = '''T5Layer'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCamelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) )
a = self.dist_env.copy()
a = '''SIZE_BASED_WRAP'''
a = '''0'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
a = self.dist_env.copy()
a = mp_dtype
with mockenv_context(**__lowerCamelCase ):
a = Accelerator()
if mp_dtype == "fp16":
a = torch.floataa
elif mp_dtype == "bf16":
a = torch.bfloataa
a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
a = self.dist_env.copy()
a = str(__lowerCamelCase ).lower()
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
a = 0.82
a = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
a = {
'''multi_gpu_fp16''': 32_00,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
a = 1_60
a = 1_60
a = inspect.getfile(accelerate.test_utils )
a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' )
a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
a = cmd.copy()
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''' )
else:
cmd_config.append('''--mixed_precision=fp16''' )
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(__lowerCamelCase ):
a = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
a = len(__lowerCamelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
a = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
a = cmd_config[:-1]
a = os.path.join(self.tmpdir ,'''epoch_0''' )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
a = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''] )
else:
cmd_config.extend(['''--mixed_precision=no'''] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''] )
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
| 330 | 1 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = IFImgaImgSuperResolutionPipeline
SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'}
SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} )
SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'}
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return self._get_superresolution_dummy_components()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[Any]=0 ):
'''simple docstring'''
if str(__lowerCamelCase ).startswith('''mps''' ):
a = torch.manual_seed(__lowerCamelCase )
else:
a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
a = floats_tensor((1, 3, 32, 32) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
a = floats_tensor((1, 3, 16, 16) ,rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' ,reason='''float16 requires CUDA''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1e-1 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
self._test_save_load_local()
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 ,)
| 330 |
from __future__ import annotations
import os
from collections.abc import Mapping
UpperCamelCase__ : Any = tuple[int, int]
class lowerCamelCase_ :
def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ):
'''simple docstring'''
a = vertices
a = {
(min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items()
}
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ):
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
a = weight
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = Graph({min(self.vertices )} ,{} )
a = 42
a = 42
a = 42
a = 42
while len(subgraph.vertices ) < len(self.vertices ):
a = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
a = edge
a = weight
subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase )
return subgraph
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int:
"""simple docstring"""
a = os.path.abspath(os.path.dirname(snake_case_ ) )
a = os.path.join(snake_case_, snake_case_ )
a = {}
a = 42
a = 42
a = 42
with open(snake_case_ ) as f:
a = f.read().strip().split('''\n''' )
a = [line.split(''',''' ) for line in data]
for edgea in range(1, len(snake_case_ ) ):
for edgea in range(snake_case_ ):
if adjaceny_matrix[edgea][edgea] != "-":
a = int(adjaceny_matrix[edgea][edgea] )
a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ )
a = graph.prims_algorithm()
a = sum(graph.edges.values() )
a = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 330 | 1 |
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
UpperCamelCase__ : Any = logging.get_logger(__name__)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = ['input_features', 'attention_mask']
def __init__( self : int ,__lowerCamelCase : Union[str, Any]=80 ,__lowerCamelCase : Union[str, Any]=1_60_00 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : List[str]=10 ,__lowerCamelCase : Tuple=25 ,__lowerCamelCase : Tuple="hamming_window" ,__lowerCamelCase : int=32_768.0 ,__lowerCamelCase : Optional[int]=0.97 ,__lowerCamelCase : Union[str, Any]=1.0 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Dict=True ,__lowerCamelCase : int=False ,**__lowerCamelCase : Dict ,):
'''simple docstring'''
super().__init__(feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase )
a = feature_size
a = sampling_rate
a = padding_value
a = hop_length
a = win_length
a = frame_signal_scale
a = preemphasis_coeff
a = mel_floor
a = normalize_means
a = normalize_vars
a = win_function
a = return_attention_mask
a = win_length * sampling_rate // 10_00
a = hop_length * sampling_rate // 10_00
a = optimal_fft_length(self.sample_size )
a = (self.n_fft // 2) + 1
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : np.array ):
'''simple docstring'''
if self.win_function == "hamming_window":
a = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=__lowerCamelCase )
else:
a = window_function(window_length=self.sample_size ,name=self.win_function )
a = mel_filter_bank(
num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,)
a = spectrogram(
one_waveform * self.frame_signal_scale ,window=__lowerCamelCase ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=__lowerCamelCase ,preemphasis=self.preemphasis_coeff ,mel_filters=__lowerCamelCase ,mel_floor=self.mel_floor ,log_mel='''log''' ,)
return msfc_features.T
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Any ):
'''simple docstring'''
if self.normalize_means:
a = x[:input_length].mean(axis=0 )
a = np.subtract(__lowerCamelCase ,__lowerCamelCase )
if self.normalize_vars:
a = x[:input_length].std(axis=0 )
a = np.divide(__lowerCamelCase ,__lowerCamelCase )
if input_length < x.shape[0]:
a = padding_value
# make sure array is in float32
a = x.astype(np.floataa )
return x
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[np.ndarray] ,__lowerCamelCase : Optional[np.ndarray] = None ):
'''simple docstring'''
a = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(__lowerCamelCase ,__lowerCamelCase ,self.padding_value ) for x, n in zip(__lowerCamelCase ,__lowerCamelCase )]
def __call__( self : Any ,__lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : bool = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : Optional[int] = None ,**__lowerCamelCase : Any ,):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the ``sampling_rate`` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
a = isinstance(__lowerCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
a = is_batched_numpy or (
isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ):
a = np.asarray(__lowerCamelCase ,dtype=np.floataa )
elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
a = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
a = [raw_speech]
# extract fbank features
a = [self._extract_mfsc_features(__lowerCamelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
a = BatchFeature({'''input_features''': features} )
a = self.pad(
__lowerCamelCase ,padding=__lowerCamelCase ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,**__lowerCamelCase ,)
# make sure list is in array format
a = padded_inputs.get('''input_features''' )
if isinstance(input_features[0] ,__lowerCamelCase ):
a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for feature in input_features]
a = padded_inputs.get('''attention_mask''' )
if attention_mask is not None:
a = [np.asarray(__lowerCamelCase ,dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
a = (
np.array(__lowerCamelCase ,dtype=np.intaa )
if self._get_padding_strategies(__lowerCamelCase ,max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
a = self.normalize(
padded_inputs['''input_features'''] ,attention_mask=__lowerCamelCase )
if return_tensors is not None:
a = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
| 330 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__ : List[Any] = """RegNetConfig"""
# Base docstring
UpperCamelCase__ : Dict = """facebook/regnet-y-040"""
UpperCamelCase__ : int = [1, 1_088, 7, 7]
# Image classification docstring
UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040"""
UpperCamelCase__ : Dict = """tabby, tabby cat"""
UpperCamelCase__ : Dict = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,)
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
a = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = self.convolution(self.padding(__lowerCamelCase ) )
a = self.normalization(__lowerCamelCase )
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config.num_channels
a = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = shape_list(__lowerCamelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) )
a = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' )
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ):
'''simple docstring'''
return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase )
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
a = [
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ),
]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.pooler(__lowerCamelCase )
for layer_module in self.attention:
a = layer_module(__lowerCamelCase )
a = hidden_state * pooled
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
a = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ),
*[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ):
'''simple docstring'''
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) )
a = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ):
'''simple docstring'''
a = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
a = hidden_states + (hidden_state,)
a = stage_module(__lowerCamelCase )
if output_hidden_states:
a = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase )
@keras_serializable
class lowerCamelCase_ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config
a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' )
a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase )
a = self.encoder(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = encoder_outputs[0]
a = self.pooler(__lowerCamelCase )
# Change to NCHW output format have uniformity in the modules
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
SCREAMING_SNAKE_CASE_ = 'regnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
UpperCamelCase__ : Union[str, Any] = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
UpperCamelCase__ : List[str] = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , a_ , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , )
class lowerCamelCase_ ( a_ , a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = config.num_labels
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
# classification head
a = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = outputs.pooler_output if return_dict else outputs[1]
a = self.classifier[0](__lowerCamelCase )
a = self.classifier[1](__lowerCamelCase )
a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
| 330 | 1 |
import argparse
import dataclasses
import json
import logging
import os
import shutil
from typing import List, Optional
import datasets
from accelerate import Accelerator
from datasets import load_dataset
from finetuning import finetune
from tqdm.auto import tqdm
import transformers
from transformers import AutoConfig, set_seed
from transformers.trainer_utils import IntervalStrategy
UpperCamelCase__ : Optional[int] = logging.getLogger(__name__)
UpperCamelCase__ : List[Any] = """pytorch_model.bin"""
@dataclasses.dataclass
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = dataclasses.field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , )
@dataclasses.dataclass
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} )
SCREAMING_SNAKE_CASE_ = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'A csv or a json file containing the validation data.'} )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'The name of the task to train on.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'The list of labels for the task.'} )
@dataclasses.dataclass
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = dataclasses.field(
metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default='no' , metadata={
'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]'
} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=0.0 , metadata={
'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.'
} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=1_00 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , )
SCREAMING_SNAKE_CASE_ = dataclasses.field(
default=a_ , metadata={'help': 'Random seed for initialization.'} , )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = datasets.concatenate_datasets([infer_input, infer_output], axis=1 )
if args.do_filter_by_confidence:
a = dataset.filter(lambda snake_case_ : example["probability"] > args.confidence_threshold )
if args.do_filter_by_val_performance:
assert eval_result >= 0.0 and eval_result <= 1.0
a = int(eval_result * len(snake_case_ ) )
print(snake_case_ )
a = dataset.sort('''probability''', reverse=snake_case_ )
a = dataset.select(range(snake_case_ ) )
a = dataset.remove_columns(['''label''', '''probability'''] )
a = dataset.rename_column('''prediction''', '''label''' )
a = dataset.map(lambda snake_case_ : {"label": idalabel[example["label"]]} )
a = dataset.shuffle(seed=args.seed )
a = os.path.join(snake_case_, f"""train_pseudo.{args.data_file_extension}""" )
if args.data_file_extension == "csv":
dataset.to_csv(snake_case_, index=snake_case_ )
else:
dataset.to_json(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, **snake_case_ ) -> Optional[Any]:
"""simple docstring"""
a = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, )
logger.info(accelerator.state )
# Setup logging, we only want one process per machine to log things on the
# screen. accelerator.is_local_main_process is only True for one process per
# machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
a = STModelArguments(model_name_or_path=snake_case_ )
a = STDataArguments(train_file=snake_case_, infer_file=snake_case_ )
a = STTrainingArguments(output_dir=snake_case_ )
a = argparse.Namespace()
for arg_class in (model_args, data_args, training_args):
for key, value in vars(snake_case_ ).items():
setattr(snake_case_, snake_case_, snake_case_ )
for key, value in kwargs.items():
if hasattr(snake_case_, snake_case_ ):
setattr(snake_case_, snake_case_, snake_case_ )
# Sanity checks
a = {}
a = None
# You need to provide the training data and the data to predict on
assert args.train_file is not None
assert args.infer_file is not None
a = args.train_file
a = args.infer_file
if args.evaluation_strategy != IntervalStrategy.NO.value:
assert args.eval_file is not None
a = args.eval_file
for key in data_files:
a = data_files[key].split('''.''' )[-1]
assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file."""
if args.data_file_extension is None:
a = extension
else:
assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`."""
assert (
args.eval_metric in datasets.list_metrics()
), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}."""
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed )
logger.info('''Creating the initial data directory for self-training...''' )
a = f"""{args.output_dir}/self-train_iter-{{}}""".format
a = data_dir_format(0 )
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=snake_case_ )
os.makedirs(snake_case_, exist_ok=snake_case_ )
accelerator.wait_for_everyone()
a = None
a = None
a = 0
a = False
# Show the progress bar
a = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process )
# Self-train
for iteration in range(0, int(args.max_selftrain_iterations ) ):
a = data_dir_format(snake_case_ )
assert os.path.exists(snake_case_ )
# Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for
# iteration > 0
a = os.path.join(snake_case_, '''stage-1''' )
a = {
'''accelerator''': accelerator,
'''model_name_or_path''': args.model_name_or_path,
'''cache_dir''': args.cache_dir,
'''do_train''': True,
'''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''],
'''do_eval''': True if args.eval_file is not None else False,
'''eval_file''': data_files['''eval'''],
'''do_predict''': True,
'''infer_file''': data_files['''infer'''],
'''task_name''': args.task_name,
'''label_list''': args.label_list,
'''output_dir''': current_output_dir,
'''eval_metric''': args.eval_metric,
'''evaluation_strategy''': args.evaluation_strategy,
'''early_stopping_patience''': args.early_stopping_patience,
'''early_stopping_threshold''': args.early_stopping_threshold,
'''seed''': args.seed,
}
# Add additional training arguments
for key, value in kwargs.items():
if key not in arguments_dict and not hasattr(snake_case_, snake_case_ ):
arguments_dict.update({key: value} )
a = os.path.join(snake_case_, '''best-checkpoint''', snake_case_ )
if os.path.exists(snake_case_ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''', snake_case_, snake_case_, )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''', snake_case_ )
finetune(**snake_case_ )
accelerator.wait_for_everyone()
assert os.path.exists(snake_case_ )
logger.info('''Self-training job completed: iteration: %d, stage: 1.''', snake_case_ )
if iteration > 0 and args.finetune_on_labeled_data:
# Stage 2 (optional): fine-tuning on the original labeled data
a = os.path.join(snake_case_, '''best-checkpoint''' )
a = os.path.join(snake_case_, '''stage-2''' )
# Update arguments_dict
a = model_path
a = data_files['''train''']
a = current_output_dir
a = os.path.join(snake_case_, '''best-checkpoint''', snake_case_ )
if os.path.exists(snake_case_ ):
logger.info(
'''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''', snake_case_, snake_case_, )
else:
logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''', snake_case_ )
finetune(**snake_case_ )
accelerator.wait_for_everyone()
assert os.path.exists(snake_case_ )
logger.info('''Self-training job completed: iteration: %d, stage: 2.''', snake_case_ )
a = iteration
a = data_dir_format(iteration + 1 )
a = AutoConfig.from_pretrained(os.path.join(snake_case_, '''best-checkpoint''' ) )
a = config.idalabel
a = os.path.join(snake_case_, '''eval_results_best-checkpoint.json''' )
a = os.path.join(snake_case_, '''test_results_best-checkpoint.json''' )
assert os.path.exists(snake_case_ )
with open(snake_case_, '''r''' ) as f:
a = float(json.load(snake_case_ )[args.eval_metric] )
a = os.path.join(snake_case_, '''infer_output_best-checkpoint.csv''' )
assert os.path.exists(snake_case_ )
# Loading the dataset from local csv or json files.
a = load_dataset(args.data_file_extension, data_files={'''data''': data_files['''infer''']} )['''data''']
a = load_dataset('''csv''', data_files={'''data''': infer_output_file} )['''data''']
if accelerator.is_main_process:
os.makedirs(snake_case_, exist_ok=snake_case_ )
shutil.copy(snake_case_, os.path.join(snake_case_, f"""eval_results_iter-{iteration}.json""" ) )
if os.path.exists(snake_case_ ):
shutil.copy(snake_case_, os.path.join(snake_case_, f"""test_results_iter-{iteration}.json""" ) )
create_pseudo_labeled_data(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
accelerator.wait_for_everyone()
a = os.path.join(snake_case_, f"""train_pseudo.{args.data_file_extension}""" )
if args.evaluation_strategy != IntervalStrategy.NO.value:
a = eval_result
if best_iteration is None:
a = new_iteration
a = new_eval_result
else:
if new_eval_result - best_eval_result > args.early_stopping_threshold:
a = new_iteration
a = new_eval_result
a = 0
else:
if new_eval_result == best_eval_result:
a = new_iteration
a = new_eval_result
early_stopping_patience_counter += 1
if early_stopping_patience_counter >= args.early_stopping_patience:
a = True
progress_bar.update(1 )
if should_training_stop:
break
if best_iteration is not None:
# Save the best iteration
logger.info('''Best iteration: %d''', snake_case_ )
logger.info('''Best evaluation result: %s = %f''', args.eval_metric, snake_case_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(snake_case_, f"""eval_results_iter-{iteration}.json""" ), os.path.join(snake_case_, '''eval_results_best-iteration.json''' ), )
else:
# Assume that the last iteration is the best
logger.info('''Best iteration: %d''', args.max_selftrain_iterations - 1 )
logger.info('''Best evaluation result: %s = %f''', args.eval_metric, snake_case_ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
shutil.copy(
os.path.join(snake_case_, f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ), os.path.join(snake_case_, '''eval_results_best-iteration.json''' ), )
| 330 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'efficientformer'
def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_act
a = hidden_dropout_prob
a = hidden_sizes
a = num_hidden_layers
a = num_attention_heads
a = initializer_range
a = layer_norm_eps
a = patch_size
a = num_channels
a = depths
a = mlp_expansion_ratio
a = downsamples
a = dim
a = key_dim
a = attention_ratio
a = resolution
a = pool_size
a = downsample_patch_size
a = downsample_stride
a = downsample_pad
a = drop_path_rate
a = num_metaad_blocks
a = distillation
a = use_layer_scale
a = layer_scale_init_value
a = image_size
a = batch_norm_eps
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = ''''''
for i in table:
res += inp[i - 1]
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
return data[1:] + data[0]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = ''''''
for i in range(len(snake_case_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = int('''0b''' + data[0] + data[-1], 2 )
a = int('''0b''' + data[1:3], 2 )
return bin(s[row][col] )[2:]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = message[:4]
a = message[4:]
a = apply_table(snake_case_, snake_case_ )
a = xor(snake_case_, snake_case_ )
a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741
a = apply_sbox(snake_case_, temp[4:] )
a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741
a = '''0''' * (2 - len(snake_case_ )) + r
a = apply_table(l + r, snake_case_ )
a = xor(snake_case_, snake_case_ )
return temp + right
if __name__ == "__main__":
UpperCamelCase__ : int = input("""Enter 10 bit key: """)
UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """)
UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9]
UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
UpperCamelCase__ : Optional[int] = [2, 4, 3, 1]
UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table)
UpperCamelCase__ : str = temp[:5]
UpperCamelCase__ : List[Any] = temp[5:]
UpperCamelCase__ : Dict = left_shift(left)
UpperCamelCase__ : Any = left_shift(right)
UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : int = left_shift(right)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : Dict = left_shift(right)
UpperCamelCase__ : List[str] = apply_table(left + right, pa_table)
# encryption
UpperCamelCase__ : Tuple = apply_table(message, IP)
UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4]
UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Tuple = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP)
UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4]
UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Any = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 330 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
UpperCamelCase__ : Any = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
UpperCamelCase__ : Optional[Any] = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
UpperCamelCase__ : Optional[Any] = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : List[str] = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : Optional[int] = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
a = k.replace(snake_case_, snake_case_ )
return k
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
a = BigBirdPegasusConfig(**snake_case_ )
a = BigBirdPegasusForConditionalGeneration(snake_case_ )
a = torch_model.state_dict()
a = {}
# separating decoder weights
a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = DECODER_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = REMAINING_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
a = mapping['''model.embed_positions.weight''']
a = mapping.pop('''model.embed_positions.weight''' )
a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ )
a = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = tf.train.list_variables(snake_case_ )
a = {}
a = ['''global_step''']
for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ):
a = any(pat in name for pat in ignore_name )
if skip_key:
continue
a = tf.train.load_variable(snake_case_, snake_case_ )
a = array
return tf_weights
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = get_tf_weights_as_numpy(snake_case_ )
a = convert_bigbird_pegasus(snake_case_, snake_case_ )
torch_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : str = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
UpperCamelCase__ : int = parser.parse_args()
UpperCamelCase__ : Tuple = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
stooge(snake_case_, 0, len(snake_case_ ) - 1 )
return arr
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a , a = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
# Recursively sort last 2/3 elements
stooge(snake_case_, i + t, (snake_case_) )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")]
print(stooge_sort(unsorted))
| 330 |
import re
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 | 1 |
from ...processing_utils import ProcessorMixin
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = ['image_processor', 'feature_extractor']
SCREAMING_SNAKE_CASE_ = 'TvltImageProcessor'
SCREAMING_SNAKE_CASE_ = 'TvltFeatureExtractor'
def __init__( self : List[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(image_processor=__lowerCamelCase ,feature_extractor=__lowerCamelCase )
a = image_processor
a = feature_extractor
def __call__( self : Dict ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : List[str]=None ,__lowerCamelCase : Dict=False ,__lowerCamelCase : Union[str, Any]=False ,*__lowerCamelCase : Tuple ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
if images is None and audio is None:
raise ValueError('''You need to specify either an `images` or `audio` input to process.''' )
a = None
if images is not None:
a = self.image_processor(__lowerCamelCase ,mask_pixel=__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
if images_mixed is not None:
a = self.image_processor(__lowerCamelCase ,is_mixed=__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
if audio is not None:
a = self.feature_extractor(
__lowerCamelCase ,*__lowerCamelCase ,sampling_rate=__lowerCamelCase ,mask_audio=__lowerCamelCase ,**__lowerCamelCase )
a = {}
if audio is not None:
output_dict.update(__lowerCamelCase )
if images is not None:
output_dict.update(__lowerCamelCase )
if images_mixed_dict is not None:
output_dict.update(__lowerCamelCase )
return output_dict
@property
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = self.image_processor.model_input_names
a = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
| 330 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count += 1
a = '''_'''
if count > 1:
return False
else:
return "".join(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
while True:
a = ['''$'''] * len(snake_case_ )
a = []
for i in range(len(snake_case_ ) ):
for j in range(i + 1, len(snake_case_ ) ):
a = compare_string(binary[i], binary[j] )
if k is False:
a = '''*'''
a = '''*'''
temp.append('''X''' )
for i in range(len(snake_case_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(snake_case_ ) == 0:
return pi
a = list(set(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
for minterm in minterms:
a = ''''''
for _ in range(snake_case_ ):
a = str(minterm % 2 ) + string
minterm //= 2
temp.append(snake_case_ )
return temp
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
a = [0] * len(snake_case_ )
for i in range(len(chart[0] ) ):
a = 0
a = -1
for j in range(len(snake_case_ ) ):
if chart[j][i] == 1:
count += 1
a = j
if count == 1:
a = 1
for i in range(len(snake_case_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(snake_case_ ) ):
a = 0
temp.append(prime_implicants[i] )
while True:
a = 0
a = -1
a = 0
for i in range(len(snake_case_ ) ):
a = chart[i].count(1 )
if count_n > max_n:
a = count_n
a = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(snake_case_ ) ):
a = 0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]:
"""simple docstring"""
a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )]
for i in range(len(snake_case_ ) ):
a = prime_implicants[i].count('''_''' )
for j in range(len(snake_case_ ) ):
if is_for_table(prime_implicants[i], binary[j], snake_case_ ):
a = 1
return chart
def SCREAMING_SNAKE_CASE__ ( ) -> None:
"""simple docstring"""
a = int(input('''Enter the no. of variables\n''' ) )
a = [
float(snake_case_ )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
a = decimal_to_binary(snake_case_, snake_case_ )
a = check(snake_case_ )
print('''Prime Implicants are:''' )
print(snake_case_ )
a = prime_implicant_chart(snake_case_, snake_case_ )
a = selection(snake_case_, snake_case_ )
print('''Essential Prime Implicants are:''' )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 330 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = RobertaTokenizer
SCREAMING_SNAKE_CASE_ = RobertaTokenizerFast
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = {'cls_token': '<s>'}
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
a = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) )
a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
a = {'''unk_token''': '''<unk>'''}
a = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] )
a = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + '''\n''' )
with open(self.merges_file ,'''w''' ,encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__lowerCamelCase ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Any ):
'''simple docstring'''
a = '''lower newer'''
a = '''lower newer'''
return input_text, output_text
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map )
a = '''lower newer'''
a = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
a = tokenizer.tokenize(__lowerCamelCase ) # , add_prefix_space=True)
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
a = tokens + [tokenizer.unk_token]
a = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' ,add_special_tokens=__lowerCamelCase ) ,[0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' ,add_special_tokens=__lowerCamelCase ) ,[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] ,)
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self.tokenizer_class.from_pretrained('''roberta-base''' )
a = tokenizer.encode('''sequence builders''' ,add_special_tokens=__lowerCamelCase )
a = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=__lowerCamelCase )
a = tokenizer.encode(
'''sequence builders''' ,add_special_tokens=__lowerCamelCase ,add_prefix_space=__lowerCamelCase )
a = tokenizer.encode(
'''sequence builders''' ,'''multi-sequence build''' ,add_special_tokens=__lowerCamelCase ,add_prefix_space=__lowerCamelCase )
a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase )
a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ,__lowerCamelCase )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self.get_tokenizer()
a = '''Encode this sequence.'''
a = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
a = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,add_prefix_space=__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__lowerCamelCase ,__lowerCamelCase )
a = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,add_prefix_space=__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__lowerCamelCase ,__lowerCamelCase )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
a = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__lowerCamelCase ,__lowerCamelCase )
# Testing spaces after special tokens
a = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase )} ) # mask token has a left space
a = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
a = '''Encode <mask> sequence'''
a = '''Encode <mask>sequence'''
a = tokenizer.encode(__lowerCamelCase )
a = encoded.index(__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__lowerCamelCase ,__lowerCamelCase )
a = tokenizer.encode(__lowerCamelCase )
a = encoded.index(__lowerCamelCase )
a = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase ,**__lowerCamelCase )
a = self.tokenizer_class.from_pretrained(__lowerCamelCase ,**__lowerCamelCase )
a = '''A, <mask> AllenNLP sentence.'''
a = tokenizer_r.encode_plus(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase )
a = tokenizer_p.encode_plus(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) ,sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) ,sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) ,)
a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
__lowerCamelCase ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__lowerCamelCase ,['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ):
a = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
a = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] ,__lowerCamelCase )
self.assertEqual(post_processor_state['''add_prefix_space'''] ,__lowerCamelCase )
self.assertEqual(post_processor_state['''trim_offsets'''] ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
a = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
a = F"""{text_of_1_token} {text_of_1_token}"""
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__lowerCamelCase ) + 1, len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(len(__lowerCamelCase ), len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
a = F""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(__lowerCamelCase ) + 1, 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
a = self.rust_tokenizer_class.from_pretrained(
__lowerCamelCase ,use_fast=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,trim_offsets=__lowerCamelCase )
a = tokenizer_r(__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(__lowerCamelCase )) )
self.assertEqual(
encoding.offset_mapping[1] ,(1 + len(__lowerCamelCase ), 1 + len(__lowerCamelCase ) + 1 + len(__lowerCamelCase )) ,)
| 330 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 | 1 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class lowerCamelCase_ :
def __init__( self : str ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : List[str]=32 ,__lowerCamelCase : Tuple=3 ,__lowerCamelCase : List[Any]=10 ,__lowerCamelCase : Optional[int]=[8, 16, 32, 64] ,__lowerCamelCase : List[Any]=[1, 1, 2, 1] ,__lowerCamelCase : Any=True ,__lowerCamelCase : int=True ,__lowerCamelCase : int="relu" ,__lowerCamelCase : Tuple=3 ,__lowerCamelCase : Union[str, Any]=None ,__lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"] ,__lowerCamelCase : Any=[2, 3, 4] ,__lowerCamelCase : List[Any]=1 ,):
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__lowerCamelCase )
a = out_features
a = out_indices
a = num_groups
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] ,self.num_labels )
a = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return BitConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,out_features=self.out_features ,out_indices=self.out_indices ,num_groups=self.num_groups ,)
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = BitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.num_labels
a = BitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase ,labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ):
'''simple docstring'''
a = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,len(config.out_features ) )
self.parent.assertListEqual(model.channels ,config.hidden_sizes[1:] )
# verify backbone works with out_features=None
a = None
a = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) ,1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) ,[self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) ,1 )
self.parent.assertListEqual(model.channels ,[config.hidden_sizes[-1]] )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ = (
{'feature-extraction': BitModel, 'image-classification': BitForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = BitModelTester(self )
a = ConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
return
@unittest.skip(reason='''Bit does not output attentions''' )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__lowerCamelCase )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(config=__lowerCamelCase )
for name, module in model.named_modules():
if isinstance(__lowerCamelCase ,(nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,)
self.assertTrue(
torch.all(module.bias == 0 ) ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
def check_hidden_states_output(__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : Any ):
a = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) ,expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,)
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
a = layer_type
a = True
check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = BitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( ) -> int:
"""simple docstring"""
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
a = model(**__lowerCamelCase )
# verify the logits
a = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape ,__lowerCamelCase )
a = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
@require_torch
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = (BitBackbone,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ = BitConfig
SCREAMING_SNAKE_CASE_ = False
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = BitModelTester(self )
| 330 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=a_ )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} )
SCREAMING_SNAKE_CASE_ = Features({} )
SCREAMING_SNAKE_CASE_ = "text"
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return {self.text_column: "text"}
| 330 | 1 |
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = ['audio_values', 'audio_mask']
def __init__( self : Union[str, Any] ,__lowerCamelCase : str=20_48 ,__lowerCamelCase : List[str]=1 ,__lowerCamelCase : Dict=[16, 16] ,__lowerCamelCase : List[Any]=1_28 ,__lowerCamelCase : Optional[int]=4_41_00 ,__lowerCamelCase : Optional[Any]=86 ,__lowerCamelCase : Optional[Any]=20_48 ,__lowerCamelCase : Optional[int]=0.0 ,**__lowerCamelCase : Optional[int] ,):
'''simple docstring'''
super().__init__(
feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase ,)
a = spectrogram_length
a = num_channels
a = patch_size
a = feature_size // self.patch_size[1]
a = n_fft
a = sampling_rate // hop_length_to_sampling_rate
a = sampling_rate
a = padding_value
a = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=__lowerCamelCase ,min_frequency=0.0 ,max_frequency=22_050.0 ,sampling_rate=__lowerCamelCase ,norm='''slaney''' ,mel_scale='''slaney''' ,).T
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : np.array ):
'''simple docstring'''
a = spectrogram(
__lowerCamelCase ,window_function(self.n_fft ,'''hann''' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='''dB''' ,db_range=80.0 ,)
a = log_spec[:, :-1]
a = log_spec - 20.0
a = np.clip(log_spec / 40.0 ,-2.0 ,0.0 ) + 1.0
return log_spec
def __call__( self : List[str] ,__lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : Optional[bool] = True ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,**__lowerCamelCase : Tuple ,):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
'''This feature extractor is set to support sampling rate'''
F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
F""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
a = isinstance(__lowerCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" )
a = is_batched_numpy or (
isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
a = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ):
a = np.asarray(__lowerCamelCase ,dtype=np.floataa )
elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
a = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
a = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
a = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] ,__lowerCamelCase ):
a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
a = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
a = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
a = np.array(__lowerCamelCase ).astype(np.floataa )
# convert into correct format for padding
a = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
a = np.ones([len(__lowerCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
a = padded_audio_features * self.padding_value
for i in range(len(__lowerCamelCase ) ):
a = audio_features[i]
a = feature
# return as BatchFeature
if return_attention_mask:
a = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask}
else:
a = {'''audio_values''': padded_audio_features}
a = BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
return encoded_inputs
| 330 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : Union[str, Any] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'yolos'
def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = num_detection_tokens
a = use_mid_position_embeddings
a = auxiliary_loss
# Hungarian matcher
a = class_cost
a = bbox_cost
a = giou_cost
# Loss coefficients
a = bbox_loss_coefficient
a = giou_loss_coefficient
a = eos_coefficient
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return 12
| 330 | 1 |
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def SCREAMING_SNAKE_CASE__ ( snake_case_=3_2, snake_case_=1_0, snake_case_=1_0_0, snake_case_=1_0_2_6, snake_case_=True, snake_case_="data/tokenized_stories_train_wikitext103.jbl", snake_case_="igf_context_pairs.jbl", ) -> Dict:
"""simple docstring"""
set_seed(3 )
# generate train_data and objective_set
a , a = generate_datasets(
snake_case_, snake_case_, number=snake_case_, min_len=1_0_2_6, trim=snake_case_ )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
a = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# load pretrained model
a = load_gpta('''gpt2''' ).to(snake_case_ )
print('''computing perplexity on objective set''' )
a = compute_perplexity(snake_case_, snake_case_, snake_case_ ).item()
print('''perplexity on objective set:''', snake_case_ )
# collect igf pairs and save to file demo.jbl
collect_objective_set(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=1_5, snake_case_=1_2_8, snake_case_=1_0_0, snake_case_="igf_model.pt", ) -> List[Any]:
"""simple docstring"""
set_seed(4_2 )
# Load pre-trained model
a = GPTaLMHeadModel.from_pretrained('''gpt2''' )
# Initialize secondary learner to use embedding weights of model
a = SecondaryLearner(snake_case_ )
# Train secondary learner
a = train_secondary_learner(
snake_case_, snake_case_, max_epochs=snake_case_, batch_size=snake_case_, eval_freq=1_0_0, igf_model_path=snake_case_, )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_=3_2, snake_case_=1_0_0_0, snake_case_=1_6, snake_case_=1.0, snake_case_=recopy_gpta, snake_case_=None, snake_case_=1_0, snake_case_="gpt2_finetuned.pt", ) -> Any:
"""simple docstring"""
a = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
a = RandomSampler(snake_case_ )
a = DataLoader(snake_case_, sampler=snake_case_ )
a = max_steps // (len(snake_case_ )) + 1
a = 0
a = torch.zeros((1, context_len), dtype=torch.long, device=snake_case_ )
a , a , a = recopy_model(snake_case_, snake_case_, snake_case_ )
model.train()
if secondary_learner is not None:
secondary_learner.to(snake_case_ )
secondary_learner.eval()
a = []
a = 0
a = []
a = []
# Compute the performance of the transformer model at the beginning
a = compute_perplexity(snake_case_, snake_case_, snake_case_ )
test_perps.append(snake_case_ )
print('''Test perplexity, step''', snake_case_, ''':''', snake_case_ )
for epoch in range(int(snake_case_ ) ):
for step, example in enumerate(snake_case_ ):
torch.cuda.empty_cache()
a = random.randint(0, example.size(2 ) - context_len - 1 )
a = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
a = model(snake_case_, labels=snake_case_ )
a = True
if secondary_learner is not None:
a = secondary_learner.forward(
torch.tensor(snake_case_, dtype=torch.long, device=snake_case_ ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(snake_case_ ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 1_0:
a = -1
if predicted_q < threshold:
a = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
a = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
a = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
a = compute_perplexity(snake_case_, snake_case_, snake_case_ )
test_perps.append(snake_case_ )
print('''Test perplexity, step''', snake_case_, ''':''', snake_case_ )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 6_0:
break
if max_steps > 0 and global_step > 6_0:
break
# save finetuned transformer model
torch.save(model.state_dict(), snake_case_ )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' )
# Required parameters
parser.add_argument(
'''--data_dir''', default=snake_case_, type=snake_case_, required=snake_case_, help='''The input data dir. Should contain data files for WikiText.''', )
parser.add_argument(
'''--model_name_or_path''', default=snake_case_, type=snake_case_, required=snake_case_, help='''Path to pretrained model or model identifier from huggingface.co/models''', )
parser.add_argument(
'''--data_file''', type=snake_case_, default=snake_case_, help=(
'''A jbl file containing tokenized data which can be split as objective dataset, '''
'''train_dataset and test_dataset.'''
), )
parser.add_argument(
'''--igf_data_file''', type=snake_case_, default=snake_case_, help='''A jbl file containing the context and information gain pairs to train secondary learner.''', )
parser.add_argument(
'''--output_dir''', default=snake_case_, type=snake_case_, required=snake_case_, help='''The output directory where the final fine-tuned model is stored.''', )
parser.add_argument(
'''--tokenizer_name''', default=snake_case_, type=snake_case_, help='''Pretrained tokenizer name or path if not the same as model_name''', )
parser.add_argument('''--seed''', type=snake_case_, default=snake_case_, help='''A seed for reproducible training.''' )
parser.add_argument(
'''--context_len''', default=3_2, type=snake_case_, help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
), )
parser.add_argument(
'''--size_objective_set''', default=1_0_0, type=snake_case_, help='''number of articles that are long enough to be used as our objective set''', )
parser.add_argument(
'''--eval_freq''', default=1_0_0, type=snake_case_, help='''secondary model evaluation is triggered at eval_freq''' )
parser.add_argument('''--max_steps''', default=1_0_0_0, type=snake_case_, help='''To calculate training epochs''' )
parser.add_argument(
'''--secondary_learner_batch_size''', default=1_2_8, type=snake_case_, help='''batch size of training data for secondary learner''', )
parser.add_argument(
'''--batch_size''', default=1_6, type=snake_case_, help='''batch size of training data of language model(gpt2) ''' )
parser.add_argument(
'''--eval_interval''', default=1_0, type=snake_case_, help=(
'''decay the selectivity of our secondary learner filter from'''
'''1 standard deviation above average to 1 below average after 10 batches'''
), )
parser.add_argument(
'''--number''', default=1_0_0, type=snake_case_, help='''The number of examples split to be used as objective_set/test_data''' )
parser.add_argument(
'''--min_len''', default=1_0_2_6, type=snake_case_, help='''The minimum length of the article to be used as objective set''' )
parser.add_argument(
'''--secondary_learner_max_epochs''', default=1_5, type=snake_case_, help='''number of epochs to train secondary learner''' )
parser.add_argument('''--trim''', default=snake_case_, type=snake_case_, help='''truncate the example if it exceeds context length''' )
parser.add_argument(
'''--threshold''', default=1.0, type=snake_case_, help=(
'''The threshold value used by secondary learner to filter the train_data and allow only'''
''' informative data as input to the model'''
), )
parser.add_argument('''--finetuned_model_name''', default='''gpt2_finetuned.pt''', type=snake_case_, help='''finetuned_model_name''' )
parser.add_argument(
'''--recopy_model''', default=snake_case_, type=snake_case_, help='''Reset the model to the original pretrained GPT-2 weights after each iteration''', )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=3_2, max_steps=1_0, size_objective_set=1_0_0, min_len=1_0_2_6, trim=snake_case_, data_file='''data/tokenized_stories_train_wikitext103.jbl''', igf_data_file='''igf_context_pairs.jbl''', )
# Load train data for secondary learner
a = joblib.load('''data/IGF_values.jbl''' )
# Train secondary learner
a = training_secondary_learner(
snake_case_, secondary_learner_max_epochs=1_5, secondary_learner_batch_size=1_2_8, eval_freq=1_0_0, igf_model_path='''igf_model.pt''', )
# load pretrained gpt2 model
a = GPTaLMHeadModel.from_pretrained('''gpt2''' )
set_seed(4_2 )
# Generate train and test data to train and evaluate gpt2 model
a , a = generate_datasets(
context_len=3_2, file='''data/tokenized_stories_train_wikitext103.jbl''', number=1_0_0, min_len=1_0_2_6, trim=snake_case_ )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
snake_case_, snake_case_, snake_case_, context_len=3_2, max_steps=1_0_0_0, batch_size=1_6, threshold=1.0, recopy_model=snake_case_, secondary_learner=snake_case_, eval_interval=1_0, finetuned_model_name='''gpt2_finetuned.pt''', )
if __name__ == "__main__":
main()
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = ''''''
for i in table:
res += inp[i - 1]
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
return data[1:] + data[0]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = ''''''
for i in range(len(snake_case_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = int('''0b''' + data[0] + data[-1], 2 )
a = int('''0b''' + data[1:3], 2 )
return bin(s[row][col] )[2:]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = message[:4]
a = message[4:]
a = apply_table(snake_case_, snake_case_ )
a = xor(snake_case_, snake_case_ )
a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741
a = apply_sbox(snake_case_, temp[4:] )
a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741
a = '''0''' * (2 - len(snake_case_ )) + r
a = apply_table(l + r, snake_case_ )
a = xor(snake_case_, snake_case_ )
return temp + right
if __name__ == "__main__":
UpperCamelCase__ : int = input("""Enter 10 bit key: """)
UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """)
UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9]
UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
UpperCamelCase__ : Optional[int] = [2, 4, 3, 1]
UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table)
UpperCamelCase__ : str = temp[:5]
UpperCamelCase__ : List[Any] = temp[5:]
UpperCamelCase__ : Dict = left_shift(left)
UpperCamelCase__ : Any = left_shift(right)
UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : int = left_shift(right)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : Dict = left_shift(right)
UpperCamelCase__ : List[str] = apply_table(left + right, pa_table)
# encryption
UpperCamelCase__ : Tuple = apply_table(message, IP)
UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4]
UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Tuple = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP)
UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4]
UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Any = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
a = int(snake_case_ )
if decimal in (0, 1): # Exit cases for the recursion
return str(snake_case_ )
a , a = divmod(snake_case_, 2 )
return binary_recursive(snake_case_ ) + str(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
a = str(snake_case_ ).strip()
if not number:
raise ValueError('''No input value was provided''' )
a = '''-''' if number.startswith('''-''' ) else ''''''
a = number.lstrip('''-''' )
if not number.isnumeric():
raise ValueError('''Input value is not an integer''' )
return f"""{negative}0b{binary_recursive(int(snake_case_ ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 330 |
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
a = '''The dog is cute and lives in the garden house'''
a = jnp.array([tokenizer.encode(__lowerCamelCase )] )
a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim
a = jnp.array(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
a = model(__lowerCamelCase )['''last_hidden_state''']
self.assertEqual(output.shape ,__lowerCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> bool:
"""simple docstring"""
if not isinstance(snake_case_, snake_case_ ):
a = f"""Input value of [number={number}] must be an integer"""
raise TypeError(snake_case_ )
if number < 0:
return False
a = number * number
while number > 0:
if number % 1_0 != number_square % 1_0:
return False
number //= 1_0
number_square //= 1_0
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ : Union[str, Any] = 16
UpperCamelCase__ : Dict = 32
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(snake_case_ ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a = datasets.map(
snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(snake_case_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a = 1_6
elif accelerator.mixed_precision != "no":
a = 8
else:
a = None
return tokenizer.pad(
snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
a = DataLoader(
tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase__ : int = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1":
a = 2
# Initialize accelerator
a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = evaluate.load('''glue''', '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case_ )
def inner_training_loop(snake_case_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a = model.to(accelerator.device )
# Instantiate optimizer
a = AdamW(params=model.parameters(), lr=snake_case_ )
a , a = get_dataloaders(snake_case_, snake_case_ )
# Instantiate scheduler
a = get_linear_schedule_with_warmup(
optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a = model(**snake_case_ )
a = outputs.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a = model(**snake_case_ )
a = outputs.logits.argmax(dim=-1 )
a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case_, references=snake_case_, )
a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", snake_case_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(snake_case_, snake_case_ )
if __name__ == "__main__":
main()
| 330 | 1 |
import numpy as np
UpperCamelCase__ : int = [
["""a""", """b""", """c""", """d""", """e"""],
["""f""", """g""", """h""", """i""", """k"""],
["""l""", """m""", """n""", """o""", """p"""],
["""q""", """r""", """s""", """t""", """u"""],
["""v""", """w""", """x""", """y""", """z"""],
]
class lowerCamelCase_ :
def __init__( self : int ):
'''simple docstring'''
a = np.array(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : str ):
'''simple docstring'''
a , a = np.where(letter == self.SQUARE )
a = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int ):
'''simple docstring'''
a = self.SQUARE[indexa - 1, indexa - 1]
return letter
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = message.lower()
a = message.replace(''' ''' ,'''''' )
a = message.replace('''j''' ,'''i''' )
a = np.empty((2, len(__lowerCamelCase )) )
for letter_index in range(len(__lowerCamelCase ) ):
a = self.letter_to_numbers(message[letter_index] )
a = numbers[0]
a = numbers[1]
a = first_step.reshape(2 * len(__lowerCamelCase ) )
a = ''''''
for numbers_index in range(len(__lowerCamelCase ) ):
a = int(second_step[numbers_index * 2] )
a = int(second_step[(numbers_index * 2) + 1] )
a = self.numbers_to_letter(__lowerCamelCase ,__lowerCamelCase )
a = encoded_message + letter
return encoded_message
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = message.lower()
message.replace(''' ''' ,'''''' )
a = np.empty(2 * len(__lowerCamelCase ) )
for letter_index in range(len(__lowerCamelCase ) ):
a = self.letter_to_numbers(message[letter_index] )
a = numbers[0]
a = numbers[1]
a = first_step.reshape((2, len(__lowerCamelCase )) )
a = ''''''
for numbers_index in range(len(__lowerCamelCase ) ):
a = int(second_step[0, numbers_index] )
a = int(second_step[1, numbers_index] )
a = self.numbers_to_letter(__lowerCamelCase ,__lowerCamelCase )
a = decoded_message + letter
return decoded_message
| 330 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCamelCase__ : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
a = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
a = UniSpeechSatConfig()
a = ''''''
if is_finetuned:
a = UniSpeechSatForCTC(snake_case_ )
else:
a = UniSpeechSatForPreTraining(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : int = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 330 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() )
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = metric_id
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() )
@pytest.mark.parametrize(
'''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
if "tmp_path" in args:
a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ):
func(*snake_case_ )
| 330 | 1 |
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = ['input_values', 'padding_mask']
def __init__( self : List[Any] ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 2_40_00 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : float = None ,__lowerCamelCase : float = None ,**__lowerCamelCase : Tuple ,):
'''simple docstring'''
super().__init__(feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase )
a = chunk_length_s
a = overlap
@property
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 ,int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self : Optional[int] ,__lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None ,__lowerCamelCase : Optional[bool] = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : Optional[int] = None ,):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
F""" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"""
F""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
if padding and truncation:
raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' )
elif padding is None:
# by default let's pad the inputs
a = True
a = bool(
isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_audio[0] ,(np.ndarray, tuple, list) )) )
if is_batched:
a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ):
a = np.asarray(__lowerCamelCase ,dtype=np.floataa )
elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
a = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
a = [np.asarray(__lowerCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__lowerCamelCase ):
if example.ndim > 2:
raise ValueError(F"""Expected input shape (channels, length) but got shape {example.shape}""" )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F"""Expected mono audio but example has {example.shape[-1]} channels""" )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F"""Expected stereo audio but example has {example.shape[-1]} channels""" )
a = None
a = BatchFeature({'''input_values''': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
a = min(array.shape[0] for array in raw_audio )
a = int(np.floor(max_length / self.chunk_stride ) )
a = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
a = max(array.shape[0] for array in raw_audio )
a = int(np.ceil(max_length / self.chunk_stride ) )
a = (nb_step - 1) * self.chunk_stride + self.chunk_length
a = '''max_length'''
else:
a = input_values
# normal padding on batch
if padded_inputs is None:
a = self.pad(
__lowerCamelCase ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,padding=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,)
if padding:
a = padded_inputs.pop('''attention_mask''' )
a = []
for example in padded_inputs.pop('''input_values''' ):
if self.feature_size == 1:
a = example[..., None]
input_values.append(example.T )
a = input_values
if return_tensors is not None:
a = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : str = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'luke'
def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
a = vocab_size
a = entity_vocab_size
a = hidden_size
a = entity_emb_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = use_entity_aware_attention
a = classifier_dropout
| 330 | 1 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
UpperCamelCase__ : Any = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
UpperCamelCase__ : Optional[Any] = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
UpperCamelCase__ : Optional[Any] = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : List[str] = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : Optional[int] = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
a = k.replace(snake_case_, snake_case_ )
return k
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
a = BigBirdPegasusConfig(**snake_case_ )
a = BigBirdPegasusForConditionalGeneration(snake_case_ )
a = torch_model.state_dict()
a = {}
# separating decoder weights
a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = DECODER_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = REMAINING_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
a = mapping['''model.embed_positions.weight''']
a = mapping.pop('''model.embed_positions.weight''' )
a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ )
a = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = tf.train.list_variables(snake_case_ )
a = {}
a = ['''global_step''']
for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ):
a = any(pat in name for pat in ignore_name )
if skip_key:
continue
a = tf.train.load_variable(snake_case_, snake_case_ )
a = array
return tf_weights
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = get_tf_weights_as_numpy(snake_case_ )
a = convert_bigbird_pegasus(snake_case_, snake_case_ )
torch_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : str = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
UpperCamelCase__ : int = parser.parse_args()
UpperCamelCase__ : Tuple = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 330 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None)
UpperCamelCase__ : Tuple = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase__ : List[Any] = df.iloc[:, 1:2]
UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1)
UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase__ : Optional[Any] = 10
UpperCamelCase__ : int = 5
UpperCamelCase__ : List[str] = 20
UpperCamelCase__ : Optional[int] = len_data - periods * look_back
UpperCamelCase__ : Union[str, Any] = actual_data[:division]
UpperCamelCase__ : str = actual_data[division - look_back :]
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], []
UpperCamelCase__ , UpperCamelCase__ : str = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase__ : List[str] = np.array(train_x)
UpperCamelCase__ : Optional[Any] = np.array(test_x)
UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase__ : Union[str, Any] = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="""mean_squared_error""", optimizer="""adam""")
UpperCamelCase__ : Tuple = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase__ : Tuple = model.predict(x_test)
| 330 | 1 |
from PIL import Image
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Image:
"""simple docstring"""
a = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level))
def contrast(snake_case_ ) -> int:
return int(1_2_8 + factor * (c - 1_2_8) )
return img.point(snake_case_ )
if __name__ == "__main__":
# Load image
with Image.open("""image_data/lena.jpg""") as img:
# Change contrast to 170
UpperCamelCase__ : Union[str, Any] = change_contrast(img, 170)
cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
| 330 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = 0.01
with locka.acquire():
with pytest.raises(snake_case_ ):
a = time.time()
locka.acquire(snake_case_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = '''a''' * 1_0_0_0 + '''.lock'''
a = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(snake_case_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5
a = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(snake_case_ ):
locka.acquire(0 )
| 330 | 1 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
a = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''')
a = (
('''layer.''', '''layer_'''),
('''word_embeddings.weight''', '''word_embeddings'''),
('''position_embeddings.weight''', '''position_embeddings'''),
('''token_type_embeddings.weight''', '''token_type_embeddings'''),
('''.''', '''/'''),
('''LayerNorm/weight''', '''LayerNorm/gamma'''),
('''LayerNorm/bias''', '''LayerNorm/beta'''),
('''weight''', '''kernel'''),
)
if not os.path.isdir(snake_case_ ):
os.makedirs(snake_case_ )
a = model.state_dict()
def to_tf_var_name(snake_case_ ):
for patt, repl in iter(snake_case_ ):
a = name.replace(snake_case_, snake_case_ )
return f"""bert/{name}"""
def create_tf_var(snake_case_, snake_case_, snake_case_ ):
a = tf.dtypes.as_dtype(tensor.dtype )
a = tf.get_variable(dtype=snake_case_, shape=tensor.shape, name=snake_case_, initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(snake_case_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
a = to_tf_var_name(snake_case_ )
a = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
a = torch_tensor.T
a = create_tf_var(tensor=snake_case_, name=snake_case_, session=snake_case_ )
tf.keras.backend.set_value(snake_case_, snake_case_ )
a = session.run(snake_case_ )
print(f"""Successfully created {tf_name}: {np.allclose(snake_case_, snake_case_ )}""" )
a = tf.train.Saver(tf.trainable_variables() )
saver.save(snake_case_, os.path.join(snake_case_, model_name.replace('''-''', '''_''' ) + '''.ckpt''' ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_=None ) -> Optional[int]:
"""simple docstring"""
a = argparse.ArgumentParser()
parser.add_argument('''--model_name''', type=snake_case_, required=snake_case_, help='''model name e.g. bert-base-uncased''' )
parser.add_argument(
'''--cache_dir''', type=snake_case_, default=snake_case_, required=snake_case_, help='''Directory containing pytorch model''' )
parser.add_argument('''--pytorch_model_path''', type=snake_case_, required=snake_case_, help='''/path/to/<pytorch-model-name>.bin''' )
parser.add_argument('''--tf_cache_dir''', type=snake_case_, required=snake_case_, help='''Directory in which to save tensorflow model''' )
a = parser.parse_args(snake_case_ )
a = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, )
convert_pytorch_checkpoint_to_tf(model=snake_case_, ckpt_dir=args.tf_cache_dir, model_name=args.model_name )
if __name__ == "__main__":
main()
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : Dict = {
"""facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'vit_mae'
def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = decoder_num_attention_heads
a = decoder_hidden_size
a = decoder_num_hidden_layers
a = decoder_intermediate_size
a = mask_ratio
a = norm_pix_loss
| 330 | 1 |
import importlib
import math
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Tuple, Union
import flax
import jax.numpy as jnp
from ..utils import BaseOutput
UpperCamelCase__ : int = """scheduler_config.json"""
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = 2
SCREAMING_SNAKE_CASE_ = 3
SCREAMING_SNAKE_CASE_ = 4
SCREAMING_SNAKE_CASE_ = 5
@dataclass
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 42
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = SCHEDULER_CONFIG_NAME
SCREAMING_SNAKE_CASE_ = ['dtype']
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = True
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] ,__lowerCamelCase : Dict[str, Any] = None ,__lowerCamelCase : Optional[str] = None ,__lowerCamelCase : str=False ,**__lowerCamelCase : Union[str, Any] ,):
'''simple docstring'''
a , a = cls.load_config(
pretrained_model_name_or_path=__lowerCamelCase ,subfolder=__lowerCamelCase ,return_unused_kwargs=__lowerCamelCase ,**__lowerCamelCase ,)
a , a = cls.from_config(__lowerCamelCase ,return_unused_kwargs=__lowerCamelCase ,**__lowerCamelCase )
if hasattr(__lowerCamelCase ,'''create_state''' ) and getattr(__lowerCamelCase ,'''has_state''' ,__lowerCamelCase ):
a = scheduler.create_state()
if return_unused_kwargs:
return scheduler, state, unused_kwargs
return scheduler, state
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Union[str, os.PathLike] ,__lowerCamelCase : bool = False ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
self.save_config(save_directory=__lowerCamelCase ,push_to_hub=__lowerCamelCase ,**__lowerCamelCase )
@property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
return self._get_compatibles()
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] ):
'''simple docstring'''
a = list(set([cls.__name__] + cls._compatibles ) )
a = importlib.import_module(__name__.split('''.''' )[0] )
a = [
getattr(__lowerCamelCase ,__lowerCamelCase ) for c in compatible_classes_str if hasattr(__lowerCamelCase ,__lowerCamelCase )
]
return compatible_classes
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> jnp.ndarray:
"""simple docstring"""
assert len(snake_case_ ) >= x.ndim
return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(snake_case_ ) - x.ndim) ), snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=0.999, snake_case_=jnp.floataa ) -> jnp.ndarray:
"""simple docstring"""
def alpha_bar(snake_case_ ):
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2
a = []
for i in range(snake_case_ ):
a = i / num_diffusion_timesteps
a = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(snake_case_ ) / alpha_bar(snake_case_ ), snake_case_ ) )
return jnp.array(snake_case_, dtype=snake_case_ )
@flax.struct.dataclass
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls : Optional[Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = scheduler.config
if config.trained_betas is not None:
a = jnp.asarray(config.trained_betas ,dtype=scheduler.dtype )
elif config.beta_schedule == "linear":
a = jnp.linspace(config.beta_start ,config.beta_end ,config.num_train_timesteps ,dtype=scheduler.dtype )
elif config.beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
a = (
jnp.linspace(
config.beta_start**0.5 ,config.beta_end**0.5 ,config.num_train_timesteps ,dtype=scheduler.dtype )
** 2
)
elif config.beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
a = betas_for_alpha_bar(config.num_train_timesteps ,dtype=scheduler.dtype )
else:
raise NotImplementedError(
F"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" )
a = 1.0 - betas
a = jnp.cumprod(__lowerCamelCase ,axis=0 )
return cls(
alphas=__lowerCamelCase ,betas=__lowerCamelCase ,alphas_cumprod=__lowerCamelCase ,)
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
a = state.alphas_cumprod
a = alphas_cumprod[timesteps] ** 0.5
a = sqrt_alpha_prod.flatten()
a = broadcast_to_shape_from_left(snake_case_, original_samples.shape )
a = (1 - alphas_cumprod[timesteps]) ** 0.5
a = sqrt_one_minus_alpha_prod.flatten()
a = broadcast_to_shape_from_left(snake_case_, original_samples.shape )
return sqrt_alpha_prod, sqrt_one_minus_alpha_prod
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
a , a = get_sqrt_alpha_prod(snake_case_, snake_case_, snake_case_, snake_case_ )
a = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a , a = get_sqrt_alpha_prod(snake_case_, snake_case_, snake_case_, snake_case_ )
a = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
stooge(snake_case_, 0, len(snake_case_ ) - 1 )
return arr
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a , a = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
# Recursively sort last 2/3 elements
stooge(snake_case_, i + t, (snake_case_) )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")]
print(stooge_sort(unsorted))
| 330 | 1 |
from __future__ import annotations
from functools import lru_cache
from math import ceil
UpperCamelCase__ : Tuple = 100
UpperCamelCase__ : str = set(range(3, NUM_PRIMES, 2))
primes.add(2)
UpperCamelCase__ : int
for prime in range(3, ceil(NUM_PRIMES**0.5), 2):
if prime not in primes:
continue
primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime)))
@lru_cache(maxsize=1_0_0 )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> set[int]:
"""simple docstring"""
if number_to_partition < 0:
return set()
elif number_to_partition == 0:
return {1}
a = set()
a = 42
a = 42
for prime in primes:
if prime > number_to_partition:
continue
for sub in partition(number_to_partition - prime ):
ret.add(sub * prime )
return ret
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 5_0_0_0 ) -> int | None:
"""simple docstring"""
for number_to_partition in range(1, snake_case_ ):
if len(partition(snake_case_ ) ) > number_unique_partitions:
return number_to_partition
return None
if __name__ == "__main__":
print(F"{solution() = }")
| 330 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
UpperCamelCase__ : Union[str, Any] = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
UpperCamelCase__ : str = {
"""jukebox""": 512,
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token
super().__init__(
unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,)
a = version
a = max_n_lyric_tokens
a = n_genres
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
a = oov.replace(r'''\-\'''' ,r'''\-+\'''' )
a = regex.compile(__lowerCamelCase )
a = {v: k for k, v in self.artists_encoder.items()}
a = {v: k for k, v in self.genres_encoder.items()}
a = {v: k for k, v in self.lyrics_encoder.items()}
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists]
for genres in range(len(__lowerCamelCase ) ):
a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]]
a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return list(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = self._tokenize(__lowerCamelCase )
return artist, genre, lyrics
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ):
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
a = artists[idx].lower()
a = [genres[idx].lower()]
else:
a = self._normalize(artists[idx] ) + '''.v2'''
a = [
self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )}
a = 0
a = len(__lowerCamelCase ) + 1
a = self.vocab
a = {v: k for k, v in self.vocab.items()}
a = ''''''
else:
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
a = self._run_strip_accents(__lowerCamelCase )
a = lyrics.replace('''\\''' ,'''\n''' )
a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], []
return artists, genres, lyrics
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = unicodedata.normalize('''NFD''' ,__lowerCamelCase )
a = []
for char in text:
a = unicodedata.category(__lowerCamelCase )
if cat == "Mn":
continue
output.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = (
[chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )]
+ ['''.''']
)
a = frozenset(__lowerCamelCase )
a = re.compile(r'''_+''' )
a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' )
return text
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return " ".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = TensorType(__lowerCamelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
a = tf.constant
a = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
a = torch.tensor
a = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
a = jnp.array
a = _is_jax
else:
a = np.asarray
a = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
a = [inputs]
if not is_tensor(__lowerCamelCase ):
a = as_tensor(__lowerCamelCase )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ):
'''simple docstring'''
a = [0, 0, 0]
a = [artist] * len(self.version )
a = [genres] * len(self.version )
a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = [-INFINITY] * len(full_tokens[-1] )
a = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) )
return (artists_file, genres_file, lyrics_file)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ):
'''simple docstring'''
a = self.artists_decoder.get(__lowerCamelCase )
a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index]
a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index]
return artist, genres, lyrics
| 330 | 1 |
from __future__ import annotations
UpperCamelCase__ : List[Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0]
UpperCamelCase__ : str = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1]
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[float]:
"""simple docstring"""
a = []
a = len(snake_case_ )
for i in range(snake_case_ ):
a = -1
for j in range(i + 1, snake_case_ ):
if arr[i] < arr[j]:
a = arr[j]
break
result.append(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[float]:
"""simple docstring"""
a = []
for i, outer in enumerate(snake_case_ ):
a = -1
for inner in arr[i + 1 :]:
if outer < inner:
a = inner
break
result.append(snake_case_ )
return result
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[float]:
"""simple docstring"""
a = len(snake_case_ )
a = []
a = [-1] * arr_size
for index in reversed(range(snake_case_ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
a = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
UpperCamelCase__ : List[str] = (
"""from __main__ import arr, next_greatest_element_slow, """
"""next_greatest_element_fast, next_greatest_element"""
)
print(
"""next_greatest_element_slow():""",
timeit("""next_greatest_element_slow(arr)""", setup=setup),
)
print(
"""next_greatest_element_fast():""",
timeit("""next_greatest_element_fast(arr)""", setup=setup),
)
print(
""" next_greatest_element():""",
timeit("""next_greatest_element(arr)""", setup=setup),
)
| 330 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru"""
# Build
# borrowed from a test
UpperCamelCase__ : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab))))
UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase__ : Optional[Any] = Path(tmpdirname)
UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""]
UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""]
UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""]
with open(src_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, """w""") as fp:
fp.write("""\n""".join(merges))
UpperCamelCase__ : Dict = FSMTTokenizer(
langs=["""en""", """ru"""],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
UpperCamelCase__ : Union[str, Any] = FSMTConfig(
langs=["""ru""", """en"""],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
UpperCamelCase__ : Tuple = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 330 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=a_ )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} )
SCREAMING_SNAKE_CASE_ = Features({} )
SCREAMING_SNAKE_CASE_ = "text"
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return {self.text_column: "text"}
| 330 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
UpperCamelCase__ : Optional[Any] = """bert-base-cased"""
UpperCamelCase__ : int = """fp16"""
UpperCamelCase__ : str = """bf16"""
UpperCamelCase__ : List[Any] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().setUp()
a = dict(
ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = F"""{i + 1}"""
a = strategy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = prefetch_policy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = state_dict_type
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = AutoModel.from_pretrained(__lowerCamelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
a = self.dist_env.copy()
a = policy
if policy == "TRANSFORMER_BASED_WRAP":
a = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
a = '''2000'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
a = self.dist_env.copy()
a = '''TRANSFORMER_BASED_WRAP'''
a = '''T5Layer'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCamelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) )
a = self.dist_env.copy()
a = '''SIZE_BASED_WRAP'''
a = '''0'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
a = self.dist_env.copy()
a = mp_dtype
with mockenv_context(**__lowerCamelCase ):
a = Accelerator()
if mp_dtype == "fp16":
a = torch.floataa
elif mp_dtype == "bf16":
a = torch.bfloataa
a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
a = self.dist_env.copy()
a = str(__lowerCamelCase ).lower()
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
a = 0.82
a = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
a = {
'''multi_gpu_fp16''': 32_00,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
a = 1_60
a = 1_60
a = inspect.getfile(accelerate.test_utils )
a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' )
a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
a = cmd.copy()
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''' )
else:
cmd_config.append('''--mixed_precision=fp16''' )
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(__lowerCamelCase ):
a = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
a = len(__lowerCamelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
a = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
a = cmd_config[:-1]
a = os.path.join(self.tmpdir ,'''epoch_0''' )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
a = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''] )
else:
cmd_config.extend(['''--mixed_precision=no'''] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''] )
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
| 330 | 1 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
UpperCamelCase__ : List[Any] = get_logger(__name__)
UpperCamelCase__ : Union[str, Any] = R"""
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
"""
class lowerCamelCase_ :
@add_start_docstrings(__lowerCamelCase )
def __call__( self : Optional[Any] ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowerCamelCase_ :
@add_start_docstrings(__lowerCamelCase )
def __call__( self : str ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowerCamelCase_ ( a_ ):
@add_start_docstrings(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
for processor in self:
a = inspect.signature(processor.__call__ ).parameters
if len(__lowerCamelCase ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F"""Make sure that all the required parameters: {list(function_args.keys() )} for """
F"""{processor.__class__} are passed to the logits processor.""" )
a = processor(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,**__lowerCamelCase )
else:
a = processor(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : float ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or not (temperature > 0):
raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" )
a = temperature
def __call__( self : List[Any] ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a = scores / self.temperature
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : float ,__lowerCamelCase : float = -float('''Inf''' ) ,__lowerCamelCase : int = 1 ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" )
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or (min_tokens_to_keep < 1):
raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" )
a = top_p
a = filter_value
a = min_tokens_to_keep
def __call__( self : Dict ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a , a = lax.top_k(__lowerCamelCase ,scores.shape[-1] )
a = jnp.full_like(__lowerCamelCase ,self.filter_value )
a = jax.nn.softmax(__lowerCamelCase ,axis=-1 ).cumsum(axis=-1 )
a = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
a = jnp.roll(__lowerCamelCase ,1 )
score_mask |= score_mask.at[:, 0].set(__lowerCamelCase )
# min tokens to keep
a = score_mask.at[:, : self.min_tokens_to_keep].set(__lowerCamelCase )
a = jnp.where(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = jax.lax.sort_key_val(__lowerCamelCase ,__lowerCamelCase )[-1]
return next_scores
class lowerCamelCase_ ( a_ ):
def __init__( self : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : float = -float('''Inf''' ) ,__lowerCamelCase : int = 1 ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or top_k <= 0:
raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" )
a = max(__lowerCamelCase ,__lowerCamelCase )
a = filter_value
def __call__( self : Dict ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a , a = scores.shape
a = jnp.full(batch_size * vocab_size ,self.filter_value )
a = min(self.top_k ,scores.shape[-1] ) # Safety check
a , a = lax.top_k(__lowerCamelCase ,__lowerCamelCase )
a = jnp.broadcast_to((jnp.arange(__lowerCamelCase ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten()
a = topk_scores.flatten()
a = topk_indices.flatten() + shift
a = next_scores_flat.at[topk_indices_flat].set(__lowerCamelCase )
a = next_scores_flat.reshape(__lowerCamelCase ,__lowerCamelCase )
return next_scores
class lowerCamelCase_ ( a_ ):
def __init__( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = bos_token_id
def __call__( self : Dict ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a = jnp.full(scores.shape ,-float('''inf''' ) )
a = 1 - jnp.bool_(cur_len - 1 )
a = jnp.where(__lowerCamelCase ,new_scores.at[:, self.bos_token_id].set(0 ) ,__lowerCamelCase )
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : int ):
'''simple docstring'''
a = max_length
a = eos_token_id
def __call__( self : Tuple ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a = jnp.full(scores.shape ,-float('''inf''' ) )
a = 1 - jnp.bool_(cur_len - self.max_length + 1 )
a = jnp.where(__lowerCamelCase ,new_scores.at[:, self.eos_token_id].set(0 ) ,__lowerCamelCase )
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or min_length < 0:
raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" )
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or eos_token_id < 0:
raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" )
a = min_length
a = eos_token_id
def __call__( self : List[str] ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 )
a = jnp.where(__lowerCamelCase ,scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) ,__lowerCamelCase )
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : Dict ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ):
'''simple docstring'''
a = list(__lowerCamelCase )
a = begin_index
def __call__( self : List[str] ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = 1 - jnp.bool_(cur_len - self.begin_index )
a = jnp.where(__lowerCamelCase ,scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) ,__lowerCamelCase )
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : str ,__lowerCamelCase : list ):
'''simple docstring'''
a = list(__lowerCamelCase )
def __call__( self : str ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
a = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) )
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,__lowerCamelCase : Optional[int] ):
'''simple docstring'''
a = dict(__lowerCamelCase )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
a = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
a = force_token_array.at[index].set(__lowerCamelCase )
a = jnp.intaa(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : jnp.ndarray ,__lowerCamelCase : int ):
'''simple docstring'''
def _force_token(__lowerCamelCase : List[str] ):
a = scores.shape[0]
a = self.force_token_array[generation_idx]
a = jnp.ones_like(__lowerCamelCase ,dtype=scores.dtype ) * -float('''inf''' )
a = jnp.zeros((batch_size, 1) ,dtype=scores.dtype )
a = lax.dynamic_update_slice(__lowerCamelCase ,__lowerCamelCase ,(0, current_token) )
return new_scores
a = lax.cond(
cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond(
self.force_token_array[cur_len] >= 0 ,lambda: _force_token(__lowerCamelCase ) ,lambda: scores ,) ,)
return scores
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Optional[int] ):
'''simple docstring'''
a = generate_config.eos_token_id
a = generate_config.no_timestamps_token_id
a = generate_config.no_timestamps_token_id + 1
a = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(__lowerCamelCase ,'''max_initial_timestamp_index''' ):
a = generate_config.max_initial_timestamp_index
else:
a = model_config.vocab_size
if self.max_initial_timestamp_index is None:
a = model_config.vocab_size
def __call__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) )
def handle_pairs(__lowerCamelCase : int ,__lowerCamelCase : Union[str, Any] ):
a = jnp.where((cur_len - self.begin_index) >= 1 ,__lowerCamelCase ,__lowerCamelCase )
a = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,__lowerCamelCase ,)
a = jnp.where((cur_len - self.begin_index) < 2 ,__lowerCamelCase ,__lowerCamelCase )
a = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin ,__lowerCamelCase ,__lowerCamelCase ,)
return jnp.where(
__lowerCamelCase ,jnp.where(
penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) ,scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) ,) ,__lowerCamelCase ,)
a = jax.vmap(__lowerCamelCase )(__lowerCamelCase ,__lowerCamelCase )
a = jnp.where(cur_len == self.begin_index ,__lowerCamelCase ,__lowerCamelCase )
a = jnp.where(
self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,__lowerCamelCase ,)
a = self.timestamp_begin + self.max_initial_timestamp_index
a = jnp.where(
__lowerCamelCase ,scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) ,__lowerCamelCase ,)
# if sum of probability over timestamps is above any other token, sample timestamp
a = jax.nn.log_softmax(__lowerCamelCase ,axis=-1 )
def handle_cumulative_probs(__lowerCamelCase : Any ,__lowerCamelCase : int ):
a = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 )
a = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) ,__lowerCamelCase ,)
a = jax.vmap(__lowerCamelCase )(__lowerCamelCase ,__lowerCamelCase )
return scores
| 330 |
from __future__ import annotations
import os
from collections.abc import Mapping
UpperCamelCase__ : Any = tuple[int, int]
class lowerCamelCase_ :
def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ):
'''simple docstring'''
a = vertices
a = {
(min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items()
}
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ):
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
a = weight
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = Graph({min(self.vertices )} ,{} )
a = 42
a = 42
a = 42
a = 42
while len(subgraph.vertices ) < len(self.vertices ):
a = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
a = edge
a = weight
subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase )
return subgraph
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int:
"""simple docstring"""
a = os.path.abspath(os.path.dirname(snake_case_ ) )
a = os.path.join(snake_case_, snake_case_ )
a = {}
a = 42
a = 42
a = 42
with open(snake_case_ ) as f:
a = f.read().strip().split('''\n''' )
a = [line.split(''',''' ) for line in data]
for edgea in range(1, len(snake_case_ ) ):
for edgea in range(snake_case_ ):
if adjaceny_matrix[edgea][edgea] != "-":
a = int(adjaceny_matrix[edgea][edgea] )
a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ )
a = graph.prims_algorithm()
a = sum(graph.edges.values() )
a = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 330 | 1 |
import qiskit
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 2 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
a = qubits
# Using Aer's simulator
a = qiskit.Aer.get_backend('''aer_simulator''' )
# Creating a Quantum Circuit acting on the q register
a = qiskit.QuantumCircuit(snake_case_, snake_case_ )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1, snake_case_ ):
# Adding CX (CNOT) gate
circuit.cx(i - 1, snake_case_ )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(snake_case_ ) ), list(range(snake_case_ ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
a = qiskit.execute(snake_case_, snake_case_, shots=1_0_0_0 )
return job.result().get_counts(snake_case_ )
if __name__ == "__main__":
print(F"Total count for various states are: {quantum_entanglement(3)}")
| 330 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__ : List[Any] = """RegNetConfig"""
# Base docstring
UpperCamelCase__ : Dict = """facebook/regnet-y-040"""
UpperCamelCase__ : int = [1, 1_088, 7, 7]
# Image classification docstring
UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040"""
UpperCamelCase__ : Dict = """tabby, tabby cat"""
UpperCamelCase__ : Dict = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,)
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
a = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = self.convolution(self.padding(__lowerCamelCase ) )
a = self.normalization(__lowerCamelCase )
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config.num_channels
a = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = shape_list(__lowerCamelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) )
a = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' )
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ):
'''simple docstring'''
return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase )
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
a = [
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ),
]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.pooler(__lowerCamelCase )
for layer_module in self.attention:
a = layer_module(__lowerCamelCase )
a = hidden_state * pooled
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
a = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ),
*[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ):
'''simple docstring'''
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) )
a = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ):
'''simple docstring'''
a = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
a = hidden_states + (hidden_state,)
a = stage_module(__lowerCamelCase )
if output_hidden_states:
a = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase )
@keras_serializable
class lowerCamelCase_ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config
a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' )
a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase )
a = self.encoder(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = encoder_outputs[0]
a = self.pooler(__lowerCamelCase )
# Change to NCHW output format have uniformity in the modules
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
SCREAMING_SNAKE_CASE_ = 'regnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
UpperCamelCase__ : Union[str, Any] = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
UpperCamelCase__ : List[str] = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , a_ , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , )
class lowerCamelCase_ ( a_ , a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = config.num_labels
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
# classification head
a = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = outputs.pooler_output if return_dict else outputs[1]
a = self.classifier[0](__lowerCamelCase )
a = self.classifier[1](__lowerCamelCase )
a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
| 330 | 1 |
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
a = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
a = Image.open(requests.get(snake_case_, stream=snake_case_ ).raw ).convert('''RGB''' )
a = transforms.Compose(
[
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.4814_5466, 0.457_8275, 0.4082_1073), (0.2686_2954, 0.2613_0258, 0.2757_7711) ),
] )
a = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ )
return image
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if "visual_encoder" in key:
a = re.sub('''visual_encoder*''', '''vision_model.encoder''', snake_case_ )
if "blocks" in key:
a = re.sub(r'''blocks''', '''layers''', snake_case_ )
if "attn" in key:
a = re.sub(r'''attn''', '''self_attn''', snake_case_ )
if "norm1" in key:
a = re.sub(r'''norm1''', '''layer_norm1''', snake_case_ )
if "norm2" in key:
a = re.sub(r'''norm2''', '''layer_norm2''', snake_case_ )
if "encoder.norm" in key:
a = re.sub(r'''encoder.norm''', '''post_layernorm''', snake_case_ )
if "encoder.patch_embed.proj" in key:
a = re.sub(r'''encoder.patch_embed.proj''', '''embeddings.patch_embedding''', snake_case_ )
if "encoder.pos_embed" in key:
a = re.sub(r'''encoder.pos_embed''', '''embeddings.position_embedding''', snake_case_ )
if "encoder.cls_token" in key:
a = re.sub(r'''encoder.cls_token''', '''embeddings.class_embedding''', snake_case_ )
if "self_attn" in key:
a = re.sub(r'''self_attn.proj''', '''self_attn.projection''', snake_case_ )
return key
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> int:
"""simple docstring"""
if config_path is not None:
a = BlipConfig.from_pretrained(snake_case_ )
else:
a = BlipConfig(projection_dim=5_1_2, text_config={}, vision_config={} )
a = BlipForConditionalGeneration(snake_case_ ).eval()
a = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
a = blip_decoder(pretrained=snake_case_, image_size=3_8_4, vit='''base''' )
a = pt_model.eval()
a = pt_model.state_dict()
for key in modified_state_dict.copy():
a = modified_state_dict.pop(snake_case_ )
a = rename_key(snake_case_ )
a = value
hf_model.load_state_dict(snake_case_ )
a = 3_8_4
a = load_demo_image(image_size=snake_case_, device='''cpu''' )
a = BertTokenizer.from_pretrained('''bert-base-uncased''' )
a = tokenizer(['''a picture of'''] ).input_ids
a = hf_model.generate(snake_case_, snake_case_ )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
a = hf_model.generate(snake_case_ )
assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(snake_case_ )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
a = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
a = blip_vqa(pretrained=snake_case_, image_size=snake_case_, vit='''base''' )
vqa_model.eval()
a = vqa_model.state_dict()
for key in modified_state_dict.copy():
a = modified_state_dict.pop(snake_case_ )
a = rename_key(snake_case_ )
a = value
a = BlipForQuestionAnswering(snake_case_ )
hf_vqa_model.load_state_dict(snake_case_ )
a = ['''How many dogs are in this image?''']
a = tokenizer(snake_case_, return_tensors='''pt''' ).input_ids
a = hf_vqa_model.generate(snake_case_, snake_case_ )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
a = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
a = blip_itm(pretrained=snake_case_, image_size=snake_case_, vit='''base''' )
itm_model.eval()
a = itm_model.state_dict()
for key in modified_state_dict.copy():
a = modified_state_dict.pop(snake_case_ )
a = rename_key(snake_case_ )
a = value
a = BlipForImageTextRetrieval(snake_case_ )
a = ['''A picture of a woman with a dog sitting in a beach''']
a = tokenizer(
snake_case_, return_tensors='''pt''', padding='''max_length''', truncation=snake_case_, max_length=3_5, ).input_ids
hf_itm_model.load_state_dict(snake_case_ )
hf_itm_model.eval()
a = hf_itm_model(snake_case_, snake_case_, use_itm_head=snake_case_ )
a = hf_itm_model(snake_case_, snake_case_, use_itm_head=snake_case_ )
assert out[0].item() == 0.2110_6874_9427_7954
assert torch.nn.functional.softmax(out_itm[0], dim=1 )[:, 1].item() == 0.4_5698_8453_8650_5127
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
UpperCamelCase__ : Tuple = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
UpperCamelCase__ : int = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 330 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'efficientformer'
def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_act
a = hidden_dropout_prob
a = hidden_sizes
a = num_hidden_layers
a = num_attention_heads
a = initializer_range
a = layer_norm_eps
a = patch_size
a = num_channels
a = depths
a = mlp_expansion_ratio
a = downsamples
a = dim
a = key_dim
a = attention_ratio
a = resolution
a = pool_size
a = downsample_patch_size
a = downsample_stride
a = downsample_pad
a = drop_path_rate
a = num_metaad_blocks
a = distillation
a = use_layer_scale
a = layer_scale_init_value
a = image_size
a = batch_norm_eps
| 330 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
for param, grad_param in zip(model_a.parameters(), model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad, grad_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad, grad_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_=True ) -> str:
"""simple docstring"""
model.train()
a = model(snake_case_ )
a = F.mse_loss(snake_case_, target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=False ) -> List[str]:
"""simple docstring"""
set_seed(4_2 )
a = RegressionModel()
a = deepcopy(snake_case_ )
a = RegressionDataset(length=8_0 )
a = DataLoader(snake_case_, batch_size=1_6 )
model.to(accelerator.device )
if sched:
a = AdamW(params=model.parameters(), lr=1e-3 )
a = AdamW(params=ddp_model.parameters(), lr=1e-3 )
a = LambdaLR(snake_case_, lr_lambda=lambda snake_case_ : epoch**0.65 )
a = LambdaLR(snake_case_, lr_lambda=lambda snake_case_ : epoch**0.65 )
# Make a copy of `model`
if sched:
a , a , a , a = accelerator.prepare(snake_case_, snake_case_, snake_case_, snake_case_ )
else:
a , a = accelerator.prepare(snake_case_, snake_case_ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a , a , a = get_training_setup(snake_case_ )
# Use a single batch
a , a = next(iter(snake_case_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
a , a = accelerator.gather((ddp_input, ddp_target) )
a , a = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(snake_case_ ):
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
else:
# Sync grads
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(snake_case_, snake_case_, snake_case_, snake_case_ )
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
a = ddp_input[torch.randperm(len(snake_case_ ) )]
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a , a , a = get_training_setup(snake_case_ )
# Use a single batch
a , a = next(iter(snake_case_ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
a , a = accelerator.gather((ddp_input, ddp_target) )
a , a = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(snake_case_ ):
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
else:
# Sync grads
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
a = ddp_input[torch.randperm(len(snake_case_ ) )]
def SCREAMING_SNAKE_CASE__ ( snake_case_=False, snake_case_=False ) -> Tuple:
"""simple docstring"""
a = Accelerator(
split_batches=snake_case_, dispatch_batches=snake_case_, gradient_accumulation_steps=2 )
# Test that context manager behaves properly
a , a , a = get_training_setup(snake_case_ )
for iteration, batch in enumerate(snake_case_ ):
a , a = batch.values()
# Gather the distributed inputs and targs for the base model
a , a = accelerator.gather((ddp_input, ddp_target) )
a , a = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(snake_case_ ):
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
a = ddp_input[torch.randperm(len(snake_case_ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( snake_case_=False, snake_case_=False ) -> Optional[int]:
"""simple docstring"""
a = Accelerator(
split_batches=snake_case_, dispatch_batches=snake_case_, gradient_accumulation_steps=2 )
# Test that context manager behaves properly
a , a , a , a , a , a , a = get_training_setup(snake_case_, snake_case_ )
for iteration, batch in enumerate(snake_case_ ):
a , a = batch.values()
# Gather the distributed inputs and targs for the base model
a , a = accelerator.gather((ddp_input, ddp_target) )
a , a = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(snake_case_ ):
step_model(snake_case_, snake_case_, snake_case_, snake_case_ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n"""
a = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ ))
if accelerator.num_processes > 1:
check_model_parameters(snake_case_, snake_case_, snake_case_, snake_case_ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_3_3_7 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( ) -> Any:
"""simple docstring"""
a = Accelerator()
a = RegressionDataset(length=8_0 )
a = DataLoader(snake_case_, batch_size=1_6 )
a = RegressionDataset(length=9_6 )
a = DataLoader(snake_case_, batch_size=1_6 )
a , a = accelerator.prepare(snake_case_, snake_case_ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(snake_case_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ )
if iteration < len(snake_case_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(snake_case_ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ )
if batch_num < len(snake_case_ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = Accelerator()
a = accelerator.state
if state.local_process_index == 0:
print('''**Test `accumulate` gradient accumulation with dataloader break**''' )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print('''**Test NOOP `no_sync` context manager**''' )
test_noop_sync(snake_case_ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print('''**Test Distributed `no_sync` context manager**''' )
test_distributed_sync(snake_case_ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation, ''', f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", )
test_gradient_accumulation(snake_case_, snake_case_ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version('''<''', '''2.0''' ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''', '''`split_batches=False`, `dispatch_batches=False`**''', )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
'''**Test `accumulate` gradient accumulation with optimizer and scheduler, ''', f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", )
test_gradient_accumulation_with_opt_and_scheduler(snake_case_, snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 330 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
UpperCamelCase__ : Any = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
UpperCamelCase__ : Optional[Any] = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
UpperCamelCase__ : Optional[Any] = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : List[str] = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : Optional[int] = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
a = k.replace(snake_case_, snake_case_ )
return k
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
a = BigBirdPegasusConfig(**snake_case_ )
a = BigBirdPegasusForConditionalGeneration(snake_case_ )
a = torch_model.state_dict()
a = {}
# separating decoder weights
a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = DECODER_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = REMAINING_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
a = mapping['''model.embed_positions.weight''']
a = mapping.pop('''model.embed_positions.weight''' )
a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ )
a = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = tf.train.list_variables(snake_case_ )
a = {}
a = ['''global_step''']
for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ):
a = any(pat in name for pat in ignore_name )
if skip_key:
continue
a = tf.train.load_variable(snake_case_, snake_case_ )
a = array
return tf_weights
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = get_tf_weights_as_numpy(snake_case_ )
a = convert_bigbird_pegasus(snake_case_, snake_case_ )
torch_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : str = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
UpperCamelCase__ : int = parser.parse_args()
UpperCamelCase__ : Tuple = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 330 | 1 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
UpperCamelCase__ : Dict = """\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
"""
UpperCamelCase__ : List[Any] = """\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
"""
UpperCamelCase__ : Any = """
Compute GLUE evaluation metric associated to each GLUE dataset.
Args:
predictions: list of predictions to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
Returns: depending on the GLUE subset, one or several of:
\"accuracy\": Accuracy
\"f1\": F1 score
\"pearson\": Pearson Correlation
\"spearmanr\": Spearman Correlation
\"matthews_correlation\": Matthew Correlation
Examples:
>>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'accuracy': 1.0, 'f1': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'stsb')
>>> references = [0., 1., 2., 3., 4., 5.]
>>> predictions = [0., 1., 2., 3., 4., 5.]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})
{'pearson': 1.0, 'spearmanr': 1.0}
>>> glue_metric = datasets.load_metric('glue', 'cola')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'matthews_correlation': 1.0}
"""
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str:
"""simple docstring"""
return float((preds == labels).mean() )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = simple_accuracy(snake_case_, snake_case_ )
a = float(fa_score(y_true=snake_case_, y_pred=snake_case_ ) )
return {
"accuracy": acc,
"f1": fa,
}
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = float(pearsonr(snake_case_, snake_case_ )[0] )
a = float(spearmanr(snake_case_, snake_case_ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase_ ( datasets.Metric ):
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
'''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ),
} ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Dict ,__lowerCamelCase : int ):
'''simple docstring'''
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(__lowerCamelCase ,__lowerCamelCase )}
elif self.config_name == "stsb":
return pearson_and_spearman(__lowerCamelCase ,__lowerCamelCase )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(__lowerCamelCase ,__lowerCamelCase )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(__lowerCamelCase ,__lowerCamelCase )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["sst2", "mnli", "mnli_mismatched", "mnli_matched", '''
'''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
| 330 |
import re
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 | 1 |
from math import factorial
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 2_0 ) -> int:
"""simple docstring"""
a = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
a = n // 2
return int(factorial(snake_case_ ) / (factorial(snake_case_ ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
UpperCamelCase__ : List[str] = int(sys.argv[1])
print(solution(n))
except ValueError:
print("""Invalid entry - please enter a number.""")
| 330 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count += 1
a = '''_'''
if count > 1:
return False
else:
return "".join(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
while True:
a = ['''$'''] * len(snake_case_ )
a = []
for i in range(len(snake_case_ ) ):
for j in range(i + 1, len(snake_case_ ) ):
a = compare_string(binary[i], binary[j] )
if k is False:
a = '''*'''
a = '''*'''
temp.append('''X''' )
for i in range(len(snake_case_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(snake_case_ ) == 0:
return pi
a = list(set(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
for minterm in minterms:
a = ''''''
for _ in range(snake_case_ ):
a = str(minterm % 2 ) + string
minterm //= 2
temp.append(snake_case_ )
return temp
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
a = [0] * len(snake_case_ )
for i in range(len(chart[0] ) ):
a = 0
a = -1
for j in range(len(snake_case_ ) ):
if chart[j][i] == 1:
count += 1
a = j
if count == 1:
a = 1
for i in range(len(snake_case_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(snake_case_ ) ):
a = 0
temp.append(prime_implicants[i] )
while True:
a = 0
a = -1
a = 0
for i in range(len(snake_case_ ) ):
a = chart[i].count(1 )
if count_n > max_n:
a = count_n
a = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(snake_case_ ) ):
a = 0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]:
"""simple docstring"""
a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )]
for i in range(len(snake_case_ ) ):
a = prime_implicants[i].count('''_''' )
for j in range(len(snake_case_ ) ):
if is_for_table(prime_implicants[i], binary[j], snake_case_ ):
a = 1
return chart
def SCREAMING_SNAKE_CASE__ ( ) -> None:
"""simple docstring"""
a = int(input('''Enter the no. of variables\n''' ) )
a = [
float(snake_case_ )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
a = decimal_to_binary(snake_case_, snake_case_ )
a = check(snake_case_ )
print('''Prime Implicants are:''' )
print(snake_case_ )
a = prime_implicant_chart(snake_case_, snake_case_ )
a = selection(snake_case_, snake_case_ )
print('''Essential Prime Implicants are:''' )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 330 | 1 |
from __future__ import annotations
from math import pow, sqrt
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> dict[str, float]:
"""simple docstring"""
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance == 0:
return {"resistance": sqrt(pow(snake_case_, 2 ) - pow(snake_case_, 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(snake_case_, 2 ) - pow(snake_case_, 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(snake_case_, 2 ) + pow(snake_case_, 2 ) )}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase__ : List[str] = {
"""configuration_blip_2""": [
"""BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Blip2Config""",
"""Blip2QFormerConfig""",
"""Blip2VisionConfig""",
],
"""processing_blip_2""": ["""Blip2Processor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase__ : List[Any] = [
"""BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Blip2Model""",
"""Blip2QFormerModel""",
"""Blip2PreTrainedModel""",
"""Blip2ForConditionalGeneration""",
"""Blip2VisionModel""",
]
if TYPE_CHECKING:
from .configuration_blip_a import (
BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlipaConfig,
BlipaQFormerConfig,
BlipaVisionConfig,
)
from .processing_blip_a import BlipaProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip_a import (
BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipaForConditionalGeneration,
BlipaModel,
BlipaPreTrainedModel,
BlipaQFormerModel,
BlipaVisionModel,
)
else:
import sys
UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 330 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=a_ )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} )
SCREAMING_SNAKE_CASE_ = Features({} )
SCREAMING_SNAKE_CASE_ = "text"
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return {self.text_column: "text"}
| 330 | 1 |
from __future__ import annotations
import bisect
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 0, snake_case_ = -1 ) -> int:
"""simple docstring"""
if hi < 0:
a = len(snake_case_ )
while lo < hi:
a = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
a = mid + 1
else:
a = mid
return lo
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 0, snake_case_ = -1 ) -> int:
"""simple docstring"""
if hi < 0:
a = len(snake_case_ )
while lo < hi:
a = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
a = mid + 1
else:
a = mid
return lo
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 0, snake_case_ = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_left(snake_case_, snake_case_, snake_case_, snake_case_ ), snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 0, snake_case_ = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_right(snake_case_, snake_case_, snake_case_, snake_case_ ), snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int | None:
"""simple docstring"""
a = 0
a = len(snake_case_ ) - 1
while left <= right:
a = left + (right - left) // 2
a = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
a = midpoint - 1
else:
a = midpoint + 1
return None
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int | None:
"""simple docstring"""
a = bisect.bisect_left(snake_case_, snake_case_ )
if index != len(snake_case_ ) and sorted_collection[index] == item:
return index
return None
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> int | None:
"""simple docstring"""
if right < left:
return None
a = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(snake_case_, snake_case_, snake_case_, midpoint - 1 )
else:
return binary_search_by_recursion(snake_case_, snake_case_, midpoint + 1, snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[Any] = input("""Enter numbers separated by comma:\n""").strip()
UpperCamelCase__ : Any = sorted(int(item) for item in user_input.split(""","""))
UpperCamelCase__ : int = int(input("""Enter a single number to be found in the list:\n"""))
UpperCamelCase__ : Optional[int] = binary_search(collection, target)
if result is None:
print(F"{target} was not found in {collection}.")
else:
print(F"{target} was found at position {result} in {collection}.")
| 330 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : Union[str, Any] = {
"""hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'yolos'
def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = num_detection_tokens
a = use_mid_position_embeddings
a = auxiliary_loss
# Hungarian matcher
a = class_cost
a = bbox_cost
a = giou_cost
# Loss coefficients
a = bbox_loss_coefficient
a = giou_loss_coefficient
a = eos_coefficient
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return 1e-4
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return 12
| 330 | 1 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = args.log_outputs
a = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
a = load_metric('''wer''' )
a = load_metric('''cer''' )
# compute metrics
a = wer.compute(references=result['''target'''], predictions=result['''prediction'''] )
a = cer.compute(references=result['''target'''], predictions=result['''prediction'''] )
# print & log results
a = f"""WER: {wer_result}\nCER: {cer_result}"""
print(snake_case_ )
with open(f"""{dataset_id}_eval_results.txt""", '''w''' ) as f:
f.write(snake_case_ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
a = f"""log_{dataset_id}_predictions.txt"""
a = f"""log_{dataset_id}_targets.txt"""
with open(snake_case_, '''w''' ) as p, open(snake_case_, '''w''' ) as t:
# mapping function to write output
def write_to_file(snake_case_, snake_case_ ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(snake_case_, with_indices=snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
a = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
a = re.sub(snake_case_, '''''', text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
a = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
a = ''' '''.join(text.split(snake_case_ ) )
return text
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]:
"""simple docstring"""
a = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=snake_case_ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
a = AutoFeatureExtractor.from_pretrained(args.model_id )
a = feature_extractor.sampling_rate
# resample audio
a = dataset.cast_column('''audio''', Audio(sampling_rate=snake_case_ ) )
# load eval pipeline
if args.device is None:
a = 0 if torch.cuda.is_available() else -1
a = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device )
# map function to decode audio
def map_to_pred(snake_case_ ):
a = asr(
batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s )
a = prediction['''text''']
a = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
a = dataset.map(snake_case_, remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(snake_case_, snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Any = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
UpperCamelCase__ : Dict = parser.parse_args()
main(args)
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = ''''''
for i in table:
res += inp[i - 1]
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
return data[1:] + data[0]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = ''''''
for i in range(len(snake_case_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = int('''0b''' + data[0] + data[-1], 2 )
a = int('''0b''' + data[1:3], 2 )
return bin(s[row][col] )[2:]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = message[:4]
a = message[4:]
a = apply_table(snake_case_, snake_case_ )
a = xor(snake_case_, snake_case_ )
a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741
a = apply_sbox(snake_case_, temp[4:] )
a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741
a = '''0''' * (2 - len(snake_case_ )) + r
a = apply_table(l + r, snake_case_ )
a = xor(snake_case_, snake_case_ )
return temp + right
if __name__ == "__main__":
UpperCamelCase__ : int = input("""Enter 10 bit key: """)
UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """)
UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9]
UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
UpperCamelCase__ : Optional[int] = [2, 4, 3, 1]
UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7]
UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6]
UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1]
UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table)
UpperCamelCase__ : str = temp[:5]
UpperCamelCase__ : List[Any] = temp[5:]
UpperCamelCase__ : Dict = left_shift(left)
UpperCamelCase__ : Any = left_shift(right)
UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : int = left_shift(right)
UpperCamelCase__ : List[str] = left_shift(left)
UpperCamelCase__ : Dict = left_shift(right)
UpperCamelCase__ : List[str] = apply_table(left + right, pa_table)
# encryption
UpperCamelCase__ : Tuple = apply_table(message, IP)
UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4]
UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Tuple = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP)
UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4]
UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp)
UpperCamelCase__ : Any = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 330 | 1 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = BarthezTokenizer
SCREAMING_SNAKE_CASE_ = BarthezTokenizerFast
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = True
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
super().setUp()
a = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname ,legacy_format=__lowerCamelCase )
a = tokenizer
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = '''<pad>'''
a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) ,__lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'''<s>''' )
self.assertEqual(vocab_keys[1] ,'''<pad>''' )
self.assertEqual(vocab_keys[-1] ,'''<mask>''' )
self.assertEqual(len(__lowerCamelCase ) ,10_11_22 )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size ,10_11_22 )
@require_torch
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
a = [0, 57, 30_18, 7_03_07, 91, 2]
a = self.tokenizer(
__lowerCamelCase ,max_length=len(__lowerCamelCase ) ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors='''pt''' )
self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase )
self.assertEqual((2, 6) ,batch.input_ids.shape )
self.assertEqual((2, 6) ,batch.attention_mask.shape )
a = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
a = self.get_tokenizer()
a = self.get_rust_tokenizer()
a = '''I was born in 92000, and this is falsé.'''
a = tokenizer.tokenize(__lowerCamelCase )
a = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
a = tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
a = rust_tokenizer.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
a = self.get_rust_tokenizer()
a = tokenizer.encode(__lowerCamelCase )
a = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = {'''input_ids''': [[0, 4_90, 1_43_28, 45_07, 3_54, 47, 4_36_69, 95, 25, 7_81_17, 2_02_15, 1_97_79, 1_90, 22, 4_00, 4, 3_53_43, 8_03_10, 6_03, 86, 2_49_37, 1_05, 3_34_38, 9_47_62, 1_96, 3_96_42, 7, 15, 1_59_33, 1_73, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_05_34, 87, 25, 66, 33_58, 1_96, 5_52_89, 8, 8_29_61, 81, 22_04, 7_52_03, 7, 15, 7_63, 1_29_56, 2_16, 1_78, 1_43_28, 95_95, 13_77, 6_96_93, 7, 4_48, 7_10_21, 1_96, 1_81_06, 14_37, 1_39_74, 1_08, 90_83, 4, 4_93_15, 7, 39, 86, 13_26, 27_93, 4_63_33, 4, 4_48, 1_96, 7_45_88, 7, 4_93_15, 7, 39, 21, 8_22, 3_84_70, 74, 21, 6_67_23, 6_24_80, 8, 2_20_50, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
a = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase ,model_name='''moussaKam/mbarthez''' ,revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' ,sequences=__lowerCamelCase ,)
| 330 |
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
@slow
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' )
a = '''The dog is cute and lives in the garden house'''
a = jnp.array([tokenizer.encode(__lowerCamelCase )] )
a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim
a = jnp.array(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
a = model(__lowerCamelCase )['''last_hidden_state''']
self.assertEqual(output.shape ,__lowerCamelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
| 330 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
UpperCamelCase__ : Optional[Any] = {
"""iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""",
"""iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""",
"""iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""",
"""mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""",
"""mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""",
"""mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""",
"""mask_downscaling.0""": """mask_embed.conv1""",
"""mask_downscaling.1""": """mask_embed.layer_norm1""",
"""mask_downscaling.3""": """mask_embed.conv2""",
"""mask_downscaling.4""": """mask_embed.layer_norm2""",
"""mask_downscaling.6""": """mask_embed.conv3""",
"""point_embeddings""": """point_embed""",
"""pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""",
"""image_encoder""": """vision_encoder""",
"""neck.0""": """neck.conv1""",
"""neck.1""": """neck.layer_norm1""",
"""neck.2""": """neck.conv2""",
"""neck.3""": """neck.layer_norm2""",
"""patch_embed.proj""": """patch_embed.projection""",
""".norm""": """.layer_norm""",
"""blocks""": """layers""",
}
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
a = {}
state_dict.pop('''pixel_mean''', snake_case_ )
state_dict.pop('''pixel_std''', snake_case_ )
a = r'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*'''
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
a = key.replace(snake_case_, snake_case_ )
if re.match(snake_case_, snake_case_ ):
a = int(re.match(snake_case_, snake_case_ ).group(2 ) )
if layer_nb == 0:
a = key.replace('''layers.0''', '''proj_in''' )
elif layer_nb == 1:
a = key.replace('''layers.1''', '''layers.0''' )
elif layer_nb == 2:
a = key.replace('''layers.2''', '''proj_out''' )
a = value
a = model_state_dict[
'''prompt_encoder.shared_embedding.positional_embedding'''
]
return model_state_dict
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_="ybelkada/segment-anything" ) -> str:
"""simple docstring"""
a = hf_hub_download(snake_case_, f"""checkpoints/{model_name}.pth""" )
if "sam_vit_b" in model_name:
a = SamConfig()
elif "sam_vit_l" in model_name:
a = SamVisionConfig(
hidden_size=1_0_2_4, num_hidden_layers=2_4, num_attention_heads=1_6, global_attn_indexes=[5, 1_1, 1_7, 2_3], )
a = SamConfig(
vision_config=snake_case_, )
elif "sam_vit_h" in model_name:
a = SamVisionConfig(
hidden_size=1_2_8_0, num_hidden_layers=3_2, num_attention_heads=1_6, global_attn_indexes=[7, 1_5, 2_3, 3_1], )
a = SamConfig(
vision_config=snake_case_, )
a = torch.load(snake_case_, map_location='''cpu''' )
a = replace_keys(snake_case_ )
a = SamImageProcessor()
a = SamProcessor(image_processor=snake_case_ )
a = SamModel(snake_case_ )
hf_model.load_state_dict(snake_case_ )
a = hf_model.to('''cuda''' )
a = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png'''
a = Image.open(requests.get(snake_case_, stream=snake_case_ ).raw ).convert('''RGB''' )
a = [[[4_0_0, 6_5_0]]]
a = [[1]]
a = processor(images=np.array(snake_case_ ), return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
a = hf_model(**snake_case_ )
a = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_8902_5115_9668
a = processor(
images=np.array(snake_case_ ), input_points=snake_case_, input_labels=snake_case_, return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
a = hf_model(**snake_case_ )
a = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9712_6030_9219_3604
a = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),)
a = processor(images=np.array(snake_case_ ), input_boxes=snake_case_, return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
a = hf_model(**snake_case_ )
a = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8686_0156_0592_6514
# Test with 2 points and 1 image.
a = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]]
a = [[1, 1]]
a = processor(
images=np.array(snake_case_ ), input_points=snake_case_, input_labels=snake_case_, return_tensors='''pt''' ).to('''cuda''' )
with torch.no_grad():
a = hf_model(**snake_case_ )
a = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9936_0477_9243_4692
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
UpperCamelCase__ : List[Any] = ["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""]
parser.add_argument(
"""--model_name""",
default="""sam_vit_h_4b8939""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
parser.add_argument(
"""--model_hub_id""",
default="""ybelkada/segment-anything""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
UpperCamelCase__ : Any = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 330 |
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase__ : Union[str, Any] = 16
UpperCamelCase__ : Dict = 32
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple:
"""simple docstring"""
a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(snake_case_ ):
# max_length=None => use the model max length (it's actually the default)
a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
a = datasets.map(
snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(snake_case_ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
a = 1_6
elif accelerator.mixed_precision != "no":
a = 8
else:
a = None
return tokenizer.pad(
snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', )
# Instantiate dataloaders.
a = DataLoader(
tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
a = DataLoader(
tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase__ : int = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1":
a = 2
# Initialize accelerator
a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
a = config['''lr''']
a = int(config['''num_epochs'''] )
a = int(config['''seed'''] )
a = int(config['''batch_size'''] )
a = evaluate.load('''glue''', '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case_ )
def inner_training_loop(snake_case_ ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
a = model.to(accelerator.device )
# Instantiate optimizer
a = AdamW(params=model.parameters(), lr=snake_case_ )
a , a = get_dataloaders(snake_case_, snake_case_ )
# Instantiate scheduler
a = get_linear_schedule_with_warmup(
optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
a , a , a , a , a = accelerator.prepare(
snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
a = model(**snake_case_ )
a = outputs.loss
accelerator.backward(snake_case_ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
a = model(**snake_case_ )
a = outputs.logits.argmax(dim=-1 )
a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=snake_case_, references=snake_case_, )
a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""", snake_case_ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
a = parser.parse_args()
a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(snake_case_, snake_case_ )
if __name__ == "__main__":
main()
| 330 | 1 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCamelCase__ : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
a = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
a = UniSpeechSatConfig()
a = ''''''
if is_finetuned:
a = UniSpeechSatForCTC(snake_case_ )
else:
a = UniSpeechSatForPreTraining(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : int = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""encoder.layer_norm_for_extract""": """layer_norm_for_extract""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""label_embs_concat""": """label_embeddings_concat""",
"""mask_emb""": """masked_spec_embed""",
"""spk_proj""": """speaker_proj""",
}
UpperCamelCase__ : Optional[Any] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""label_embeddings_concat""",
"""speaker_proj""",
"""layer_norm_for_extract""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key):
# special case since naming is very similar
continue
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]:
"""simple docstring"""
if config_path is not None:
a = UniSpeechSatConfig.from_pretrained(snake_case_ )
else:
a = UniSpeechSatConfig()
a = ''''''
if is_finetuned:
a = UniSpeechSatForCTC(snake_case_ )
else:
a = UniSpeechSatForPreTraining(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_ )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : int = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330 | 1 |
UpperCamelCase__ : Tuple = {
"""Pillow""": """Pillow<10.0.0""",
"""accelerate""": """accelerate>=0.20.3""",
"""av""": """av==9.2.0""",
"""beautifulsoup4""": """beautifulsoup4""",
"""black""": """black~=23.1""",
"""codecarbon""": """codecarbon==1.2.0""",
"""cookiecutter""": """cookiecutter==1.7.3""",
"""dataclasses""": """dataclasses""",
"""datasets""": """datasets!=2.5.0""",
"""decord""": """decord==0.6.0""",
"""deepspeed""": """deepspeed>=0.9.3""",
"""diffusers""": """diffusers""",
"""dill""": """dill<0.3.5""",
"""evaluate""": """evaluate>=0.2.0""",
"""fairscale""": """fairscale>0.3""",
"""faiss-cpu""": """faiss-cpu""",
"""fastapi""": """fastapi""",
"""filelock""": """filelock""",
"""flax""": """flax>=0.4.1,<=0.7.0""",
"""ftfy""": """ftfy""",
"""fugashi""": """fugashi>=1.0""",
"""GitPython""": """GitPython<3.1.19""",
"""hf-doc-builder""": """hf-doc-builder>=0.3.0""",
"""huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""",
"""importlib_metadata""": """importlib_metadata""",
"""ipadic""": """ipadic>=1.0.0,<2.0""",
"""isort""": """isort>=5.5.4""",
"""jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""",
"""jaxlib""": """jaxlib>=0.1.65,<=0.4.13""",
"""jieba""": """jieba""",
"""kenlm""": """kenlm""",
"""keras-nlp""": """keras-nlp>=0.3.1""",
"""librosa""": """librosa""",
"""nltk""": """nltk""",
"""natten""": """natten>=0.14.6""",
"""numpy""": """numpy>=1.17""",
"""onnxconverter-common""": """onnxconverter-common""",
"""onnxruntime-tools""": """onnxruntime-tools>=1.4.2""",
"""onnxruntime""": """onnxruntime>=1.4.0""",
"""opencv-python""": """opencv-python""",
"""optuna""": """optuna""",
"""optax""": """optax>=0.0.8,<=0.1.4""",
"""packaging""": """packaging>=20.0""",
"""parameterized""": """parameterized""",
"""phonemizer""": """phonemizer""",
"""protobuf""": """protobuf""",
"""psutil""": """psutil""",
"""pyyaml""": """pyyaml>=5.1""",
"""pydantic""": """pydantic<2""",
"""pytest""": """pytest>=7.2.0""",
"""pytest-timeout""": """pytest-timeout""",
"""pytest-xdist""": """pytest-xdist""",
"""python""": """python>=3.8.0""",
"""ray[tune]""": """ray[tune]""",
"""regex""": """regex!=2019.12.17""",
"""requests""": """requests""",
"""rhoknp""": """rhoknp>=1.1.0,<1.3.1""",
"""rjieba""": """rjieba""",
"""rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""",
"""ruff""": """ruff>=0.0.241,<=0.0.259""",
"""sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""",
"""sacremoses""": """sacremoses""",
"""safetensors""": """safetensors>=0.3.1""",
"""sagemaker""": """sagemaker>=2.31.0""",
"""scikit-learn""": """scikit-learn""",
"""sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""",
"""sigopt""": """sigopt""",
"""starlette""": """starlette""",
"""sudachipy""": """sudachipy>=0.6.6""",
"""sudachidict_core""": """sudachidict_core>=20220729""",
"""tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""",
"""tensorflow""": """tensorflow>=2.6,<2.14""",
"""tensorflow-text""": """tensorflow-text<2.14""",
"""tf2onnx""": """tf2onnx""",
"""timeout-decorator""": """timeout-decorator""",
"""timm""": """timm""",
"""tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""",
"""torch""": """torch>=1.9,!=1.12.0""",
"""torchaudio""": """torchaudio""",
"""torchvision""": """torchvision""",
"""pyctcdecode""": """pyctcdecode>=0.4.0""",
"""tqdm""": """tqdm>=4.27""",
"""unidic""": """unidic>=1.0.2""",
"""unidic_lite""": """unidic_lite>=1.0.7""",
"""urllib3""": """urllib3<2.0.0""",
"""uvicorn""": """uvicorn""",
}
| 330 |
import pytest
from datasets import inspect_metric, list_metrics, load_metric
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]:
"""simple docstring"""
monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() )
@pytest.fixture
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = metric_id
class lowerCamelCase_ :
SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']]
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return self._metrics
monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() )
@pytest.mark.parametrize(
'''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple:
"""simple docstring"""
if "tmp_path" in args:
a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args )
with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ):
func(*snake_case_ )
| 330 | 1 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase__ : str = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""}
UpperCamelCase__ : List[Any] = {
"""vocab_file""": {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""",
"""allenai/longformer-large-4096""": (
"""https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json"""
),
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""",
"""allenai/longformer-large-4096""": (
"""https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt"""
),
"""allenai/longformer-large-4096-finetuned-triviaqa""": (
"""https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt"""
),
"""allenai/longformer-base-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt"""
),
"""allenai/longformer-large-4096-extra.pos.embd.only""": (
"""https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt"""
),
},
}
UpperCamelCase__ : Optional[Any] = {
"""allenai/longformer-base-4096""": 4_096,
"""allenai/longformer-large-4096""": 4_096,
"""allenai/longformer-large-4096-finetuned-triviaqa""": 4_096,
"""allenai/longformer-base-4096-extra.pos.embd.only""": 4_096,
"""allenai/longformer-large-4096-extra.pos.embd.only""": 4_096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE__ ( ) -> int:
"""simple docstring"""
a = (
list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) )
)
a = bs[:]
a = 0
for b in range(2**8 ):
if b not in bs:
bs.append(snake_case_ )
cs.append(2**8 + n )
n += 1
a = [chr(snake_case_ ) for n in cs]
return dict(zip(snake_case_, snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any:
"""simple docstring"""
a = set()
a = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
a = char
return pairs
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
def __init__( self : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : int="replace" ,__lowerCamelCase : Dict="<s>" ,__lowerCamelCase : str="</s>" ,__lowerCamelCase : Any="</s>" ,__lowerCamelCase : Dict="<s>" ,__lowerCamelCase : Tuple="<unk>" ,__lowerCamelCase : List[str]="<pad>" ,__lowerCamelCase : str="<mask>" ,__lowerCamelCase : int=False ,**__lowerCamelCase : Optional[int] ,):
'''simple docstring'''
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else bos_token
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else eos_token
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else sep_token
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else cls_token
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,add_prefix_space=__lowerCamelCase ,**__lowerCamelCase ,)
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
a = {v: k for k, v in self.encoder.items()}
a = errors # how to handle errors in decoding
a = bytes_to_unicode()
a = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase ,encoding='''utf-8''' ) as merges_handle:
a = merges_handle.read().split('''\n''' )[1:-1]
a = [tuple(merge.split() ) for merge in bpe_merges]
a = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) )
a = {}
a = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
a = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return len(self.encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
a = tuple(__lowerCamelCase )
a = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
a = min(__lowerCamelCase ,key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase ,float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
a , a = bigram
a = []
a = 0
while i < len(__lowerCamelCase ):
try:
a = word.index(__lowerCamelCase ,__lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
a = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
a = tuple(__lowerCamelCase )
a = new_word
if len(__lowerCamelCase ) == 1:
break
else:
a = get_pairs(__lowerCamelCase )
a = ''' '''.join(__lowerCamelCase )
a = word
return word
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = []
for token in re.findall(self.pat ,__lowerCamelCase ):
a = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(''' ''' ) )
return bpe_tokens
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Tuple ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase ,self.encoder.get(self.unk_token ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : int ):
'''simple docstring'''
a = ''''''.join(__lowerCamelCase )
a = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors )
return text
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowerCamelCase ,ensure_ascii=__lowerCamelCase ) + '''\n''' )
a = 0
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
a = token_index
writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a = [self.cls_token_id]
a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
a = [self.sep_token_id]
a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str]=False ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
a = ''' ''' + text
return (text, kwargs)
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : str = logging.get_logger(__name__)
UpperCamelCase__ : Optional[int] = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'luke'
def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase )
a = vocab_size
a = entity_vocab_size
a = hidden_size
a = entity_emb_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = use_entity_aware_attention
a = classifier_dropout
| 330 | 1 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> List[str]:
"""simple docstring"""
a = None
if token is not None:
a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""}
a = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
a = requests.get(snake_case_, headers=snake_case_ ).json()
a = {}
try:
job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
a = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 )
for i in range(snake_case_ ):
a = requests.get(url + f"""&page={i + 2}""", headers=snake_case_ ).json()
job_links.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} )
return job_links
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> Union[str, Any]:
"""simple docstring"""
a = None
if token is not None:
a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""}
a = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
a = requests.get(snake_case_, headers=snake_case_ ).json()
a = {}
try:
artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} )
a = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 )
for i in range(snake_case_ ):
a = requests.get(url + f"""&page={i + 2}""", headers=snake_case_ ).json()
artifacts.update({artifact['''name''']: artifact['''archive_download_url'''] for artifact in result['''artifacts''']} )
return artifacts
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = None
if token is not None:
a = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': f"""Bearer {token}"""}
a = requests.get(snake_case_, headers=snake_case_, allow_redirects=snake_case_ )
a = result.headers['''Location''']
a = requests.get(snake_case_, allow_redirects=snake_case_ )
a = os.path.join(snake_case_, f"""{artifact_name}.zip""" )
with open(snake_case_, '''wb''' ) as fp:
fp.write(response.content )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> int:
"""simple docstring"""
a = []
a = []
a = None
with zipfile.ZipFile(snake_case_ ) as z:
for filename in z.namelist():
if not os.path.isdir(snake_case_ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(snake_case_ ) as f:
for line in f:
a = line.decode('''UTF-8''' ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
a = line[: line.index(''': ''' )]
a = line[line.index(''': ''' ) + len(''': ''' ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith('''FAILED ''' ):
# `test` is the test method that failed
a = line[len('''FAILED ''' ) :]
failed_tests.append(snake_case_ )
elif filename == "job_name.txt":
a = line
if len(snake_case_ ) != len(snake_case_ ):
raise ValueError(
f"""`errors` and `failed_tests` should have the same number of elements. Got {len(snake_case_ )} for `errors` """
f"""and {len(snake_case_ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
''' problem.''' )
a = None
if job_name and job_links:
a = job_links.get(snake_case_, snake_case_ )
# A list with elements of the form (line of error, error, failed test)
a = [x + [y] + [job_link] for x, y in zip(snake_case_, snake_case_ )]
return result
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> Optional[int]:
"""simple docstring"""
a = []
a = [os.path.join(snake_case_, snake_case_ ) for p in os.listdir(snake_case_ ) if p.endswith('''.zip''' )]
for p in paths:
errors.extend(get_errors_from_single_artifact(snake_case_, job_links=snake_case_ ) )
return errors
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> str:
"""simple docstring"""
a = Counter()
counter.update([x[1] for x in logs] )
a = counter.most_common()
a = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
a = {'''count''': count, '''failed_tests''': [(x[2], x[0]) for x in logs if x[1] == error]}
a = dict(sorted(r.items(), key=lambda snake_case_ : item[1]["count"], reverse=snake_case_ ) )
return r
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = test.split('''::''' )[0]
if test.startswith('''tests/models/''' ):
a = test.split('''/''' )[2]
else:
a = None
return test
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> Any:
"""simple docstring"""
a = [(x[0], x[1], get_model(x[2] )) for x in logs]
a = [x for x in logs if x[2] is not None]
a = {x[2] for x in logs}
a = {}
for test in tests:
a = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
a = counter.most_common()
a = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
a = sum(error_counts.values() )
if n_errors > 0:
a = {'''count''': n_errors, '''errors''': error_counts}
a = dict(sorted(r.items(), key=lambda snake_case_ : item[1]["count"], reverse=snake_case_ ) )
return r
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
a = '''| no. | error | status |'''
a = '''|-:|:-|:-|'''
a = [header, sep]
for error in reduced_by_error:
a = reduced_by_error[error]['''count''']
a = f"""| {count} | {error[:1_0_0]} | |"""
lines.append(snake_case_ )
return "\n".join(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = '''| model | no. of errors | major error | count |'''
a = '''|-:|-:|-:|-:|'''
a = [header, sep]
for model in reduced_by_model:
a = reduced_by_model[model]['''count''']
a , a = list(reduced_by_model[model]['''errors'''].items() )[0]
a = f"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(snake_case_ )
return "\n".join(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
UpperCamelCase__ : int = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
UpperCamelCase__ : Union[str, Any] = get_job_links(args.workflow_run_id, token=args.token)
UpperCamelCase__ : str = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
UpperCamelCase__ : Tuple = k.find(""" / """)
UpperCamelCase__ : Tuple = k[index + len(""" / """) :]
UpperCamelCase__ : Dict = v
with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
UpperCamelCase__ : str = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
UpperCamelCase__ : List[str] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
UpperCamelCase__ : List[Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
UpperCamelCase__ : Tuple = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
UpperCamelCase__ : Union[str, Any] = reduce_by_error(errors)
UpperCamelCase__ : Any = reduce_by_model(errors)
UpperCamelCase__ : Dict = make_github_table(reduced_by_error)
UpperCamelCase__ : Any = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
| 330 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None)
UpperCamelCase__ : Tuple = df.shape[:1][0]
# If you're using some other dataset input the target column
UpperCamelCase__ : List[Any] = df.iloc[:, 1:2]
UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1)
UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data)
UpperCamelCase__ : Optional[Any] = 10
UpperCamelCase__ : int = 5
UpperCamelCase__ : List[str] = 20
UpperCamelCase__ : Optional[int] = len_data - periods * look_back
UpperCamelCase__ : Union[str, Any] = actual_data[:division]
UpperCamelCase__ : str = actual_data[division - look_back :]
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], []
UpperCamelCase__ , UpperCamelCase__ : str = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
UpperCamelCase__ : List[str] = np.array(train_x)
UpperCamelCase__ : Optional[Any] = np.array(test_x)
UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y])
UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y])
UpperCamelCase__ : Union[str, Any] = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="""mean_squared_error""", optimizer="""adam""")
UpperCamelCase__ : Tuple = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
UpperCamelCase__ : Tuple = model.predict(x_test)
| 330 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = tempfile.mkdtemp()
a = BlipImageProcessor()
a = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' )
a = BlipaProcessor(__lowerCamelCase ,__lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).tokenizer
def SCREAMING_SNAKE_CASE_ ( self : Dict ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ).image_processor
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )]
a = [Image.fromarray(np.moveaxis(__lowerCamelCase ,0 ,-1 ) ) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
a = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' )
a = self.get_image_processor(do_normalize=__lowerCamelCase ,padding_value=1.0 )
a = BlipaProcessor.from_pretrained(
self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=__lowerCamelCase ,padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer ,__lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase )
a = self.prepare_image_inputs()
a = image_processor(__lowerCamelCase ,return_tensors='''np''' )
a = processor(images=__lowerCamelCase ,return_tensors='''np''' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase )
a = '''lower newer'''
a = processor(text=__lowerCamelCase )
a = tokenizer(__lowerCamelCase ,return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] ,encoded_processor[key] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__lowerCamelCase ,images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase )
a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
a = processor.batch_decode(__lowerCamelCase )
a = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self.get_image_processor()
a = self.get_tokenizer()
a = BlipaProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase )
a = '''lower newer'''
a = self.prepare_image_inputs()
a = processor(text=__lowerCamelCase ,images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
| 330 |
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple:
"""simple docstring"""
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = FileLock(str(tmpdir / '''foo.lock''' ) )
a = 0.01
with locka.acquire():
with pytest.raises(snake_case_ ):
a = time.time()
locka.acquire(snake_case_ )
assert time.time() - _start > timeout
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]:
"""simple docstring"""
a = '''a''' * 1_0_0_0 + '''.lock'''
a = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(snake_case_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5
a = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(snake_case_ ):
locka.acquire(0 )
| 330 | 1 |
from typing import Callable, List, Optional, Tuple, Union
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin, TransformeraDModel, VQModel
from ...schedulers import VQDiffusionScheduler
from ...utils import logging
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
UpperCamelCase__ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowerCamelCase_ ( a_ , a_ ):
@register_to_config
def __init__( self : Optional[int] ,__lowerCamelCase : bool ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
super().__init__()
a = learnable
if self.learnable:
assert hidden_size is not None, "learnable=True requires `hidden_size` to be set"
assert length is not None, "learnable=True requires `length` to be set"
a = torch.zeros(__lowerCamelCase ,__lowerCamelCase )
else:
a = None
a = torch.nn.Parameter(__lowerCamelCase )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
SCREAMING_SNAKE_CASE_ = 42
def __init__( self : Any ,__lowerCamelCase : VQModel ,__lowerCamelCase : CLIPTextModel ,__lowerCamelCase : CLIPTokenizer ,__lowerCamelCase : TransformeraDModel ,__lowerCamelCase : VQDiffusionScheduler ,__lowerCamelCase : LearnedClassifierFreeSamplingEmbeddings ,):
'''simple docstring'''
super().__init__()
self.register_modules(
vqvae=__lowerCamelCase ,transformer=__lowerCamelCase ,text_encoder=__lowerCamelCase ,tokenizer=__lowerCamelCase ,scheduler=__lowerCamelCase ,learned_classifier_free_sampling_embeddings=__lowerCamelCase ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = len(__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else 1
# get prompt text embeddings
a = self.tokenizer(
__lowerCamelCase ,padding='''max_length''' ,max_length=self.tokenizer.model_max_length ,return_tensors='''pt''' ,)
a = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" )
a = text_input_ids[:, : self.tokenizer.model_max_length]
a = self.text_encoder(text_input_ids.to(self.device ) )[0]
# NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion.
# While CLIP does normalize the pooled output of the text transformer when combining
# the image and text embeddings, CLIP does not directly normalize the last hidden state.
#
# CLIP normalizing the pooled output.
# https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053
a = prompt_embeds / prompt_embeds.norm(dim=-1 ,keepdim=__lowerCamelCase )
# duplicate text embeddings for each generation per prompt
a = prompt_embeds.repeat_interleave(__lowerCamelCase ,dim=0 )
if do_classifier_free_guidance:
if self.learned_classifier_free_sampling_embeddings.learnable:
a = self.learned_classifier_free_sampling_embeddings.embeddings
a = negative_prompt_embeds.unsqueeze(0 ).repeat(__lowerCamelCase ,1 ,1 )
else:
a = [''''''] * batch_size
a = text_input_ids.shape[-1]
a = self.tokenizer(
__lowerCamelCase ,padding='''max_length''' ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,return_tensors='''pt''' ,)
a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# See comment for normalizing text embeddings
a = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 ,keepdim=__lowerCamelCase )
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
a = negative_prompt_embeds.shape[1]
a = negative_prompt_embeds.repeat(1 ,__lowerCamelCase ,1 )
a = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,__lowerCamelCase ,-1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
a = torch.cat([negative_prompt_embeds, prompt_embeds] )
return prompt_embeds
@torch.no_grad()
def __call__( self : int ,__lowerCamelCase : Union[str, List[str]] ,__lowerCamelCase : int = 1_00 ,__lowerCamelCase : float = 5.0 ,__lowerCamelCase : float = 1.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCamelCase : Optional[torch.FloatTensor] = None ,__lowerCamelCase : Optional[str] = "pil" ,__lowerCamelCase : bool = True ,__lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None ,__lowerCamelCase : int = 1 ,):
'''simple docstring'''
if isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = 1
elif isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = len(__lowerCamelCase )
else:
raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__lowerCamelCase )}""" )
a = batch_size * num_images_per_prompt
a = guidance_scale > 1.0
a = self._encode_prompt(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__lowerCamelCase ,__lowerCamelCase ) or callback_steps <= 0)
):
raise ValueError(
F"""`callback_steps` has to be a positive integer but is {callback_steps} of type"""
F""" {type(__lowerCamelCase )}.""" )
# get the initial completely masked latents unless the user supplied it
a = (batch_size, self.transformer.num_latent_pixels)
if latents is None:
a = self.transformer.num_vector_embeds - 1
a = torch.full(__lowerCamelCase ,__lowerCamelCase ).to(self.device )
else:
if latents.shape != latents_shape:
raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" )
if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any():
raise ValueError(
'''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,'''
F""" {self.transformer.num_vector_embeds - 1} (inclusive).""" )
a = latents.to(self.device )
# set timesteps
self.scheduler.set_timesteps(__lowerCamelCase ,device=self.device )
a = self.scheduler.timesteps.to(self.device )
a = latents
for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ):
# expand the sample if we are doing classifier free guidance
a = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample
# predict the un-noised image
# model_output == `log_p_x_0`
a = self.transformer(__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,timestep=__lowerCamelCase ).sample
if do_classifier_free_guidance:
a , a = model_output.chunk(2 )
a = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond)
model_output -= torch.logsumexp(__lowerCamelCase ,dim=1 ,keepdim=__lowerCamelCase )
a = self.truncate(__lowerCamelCase ,__lowerCamelCase )
# remove `log(0)`'s (`-inf`s)
a = model_output.clamp(-70 )
# compute the previous noisy sample x_t -> x_t-1
a = self.scheduler.step(__lowerCamelCase ,timestep=__lowerCamelCase ,sample=__lowerCamelCase ,generator=__lowerCamelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = self.vqvae.config.vq_embed_dim
a = (batch_size, self.transformer.height, self.transformer.width, embedding_channels)
a = self.vqvae.quantize.get_codebook_entry(__lowerCamelCase ,shape=__lowerCamelCase )
a = self.vqvae.decode(__lowerCamelCase ,force_not_quantize=__lowerCamelCase ).sample
a = (image / 2 + 0.5).clamp(0 ,1 )
a = image.cpu().permute(0 ,2 ,3 ,1 ).numpy()
if output_type == "pil":
a = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : float ):
'''simple docstring'''
a , a = torch.sort(__lowerCamelCase ,1 ,descending=__lowerCamelCase )
a = torch.exp(__lowerCamelCase )
a = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate
# Ensure that at least the largest probability is not zeroed out
a = torch.full_like(keep_mask[:, 0:1, :] ,__lowerCamelCase )
a = torch.cat((all_true, keep_mask) ,dim=1 )
a = keep_mask[:, :-1, :]
a = keep_mask.gather(1 ,indices.argsort(1 ) )
a = log_p_x_0.clone()
a = -torch.inf # -inf = log(0)
return rv
| 330 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Optional[int] = logging.get_logger(__name__)
UpperCamelCase__ : Dict = {
"""facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""",
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'vit_mae'
def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = initializer_range
a = layer_norm_eps
a = image_size
a = patch_size
a = num_channels
a = qkv_bias
a = decoder_num_attention_heads
a = decoder_hidden_size
a = decoder_num_hidden_layers
a = decoder_intermediate_size
a = mask_ratio
a = norm_pix_loss
| 330 | 1 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class lowerCamelCase_ :
def __init__( self : Optional[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int]=13 ,__lowerCamelCase : Union[str, Any]=10 ,__lowerCamelCase : List[str]=3 ,__lowerCamelCase : int=2 ,__lowerCamelCase : List[Any]=2 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : Dict=True ,__lowerCamelCase : List[str]=32 ,__lowerCamelCase : List[str]=5 ,__lowerCamelCase : Union[str, Any]=4 ,__lowerCamelCase : List[str]=37 ,__lowerCamelCase : Optional[Any]="gelu" ,__lowerCamelCase : Optional[Any]=0.1 ,__lowerCamelCase : str=0.1 ,__lowerCamelCase : List[str]=10 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : Union[str, Any]="divided_space_time" ,__lowerCamelCase : Optional[int]=None ,):
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = num_channels
a = patch_size
a = num_frames
a = is_training
a = use_labels
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = intermediate_size
a = hidden_act
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = attention_type
a = initializer_range
a = scope
a = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
a = (image_size // patch_size) ** 2
a = (num_frames) * self.num_patches_per_frame + 1
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
a = None
if self.use_labels:
a = ids_tensor([self.batch_size] ,self.num_labels )
a = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = TimesformerConfig(
image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,attention_type=self.attention_type ,)
a = self.num_labels
return config
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ):
'''simple docstring'''
a = TimesformerModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Any ,__lowerCamelCase : int ):
'''simple docstring'''
a = TimesformerForVideoClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
a = model(__lowerCamelCase )
# verify the logits shape
a = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ = (
{'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = TimesformerModelTester(self )
a = ConfigTester(
self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase ,hidden_size=37 )
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : str=False ):
'''simple docstring'''
a = copy.deepcopy(__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
a = torch.zeros(
self.model_tester.batch_size ,dtype=torch.long ,device=__lowerCamelCase )
return inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''TimeSformer does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) )
a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase ,nn.Linear ) )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__lowerCamelCase )
a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__lowerCamelCase )
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a = TimesformerModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
if not self.has_attentions:
pass
else:
a , a = self.model_tester.prepare_config_and_inputs_for_common()
a = True
for model_class in self.all_model_classes:
a = self.model_tester.seq_length
a = self.model_tester.num_frames
a = True
a = False
a = True
a = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) )
a = outputs.attentions
self.assertEqual(len(__lowerCamelCase ) ,self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
a = True
a = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) )
a = outputs.attentions
self.assertEqual(len(__lowerCamelCase ) ,self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,)
a = len(__lowerCamelCase )
# Check attention is always last and order is fine
a = True
a = True
a = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) )
self.assertEqual(out_len + 1 ,len(__lowerCamelCase ) )
a = outputs.attentions
self.assertEqual(len(__lowerCamelCase ) ,self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
def check_hidden_states_output(__lowerCamelCase : Any ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ):
a = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) )
a = outputs.hidden_states
a = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__lowerCamelCase ) ,__lowerCamelCase )
a = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,)
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = True
check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( ) -> Tuple:
"""simple docstring"""
a = hf_hub_download(
repo_id='''hf-internal-testing/spaghetti-video''', filename='''eating_spaghetti.npy''', repo_type='''dataset''' )
a = np.load(snake_case_ )
return list(snake_case_ )
@require_torch
@require_vision
class lowerCamelCase_ ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to(
__lowerCamelCase )
a = self.default_image_processor
a = prepare_video()
a = image_processor(video[:8] ,return_tensors='''pt''' ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
a = model(**__lowerCamelCase )
# verify the logits
a = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape ,__lowerCamelCase )
a = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
| 330 |
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
stooge(snake_case_, 0, len(snake_case_ ) - 1 )
return arr
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if i >= h:
return
# If first element is smaller than the last then swap them
if arr[i] > arr[h]:
a , a = arr[h], arr[i]
# If there are more than 2 elements in the array
if h - i + 1 > 2:
a = (int)((h - i + 1) / 3 )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
# Recursively sort last 2/3 elements
stooge(snake_case_, i + t, (snake_case_) )
# Recursively sort first 2/3 elements
stooge(snake_case_, snake_case_, (h - t) )
if __name__ == "__main__":
UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip()
UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")]
print(stooge_sort(unsorted))
| 330 | 1 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.linear_k""": """encoder.layers.*.self_attn.linear_k""",
"""self_attn.linear_v""": """encoder.layers.*.self_attn.linear_v""",
"""self_attn.linear_q""": """encoder.layers.*.self_attn.linear_q""",
"""self_attn.pos_bias_u""": """encoder.layers.*.self_attn.pos_bias_u""",
"""self_attn.pos_bias_v""": """encoder.layers.*.self_attn.pos_bias_v""",
"""self_attn.linear_out""": """encoder.layers.*.self_attn.linear_out""",
"""self_attn.linear_pos""": """encoder.layers.*.self_attn.linear_pos""",
"""self_attn.rotary_emb""": """encoder.embed_positions""",
"""self_attn_layer_norm""": """encoder.layers.*.self_attn_layer_norm""",
"""conv_module.pointwise_conv1""": """encoder.layers.*.conv_module.pointwise_conv1""",
"""conv_module.pointwise_conv2""": """encoder.layers.*.conv_module.pointwise_conv2""",
"""conv_module.depthwise_conv""": """encoder.layers.*.conv_module.depthwise_conv""",
"""conv_module.batch_norm""": """encoder.layers.*.conv_module.batch_norm""",
"""conv_module.layer_norm""": """encoder.layers.*.conv_module.layer_norm""",
"""ffn1.w_1""": """encoder.layers.*.ffn1.intermediate_dense""",
"""ffn1.w_2""": """encoder.layers.*.ffn1.output_dense""",
"""ffn1.layer_norm""": """encoder.layers.*.ffn1_layer_norm""",
"""ffn2.w_1""": """encoder.layers.*.ffn2.intermediate_dense""",
"""ffn2.w_2""": """encoder.layers.*.ffn2.output_dense""",
"""ffn2.layer_norm""": """encoder.layers.*.ffn2_layer_norm""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
UpperCamelCase__ : Optional[int] = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> str:
"""simple docstring"""
for attribute in key.split('''.''' ):
a = getattr(snake_case_, snake_case_ )
if weight_type is not None:
a = getattr(snake_case_, snake_case_ ).shape
else:
a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
a = value
elif weight_type == "weight_g":
a = value
elif weight_type == "weight_v":
a = value
elif weight_type == "bias":
a = value
elif weight_type == "running_mean":
a = value
elif weight_type == "running_var":
a = value
elif weight_type == "num_batches_tracked":
a = value
elif weight_type == "inv_freq":
a = value
else:
a = value
logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Dict:
"""simple docstring"""
a = []
a = fairseq_model.state_dict()
a = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
a = False
if "conv_layers" in name:
load_conv_layer(
snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', )
a = True
else:
for key, mapped_key in MAPPING.items():
a = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
a = True
if "*" in mapped_key:
a = name.split(snake_case_ )[0].split('''.''' )[-2]
a = mapped_key.replace('''*''', snake_case_ )
if "pos_bias_u" in name:
a = None
elif "pos_bias_v" in name:
a = None
elif "weight_g" in name:
a = '''weight_g'''
elif "weight_v" in name:
a = '''weight_v'''
elif "bias" in name:
a = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
a = '''weight'''
elif "running_mean" in name:
a = '''running_mean'''
elif "inv_freq" in name:
a = '''inv_freq'''
elif "running_var" in name:
a = '''running_var'''
elif "num_batches_tracked" in name:
a = '''num_batches_tracked'''
else:
a = None
set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ )
continue
if not is_used:
unused_weights.append(snake_case_ )
logger.warning(f"""Unused weights: {unused_weights}""" )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[str]:
"""simple docstring"""
a = full_name.split('''conv_layers.''' )[-1]
a = name.split('''.''' )
a = int(items[0] )
a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
a = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(snake_case_ )
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Dict:
"""simple docstring"""
if config_path is not None:
a = WavaVecaConformerConfig.from_pretrained(snake_case_, hidden_act='''swish''' )
else:
a = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
a = '''rotary'''
if is_finetuned:
if dict_path:
a = Dictionary.load(snake_case_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
a = target_dict.pad_index
a = target_dict.bos_index
a = target_dict.eos_index
a = len(target_dict.symbols )
a = os.path.join(snake_case_, '''vocab.json''' )
if not os.path.isdir(snake_case_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(snake_case_ ) )
return
os.makedirs(snake_case_, exist_ok=snake_case_ )
a = target_dict.indices
# fairseq has the <pad> and <s> switched
a = 0
a = 1
with open(snake_case_, '''w''', encoding='''utf-8''' ) as vocab_handle:
json.dump(snake_case_, snake_case_ )
a = WavaVecaCTCTokenizer(
snake_case_, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token='''|''', do_lower_case=snake_case_, )
a = True if config.feat_extract_norm == '''layer''' else False
a = WavaVecaFeatureExtractor(
feature_size=1, sampling_rate=1_6_0_0_0, padding_value=0, do_normalize=snake_case_, return_attention_mask=snake_case_, )
a = WavaVecaProcessor(feature_extractor=snake_case_, tokenizer=snake_case_ )
processor.save_pretrained(snake_case_ )
a = WavaVecaConformerForCTC(snake_case_ )
else:
a = WavaVecaConformerForPreTraining(snake_case_ )
if is_finetuned:
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
a = argparse.Namespace(task='''audio_pretraining''' )
a = fairseq.tasks.setup_task(snake_case_ )
a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=snake_case_ )
a = model[0].eval()
recursively_load_weights(snake_case_, snake_case_, not is_finetuned )
hf_wavavec.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : Any = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
UpperCamelCase__ : Tuple = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 330 |
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase__ : Any = logging.get_logger(__name__)
UpperCamelCase__ : Optional[Any] = {
"""artists_file""": """artists.json""",
"""lyrics_file""": """lyrics.json""",
"""genres_file""": """genres.json""",
}
UpperCamelCase__ : Union[str, Any] = {
"""artists_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""",
},
"""genres_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""",
},
"""lyrics_file""": {
"""jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""",
},
}
UpperCamelCase__ : str = {
"""jukebox""": 512,
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES
SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask']
def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,):
'''simple docstring'''
a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token
super().__init__(
unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,)
a = version
a = max_n_lyric_tokens
a = n_genres
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle:
a = json.load(__lowerCamelCase )
a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
a = oov.replace(r'''\-\'''' ,r'''\-+\'''' )
a = regex.compile(__lowerCamelCase )
a = {v: k for k, v in self.artists_encoder.items()}
a = {v: k for k, v in self.genres_encoder.items()}
a = {v: k for k, v in self.lyrics_encoder.items()}
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists]
for genres in range(len(__lowerCamelCase ) ):
a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]]
a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return list(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = self._tokenize(__lowerCamelCase )
return artist, genre, lyrics
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ):
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
a = artists[idx].lower()
a = [genres[idx].lower()]
else:
a = self._normalize(artists[idx] ) + '''.v2'''
a = [
self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )}
a = 0
a = len(__lowerCamelCase ) + 1
a = self.vocab
a = {v: k for k, v in self.vocab.items()}
a = ''''''
else:
a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
a = self._run_strip_accents(__lowerCamelCase )
a = lyrics.replace('''\\''' ,'''\n''' )
a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], []
return artists, genres, lyrics
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = unicodedata.normalize('''NFD''' ,__lowerCamelCase )
a = []
for char in text:
a = unicodedata.category(__lowerCamelCase )
if cat == "Mn":
continue
output.append(__lowerCamelCase )
return "".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ):
'''simple docstring'''
a = (
[chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )]
+ [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )]
+ ['''.''']
)
a = frozenset(__lowerCamelCase )
a = re.compile(r'''_+''' )
a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' )
return text
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ):
'''simple docstring'''
return " ".join(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
a = TensorType(__lowerCamelCase )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
a = tf.constant
a = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
a = torch.tensor
a = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
a = jnp.array
a = _is_jax
else:
a = np.asarray
a = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
a = [inputs]
if not is_tensor(__lowerCamelCase ):
a = as_tensor(__lowerCamelCase )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ):
'''simple docstring'''
a = [0, 0, 0]
a = [artist] * len(self.version )
a = [genres] * len(self.version )
a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
a = [-INFINITY] * len(full_tokens[-1] )
a = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) )
a = os.path.join(
__lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) )
return (artists_file, genres_file, lyrics_file)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ):
'''simple docstring'''
a = self.artists_decoder.get(__lowerCamelCase )
a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index]
a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index]
return artist, genres, lyrics
| 330 | 1 |
import numpy
# List of input, output pairs
UpperCamelCase__ : int = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
UpperCamelCase__ : Optional[int] = (((515, 22, 13), 555), ((61, 35, 49), 150))
UpperCamelCase__ : str = [2, 4, 1, 5]
UpperCamelCase__ : Union[str, Any] = len(train_data)
UpperCamelCase__ : List[Any] = 0.0_0_9
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_="train" ) -> List[str]:
"""simple docstring"""
return calculate_hypothesis_value(snake_case_, snake_case_ ) - output(
snake_case_, snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]:
"""simple docstring"""
a = 0
for i in range(len(snake_case_ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Optional[Any]:
"""simple docstring"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=m ) -> Any:
"""simple docstring"""
a = 0
for i in range(snake_case_ ):
if index == -1:
summation_value += _error(snake_case_ )
else:
summation_value += _error(snake_case_ ) * train_data[i][0][index]
return summation_value
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int:
"""simple docstring"""
a = summation_of_cost_derivative(snake_case_, snake_case_ ) / m
return cost_derivative_value
def SCREAMING_SNAKE_CASE__ ( ) -> Any:
"""simple docstring"""
global parameter_vector
# Tune these values to set a tolerance value for predicted output
a = 0.00_0002
a = 0
a = 0
while True:
j += 1
a = [0, 0, 0, 0]
for i in range(0, len(snake_case_ ) ):
a = get_cost_derivative(i - 1 )
a = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
snake_case_, snake_case_, atol=snake_case_, rtol=snake_case_, ):
break
a = temp_parameter_vector
print(('''Number of iterations:''', j) )
def SCREAMING_SNAKE_CASE__ ( ) -> Any:
"""simple docstring"""
for i in range(len(snake_case_ ) ):
print(('''Actual output value:''', output(snake_case_, '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(snake_case_, '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 330 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru"""
# Build
# borrowed from a test
UpperCamelCase__ : Any = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""w</w>""",
"""r</w>""",
"""t</w>""",
"""lo""",
"""low""",
"""er</w>""",
"""low</w>""",
"""lowest</w>""",
"""newer</w>""",
"""wider</w>""",
"""<unk>""",
]
UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab))))
UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""]
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCamelCase__ : Optional[Any] = Path(tmpdirname)
UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""]
UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""]
UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""]
with open(src_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, """w""") as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, """w""") as fp:
fp.write("""\n""".join(merges))
UpperCamelCase__ : Dict = FSMTTokenizer(
langs=["""en""", """ru"""],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
UpperCamelCase__ : Union[str, Any] = FSMTConfig(
langs=["""ru""", """en"""],
src_vocab_size=1_000,
tgt_vocab_size=1_000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config)
print(F"num of params {tiny_model.num_parameters()}")
# Test
UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""")
UpperCamelCase__ : Tuple = tiny_model(**batch)
print("""test output:""", len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F"Generated {mname_tiny}")
# Upload
# transformers-cli upload tiny-wmt19-en-ru
| 330 | 1 |
from abc import ABC, abstractmethod
from typing import List, Optional
class lowerCamelCase_ ( a_ ):
def __init__( self : List[Any] ):
'''simple docstring'''
self.test()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = 0
a = False
while not completed:
if counter == 1:
self.reset()
a = self.advance()
if not self.does_advance(__lowerCamelCase ):
raise Exception(
'''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' )
a , a , a = self.update(__lowerCamelCase )
counter += 1
if counter > 1_00_00:
raise Exception('''update() does not fulfill the constraint.''' )
if self.remaining() != 0:
raise Exception('''Custom Constraint is not defined correctly.''' )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : int ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
@abstractmethod
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int=False ):
'''simple docstring'''
raise NotImplementedError(
F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowerCamelCase_ ( a_ ):
def __init__( self : List[str] ,__lowerCamelCase : List[int] ):
'''simple docstring'''
super(__lowerCamelCase ,self ).__init__()
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or len(__lowerCamelCase ) == 0:
raise ValueError(F"""`token_ids` has to be a non-empty list, but is {token_ids}.""" )
if any((not isinstance(__lowerCamelCase ,__lowerCamelCase ) or token_id < 0) for token_id in token_ids ):
raise ValueError(F"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" )
a = token_ids
a = len(self.token_ids )
a = -1 # the index of the currently fulfilled step
a = False
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
if self.completed:
return None
return self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : int ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCamelCase )}""" )
if self.completed:
return False
return token_id == self.token_ids[self.fulfilled_idx + 1]
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError(F"""`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCamelCase )}""" )
a = False
a = False
a = False
if self.does_advance(__lowerCamelCase ):
self.fulfilled_idx += 1
a = True
if self.fulfilled_idx == (self.seqlen - 1):
a = True
a = completed
else:
# failed to make progress.
a = True
self.reset()
return stepped, completed, reset
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = False
a = 0
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
return self.seqlen - (self.fulfilled_idx + 1)
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Dict=False ):
'''simple docstring'''
a = PhrasalConstraint(self.token_ids )
if stateful:
a = self.seqlen
a = self.fulfilled_idx
a = self.completed
return new_constraint
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : List[List[int]] ,__lowerCamelCase : Union[str, Any]=True ):
'''simple docstring'''
a = max([len(__lowerCamelCase ) for one in nested_token_ids] )
a = {}
for token_ids in nested_token_ids:
a = root
for tidx, token_id in enumerate(__lowerCamelCase ):
if token_id not in level:
a = {}
a = level[token_id]
if no_subsets and self.has_subsets(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError(
'''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is'''
F""" {nested_token_ids}.""" )
a = root
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = self.trie
for current_token in current_seq:
a = start[current_token]
a = list(start.keys() )
return next_tokens
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.next_tokens(__lowerCamelCase )
return len(__lowerCamelCase ) == 0
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[int] ):
'''simple docstring'''
a = list(root.values() )
if len(__lowerCamelCase ) == 0:
return 1
else:
return sum([self.count_leaves(__lowerCamelCase ) for nn in next_nodes] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.count_leaves(__lowerCamelCase )
return len(__lowerCamelCase ) != leaf_count
class lowerCamelCase_ ( a_ ):
def __init__( self : List[Any] ,__lowerCamelCase : List[List[int]] ):
'''simple docstring'''
super(__lowerCamelCase ,self ).__init__()
if not isinstance(__lowerCamelCase ,__lowerCamelCase ) or len(__lowerCamelCase ) == 0:
raise ValueError(F"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" )
if any(not isinstance(__lowerCamelCase ,__lowerCamelCase ) for token_ids in nested_token_ids ):
raise ValueError(F"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" )
if any(
any((not isinstance(__lowerCamelCase ,__lowerCamelCase ) or token_id < 0) for token_id in token_ids )
for token_ids in nested_token_ids ):
raise ValueError(
F"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" )
a = DisjunctiveTrie(__lowerCamelCase )
a = nested_token_ids
a = self.trie.max_height
a = []
a = False
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = self.trie.next_tokens(self.current_seq )
if len(__lowerCamelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : int ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCamelCase )}""" )
a = self.trie.next_tokens(self.current_seq )
return token_id in next_tokens
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : int ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError(F"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCamelCase )}""" )
a = False
a = False
a = False
if self.does_advance(__lowerCamelCase ):
self.current_seq.append(__lowerCamelCase )
a = True
else:
a = True
self.reset()
a = self.trie.reached_leaf(self.current_seq )
a = completed
return stepped, completed, reset
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = False
a = []
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
if self.completed:
# since this can be completed without reaching max height
return 0
else:
return self.seqlen - len(self.current_seq )
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any=False ):
'''simple docstring'''
a = DisjunctiveConstraint(self.token_ids )
if stateful:
a = self.seqlen
a = self.current_seq
a = self.completed
return new_constraint
class lowerCamelCase_ :
def __init__( self : List[Any] ,__lowerCamelCase : List[Constraint] ):
'''simple docstring'''
a = constraints
# max # of steps required to fulfill a given constraint
a = max([c.seqlen for c in constraints] )
a = len(__lowerCamelCase )
a = False
self.init_state()
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = []
a = None
a = [constraint.copy(stateful=__lowerCamelCase ) for constraint in self.constraints]
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = 0
if self.inprogress_constraint:
# extra points for having a constraint mid-fulfilled
add += self.max_seqlen - self.inprogress_constraint.remaining()
return (len(self.complete_constraints ) * self.max_seqlen) + add
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = []
if self.inprogress_constraint is None:
for constraint in self.pending_constraints: # "pending" == "unfulfilled yet"
a = constraint.advance()
if isinstance(__lowerCamelCase ,__lowerCamelCase ):
token_list.append(__lowerCamelCase )
elif isinstance(__lowerCamelCase ,__lowerCamelCase ):
token_list.extend(__lowerCamelCase )
else:
a = self.inprogress_constraint.advance()
if isinstance(__lowerCamelCase ,__lowerCamelCase ):
token_list.append(__lowerCamelCase )
elif isinstance(__lowerCamelCase ,__lowerCamelCase ):
token_list.extend(__lowerCamelCase )
if len(__lowerCamelCase ) == 0:
return None
else:
return token_list
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Optional[List[int]] ):
'''simple docstring'''
self.init_state()
if token_ids is not None:
for token in token_ids:
# completes or steps **one** constraint
a , a = self.add(__lowerCamelCase )
# the entire list of constraints are fulfilled
if self.completed:
break
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : int ):
'''simple docstring'''
if not isinstance(__lowerCamelCase ,__lowerCamelCase ):
raise ValueError(F"""`token_id` should be an `int`, but is `{token_id}`.""" )
a , a = False, False
if self.completed:
a = True
a = False
return complete, stepped
if self.inprogress_constraint is not None:
# In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current
# job, simply update the state
a , a , a = self.inprogress_constraint.update(__lowerCamelCase )
if reset:
# 1. If the next token breaks the progress, then we must restart.
# e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books".
# But that doesn't mean we self.init_state(), since we only reset the state for this particular
# constraint, not the full list of constraints.
self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowerCamelCase ) )
a = None
if complete:
# 2. If the next token completes the constraint, move it to completed list, set
# inprogress to None. If there are no pending constraints either, then this full list of constraints
# is complete.
self.complete_constraints.append(self.inprogress_constraint )
a = None
if len(self.pending_constraints ) == 0:
# we're done!
a = True
else:
# Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list
# of constraints?
for cidx, pending_constraint in enumerate(self.pending_constraints ):
if pending_constraint.does_advance(__lowerCamelCase ):
a , a , a = pending_constraint.update(__lowerCamelCase )
if not stepped:
raise Exception(
'''`constraint.update(token_id)` is not yielding incremental progress, '''
'''even though `constraint.does_advance(token_id)` is true.''' )
if complete:
self.complete_constraints.append(__lowerCamelCase )
a = None
if not complete and stepped:
a = pending_constraint
if complete or stepped:
# If we made any progress at all, then it's at least not a "pending constraint".
a = (
self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :]
)
if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None:
# If there's no longer any pending after this and no inprogress either, then we must be
# complete.
a = True
break # prevent accidentally stepping through multiple constraints with just one token.
return complete, stepped
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Tuple=True ):
'''simple docstring'''
a = ConstraintListState(self.constraints ) # we actually never though self.constraints objects
# throughout this process. So it's at initialization state.
if stateful:
a = [
constraint.copy(stateful=__lowerCamelCase ) for constraint in self.complete_constraints
]
if self.inprogress_constraint is not None:
a = self.inprogress_constraint.copy(stateful=__lowerCamelCase )
a = [constraint.copy() for constraint in self.pending_constraints]
return new_state
| 330 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
UpperCamelCase__ : Optional[Any] = """bert-base-cased"""
UpperCamelCase__ : int = """fp16"""
UpperCamelCase__ : str = """bf16"""
UpperCamelCase__ : List[Any] = [FPaa, BFaa]
@require_fsdp
@require_cuda
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().setUp()
a = dict(
ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = F"""{i + 1}"""
a = strategy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = prefetch_policy
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__lowerCamelCase ):
a = self.dist_env.copy()
a = state_dict_type
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = AutoModel.from_pretrained(__lowerCamelCase )
for policy in FSDP_AUTO_WRAP_POLICY:
a = self.dist_env.copy()
a = policy
if policy == "TRANSFORMER_BASED_WRAP":
a = '''BertLayer'''
elif policy == "SIZE_BASED_WRAP":
a = '''2000'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
a = self.dist_env.copy()
a = '''TRANSFORMER_BASED_WRAP'''
a = '''T5Layer'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
with self.assertRaises(__lowerCamelCase ) as cm:
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) )
a = self.dist_env.copy()
a = '''SIZE_BASED_WRAP'''
a = '''0'''
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
a = self.dist_env.copy()
a = mp_dtype
with mockenv_context(**__lowerCamelCase ):
a = Accelerator()
if mp_dtype == "fp16":
a = torch.floataa
elif mp_dtype == "bf16":
a = torch.bfloataa
a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
a = self.dist_env.copy()
a = str(__lowerCamelCase ).lower()
with mockenv_context(**__lowerCamelCase ):
a = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) )
@require_fsdp
@require_multi_gpu
@slow
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
super().setUp()
a = 0.82
a = [
'''fsdp_shard_grad_op_transformer_based_wrap''',
'''fsdp_full_shard_transformer_based_wrap''',
]
a = {
'''multi_gpu_fp16''': 32_00,
'''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00,
'''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
a = 1_60
a = 1_60
a = inspect.getfile(accelerate.test_utils )
a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' )
a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''']
for config in self.performance_configs:
a = cmd.copy()
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in config:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "fp32" in config:
cmd_config.append('''--mixed_precision=no''' )
else:
cmd_config.append('''--mixed_precision=fp16''' )
if "cpu_offload" in config:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--performance_lower_bound={self.performance_lower_bound}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
'''--use_fsdp''',
'''--mixed_precision=fp16''',
'''--fsdp_transformer_layer_cls_to_wrap=BertLayer''',
]
for i, strategy in enumerate(__lowerCamelCase ):
a = cmd.copy()
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
if strategy != "FULL_SHARD":
continue
a = len(__lowerCamelCase )
for state_dict_type in FSDP_STATE_DICT_TYPE:
a = cmd_config[:state_dict_config_index]
cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
'''--partial_train_epoch=1''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
a = cmd_config[:-1]
a = os.path.join(self.tmpdir ,'''epoch_0''' )
cmd_config.extend(
[
F"""--resume_from_checkpoint={resume_from_checkpoint}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' )
a = [
'''accelerate''',
'''launch''',
'''--num_processes=2''',
'''--num_machines=1''',
'''--machine_rank=0''',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
a = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['''--mixed_precision=fp16'''] )
else:
cmd_config.extend(['''--mixed_precision=no'''] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['''--use_fsdp'''] )
for i, strategy in enumerate(__lowerCamelCase ):
if strategy.lower() in spec:
cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" )
break
if "cpu_offload" in spec:
cmd_config.append('''--fsdp_offload_params=True''' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('''--fsdp_min_num_params=2000''' )
cmd_config.extend(
[
self.test_file_path,
F"""--output_dir={self.tmpdir}""",
F"""--peak_memory_upper_bound={peak_mem_upper_bound}""",
F"""--n_train={self.n_train}""",
F"""--n_val={self.n_val}""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
| 330 | 1 |
import re
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 |
from __future__ import annotations
import os
from collections.abc import Mapping
UpperCamelCase__ : Any = tuple[int, int]
class lowerCamelCase_ :
def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ):
'''simple docstring'''
a = vertices
a = {
(min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items()
}
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ):
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
a = weight
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = Graph({min(self.vertices )} ,{} )
a = 42
a = 42
a = 42
a = 42
while len(subgraph.vertices ) < len(self.vertices ):
a = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
a = edge
a = weight
subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase )
return subgraph
def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int:
"""simple docstring"""
a = os.path.abspath(os.path.dirname(snake_case_ ) )
a = os.path.join(snake_case_, snake_case_ )
a = {}
a = 42
a = 42
a = 42
with open(snake_case_ ) as f:
a = f.read().strip().split('''\n''' )
a = [line.split(''',''' ) for line in data]
for edgea in range(1, len(snake_case_ ) ):
for edgea in range(snake_case_ ):
if adjaceny_matrix[edgea][edgea] != "-":
a = int(adjaceny_matrix[edgea][edgea] )
a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ )
a = graph.prims_algorithm()
a = sum(graph.edges.values() )
a = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F"{solution() = }")
| 330 | 1 |
def SCREAMING_SNAKE_CASE__ ( ) -> int:
"""simple docstring"""
for n in range(1, 1_0_0_0_0_0_0 ):
yield n * (n + 1) // 2
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = 1
a = 2
while i * i <= n:
a = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def SCREAMING_SNAKE_CASE__ ( ) -> List[str]:
"""simple docstring"""
return next(i for i in triangle_number_generator() if count_divisors(snake_case_ ) > 5_0_0 )
if __name__ == "__main__":
print(solution())
| 330 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
UpperCamelCase__ : List[Any] = logging.get_logger(__name__)
# General docstring
UpperCamelCase__ : List[Any] = """RegNetConfig"""
# Base docstring
UpperCamelCase__ : Dict = """facebook/regnet-y-040"""
UpperCamelCase__ : int = [1, 1_088, 7, 7]
# Image classification docstring
UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040"""
UpperCamelCase__ : Dict = """tabby, tabby cat"""
UpperCamelCase__ : Dict = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,)
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
a = ACTaFN[activation] if activation is not None else tf.identity
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ):
'''simple docstring'''
a = self.convolution(self.padding(__lowerCamelCase ) )
a = self.normalization(__lowerCamelCase )
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config.num_channels
a = TFRegNetConvLayer(
out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = shape_list(__lowerCamelCase )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) )
a = self.embedder(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.ConvaD(
filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' )
a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ):
'''simple docstring'''
return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase )
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
a = [
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ),
tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ),
]
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = self.pooler(__lowerCamelCase )
for layer_module in self.attention:
a = layer_module(__lowerCamelCase )
a = hidden_state * pooled
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = in_channels != out_channels or stride != 1
a = max(1 ,out_channels // config.groups_width )
a = (
TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' )
if should_apply_shortcut
else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' )
)
a = [
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ),
TFRegNetConvLayer(
__lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ),
TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ),
TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ),
]
a = ACTaFN[config.hidden_act]
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ):
'''simple docstring'''
a = hidden_state
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
a = self.shortcut(__lowerCamelCase )
hidden_state += residual
a = self.activation(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer
a = [
# downsampling is done in the first layer with stride of 2
layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ),
*[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )],
]
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ):
'''simple docstring'''
for layer_module in self.layers:
a = layer_module(__lowerCamelCase )
return hidden_state
class lowerCamelCase_ ( tf.keras.layers.Layer ):
def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) )
a = zip(config.hidden_sizes ,config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ):
'''simple docstring'''
a = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
a = hidden_states + (hidden_state,)
a = stage_module(__lowerCamelCase )
if output_hidden_states:
a = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase )
@keras_serializable
class lowerCamelCase_ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = config
a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' )
a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' )
a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' )
@unpack_inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase )
a = self.encoder(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = encoder_outputs[0]
a = self.pooler(__lowerCamelCase )
# Change to NCHW output format have uniformity in the modules
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,)
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = RegNetConfig
SCREAMING_SNAKE_CASE_ = 'regnet'
SCREAMING_SNAKE_CASE_ = 'pixel_values'
@property
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )}
UpperCamelCase__ : Union[str, Any] = R"""
Parameters:
This model is a Tensorflow
[tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
UpperCamelCase__ : List[str] = R"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConveNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , a_ , )
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,)
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,)
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , )
class lowerCamelCase_ ( a_ , a_ ):
def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ):
'''simple docstring'''
super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase )
a = config.num_labels
a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' )
# classification head
a = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,):
'''simple docstring'''
a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
a = return_dict if return_dict is not None else self.config.use_return_dict
a = self.regnet(
__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase )
a = outputs.pooler_output if return_dict else outputs[1]
a = self.classifier[0](__lowerCamelCase )
a = self.classifier[1](__lowerCamelCase )
a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase )
if not return_dict:
a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
| 330 | 1 |
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class lowerCamelCase_ ( a_ ):
def __init__( self : Any ,__lowerCamelCase : Tuple=0.01 ,__lowerCamelCase : str=10_00 ):
'''simple docstring'''
a = p_stop
a = max_length
def __iter__( self : Any ):
'''simple docstring'''
a = 0
a = False
while not stop and count < self.max_length:
yield count
count += 1
a = random.random() < self.p_stop
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : Optional[int]=False ,__lowerCamelCase : int=True ):
'''simple docstring'''
a = [
BatchSamplerShard(__lowerCamelCase ,2 ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
for i in range(2 )
]
a = [list(__lowerCamelCase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(__lowerCamelCase ) for shard in batch_sampler_shards] ,[len(__lowerCamelCase ) for e in expected] )
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
a = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
a = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
a = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
a = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
a = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
a = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
a = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
# Check the shards when the dataset is very small.
a = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
a = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
a = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size.
a = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
a = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
a = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
a = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
# Check the shards when the dataset is very small.
a = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
a = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(24 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
a = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(21 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
a = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(22 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
a = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(20 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is very small.
a = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [[[0, 1]], []]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(2 ) ,batch_size=3 ,drop_last=__lowerCamelCase )
a = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,even_batches=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(24 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size.
a = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(22 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
a = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(21 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
# Check the shards when the dataset is very small.
a = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [[[0, 1]], []]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
a = BatchSampler(range(2 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = [[], []]
self.check_batch_sampler_shards(__lowerCamelCase ,__lowerCamelCase ,split_batches=__lowerCamelCase ,even_batches=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
a = [BatchSamplerShard(__lowerCamelCase ,2 ,__lowerCamelCase ,even_batches=__lowerCamelCase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) ,3 )
self.assertEqual(len(batch_sampler_shards[1] ) ,2 )
self.assertListEqual(list(batch_sampler_shards[0] ) ,[[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) ,[[3, 4], [9, 10, 11]] )
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[Any]=False ,__lowerCamelCase : Any=2 ,__lowerCamelCase : str=False ):
'''simple docstring'''
random.seed(__lowerCamelCase )
a = list(__lowerCamelCase )
a = [
IterableDatasetShard(
__lowerCamelCase ,batch_size=__lowerCamelCase ,drop_last=__lowerCamelCase ,num_processes=__lowerCamelCase ,process_index=__lowerCamelCase ,split_batches=__lowerCamelCase ,)
for i in range(__lowerCamelCase )
]
a = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(__lowerCamelCase )
iterable_dataset_lists.append(list(__lowerCamelCase ) )
a = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
a = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) )
self.assertTrue(len(__lowerCamelCase ) % shard_batch_size == 0 )
a = []
for idx in range(0 ,len(__lowerCamelCase ) ,__lowerCamelCase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(__lowerCamelCase ) < len(__lowerCamelCase ):
reference += reference
self.assertListEqual(__lowerCamelCase ,reference[: len(__lowerCamelCase )] )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = 42
a = RandomIterableDataset()
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
# Edge case with a very small dataset
a = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
self.check_iterable_dataset_shards(__lowerCamelCase ,__lowerCamelCase ,batch_size=4 ,drop_last=__lowerCamelCase ,split_batches=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = BatchSampler(range(16 ) ,batch_size=4 ,drop_last=__lowerCamelCase )
a = SkipBatchSampler(__lowerCamelCase ,2 )
self.assertListEqual(list(__lowerCamelCase ) ,[[8, 9, 10, 11], [12, 13, 14, 15]] )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a = SkipDataLoader(list(range(16 ) ) ,batch_size=4 ,skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = DataLoader(list(range(16 ) ) ,batch_size=4 )
a = skip_first_batches(__lowerCamelCase ,num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] ,[[8, 9, 10, 11], [12, 13, 14, 15]] )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = DataLoaderShard(list(range(16 ) ) ,batch_size=4 )
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
Accelerator()
a = DataLoaderDispatcher(range(16 ) ,batch_size=4 )
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(__lowerCamelCase ):
self.assertEqual(dataloader.end_of_dataloader ,idx == 3 )
| 330 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase__ : List[str] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = 'efficientformer'
def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
a = hidden_act
a = hidden_dropout_prob
a = hidden_sizes
a = num_hidden_layers
a = num_attention_heads
a = initializer_range
a = layer_norm_eps
a = patch_size
a = num_channels
a = depths
a = mlp_expansion_ratio
a = downsamples
a = dim
a = key_dim
a = attention_ratio
a = resolution
a = pool_size
a = downsample_patch_size
a = downsample_stride
a = downsample_pad
a = drop_path_rate
a = num_metaad_blocks
a = distillation
a = use_layer_scale
a = layer_scale_init_value
a = image_size
a = batch_norm_eps
| 330 | 1 |
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
UpperCamelCase__ : List[Any] = None
try:
import msvcrt
except ImportError:
UpperCamelCase__ : Optional[Any] = None
try:
import fcntl
except ImportError:
UpperCamelCase__ : Optional[Any] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
UpperCamelCase__ : List[str] = OSError
# Data
# ------------------------------------------------
UpperCamelCase__ : str = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
UpperCamelCase__ : str = """3.0.12"""
UpperCamelCase__ : Optional[Any] = None
def SCREAMING_SNAKE_CASE__ ( ) -> int:
"""simple docstring"""
global _logger
a = _logger or logging.getLogger(__name__ )
return _logger
class lowerCamelCase_ ( a_ ):
def __init__( self : Optional[Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = lock_file
return None
def __str__( self : List[Any] ):
'''simple docstring'''
a = F"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class lowerCamelCase_ :
def __init__( self : Dict ,__lowerCamelCase : Tuple ):
'''simple docstring'''
a = lock
return None
def __enter__( self : int ):
'''simple docstring'''
return self.lock
def __exit__( self : Dict ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[Any] ):
'''simple docstring'''
self.lock.release()
return None
class lowerCamelCase_ :
def __init__( self : str ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any]=-1 ,__lowerCamelCase : Optional[int]=None ):
'''simple docstring'''
a = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
a = self.hash_filename_if_too_long(__lowerCamelCase ,__lowerCamelCase )
# The path to the lock file.
a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
a = None
# The default timeout value.
a = timeout
# We use this lock primarily for the lock counter.
a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
a = 0
return None
@property
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
return self._lock_file
@property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = float(__lowerCamelCase )
return None
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
raise NotImplementedError()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Dict=None ,__lowerCamelCase : str=0.05 ):
'''simple docstring'''
if timeout is None:
a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
a = id(self )
a = self._lock_file
a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(F"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(F"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(F"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
F"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(__lowerCamelCase )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
a = max(0 ,self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
a = id(self )
a = self._lock_file
logger().debug(F"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
a = 0
logger().debug(F"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__( self : Union[str, Any] ):
'''simple docstring'''
self.acquire()
return self
def __exit__( self : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
self.release()
return None
def __del__( self : Dict ):
'''simple docstring'''
self.release(force=__lowerCamelCase )
return None
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : int ):
'''simple docstring'''
a = os.path.basename(__lowerCamelCase )
if len(__lowerCamelCase ) > max_length and max_length > 0:
a = os.path.dirname(__lowerCamelCase )
a = str(hash(__lowerCamelCase ) )
a = filename[: max_length - len(__lowerCamelCase ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(__lowerCamelCase ,__lowerCamelCase )
else:
return path
class lowerCamelCase_ ( a_ ):
def __init__( self : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Any=-1 ,__lowerCamelCase : Tuple=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(__lowerCamelCase ,timeout=__lowerCamelCase ,max_filename_length=__lowerCamelCase )
a = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
a = os.open(self._lock_file ,__lowerCamelCase )
except OSError:
pass
else:
try:
msvcrt.locking(__lowerCamelCase ,msvcrt.LK_NBLCK ,1 )
except OSError:
os.close(__lowerCamelCase )
else:
a = fd
return None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = self._lock_file_fd
a = None
msvcrt.locking(__lowerCamelCase ,msvcrt.LK_UNLCK ,1 )
os.close(__lowerCamelCase )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class lowerCamelCase_ ( a_ ):
def __init__( self : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Tuple=-1 ,__lowerCamelCase : Tuple=None ):
'''simple docstring'''
a = os.statvfs(os.path.dirname(__lowerCamelCase ) ).f_namemax
super().__init__(__lowerCamelCase ,timeout=__lowerCamelCase ,max_filename_length=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
a = os.open(self._lock_file ,__lowerCamelCase )
try:
fcntl.flock(__lowerCamelCase ,fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__lowerCamelCase )
else:
a = fd
return None
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = self._lock_file_fd
a = None
fcntl.flock(__lowerCamelCase ,fcntl.LOCK_UN )
os.close(__lowerCamelCase )
return None
class lowerCamelCase_ ( a_ ):
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
a = os.open(self._lock_file ,__lowerCamelCase )
except OSError:
pass
else:
a = fd
return None
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
os.close(self._lock_file_fd )
a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
UpperCamelCase__ : Any = None
if msvcrt:
UpperCamelCase__ : Tuple = WindowsFileLock
elif fcntl:
UpperCamelCase__ : Any = UnixFileLock
else:
UpperCamelCase__ : Union[str, Any] = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 330 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
UpperCamelCase__ : Any = [
# tf -> hf
("""/""", """."""),
("""layer_""", """layers."""),
("""kernel""", """weight"""),
("""beta""", """bias"""),
("""gamma""", """weight"""),
("""pegasus""", """model"""),
]
UpperCamelCase__ : Optional[Any] = [
(""".output.dense""", """.fc2"""),
("""intermediate.LayerNorm""", """final_layer_norm"""),
("""intermediate.dense""", """fc1"""),
]
UpperCamelCase__ : Optional[Any] = (
INIT_COMMON
+ [
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.out_proj"""),
("""attention.self""", """self_attn"""),
("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""),
("""attention.encdec_output.dense""", """encoder_attn.out_proj"""),
("""attention.encdec""", """encoder_attn"""),
("""key""", """k_proj"""),
("""value""", """v_proj"""),
("""query""", """q_proj"""),
("""decoder.LayerNorm""", """decoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : List[str] = (
INIT_COMMON
+ [
("""embeddings.word_embeddings""", """shared.weight"""),
("""embeddings.position_embeddings""", """embed_positions.weight"""),
("""attention.self.LayerNorm""", """self_attn_layer_norm"""),
("""attention.output.dense""", """self_attn.output"""),
("""attention.self""", """self_attn.self"""),
("""encoder.LayerNorm""", """encoder.layernorm_embedding"""),
]
+ END_COMMON
)
UpperCamelCase__ : Optional[int] = [
"""encdec/key/bias""",
"""encdec/query/bias""",
"""encdec/value/bias""",
"""self/key/bias""",
"""self/query/bias""",
"""self/value/bias""",
"""encdec_output/dense/bias""",
"""attention/output/dense/bias""",
]
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]:
"""simple docstring"""
for tf_name, hf_name in patterns:
a = k.replace(snake_case_, snake_case_ )
return k
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration:
"""simple docstring"""
a = BigBirdPegasusConfig(**snake_case_ )
a = BigBirdPegasusForConditionalGeneration(snake_case_ )
a = torch_model.state_dict()
a = {}
# separating decoder weights
a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = DECODER_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ):
a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE]
if any(snake_case_ ):
continue
a = REMAINING_PATTERNS
a = rename_state_dict_key(snake_case_, snake_case_ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
a = v.T
a = torch.from_numpy(snake_case_ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
a = mapping['''model.embed_positions.weight''']
a = mapping.pop('''model.embed_positions.weight''' )
a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ )
a = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict:
"""simple docstring"""
a = tf.train.list_variables(snake_case_ )
a = {}
a = ['''global_step''']
for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ):
a = any(pat in name for pat in ignore_name )
if skip_key:
continue
a = tf.train.load_variable(snake_case_, snake_case_ )
a = array
return tf_weights
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int:
"""simple docstring"""
a = get_tf_weights_as_numpy(snake_case_ )
a = convert_bigbird_pegasus(snake_case_, snake_case_ )
torch_model.save_pretrained(snake_case_ )
if __name__ == "__main__":
UpperCamelCase__ : str = argparse.ArgumentParser()
parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""")
parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""")
UpperCamelCase__ : int = parser.parse_args()
UpperCamelCase__ : Tuple = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 330 | 1 |
from __future__ import annotations
from typing import Generic, TypeVar
UpperCamelCase__ : Dict = TypeVar("""T""")
class lowerCamelCase_ ( Generic[T] ):
def __init__( self : Dict ,__lowerCamelCase : T ):
'''simple docstring'''
a = data
a = self
a = 0
class lowerCamelCase_ ( Generic[T] ):
def __init__( self : List[str] ):
'''simple docstring'''
a = {}
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : T ):
'''simple docstring'''
a = DisjointSetTreeNode(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : T ):
'''simple docstring'''
a = self.map[data]
if elem_ref != elem_ref.parent:
a = self.find_set(elem_ref.parent.data )
return elem_ref.parent
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : DisjointSetTreeNode[T] ,__lowerCamelCase : DisjointSetTreeNode[T] ):
'''simple docstring'''
if nodea.rank > nodea.rank:
a = nodea
else:
a = nodea
if nodea.rank == nodea.rank:
nodea.rank += 1
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : T ,__lowerCamelCase : T ):
'''simple docstring'''
self.link(self.find_set(__lowerCamelCase ) ,self.find_set(__lowerCamelCase ) )
class lowerCamelCase_ ( Generic[T] ):
def __init__( self : Optional[int] ):
'''simple docstring'''
a = {}
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : T ):
'''simple docstring'''
if node not in self.connections:
a = {}
def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : T ,__lowerCamelCase : T ,__lowerCamelCase : int ):
'''simple docstring'''
self.add_node(__lowerCamelCase )
self.add_node(__lowerCamelCase )
a = weight
a = weight
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
a = []
a = set()
for start in self.connections:
for end in self.connections[start]:
if (start, end) not in seen:
seen.add((end, start) )
edges.append((start, end, self.connections[start][end]) )
edges.sort(key=lambda __lowerCamelCase : x[2] )
# creating the disjoint set
a = DisjointSetTree[T]()
for node in self.connections:
disjoint_set.make_set(__lowerCamelCase )
# MST generation
a = 0
a = 0
a = GraphUndirectedWeighted[T]()
while num_edges < len(self.connections ) - 1:
a , a , a = edges[index]
index += 1
a = disjoint_set.find_set(__lowerCamelCase )
a = disjoint_set.find_set(__lowerCamelCase )
if parent_u != parent_v:
num_edges += 1
graph.add_edge(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
disjoint_set.union(__lowerCamelCase ,__lowerCamelCase )
return graph
| 330 |
import re
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str:
"""simple docstring"""
if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 330 | 1 |
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = AudioLDMPipeline
SCREAMING_SNAKE_CASE_ = TEXT_TO_AUDIO_PARAMS
SCREAMING_SNAKE_CASE_ = TEXT_TO_AUDIO_BATCH_PARAMS
SCREAMING_SNAKE_CASE_ = frozenset(
[
'num_inference_steps',
'num_waveforms_per_prompt',
'generator',
'latents',
'output_type',
'return_dict',
'callback',
'callback_steps',
] )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
a = UNetaDConditionModel(
block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') ,up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') ,cross_attention_dim=(32, 64) ,class_embed_type='''simple_projection''' ,projection_class_embeddings_input_dim=32 ,class_embeddings_concat=__lowerCamelCase ,)
a = DDIMScheduler(
beta_start=0.00_085 ,beta_end=0.012 ,beta_schedule='''scaled_linear''' ,clip_sample=__lowerCamelCase ,set_alpha_to_one=__lowerCamelCase ,)
torch.manual_seed(0 )
a = AutoencoderKL(
block_out_channels=[32, 64] ,in_channels=1 ,out_channels=1 ,down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] ,up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] ,latent_channels=4 ,)
torch.manual_seed(0 )
a = ClapTextConfig(
bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,projection_dim=32 ,)
a = ClapTextModelWithProjection(__lowerCamelCase )
a = RobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-roberta''' ,model_max_length=77 )
a = SpeechTaHifiGanConfig(
model_in_dim=8 ,sampling_rate=1_60_00 ,upsample_initial_channel=16 ,upsample_rates=[2, 2] ,upsample_kernel_sizes=[4, 4] ,resblock_kernel_sizes=[3, 7] ,resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] ,normalize_before=__lowerCamelCase ,)
a = SpeechTaHifiGan(__lowerCamelCase )
a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''vocoder''': vocoder,
}
return components
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : Tuple=0 ):
'''simple docstring'''
if str(__lowerCamelCase ).startswith('''mps''' ):
a = torch.manual_seed(__lowerCamelCase )
else:
a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
a = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : List[str] ):
'''simple docstring'''
a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_dummy_inputs(__lowerCamelCase )
a = audioldm_pipe(**__lowerCamelCase )
a = output.audios[0]
assert audio.ndim == 1
assert len(__lowerCamelCase ) == 2_56
a = audio[:10]
a = np.array(
[-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = self.get_dummy_components()
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_dummy_inputs(__lowerCamelCase )
a = 3 * [inputs['''prompt''']]
# forward
a = audioldm_pipe(**__lowerCamelCase )
a = output.audios[0]
a = self.get_dummy_inputs(__lowerCamelCase )
a = 3 * [inputs.pop('''prompt''' )]
a = audioldm_pipe.tokenizer(
__lowerCamelCase ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=__lowerCamelCase ,return_tensors='''pt''' ,)
a = text_inputs['''input_ids'''].to(__lowerCamelCase )
a = audioldm_pipe.text_encoder(
__lowerCamelCase ,)
a = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
a = F.normalize(__lowerCamelCase ,dim=-1 )
a = prompt_embeds
# forward
a = audioldm_pipe(**__lowerCamelCase )
a = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = self.get_dummy_components()
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_dummy_inputs(__lowerCamelCase )
a = 3 * ['''this is a negative prompt''']
a = negative_prompt
a = 3 * [inputs['''prompt''']]
# forward
a = audioldm_pipe(**__lowerCamelCase )
a = output.audios[0]
a = self.get_dummy_inputs(__lowerCamelCase )
a = 3 * [inputs.pop('''prompt''' )]
a = []
for p in [prompt, negative_prompt]:
a = audioldm_pipe.tokenizer(
__lowerCamelCase ,padding='''max_length''' ,max_length=audioldm_pipe.tokenizer.model_max_length ,truncation=__lowerCamelCase ,return_tensors='''pt''' ,)
a = text_inputs['''input_ids'''].to(__lowerCamelCase )
a = audioldm_pipe.text_encoder(
__lowerCamelCase ,)
a = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
a = F.normalize(__lowerCamelCase ,dim=-1 )
embeds.append(__lowerCamelCase )
a , a = embeds
# forward
a = audioldm_pipe(**__lowerCamelCase )
a = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_dummy_inputs(__lowerCamelCase )
a = '''egg cracking'''
a = audioldm_pipe(**__lowerCamelCase ,negative_prompt=__lowerCamelCase )
a = output.audios[0]
assert audio.ndim == 1
assert len(__lowerCamelCase ) == 2_56
a = audio[:10]
a = np.array(
[-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] )
assert np.abs(audio_slice - expected_slice ).max() < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = '''A hammer hitting a wooden surface'''
# test num_waveforms_per_prompt=1 (default)
a = audioldm_pipe(__lowerCamelCase ,num_inference_steps=2 ).audios
assert audios.shape == (1, 2_56)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
a = 2
a = audioldm_pipe([prompt] * batch_size ,num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 2_56)
# test num_waveforms_per_prompt for single prompt
a = 2
a = audioldm_pipe(__lowerCamelCase ,num_inference_steps=2 ,num_waveforms_per_prompt=__lowerCamelCase ).audios
assert audios.shape == (num_waveforms_per_prompt, 2_56)
# test num_waveforms_per_prompt for batch of prompts
a = 2
a = audioldm_pipe(
[prompt] * batch_size ,num_inference_steps=2 ,num_waveforms_per_prompt=__lowerCamelCase ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_56)
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
a = self.get_dummy_components()
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = audioldm_pipe.vocoder.config.sampling_rate
a = self.get_dummy_inputs(__lowerCamelCase )
a = audioldm_pipe(audio_length_in_s=0.016 ,**__lowerCamelCase )
a = output.audios[0]
assert audio.ndim == 1
assert len(__lowerCamelCase ) / vocoder_sampling_rate == 0.016
a = audioldm_pipe(audio_length_in_s=0.032 ,**__lowerCamelCase )
a = output.audios[0]
assert audio.ndim == 1
assert len(__lowerCamelCase ) / vocoder_sampling_rate == 0.032
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = self.get_dummy_components()
a = AudioLDMPipeline(**__lowerCamelCase )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = ['''hey''']
a = audioldm_pipe(__lowerCamelCase ,num_inference_steps=1 )
a = output.audios.shape
assert audio_shape == (1, 2_56)
a = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
a = SpeechTaHifiGan(__lowerCamelCase ).to(__lowerCamelCase )
a = audioldm_pipe(__lowerCamelCase ,num_inference_steps=1 )
a = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 2_56)
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
self._test_inference_batch_single_identical(test_mean_pixel_difference=__lowerCamelCase )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() ,reason='''XFormers attention is only available with CUDA and `xformers` installed''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCamelCase )
@slow
class lowerCamelCase_ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Union[str, Any]="cpu" ,__lowerCamelCase : Optional[Any]=torch.floataa ,__lowerCamelCase : Union[str, Any]=0 ):
'''simple docstring'''
a = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
a = np.random.RandomState(__lowerCamelCase ).standard_normal((1, 8, 1_28, 16) )
a = torch.from_numpy(__lowerCamelCase ).to(device=__lowerCamelCase ,dtype=__lowerCamelCase )
a = {
'''prompt''': '''A hammer hitting a wooden surface''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 2.5,
}
return inputs
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_inputs(__lowerCamelCase )
a = 25
a = audioldm_pipe(**__lowerCamelCase ).audios[0]
assert audio.ndim == 1
assert len(__lowerCamelCase ) == 8_19_20
a = audio[7_72_30:7_72_40]
a = np.array(
[-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] )
a = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1e-2
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = AudioLDMPipeline.from_pretrained('''cvssp/audioldm''' )
a = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
a = audioldm_pipe.to(__lowerCamelCase )
audioldm_pipe.set_progress_bar_config(disable=__lowerCamelCase )
a = self.get_inputs(__lowerCamelCase )
a = audioldm_pipe(**__lowerCamelCase ).audios[0]
assert audio.ndim == 1
assert len(__lowerCamelCase ) == 8_19_20
a = audio[2_77_80:2_77_90]
a = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] )
a = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3e-2
| 330 |
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count += 1
a = '''_'''
if count > 1:
return False
else:
return "".join(snake_case_ )
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
while True:
a = ['''$'''] * len(snake_case_ )
a = []
for i in range(len(snake_case_ ) ):
for j in range(i + 1, len(snake_case_ ) ):
a = compare_string(binary[i], binary[j] )
if k is False:
a = '''*'''
a = '''*'''
temp.append('''X''' )
for i in range(len(snake_case_ ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(snake_case_ ) == 0:
return pi
a = list(set(snake_case_ ) )
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
for minterm in minterms:
a = ''''''
for _ in range(snake_case_ ):
a = str(minterm % 2 ) + string
minterm //= 2
temp.append(snake_case_ )
return temp
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool:
"""simple docstring"""
a = list(snake_case_ )
a = list(snake_case_ )
a = 0
for i in range(len(snake_case_ ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]:
"""simple docstring"""
a = []
a = [0] * len(snake_case_ )
for i in range(len(chart[0] ) ):
a = 0
a = -1
for j in range(len(snake_case_ ) ):
if chart[j][i] == 1:
count += 1
a = j
if count == 1:
a = 1
for i in range(len(snake_case_ ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(snake_case_ ) ):
a = 0
temp.append(prime_implicants[i] )
while True:
a = 0
a = -1
a = 0
for i in range(len(snake_case_ ) ):
a = chart[i].count(1 )
if count_n > max_n:
a = count_n
a = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(snake_case_ ) ):
a = 0
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]:
"""simple docstring"""
a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )]
for i in range(len(snake_case_ ) ):
a = prime_implicants[i].count('''_''' )
for j in range(len(snake_case_ ) ):
if is_for_table(prime_implicants[i], binary[j], snake_case_ ):
a = 1
return chart
def SCREAMING_SNAKE_CASE__ ( ) -> None:
"""simple docstring"""
a = int(input('''Enter the no. of variables\n''' ) )
a = [
float(snake_case_ )
for x in input(
'''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split()
]
a = decimal_to_binary(snake_case_, snake_case_ )
a = check(snake_case_ )
print('''Prime Implicants are:''' )
print(snake_case_ )
a = prime_implicant_chart(snake_case_, snake_case_ )
a = selection(snake_case_, snake_case_ )
print('''Essential Prime Implicants are:''' )
print(snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 330 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = BloomTokenizerFast
SCREAMING_SNAKE_CASE_ = BloomTokenizerFast
SCREAMING_SNAKE_CASE_ = True
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = 'tokenizer_file'
SCREAMING_SNAKE_CASE_ = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'}
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
super().setUp()
a = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,**__lowerCamelCase : Optional[int] ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = self.get_rust_tokenizer()
a = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>''']
a = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
a = tokenizer.batch_encode_plus(__lowerCamelCase )['''input_ids''']
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
a = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Optional[Any]=6 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
a = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase ,**__lowerCamelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
a = '''This is a simple input'''
a = ['''This is a simple input 1''', '''This is a simple input 2''']
a = ('''This is a simple input''', '''This is a pair''')
a = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
try:
tokenizer_r.encode(__lowerCamelCase ,max_length=__lowerCamelCase )
tokenizer_r.encode_plus(__lowerCamelCase ,max_length=__lowerCamelCase )
tokenizer_r.batch_encode_plus(__lowerCamelCase ,max_length=__lowerCamelCase )
tokenizer_r.encode(__lowerCamelCase ,max_length=__lowerCamelCase )
tokenizer_r.batch_encode_plus(__lowerCamelCase ,max_length=__lowerCamelCase )
except ValueError:
self.fail('''Bloom Tokenizer should be able to deal with padding''' )
a = None # Hotfixing padding = None
self.assertRaises(__lowerCamelCase ,tokenizer_r.encode ,__lowerCamelCase ,max_length=__lowerCamelCase ,padding='''max_length''' )
# Simple input
self.assertRaises(__lowerCamelCase ,tokenizer_r.encode_plus ,__lowerCamelCase ,max_length=__lowerCamelCase ,padding='''max_length''' )
# Simple input
self.assertRaises(
__lowerCamelCase ,tokenizer_r.batch_encode_plus ,__lowerCamelCase ,max_length=__lowerCamelCase ,padding='''max_length''' ,)
# Pair input
self.assertRaises(__lowerCamelCase ,tokenizer_r.encode ,__lowerCamelCase ,max_length=__lowerCamelCase ,padding='''max_length''' )
# Pair input
self.assertRaises(__lowerCamelCase ,tokenizer_r.encode_plus ,__lowerCamelCase ,max_length=__lowerCamelCase ,padding='''max_length''' )
# Pair input
self.assertRaises(
__lowerCamelCase ,tokenizer_r.batch_encode_plus ,__lowerCamelCase ,max_length=__lowerCamelCase ,padding='''max_length''' ,)
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ):
'''simple docstring'''
a = self.get_rust_tokenizer()
a = load_dataset('''xnli''' ,'''all_languages''' ,split='''test''' ,streaming=__lowerCamelCase )
a = next(iter(__lowerCamelCase ) )['''premise'''] # pick up one data
a = list(sample_data.values() )
a = list(map(tokenizer.encode ,__lowerCamelCase ) )
a = [tokenizer.decode(__lowerCamelCase ,clean_up_tokenization_spaces=__lowerCamelCase ) for x in output_tokens]
self.assertListEqual(__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) ,1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) ,1 )
| 330 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
UpperCamelCase__ : List[str] = logging.get_logger(__name__)
@add_end_docstrings(a_ )
class lowerCamelCase_ ( a_ ):
def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(*__lowerCamelCase ,**__lowerCamelCase )
requires_backends(self ,'''vision''' )
self.check_model_type(__lowerCamelCase )
def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ):
'''simple docstring'''
return super().__call__(__lowerCamelCase ,**__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ):
'''simple docstring'''
return {}, {}, {}
def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = load_image(__lowerCamelCase )
a = image.size
a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework )
return model_inputs
def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = self.model(**__lowerCamelCase )
return model_outputs
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
a = model_outputs.predicted_depth
a = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase )
a = prediction.squeeze().cpu().numpy()
a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' )
a = Image.fromarray(__lowerCamelCase )
a = {}
a = predicted_depth
a = depth
return output_dict
| 330 | 1 |
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase_ ( unittest.TestCase ):
def __init__( self : List[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : List[str]=32 ,__lowerCamelCase : Any=3 ,__lowerCamelCase : Dict=10 ,__lowerCamelCase : Union[str, Any]=[10, 20, 30, 40] ,__lowerCamelCase : List[str]=[1, 1, 2, 1] ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Any="relu" ,__lowerCamelCase : Optional[int]=3 ,__lowerCamelCase : Optional[int]=None ,):
'''simple docstring'''
a = parent
a = batch_size
a = image_size
a = num_channels
a = embeddings_size
a = hidden_sizes
a = depths
a = is_training
a = use_labels
a = hidden_act
a = num_labels
a = scope
a = len(__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ):
'''simple docstring'''
a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a = self.get_config()
return config, pixel_values
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,)
def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
a = FlaxRegNetModel(config=__lowerCamelCase )
a = model(__lowerCamelCase )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,)
def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ):
'''simple docstring'''
a = self.num_labels
a = FlaxRegNetForImageClassification(config=__lowerCamelCase )
a = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE_ ( self : Tuple ):
'''simple docstring'''
a = self.prepare_config_and_inputs()
a , a = config_and_inputs
a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class lowerCamelCase_ ( a_ , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
SCREAMING_SNAKE_CASE_ = False
def SCREAMING_SNAKE_CASE_ ( self : Dict ):
'''simple docstring'''
a = FlaxRegNetModelTester(self )
a = ConfigTester(self ,config_class=__lowerCamelCase ,has_text_modality=__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
return
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE_ ( self : List[Any] ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = model_class(__lowerCamelCase )
a = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a = [*signature.parameters.keys()]
a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : str ):
'''simple docstring'''
def check_hidden_states_output(__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : str ):
a = model_class(__lowerCamelCase )
a = model(**self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase ) )
a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
a = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) ,expected_num_stages + 1 )
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a = True
check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a = True
check_hidden_states_output(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self : Any ):
'''simple docstring'''
a , a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
a = self._prepare_for_class(__lowerCamelCase ,__lowerCamelCase )
a = model_class(__lowerCamelCase )
@jax.jit
def model_jitted(__lowerCamelCase : Optional[Any] ,**__lowerCamelCase : int ):
return model(pixel_values=__lowerCamelCase ,**__lowerCamelCase )
with self.subTest('''JIT Enabled''' ):
a = model_jitted(**__lowerCamelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
a = model_jitted(**__lowerCamelCase ).to_tuple()
self.assertEqual(len(__lowerCamelCase ) ,len(__lowerCamelCase ) )
for jitted_output, output in zip(__lowerCamelCase ,__lowerCamelCase ):
self.assertEqual(jitted_output.shape ,output.shape )
def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]:
"""simple docstring"""
a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
@cached_property
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ):
'''simple docstring'''
a = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
a = self.default_image_processor
a = prepare_img()
a = image_processor(images=__lowerCamelCase ,return_tensors='''np''' )
a = model(**__lowerCamelCase )
# verify the logits
a = (1, 10_00)
self.assertEqual(outputs.logits.shape ,__lowerCamelCase )
a = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
| 330 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=a_ )
class lowerCamelCase_ ( a_ ):
SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} )
SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} )
SCREAMING_SNAKE_CASE_ = Features({} )
SCREAMING_SNAKE_CASE_ = "text"
@property
def SCREAMING_SNAKE_CASE_ ( self : int ):
'''simple docstring'''
return {self.text_column: "text"}
| 330 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.