code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import annotations UpperCamelCase__ : int = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class lowerCamelCase_ : def __init__( self : Union[str, Any] ,__lowerCamelCase : dict[str, list[str]] ,__lowerCamelCase : str ): '''simple docstring''' a = graph # mapping node to its parent in resulting breadth first tree a = {} a = source_vertex def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = {self.source_vertex} a = None a = [self.source_vertex] # first in first out queue while queue: a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCamelCase ) a = vertex queue.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex a = self.parent.get(__lowerCamelCase ) if target_vertex_parent is None: a = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(__lowerCamelCase ) return self.shortest_path(__lowerCamelCase ) + F"""->{target_vertex}""" if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
330
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
1
import math import sys def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = '''''' try: with open(snake_case_, '''rb''' ) as binary_file: a = binary_file.read() for dat in data: a = f"""{dat:08b}""" result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = {'''0''': '''0''', '''1''': '''1'''} a , a = '''''', '''''' a = len(snake_case_ ) for i in range(len(snake_case_ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a = lexicon[curr_string] result += last_match_id a = last_match_id + '''0''' if math.loga(snake_case_ ).is_integer(): a = {} for curr_key in list(snake_case_ ): a = lexicon.pop(snake_case_ ) a = new_lex a = last_match_id + '''1''' index += 1 a = '''''' return result def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> None: """simple docstring""" a = 8 try: with open(snake_case_, '''wb''' ) as opened_file: a = [ to_write[i : i + byte_length] for i in range(0, len(snake_case_ ), snake_case_ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(snake_case_, 2 ).to_bytes(1, byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = 0 for letter in data_bits: if letter == "1": break counter += 1 a = data_bits[counter:] a = data_bits[counter + 1 :] return data_bits def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> None: """simple docstring""" a = read_file_binary(snake_case_ ) a = remove_prefix(snake_case_ ) a = decompress_data(snake_case_ ) write_file_binary(snake_case_, snake_case_ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
330
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") UpperCamelCase__ : List[Any] = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) UpperCamelCase__ : List[str] = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) UpperCamelCase__ : Optional[int] = BeautifulSoup(res.text, """html.parser""") UpperCamelCase__ : List[Any] = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(F"https://google.com{link.get('href')}")
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ : List[str] = logging.getLogger() def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" a = {} a = os.path.join(snake_case_, '''all_results.json''' ) if os.path.exists(snake_case_ ): with open(snake_case_, '''r''' ) as f: a = json.load(snake_case_ ) else: raise ValueError(f"""can't find {path}""" ) return results UpperCamelCase__ : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' import xla_spawn a = self.get_auto_remove_tmp_dir() a = F""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(__lowerCamelCase ,'''argv''' ,__lowerCamelCase ): a = time() xla_spawn.main() a = time() a = get_results(__lowerCamelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] ,0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start ,5_00 ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' import xla_spawn a = ''' ./tests/test_trainer_tpu.py --num_cores=8 ./tests/test_trainer_tpu.py '''.split() with patch.object(__lowerCamelCase ,'''argv''' ,__lowerCamelCase ): xla_spawn.main()
330
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Dict = 32 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 1_6 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) a = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : int = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": a = 2 # Initialize accelerator a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters(), lr=snake_case_ ) a , a = get_dataloaders(snake_case_, snake_case_ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**snake_case_ ) a = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**snake_case_ ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
330
1
UpperCamelCase__ : dict[str, float] = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.602176634E-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.3_5_5_8_1_8, } def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: a = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(snake_case_ )}""" ) raise ValueError(snake_case_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
def SCREAMING_SNAKE_CASE__ ( snake_case_ = 4_0_0_0_0_0_0 ) -> int: """simple docstring""" a = [] a , a = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(snake_case_ ) a , a = b, a + b return sum(snake_case_ ) if __name__ == "__main__": print(F"{solution() = }")
330
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" class lowerCamelCase_ : def __init__( self : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = metric_id class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if "tmp_path" in args: a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case_ )
330
1
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'mctct' def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any]=80_65 ,__lowerCamelCase : Optional[int]=15_36 ,__lowerCamelCase : int=36 ,__lowerCamelCase : str=61_44 ,__lowerCamelCase : str=4 ,__lowerCamelCase : List[Any]=3_84 ,__lowerCamelCase : Dict=9_20 ,__lowerCamelCase : Tuple=1e-5 ,__lowerCamelCase : Optional[int]=0.3 ,__lowerCamelCase : Any="relu" ,__lowerCamelCase : List[str]=0.02 ,__lowerCamelCase : int=0.3 ,__lowerCamelCase : Union[str, Any]=0.3 ,__lowerCamelCase : List[str]=1 ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : Dict=2 ,__lowerCamelCase : int=1 ,__lowerCamelCase : Union[str, Any]=0.3 ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[str]=(7,) ,__lowerCamelCase : List[Any]=(3,) ,__lowerCamelCase : Optional[int]=80 ,__lowerCamelCase : List[Any]=1 ,__lowerCamelCase : int=None ,__lowerCamelCase : str="sum" ,__lowerCamelCase : List[str]=False ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(**__lowerCamelCase ,pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ) a = vocab_size a = hidden_size a = num_hidden_layers a = intermediate_size a = num_attention_heads a = attention_head_dim a = max_position_embeddings a = layer_norm_eps a = layerdrop a = hidden_act a = initializer_range a = hidden_dropout_prob a = attention_probs_dropout_prob a = pad_token_id a = bos_token_id a = eos_token_id a = conv_glu_dim a = conv_dropout a = num_conv_layers a = input_feat_per_channel a = input_channels a = conv_channels a = ctc_loss_reduction a = ctc_zero_infinity # prevents config testing fail with exporting to json a = list(__lowerCamelCase ) a = list(__lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' F"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
1
from manim import * class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = Rectangle(height=0.5 ,width=0.5 ) a = Rectangle(height=0.46 ,width=0.46 ).set_stroke(width=0 ) a = [mem.copy() for i in range(6 )] a = [mem.copy() for i in range(6 )] a = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0 ) a = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0 ) a = VGroup(__lowerCamelCase ,__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0 ) a = Text('''CPU''' ,font_size=24 ) a = Group(__lowerCamelCase ,__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0.5 ,aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) a = [mem.copy() for i in range(4 )] a = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0 ) a = Text('''GPU''' ,font_size=24 ) a = Group(__lowerCamelCase ,__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0.5 ,aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) a = [mem.copy() for i in range(6 )] a = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0 ) a = Text('''Model''' ,font_size=24 ) a = Group(__lowerCamelCase ,__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0.5 ,aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) a = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) a = Rectangle(height=0.46 / 4 ,width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase ,opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) ,buff=0.02 ,direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] ,direction=__lowerCamelCase ,buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] ,direction=__lowerCamelCase ,buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) a = [mem.copy() for i in range(6 )] a = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase ,buff=0 ) a = Text('''Loaded Checkpoint''' ,font_size=24 ) a = Group(__lowerCamelCase ,__lowerCamelCase ).arrange(__lowerCamelCase ,aligned_edge=__lowerCamelCase ,buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) a = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) a = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" ,font_size=18 ,) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase ,__lowerCamelCase ) a = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" ,font_size=18 ,) blue_text.next_to(__lowerCamelCase ,DOWN * 2.4 ,aligned_edge=key_text.get_left() ) a = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" ,font_size=24 ,) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) ,Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase ,run_time=1 ) ,Create(__lowerCamelCase ,run_time=1 ) ) a = [] a = [] for i, rect in enumerate(__lowerCamelCase ): a = fill.copy().set_fill(__lowerCamelCase ,opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase ,run_time=1 ) ) a = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase ,run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
330
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ , UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
330
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" if is_torch_version('''<''', '''2.0.0''' ) or not hasattr(snake_case_, '''_dynamo''' ): return False return isinstance(snake_case_, torch._dynamo.eval_frame.OptimizedModule ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = True ) -> Any: """simple docstring""" a = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) a = is_compiled_module(snake_case_ ) if is_compiled: a = model a = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(snake_case_, snake_case_ ): a = model.module if not keep_fpaa_wrapper: a = getattr(snake_case_, '''forward''' ) a = model.__dict__.pop('''_original_forward''', snake_case_ ) if original_forward is not None: while hasattr(snake_case_, '''__wrapped__''' ): a = forward.__wrapped__ if forward == original_forward: break a = forward if getattr(snake_case_, '''_converted_to_transformer_engine''', snake_case_ ): convert_model(snake_case_, to_transformer_engine=snake_case_ ) if is_compiled: a = model a = compiled_model return model def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" PartialState().wait_for_everyone() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(snake_case_, snake_case_ ) elif PartialState().local_process_index == 0: torch.save(snake_case_, snake_case_ ) @contextmanager def SCREAMING_SNAKE_CASE__ ( **snake_case_ ) -> Dict: """simple docstring""" for key, value in kwargs.items(): a = str(snake_case_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" if not hasattr(snake_case_, '''__qualname__''' ) and not hasattr(snake_case_, '''__name__''' ): a = getattr(snake_case_, '''__class__''', snake_case_ ) if hasattr(snake_case_, '''__qualname__''' ): return obj.__qualname__ if hasattr(snake_case_, '''__name__''' ): return obj.__name__ return str(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" for key, value in source.items(): if isinstance(snake_case_, snake_case_ ): a = destination.setdefault(snake_case_, {} ) merge_dicts(snake_case_, snake_case_ ) else: a = value return destination def SCREAMING_SNAKE_CASE__ ( snake_case_ = None ) -> bool: """simple docstring""" if port is None: a = 2_9_5_0_0 with socket.socket(socket.AF_INET, socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
330
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
1
import os def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[Any]: """simple docstring""" a = len(grid[0] ) a = len(snake_case_ ) a = 0 a = 0 a = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(snake_case_ ): for j in range(n_rows - 3 ): a = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] a = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: a = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: a = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) a = max( snake_case_, snake_case_, snake_case_, snake_case_ ) if max_product > largest: a = max_product return largest def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" a = [] with open(os.path.dirname(snake_case_ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) a = [[int(snake_case_ ) for i in grid[j]] for j in range(len(snake_case_ ) )] return largest_product(snake_case_ ) if __name__ == "__main__": print(solution())
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def SCREAMING_SNAKE_CASE__ ( snake_case_ = True, *snake_case_, **snake_case_ ) -> Any: """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) a = False if main_process_only: a = PartialState().local_process_index == 0 return _tqdm(*snake_case_, **snake_case_, disable=snake_case_ )
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
from cva import destroyAllWindows, imread, imshow, waitKey def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a , a = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(snake_case_ ): for j in range(snake_case_ ): a = [2_5_5, 2_5_5, 2_5_5] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase__ : Any = imread("""image_data/lena.jpg""", 1) # convert to its negative UpperCamelCase__ : List[Any] = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
330
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = torch.device("""cpu""") def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(snake_case_, stream=snake_case_ ).raw ) return im def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: """simple docstring""" if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" a = dct.pop(snake_case_ ) a = val def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = [] for k in state_dict.keys(): a = k if ".pwconv" in k: a = k_new.replace('''.pwconv''', '''.point_wise_conv''' ) if ".dwconv" in k: a = k_new.replace('''.dwconv''', '''.depth_wise_conv''' ) if ".Proj." in k: a = k_new.replace('''.Proj.''', '''.proj.''' ) if "patch_embed" in k_new: a = k_new.replace('''patch_embed''', '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: a = k_new.split('''.''' ) if ls[2].isdigit(): a = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: a = k_new.replace('''network''', '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size a = 1_0_0_0 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(snake_case_, snake_case_, repo_type='''dataset''' ), '''r''' ) ) a = {int(snake_case_ ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": a = [3, 3, 6, 4] a = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": a = [3, 3, 9, 6] a = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": a = [4, 3, 1_0, 5] a = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": a = [4, 4, 1_2, 6] a = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): a = torch.hub.load_state_dict_from_url(snake_case_, map_location='''cpu''', check_hash=snake_case_ ) else: a = torch.load(snake_case_, map_location='''cpu''' ) a = checkpoint a = create_rename_keys(snake_case_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case_, snake_case_, snake_case_ ) # load HuggingFace model a = SwiftFormerForImageClassification(snake_case_ ).eval() hf_model.load_state_dict(snake_case_ ) # prepare test inputs a = prepare_img() a = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) a = processor(images=snake_case_, return_tensors='''pt''' ) # compare outputs from both models a = get_expected_output(snake_case_ ) a = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5], snake_case_, atol=1e-3 ) Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") UpperCamelCase__ : Dict = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
330
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" a = BertConfig.from_json_file(snake_case_ ) print(f"""Building PyTorch model from configuration: {config}""" ) a = BertForPreTraining(snake_case_ ) # Load weights from tf checkpoint load_tf_weights_in_bert(snake_case_, snake_case_, snake_case_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase__ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
330
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['image_processor', 'tokenizer'] SCREAMING_SNAKE_CASE_ = 'Pix2StructImageProcessor' SCREAMING_SNAKE_CASE_ = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ): '''simple docstring''' a = False super().__init__(__lowerCamelCase ,__lowerCamelCase ) def __call__( self : Any ,__lowerCamelCase : str=None ,__lowerCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None ,__lowerCamelCase : bool = True ,__lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,__lowerCamelCase : Union[bool, str, TruncationStrategy] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[int] = 20_48 ,__lowerCamelCase : int = 0 ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,**__lowerCamelCase : Union[str, Any] ,): '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: a = self.tokenizer a = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) return text_encoding if not self.image_processor.is_vqa: # add pixel_values a = self.image_processor( __lowerCamelCase ,return_tensors=__lowerCamelCase ,max_patches=__lowerCamelCase ,**__lowerCamelCase ) else: # add pixel_values and bbox a = self.image_processor( __lowerCamelCase ,return_tensors=__lowerCamelCase ,max_patches=__lowerCamelCase ,header_text=__lowerCamelCase ,**__lowerCamelCase ) if text is not None and not self.image_processor.is_vqa: a = self.tokenizer( text=__lowerCamelCase ,add_special_tokens=__lowerCamelCase ,padding=__lowerCamelCase ,truncation=__lowerCamelCase ,max_length=__lowerCamelCase ,stride=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,return_overflowing_tokens=__lowerCamelCase ,return_special_tokens_mask=__lowerCamelCase ,return_offsets_mapping=__lowerCamelCase ,return_token_type_ids=__lowerCamelCase ,return_length=__lowerCamelCase ,verbose=__lowerCamelCase ,return_tensors=__lowerCamelCase ,**__lowerCamelCase ,) if "attention_mask" in text_encoding: a = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: a = text_encoding.pop('''input_ids''' ) else: a = None if text_encoding is not None: encoding_image_processor.update(__lowerCamelCase ) return encoding_image_processor def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,*__lowerCamelCase : List[str] ,**__lowerCamelCase : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,*__lowerCamelCase : List[Any] ,**__lowerCamelCase : Any ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.tokenizer.model_input_names a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : List[Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__ : List[Any] = """RegNetConfig""" # Base docstring UpperCamelCase__ : Dict = """facebook/regnet-y-040""" UpperCamelCase__ : int = [1, 1_088, 7, 7] # Image classification docstring UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040""" UpperCamelCase__ : Dict = """tabby, tabby cat""" UpperCamelCase__ : Dict = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) a = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ): '''simple docstring''' a = self.convolution(self.padding(__lowerCamelCase ) ) a = self.normalization(__lowerCamelCase ) a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config.num_channels a = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) ) a = self.embedder(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase ) class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) a = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = self.pooler(__lowerCamelCase ) for layer_module in self.attention: a = layer_module(__lowerCamelCase ) a = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer a = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ), *[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ): '''simple docstring''' for layer_module in self.layers: a = layer_module(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) ) a = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ): '''simple docstring''' a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a = hidden_states + (hidden_state,) a = stage_module(__lowerCamelCase ) if output_hidden_states: a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase ) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ = RegNetConfig def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' ) a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase ) a = self.encoder( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = encoder_outputs[0] a = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = RegNetConfig SCREAMING_SNAKE_CASE_ = 'regnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} UpperCamelCase__ : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCamelCase__ : List[str] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a_ , ) class lowerCamelCase_ ( a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , ) class lowerCamelCase_ ( a_ , a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = config.num_labels a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) # classification head a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = outputs.pooler_output if return_dict else outputs[1] a = self.classifier[0](__lowerCamelCase ) a = self.classifier[1](__lowerCamelCase ) a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase ) if not return_dict: a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
330
1
import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params UpperCamelCase__ : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ["""memory_attention""", """encoder_attn"""], ["""attention""", """attn"""], ["""/""", """."""], [""".LayerNorm.gamma""", """_layer_norm.weight"""], [""".LayerNorm.beta""", """_layer_norm.bias"""], ["""r.layer_""", """r.layers."""], ["""output_proj""", """out_proj"""], ["""ffn.dense_1.""", """fc2."""], ["""ffn.dense.""", """fc1."""], ["""ffn_layer_norm""", """final_layer_norm"""], ["""kernel""", """weight"""], ["""encoder_layer_norm.""", """encoder.layer_norm."""], ["""decoder_layer_norm.""", """decoder.layer_norm."""], ["""embeddings.weights""", """shared.weight"""], ] def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" for pegasus_name, hf_name in PATTERNS: a = k.replace(snake_case_, snake_case_ ) return k def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> PegasusForConditionalGeneration: """simple docstring""" a = DEFAULTS.copy() cfg_kwargs.update(snake_case_ ) a = PegasusConfig(**snake_case_ ) a = PegasusForConditionalGeneration(snake_case_ ) a = torch_model.model.state_dict() a = {} for k, v in tf_weights.items(): a = rename_state_dict_key(snake_case_ ) if new_k not in sd: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if "dense" in k or "proj" in new_k: a = v.T a = torch.tensor(snake_case_, dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f"""{new_k}, {k}, {v.shape}, {sd[new_k].shape}""" # make sure embedding.padding_idx is respected a = torch.zeros_like(mapping['''shared.weight'''][cfg.pad_token_id + 1] ) a = mapping['''shared.weight'''] a = mapping['''shared.weight'''] a = {k: torch.zeros_like(snake_case_ ) for k, v in sd.items() if k.endswith('''bias''' ) and k not in mapping} mapping.update(**snake_case_ ) a , a = torch_model.model.load_state_dict(snake_case_, strict=snake_case_ ) a = [ k for k in missing if k not in ['''encoder.embed_positions.weight''', '''decoder.embed_positions.weight'''] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE__ ( snake_case_="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: """simple docstring""" a = tf.train.list_variables(snake_case_ ) a = {} a = ['''Adafactor''', '''global_step'''] for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ): a = any(pat in name for pat in ignore_name ) if skip_key: continue a = tf.train.load_variable(snake_case_, snake_case_ ) a = array return tf_weights def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Tuple: """simple docstring""" a = Path(snake_case_ ).parent.name a = task_specific_params[f"""summarization_{dataset}"""]['''max_position_embeddings'''] a = PegasusTokenizer.from_pretrained('''sshleifer/pegasus''', model_max_length=snake_case_ ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(snake_case_ ) # convert model a = get_tf_weights_as_numpy(snake_case_ ) a = task_specific_params[f"""summarization_{dataset}"""] if dataset == "large": a = task_specific_params a = convert_pegasus(snake_case_, snake_case_ ) torch_model.save_pretrained(snake_case_ ) a = torch_model.state_dict() sd.pop('''model.decoder.embed_positions.weight''' ) sd.pop('''model.encoder.embed_positions.weight''' ) torch.save(snake_case_, Path(snake_case_ ) / '''pytorch_model.bin''' ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument("""tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase__ : Union[str, Any] = parser.parse_args() if args.save_dir is None: UpperCamelCase__ : Optional[Any] = Path(args.tf_ckpt_path).parent.name UpperCamelCase__ : List[str] = os.path.join("""pegasus""", dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
330
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(snake_case_, snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" a , a = emb.weight.shape a = nn.Linear(snake_case_, snake_case_, bias=snake_case_ ) a = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = torch.load(snake_case_, map_location='''cpu''' ) a = Namespace(**checkpoint['''cfg''']['''model'''] ) a = checkpoint['''model'''] remove_ignore_keys_(snake_case_ ) a = state_dict['''decoder.embed_tokens.weight'''].shape[0] a = {key.replace('''decoder''', '''model''' ): val for key, val in state_dict.items()} a = XGLMConfig( vocab_size=snake_case_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='''gelu''', scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) a = XGLMForCausalLM(snake_case_ ) a = model.load_state_dict(snake_case_, strict=snake_case_ ) print(snake_case_ ) a = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase__ : List[Any] = parser.parse_args() UpperCamelCase__ : int = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ : Any = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] UpperCamelCase__ : Optional[Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] UpperCamelCase__ : Optional[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : List[str] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : Optional[int] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: a = k.replace(snake_case_, snake_case_ ) return k def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" a = BigBirdPegasusConfig(**snake_case_ ) a = BigBirdPegasusForConditionalGeneration(snake_case_ ) a = torch_model.state_dict() a = {} # separating decoder weights a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = DECODER_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = REMAINING_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" a = mapping['''model.embed_positions.weight'''] a = mapping.pop('''model.embed_positions.weight''' ) a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ ) a = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = tf.train.list_variables(snake_case_ ) a = {} a = ['''global_step'''] for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ): a = any(pat in name for pat in ignore_name ) if skip_key: continue a = tf.train.load_variable(snake_case_, snake_case_ ) a = array return tf_weights def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" a = get_tf_weights_as_numpy(snake_case_ ) a = convert_bigbird_pegasus(snake_case_, snake_case_ ) torch_model.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase__ : int = parser.parse_args() UpperCamelCase__ : Tuple = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) a = AutoTokenizer.from_pretrained('''google/mt5-small''' ) a = tokenizer('''Hello there''' ,return_tensors='''np''' ).input_ids a = tokenizer('''Hi I am''' ,return_tensors='''np''' ).input_ids a = shift_tokens_right(__lowerCamelCase ,model.config.pad_token_id ,model.config.decoder_start_token_id ) a = model(__lowerCamelCase ,decoder_input_ids=__lowerCamelCase ).logits a = optax.softmax_cross_entropy(__lowerCamelCase ,onehot(__lowerCamelCase ,logits.shape[-1] ) ).mean() a = -(labels.shape[-1] * loss.item()) a = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
330
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
1
from __future__ import annotations import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return np.maximum(0, snake_case_ ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
330
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
1
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = 3.0 class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() ,{} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() ,{'''a''': 2} ) self.assertDictEqual(MockClass(a=2 ,b=__lowerCamelCase ).to_kwargs() ,{'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 ,c=2.25 ).to_kwargs() ,{'''a''': 2, '''c''': 2.25} ) @require_cuda def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = GradScalerKwargs(init_scale=10_24 ,growth_factor=2 ) AcceleratorState._reset_state() a = Accelerator(mixed_precision='''fp16''' ,kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale ,1_024.0 ) self.assertEqual(scaler._growth_factor ,2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor ,0.5 ) self.assertEqual(scaler._growth_interval ,20_00 ) self.assertEqual(scaler._enabled ,__lowerCamelCase ) @require_multi_gpu def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = ['''torchrun''', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase__ : Tuple = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCamelCase__ : List[str] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCamelCase__ : Union[str, Any] = torch.nn.Linear(100, 200) UpperCamelCase__ : Tuple = accelerator.prepare(model) # Check the values changed in kwargs UpperCamelCase__ : Dict = """""" UpperCamelCase__ : str = model.bucket_bytes_cap // (1_024 * 1_024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
330
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class lowerCamelCase_ ( a_ ): def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) requires_backends(self ,'''vision''' ) self.check_model_type(__lowerCamelCase ) def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ): '''simple docstring''' return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = load_image(__lowerCamelCase ) a = image.size a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = self.model(**__lowerCamelCase ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = model_outputs.predicted_depth a = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase ) a = prediction.squeeze().cpu().numpy() a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' ) a = Image.fromarray(__lowerCamelCase ) a = {} a = predicted_depth a = depth return output_dict
330
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={"_".join([str(__lowerCamelCase ) for s in shape] )}.npy""" def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : Any=(4, 4, 64, 64) ,__lowerCamelCase : int=False ): '''simple docstring''' a = jnp.bfloataa if fpaa else jnp.floataa a = jnp.array(load_hf_numpy(self.get_file_format(__lowerCamelCase ,__lowerCamelCase ) ) ,dtype=__lowerCamelCase ) return image def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' a = jnp.bfloataa if fpaa else jnp.floataa a = '''bf16''' if fpaa else None a , a = FlaxUNetaDConditionModel.from_pretrained( __lowerCamelCase ,subfolder='''unet''' ,dtype=__lowerCamelCase ,revision=__lowerCamelCase ) return model, params def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : int=(4, 77, 7_68) ,__lowerCamelCase : Tuple=False ): '''simple docstring''' a = jnp.bfloataa if fpaa else jnp.floataa a = jnp.array(load_hf_numpy(self.get_file_format(__lowerCamelCase ,__lowerCamelCase ) ) ,dtype=__lowerCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 10_00, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Tuple ): '''simple docstring''' a , a = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' ,fpaa=__lowerCamelCase ) a = self.get_latents(__lowerCamelCase ,fpaa=__lowerCamelCase ) a = self.get_encoder_hidden_states(__lowerCamelCase ,fpaa=__lowerCamelCase ) a = model.apply( {'''params''': params} ,__lowerCamelCase ,jnp.array(__lowerCamelCase ,dtype=jnp.intaa ) ,encoder_hidden_states=__lowerCamelCase ,).sample assert sample.shape == latents.shape a = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) ,dtype=jnp.floataa ) a = jnp.array(__lowerCamelCase ,dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 10_00, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str] ): '''simple docstring''' a , a = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' ,fpaa=__lowerCamelCase ) a = self.get_latents(__lowerCamelCase ,shape=(4, 4, 96, 96) ,fpaa=__lowerCamelCase ) a = self.get_encoder_hidden_states(__lowerCamelCase ,shape=(4, 77, 10_24) ,fpaa=__lowerCamelCase ) a = model.apply( {'''params''': params} ,__lowerCamelCase ,jnp.array(__lowerCamelCase ,dtype=jnp.intaa ) ,encoder_hidden_states=__lowerCamelCase ,).sample assert sample.shape == latents.shape a = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) ,dtype=jnp.floataa ) a = jnp.array(__lowerCamelCase ,dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-2 )
330
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
1
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 a = 1 a = 1 while repunit: a = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" a = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
330
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ : str = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ : Dict = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING UpperCamelCase__ : int = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_ ) -> Any: """simple docstring""" a = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): a = True # Deal with multi-line cases elif ( re.search( rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""", snake_case_, ) is not None ): a = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: a = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files a = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] a = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed a = True if not attribute_used: a = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: a = True elif attribute in ["tie_word_embeddings"] and default_value is False: a = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: a = True elif attribute.endswith('''_token_id''' ): a = True # configuration class specific cases if not case_allowed: a = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__, [] ) a = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: """simple docstring""" a = dict(inspect.signature(config_class.__init__ ).parameters ) a = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] a = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass a = {} if len(config_class.attribute_map ) > 0: a = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files a = inspect.getsourcefile(snake_case_ ) a = os.path.dirname(snake_case_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. a = [os.path.join(snake_case_, snake_case_ ) for fn in os.listdir(snake_case_ ) if fn.startswith('''modeling_''' )] # Get the source code strings a = [] for path in modeling_paths: if os.path.isfile(snake_case_ ): with open(snake_case_ ) as fp: modeling_sources.append(fp.read() ) a = [] for config_param, default_value in zip(snake_case_, snake_case_ ): # `attributes` here is all the variant names for `config_param` a = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(snake_case_, snake_case_, snake_case_, snake_case_ ): unused_attributes.append(attributes[0] ) return sorted(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) a = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ), lambda snake_case_ : inspect.isclass(snake_case_ ) and issubclass(snake_case_, snake_case_ ) and inspect.getmodule(snake_case_ ) == inspect.getmodule(_config_class ), ) ] for config_class in config_classes_in_module: a = check_config_attributes_being_used(snake_case_ ) if len(snake_case_ ) > 0: a = unused_attributes if len(snake_case_ ) > 0: a = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(snake_case_ ) if __name__ == "__main__": check_config_attributes()
330
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys UpperCamelCase__ : List[Any] = """3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1
from PIL import Image def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Image: """simple docstring""" def brightness(snake_case_ ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(snake_case_ ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 UpperCamelCase__ : List[Any] = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
330
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Dict = 32 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 1_6 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) a = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : int = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": a = 2 # Initialize accelerator a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters(), lr=snake_case_ ) a , a = get_dataloaders(snake_case_, snake_case_ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**snake_case_ ) a = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**snake_case_ ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
330
1
UpperCamelCase__ : Any = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Optional[Any] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'roformer' def __init__( self : Tuple ,__lowerCamelCase : Optional[int]=5_00_00 ,__lowerCamelCase : Any=None ,__lowerCamelCase : Tuple=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : Dict="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : List[str]=15_36 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Any=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : Optional[Any]=False ,__lowerCamelCase : str=True ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = hidden_size if embedding_size is None else embedding_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = rotary_value a = use_cache class lowerCamelCase_ ( a_ ): @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' if self.task == "multiple-choice": a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: a = {0: '''batch''', 1: '''sequence'''} a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
330
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" class lowerCamelCase_ : def __init__( self : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = metric_id class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if "tmp_path" in args: a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case_ )
330
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCamelCase__ : str = logging.get_logger(__name__) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['input_features', 'is_longer'] def __init__( self : List[str] ,__lowerCamelCase : Optional[Any]=64 ,__lowerCamelCase : str=4_80_00 ,__lowerCamelCase : List[Any]=4_80 ,__lowerCamelCase : Optional[int]=10 ,__lowerCamelCase : Optional[Any]=10_24 ,__lowerCamelCase : Any=0.0 ,__lowerCamelCase : Optional[Any]=False ,__lowerCamelCase : float = 0 ,__lowerCamelCase : float = 1_40_00 ,__lowerCamelCase : int = None ,__lowerCamelCase : str = "fusion" ,__lowerCamelCase : str = "repeatpad" ,**__lowerCamelCase : Union[str, Any] ,): '''simple docstring''' super().__init__( feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,**__lowerCamelCase ,) a = top_db a = truncation a = padding a = fft_window_size a = (fft_window_size >> 1) + 1 a = hop_length a = max_length_s a = max_length_s * sampling_rate a = sampling_rate a = frequency_min a = frequency_max a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__lowerCamelCase ,min_frequency=__lowerCamelCase ,max_frequency=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,norm=__lowerCamelCase ,mel_scale='''htk''' ,) a = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins ,num_mel_filters=__lowerCamelCase ,min_frequency=__lowerCamelCase ,max_frequency=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,norm='''slaney''' ,mel_scale='''slaney''' ,) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = copy.deepcopy(self.__dict__ ) a = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : np.array ,__lowerCamelCase : Optional[np.array] = None ): '''simple docstring''' a = spectrogram( __lowerCamelCase ,window_function(self.fft_window_size ,'''hann''' ) ,frame_length=self.fft_window_size ,hop_length=self.hop_length ,power=2.0 ,mel_filters=__lowerCamelCase ,log_mel='''dB''' ,) return log_mel_spectrogram.T def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ): '''simple docstring''' a = np.array_split(list(range(0 ,total_frames - chunk_frames + 1 ) ) ,3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a = [0] # randomly choose index for each part a = np.random.choice(ranges[0] ) a = np.random.choice(ranges[1] ) a = np.random.choice(ranges[2] ) a = mel[idx_front : idx_front + chunk_frames, :] a = mel[idx_middle : idx_middle + chunk_frames, :] a = mel[idx_back : idx_back + chunk_frames, :] a = torch.tensor(mel[None, None, :] ) a = torch.nn.functional.interpolate( __lowerCamelCase ,size=[chunk_frames, 64] ,mode='''bilinear''' ,align_corners=__lowerCamelCase ) a = mel_shrink[0][0].numpy() a = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] ,axis=0 ) return mel_fusion def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : np.array ,__lowerCamelCase : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": a = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a = len(__lowerCamelCase ) - max_length a = np.random.randint(0 ,overflow + 1 ) a = waveform[idx : idx + max_length] a = self._np_extract_fbank_features(__lowerCamelCase ,self.mel_filters_slaney )[None, :] elif truncation == "fusion": a = self._np_extract_fbank_features(__lowerCamelCase ,self.mel_filters ) a = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a = np.stack([mel, mel, mel, mel] ,axis=0 ) a = False else: a = self._random_mel_fusion(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = True else: raise NotImplementedError(F"""data_truncating {truncation} not implemented""" ) else: a = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a = int(max_length / len(__lowerCamelCase ) ) a = np.stack(np.tile(__lowerCamelCase ,n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a = int(max_length / len(__lowerCamelCase ) ) a = np.stack(np.tile(__lowerCamelCase ,__lowerCamelCase ) ) a = np.pad(__lowerCamelCase ,(0, max_length - waveform.shape[0]) ,mode='''constant''' ,constant_values=0 ) if truncation == "fusion": a = self._np_extract_fbank_features(__lowerCamelCase ,self.mel_filters ) a = np.stack([input_mel, input_mel, input_mel, input_mel] ,axis=0 ) else: a = self._np_extract_fbank_features(__lowerCamelCase ,self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[int] ,__lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCamelCase : str = None ,__lowerCamelCase : Optional[str] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' a = truncation if truncation is not None else self.truncation a = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) a = isinstance(__lowerCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) a = is_batched_numpy or ( isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ): a = np.asarray(__lowerCamelCase ,dtype=np.floataa ) elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a = [np.asarray(__lowerCamelCase )] # convert to mel spectrogram, truncate and pad if needed. a = [ self._get_input_mel(__lowerCamelCase ,max_length if max_length else self.nb_max_samples ,__lowerCamelCase ,__lowerCamelCase ) for waveform in raw_speech ] a = [] a = [] for mel, longer in padded_inputs: input_mel.append(__lowerCamelCase ) is_longer.append(__lowerCamelCase ) if truncation == "fusion" and sum(__lowerCamelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a = np.random.randint(0 ,len(__lowerCamelCase ) ) a = True if isinstance(input_mel[0] ,__lowerCamelCase ): a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a = [[longer] for longer in is_longer] a = {'''input_features''': input_mel, '''is_longer''': is_longer} a = BatchFeature(__lowerCamelCase ) if return_tensors is not None: a = input_features.convert_to_tensors(__lowerCamelCase ) return input_features
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
1
UpperCamelCase__ : Optional[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase__ : Tuple = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCamelCase__ : List[str] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> str: """simple docstring""" assert len(str(snake_case_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: a = year // 1_0_0 a = (5 * (century % 4) + 2) % 7 a = year % 1_0_0 a = centurian % 1_2 a = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 a = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) a = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
330
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ , UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
330
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = (DDPMScheduler,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,**__lowerCamelCase : Tuple ): '''simple docstring''' a = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__lowerCamelCase ) return config def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] ,[0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase ,beta_end=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase ,prediction_type=__lowerCamelCase ,sample_max_value=__lowerCamelCase ,) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1e-5 def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = len(__lowerCamelCase ) a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual a = model(__lowerCamelCase ,__lowerCamelCase ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance a = pred_prev_sample a = torch.sum(torch.abs(__lowerCamelCase ) ) a = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config(prediction_type='''v_prediction''' ) a = scheduler_class(**__lowerCamelCase ) a = len(__lowerCamelCase ) a = self.dummy_model() a = self.dummy_sample_deter a = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual a = model(__lowerCamelCase ,__lowerCamelCase ) # 2. predict previous mean of sample x_t-1 a = scheduler.step(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance a = pred_prev_sample a = torch.sum(torch.abs(__lowerCamelCase ) ) a = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) a = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: a = -1 else: a = timesteps[i + 1] a = scheduler.previous_timestep(__lowerCamelCase ) a = prev_t.item() self.assertEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [1_00, 87, 50, 51, 0] with self.assertRaises(__lowerCamelCase ,msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [1_00, 87, 50, 1, 0] a = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase ,msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase ,timesteps=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.scheduler_classes[0] a = self.get_scheduler_config() a = scheduler_class(**__lowerCamelCase ) a = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase ,msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' ,): scheduler.set_timesteps(timesteps=__lowerCamelCase )
330
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ : Optional[int] = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Dict = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
1
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = """▁""" UpperCamelCase__ : Any = {"""vocab_file""": """prophetnet.tokenizer"""} UpperCamelCase__ : str = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } UpperCamelCase__ : Union[str, Any] = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } UpperCamelCase__ : Optional[int] = { """microsoft/xprophetnet-large-wiki100-cased""": 512, } def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = collections.OrderedDict() with open(snake_case_, '''r''', encoding='''utf-8''' ) as reader: a = reader.readlines() for index, token in enumerate(snake_case_ ): a = token.rstrip('''\n''' ) a = index return vocab class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[str]="[SEP]" ,__lowerCamelCase : List[str]="[SEP]" ,__lowerCamelCase : List[Any]="[SEP]" ,__lowerCamelCase : Tuple="[UNK]" ,__lowerCamelCase : Union[str, Any]="[PAD]" ,__lowerCamelCase : str="[CLS]" ,__lowerCamelCase : int="[MASK]" ,__lowerCamelCase : Optional[Dict[str, Any]] = None ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowerCamelCase ,) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) a = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab a = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): a = F"""[unused{i}]""" a = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab a = 12 a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__lowerCamelCase ) def __getstate__( self : Dict ): '''simple docstring''' a = self.__dict__.copy() a = None return state def __setstate__( self : Optional[Any] ,__lowerCamelCase : int ): '''simple docstring''' a = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): a = {} a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return ([0] * len(__lowerCamelCase )) + [1] return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' a = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : str ): '''simple docstring''' return self.sp_model.encode(__lowerCamelCase ,out_type=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a = self.sp_model.PieceToId(__lowerCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : str ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Tuple ): '''simple docstring''' a = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase ,''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase ,'''wb''' ) as fi: a = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] a = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ProphetNetTokenizer SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' super().setUp() a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] a = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Any ): '''simple docstring''' a = '''UNwant\u00E9d,running''' a = '''unwanted, running''' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__lowerCamelCase ,['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) ,['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''h\u00E9llo'''] ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) ,['''hello'''] ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ,strip_accents=__lowerCamelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) ,['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = BasicTokenizer(do_lower_case=__lowerCamelCase ,never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) ,['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] a = {} for i, token in enumerate(__lowerCamelCase ): a = i a = WordpieceTokenizer(vocab=__lowerCamelCase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) ,['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) ,['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] a = tokenizer(__lowerCamelCase ,padding=__lowerCamelCase ,return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase ,__lowerCamelCase ) a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) a = tokenizer.encode('''sequence builders''' ,add_special_tokens=__lowerCamelCase ) a = tokenizer.encode('''multi-sequence build''' ,add_special_tokens=__lowerCamelCase ) a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ) a = tokenizer.build_inputs_with_special_tokens(__lowerCamelCase ,__lowerCamelCase ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
330
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : int = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, """constant""": get_constant_schedule, """constant_w_warmup""": get_constant_schedule_with_warmup, } class lowerCamelCase_ ( a_ ): def __init__( self : Tuple ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : int=None ,*__lowerCamelCase : Optional[int] ,**__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) if config is None: assert isinstance(self.model ,__lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) a = self.model.config else: a = config a = data_args a = self.config.tgt_vocab_size if isinstance(self.config ,__lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: a = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a = label_smoothed_nll_loss def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: a = ['''bias''', '''LayerNorm.weight'''] a = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] a = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a = Adafactor a = {'''scale_parameter''': False, '''relative_step''': False} else: a = AdamW a = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } a = self.args.learning_rate if self.sharded_ddp: a = OSS( params=__lowerCamelCase ,optim=__lowerCamelCase ,**__lowerCamelCase ,) else: a = optimizer_cls(__lowerCamelCase ,**__lowerCamelCase ) if self.lr_scheduler is None: a = self._get_lr_scheduler(__lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : int ): '''simple docstring''' a = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a = schedule_func(self.optimizer ,num_warmup_steps=self.args.warmup_steps ) else: a = schedule_func( self.optimizer ,num_warmup_steps=self.args.warmup_steps ,num_training_steps=__lowerCamelCase ) return scheduler def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' if isinstance(self.train_dataset ,torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size ,distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) ,) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a = model(**__lowerCamelCase ,use_cache=__lowerCamelCase )[0] a = self.loss_fn(logits.view(-1 ,logits.shape[-1] ) ,labels.view(-1 ) ) else: # compute usual loss via models a , a = model(**__lowerCamelCase ,labels=__lowerCamelCase ,use_cache=__lowerCamelCase )[:2] else: # compute label smoothed loss a = model(**__lowerCamelCase ,use_cache=__lowerCamelCase )[0] a = torch.nn.functional.log_softmax(__lowerCamelCase ,dim=-1 ) a , a = self.loss_fn(__lowerCamelCase ,__lowerCamelCase ,self.args.label_smoothing ,ignore_index=self.config.pad_token_id ) return loss, logits def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : int ): '''simple docstring''' a = inputs.pop('''labels''' ) a , a = self._compute_loss(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return loss def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : nn.Module ,__lowerCamelCase : Dict[str, Union[torch.Tensor, Any]] ,__lowerCamelCase : bool ,__lowerCamelCase : Optional[List[str]] = None ,): '''simple docstring''' a = self._prepare_inputs(__lowerCamelCase ) a = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a = self.model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,**__lowerCamelCase ,) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a = self._pad_tensors_to_max_len(__lowerCamelCase ,gen_kwargs['''max_length'''] ) a = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data a , a = self._compute_loss(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a = self._pad_tensors_to_max_len(__lowerCamelCase ,gen_kwargs['''max_length'''] ) return (loss, logits, labels) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : int ): '''simple docstring''' a = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F""" padded to `max_length`={max_length}""" ) a = pad_token_id * torch.ones( (tensor.shape[0], max_length) ,dtype=tensor.dtype ,device=tensor.device ) a = tensor return padded_tensor
330
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase__ : str = logging.getLogger(__name__) require_version("""pytorch_lightning>=1.0.4""") UpperCamelCase__ : Dict = { """base""": AutoModel, """sequence-classification""": AutoModelForSequenceClassification, """question-answering""": AutoModelForQuestionAnswering, """pretraining""": AutoModelForPreTraining, """token-classification""": AutoModelForTokenClassification, """language-modeling""": AutoModelWithLMHead, """summarization""": AutoModelForSeqaSeqLM, """translation""": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase__ : Tuple = { """linear""": get_linear_schedule_with_warmup, """cosine""": get_cosine_schedule_with_warmup, """cosine_w_restarts""": get_cosine_with_hard_restarts_schedule_with_warmup, """polynomial""": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase__ : List[Any] = sorted(arg_to_scheduler.keys()) UpperCamelCase__ : Union[str, Any] = """{""" + """, """.join(arg_to_scheduler_choices) + """}""" class lowerCamelCase_ ( pl.LightningModule ): def __init__( self : int ,__lowerCamelCase : argparse.Namespace ,__lowerCamelCase : List[str]=None ,__lowerCamelCase : List[Any]="base" ,__lowerCamelCase : Union[str, Any]=None ,__lowerCamelCase : Any=None ,__lowerCamelCase : Union[str, Any]=None ,**__lowerCamelCase : List[str] ,): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__lowerCamelCase ) a = 0 a = Path(self.hparams.output_dir ) a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path ,**({'''num_labels''': num_labels} if num_labels is not None else {}) ,cache_dir=__lowerCamelCase ,**__lowerCamelCase ,) else: a = config a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(self.hparams ,__lowerCamelCase ,__lowerCamelCase ): assert hasattr(self.config ,__lowerCamelCase ), F"""model config doesn't have a `{p}` attribute""" setattr(self.config ,__lowerCamelCase ,getattr(self.hparams ,__lowerCamelCase ) ) if tokenizer is None: a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path ,cache_dir=__lowerCamelCase ,) else: a = tokenizer a = MODEL_MODES[mode] if model is None: a = self.model_type.from_pretrained( self.hparams.model_name_or_path ,from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) ,config=self.config ,cache_dir=__lowerCamelCase ,) else: a = model def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[int] ): '''simple docstring''' a = self.model_type.from_pretrained(*__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = arg_to_scheduler[self.hparams.lr_scheduler] a = get_schedule_func( self.opt ,num_warmup_steps=self.hparams.warmup_steps ,num_training_steps=self.total_steps() ) a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1} return scheduler def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = self.model a = ['''bias''', '''LayerNorm.weight'''] a = [ { '''params''': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters '''weight_decay''': self.hparams.weight_decay, }, { '''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] if self.hparams.adafactor: a = Adafactor( __lowerCamelCase ,lr=self.hparams.learning_rate ,scale_parameter=__lowerCamelCase ,relative_step=__lowerCamelCase ) else: a = AdamW( __lowerCamelCase ,lr=self.hparams.learning_rate ,eps=self.hparams.adam_epsilon ) a = optimizer a = self.get_lr_scheduler() return [optimizer], [scheduler] def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int ): '''simple docstring''' return self.validation_step(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[str] ): '''simple docstring''' return self.validation_end(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = max(1 ,self.hparams.gpus ) # TODO: consider num_tpu_cores a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' if stage == "test": a = len(self.test_dataloader().dataset ) else: a = self.get_dataloader('''train''' ,self.hparams.train_batch_size ,shuffle=__lowerCamelCase ) a = len(self.train_dataloader().dataset ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : int ,__lowerCamelCase : bool = False ): '''simple docstring''' raise NotImplementedError('''You must implement this for your task''' ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return self.train_loader def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return self.get_dataloader('''dev''' ,self.hparams.eval_batch_size ,shuffle=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return self.get_dataloader('''test''' ,self.hparams.eval_batch_size ,shuffle=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : List[str] ): '''simple docstring''' return os.path.join( self.hparams.data_dir ,'''cached_{}_{}_{}'''.format( __lowerCamelCase ,list(filter(__lowerCamelCase ,self.hparams.model_name_or_path.split('''/''' ) ) ).pop() ,str(self.hparams.max_seq_length ) ,) ,) @pl.utilities.rank_zero_only def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Dict[str, Any] ): '''simple docstring''' a = self.output_dir.joinpath('''best_tfmr''' ) a = self.step_count self.model.save_pretrained(__lowerCamelCase ) self.tokenizer.save_pretrained(__lowerCamelCase ) @staticmethod def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' parser.add_argument( '''--model_name_or_path''' ,default=__lowerCamelCase ,type=__lowerCamelCase ,required=__lowerCamelCase ,help='''Path to pretrained model or model identifier from huggingface.co/models''' ,) parser.add_argument( '''--config_name''' ,default='''''' ,type=__lowerCamelCase ,help='''Pretrained config name or path if not the same as model_name''' ) parser.add_argument( '''--tokenizer_name''' ,default=__lowerCamelCase ,type=__lowerCamelCase ,help='''Pretrained tokenizer name or path if not the same as model_name''' ,) parser.add_argument( '''--cache_dir''' ,default=str(Path(__lowerCamelCase ).parent / '''test_run''' / '''cache''' ) ,type=__lowerCamelCase ,help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' ,) parser.add_argument( '''--encoder_layerdrop''' ,type=__lowerCamelCase ,help='''Encoder layer dropout probability (Optional). Goes into model.config''' ,) parser.add_argument( '''--decoder_layerdrop''' ,type=__lowerCamelCase ,help='''Decoder layer dropout probability (Optional). Goes into model.config''' ,) parser.add_argument( '''--dropout''' ,type=__lowerCamelCase ,help='''Dropout probability (Optional). Goes into model.config''' ,) parser.add_argument( '''--attention_dropout''' ,type=__lowerCamelCase ,help='''Attention dropout probability (Optional). Goes into model.config''' ,) parser.add_argument('''--learning_rate''' ,default=5e-5 ,type=__lowerCamelCase ,help='''The initial learning rate for Adam.''' ) parser.add_argument( '''--lr_scheduler''' ,default='''linear''' ,choices=__lowerCamelCase ,metavar=__lowerCamelCase ,type=__lowerCamelCase ,help='''Learning rate scheduler''' ,) parser.add_argument('''--weight_decay''' ,default=0.0 ,type=__lowerCamelCase ,help='''Weight decay if we apply some.''' ) parser.add_argument('''--adam_epsilon''' ,default=1e-8 ,type=__lowerCamelCase ,help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--warmup_steps''' ,default=0 ,type=__lowerCamelCase ,help='''Linear warmup over warmup_steps.''' ) parser.add_argument('''--num_workers''' ,default=4 ,type=__lowerCamelCase ,help='''kwarg passed to DataLoader''' ) parser.add_argument('''--num_train_epochs''' ,dest='''max_epochs''' ,default=3 ,type=__lowerCamelCase ) parser.add_argument('''--train_batch_size''' ,default=32 ,type=__lowerCamelCase ) parser.add_argument('''--eval_batch_size''' ,default=32 ,type=__lowerCamelCase ) parser.add_argument('''--adafactor''' ,action='''store_true''' ) class lowerCamelCase_ ( pl.Callback ): def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase_ ( pl.Callback ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[int] ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__lowerCamelCase ) class lowerCamelCase_ ( pl.Callback ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = trainer.lr_schedulers[0]['''scheduler'''] a = {F"""lr_group_{i}""": lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : pl.Trainer ,__lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Validation results *****''' ) a = trainer.callback_metrics # Log results for key in sorted(__lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__lowerCamelCase ,str(metrics[key] ) ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : pl.Trainer ,__lowerCamelCase : pl.LightningModule ): '''simple docstring''' rank_zero_info('''***** Test results *****''' ) a = trainer.callback_metrics # Log and save results to file a = os.path.join(pl_module.hparams.output_dir ,'''test_results.txt''' ) with open(__lowerCamelCase ,'''w''' ) as writer: for key in sorted(__lowerCamelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('''{} = {}\n'''.format(__lowerCamelCase ,str(metrics[key] ) ) ) writer.write('''{} = {}\n'''.format(__lowerCamelCase ,str(metrics[key] ) ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> None: """simple docstring""" parser.add_argument( '''--output_dir''', default=str(Path(snake_case_ ).parent / '''test_run''' / '''model_checkpoints''' ), type=snake_case_, help='''The output directory where the model predictions and checkpoints will be written.''', ) parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', ) parser.add_argument( '''--fp16_opt_level''', type=snake_case_, default='''O2''', help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ), ) parser.add_argument('''--n_tpu_cores''', dest='''tpu_cores''', type=snake_case_ ) parser.add_argument('''--max_grad_norm''', dest='''gradient_clip_val''', default=1.0, type=snake_case_, help='''Max gradient norm''' ) parser.add_argument('''--do_train''', action='''store_true''', help='''Whether to run training.''' ) parser.add_argument('''--do_predict''', action='''store_true''', help='''Whether to run predictions on the test set.''' ) parser.add_argument( '''--gradient_accumulation_steps''', dest='''accumulate_grad_batches''', type=snake_case_, default=1, help='''Number of updates steps to accumulate before performing a backward/update pass.''', ) parser.add_argument('''--seed''', type=snake_case_, default=4_2, help='''random seed for initialization''' ) parser.add_argument( '''--data_dir''', default=str(Path(snake_case_ ).parent / '''test_run''' / '''dummy-train-data''' ), type=snake_case_, help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''', ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=True, snake_case_=[], snake_case_=None, snake_case_=None, **snake_case_, ) -> str: """simple docstring""" pl.seed_everything(args.seed ) # init model a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case_ ) # add custom checkpoints if checkpoint_callback is None: a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix='''checkpoint''', monitor='''val_loss''', mode='''min''', save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case_ ) if logging_callback is None: a = LoggingCallback() a = {} if args.fpaa: a = 1_6 if args.gpus > 1: a = '''auto''' a = '''ddp''' a = args.accumulate_grad_batches a = None a = '''auto''' a = pl.Trainer.from_argparse_args( snake_case_, weights_summary=snake_case_, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=snake_case_, val_check_interval=1, num_sanity_val_steps=2, **snake_case_, ) if args.do_train: trainer.fit(snake_case_ ) else: print('''RAG modeling tests with new set functions successfuly executed!''' ) return trainer
330
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
1
import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) a = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(__lowerCamelCase ) from datasets import load_dataset a = load_dataset('''nielsr/rvlcdip-demo''' ) a = dataset['''train'''][0]['''image'''].convert('''RGB''' ) a = image_processor(__lowerCamelCase ,return_tensors='''pt''' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.logits a = torch.Size((1, 16) ) self.assertEqual(logits.shape ,__lowerCamelCase ) a = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] ,device=__lowerCamelCase ,dtype=torch.float ,) self.assertTrue(torch.allclose(logits[0, :3] ,__lowerCamelCase ,atol=1e-4 ) )
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ : Tuple = logging.get_logger(__name__) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] ,__lowerCamelCase : Optional[Any]="</s>" ,__lowerCamelCase : Union[str, Any]="<unk>" ,__lowerCamelCase : Dict="<pad>" ,__lowerCamelCase : Optional[int]=1_25 ,__lowerCamelCase : Tuple=None ,**__lowerCamelCase : Optional[int] ,): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: a = [F"""<extra_id_{i}>""" for i in range(__lowerCamelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens a = len(set(filter(lambda __lowerCamelCase : bool('''extra_id''' in str(__lowerCamelCase ) ) ,__lowerCamelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else pad_token a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else eos_token a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( eos_token=__lowerCamelCase ,unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,extra_ids=__lowerCamelCase ,additional_special_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = extra_ids a = 2**8 # utf is 8 bits # define special tokens dict a = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } a = len(self.special_tokens_encoder ) a = len(__lowerCamelCase ) for i, token in enumerate(__lowerCamelCase ): a = self.vocab_size + i - n a = {v: k for k, v in self.special_tokens_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase ,token_ids_a=__lowerCamelCase ,already_has_special_tokens=__lowerCamelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__lowerCamelCase )) + [1] return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : List[int] ): '''simple docstring''' if len(__lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' a = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' a = self._add_eos_if_not_present(__lowerCamelCase ) if token_ids_a is None: return token_ids_a else: a = self._add_eos_if_not_present(__lowerCamelCase ) return token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = [chr(__lowerCamelCase ) for i in text.encode('''utf-8''' )] return tokens def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Tuple ): '''simple docstring''' if token in self.special_tokens_encoder: a = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: a = self.added_tokens_encoder[token] elif len(__lowerCamelCase ) != 1: a = self.unk_token_id else: a = ord(__lowerCamelCase ) + self._num_special_tokens return token_id def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[Any] ): '''simple docstring''' if index in self.special_tokens_decoder: a = self.special_tokens_decoder[index] else: a = chr(index - self._num_special_tokens ) return token def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Any ): '''simple docstring''' a = B'''''' for token in tokens: if token in self.special_tokens_decoder: a = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: a = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: a = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: a = token.encode('''utf-8''' ) else: a = bytes([ord(__lowerCamelCase )] ) bstring += tok_string a = bstring.decode('''utf-8''' ,errors='''ignore''' ) return string def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' return ()
330
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : List[Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__ : List[Any] = """RegNetConfig""" # Base docstring UpperCamelCase__ : Dict = """facebook/regnet-y-040""" UpperCamelCase__ : int = [1, 1_088, 7, 7] # Image classification docstring UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040""" UpperCamelCase__ : Dict = """tabby, tabby cat""" UpperCamelCase__ : Dict = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) a = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ): '''simple docstring''' a = self.convolution(self.padding(__lowerCamelCase ) ) a = self.normalization(__lowerCamelCase ) a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config.num_channels a = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) ) a = self.embedder(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase ) class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) a = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = self.pooler(__lowerCamelCase ) for layer_module in self.attention: a = layer_module(__lowerCamelCase ) a = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer a = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ), *[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ): '''simple docstring''' for layer_module in self.layers: a = layer_module(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) ) a = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ): '''simple docstring''' a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a = hidden_states + (hidden_state,) a = stage_module(__lowerCamelCase ) if output_hidden_states: a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase ) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ = RegNetConfig def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' ) a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase ) a = self.encoder( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = encoder_outputs[0] a = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = RegNetConfig SCREAMING_SNAKE_CASE_ = 'regnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} UpperCamelCase__ : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCamelCase__ : List[str] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a_ , ) class lowerCamelCase_ ( a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , ) class lowerCamelCase_ ( a_ , a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = config.num_labels a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) # classification head a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = outputs.pooler_output if return_dict else outputs[1] a = self.classifier[0](__lowerCamelCase ) a = self.classifier[1](__lowerCamelCase ) a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase ) if not return_dict: a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
330
1
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : List[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str]=7 ,__lowerCamelCase : Any=3 ,__lowerCamelCase : Tuple=30 ,__lowerCamelCase : str=4_00 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] ,__lowerCamelCase : str=[0.5, 0.5, 0.5] ,__lowerCamelCase : Union[str, Any]=True ,__lowerCamelCase : int=1 / 2_55 ,__lowerCamelCase : Tuple=True ,): '''simple docstring''' a = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 13_33} a = parent a = batch_size a = num_channels a = min_resolution a = max_resolution a = do_resize a = size a = do_normalize a = image_mean a = image_std a = do_rescale a = rescale_factor a = do_pad def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple=False ): '''simple docstring''' if not batched: a = image_inputs[0] if isinstance(__lowerCamelCase ,Image.Image ): a , a = image.size else: a , a = image.shape[1], image.shape[2] if w < h: a = int(self.size['''shortest_edge'''] * h / w ) a = self.size['''shortest_edge'''] elif w > h: a = self.size['''shortest_edge'''] a = int(self.size['''shortest_edge'''] * w / h ) else: a = self.size['''shortest_edge'''] a = self.size['''shortest_edge'''] else: a = [] for image in image_inputs: a , a = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a = max(__lowerCamelCase ,key=lambda __lowerCamelCase : item[0] )[0] a = max(__lowerCamelCase ,key=lambda __lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = DeformableDetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = DeformableDetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_mean''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''image_std''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_normalize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_resize''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_rescale''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''do_pad''' ) ) self.assertTrue(hasattr(__lowerCamelCase ,'''size''' ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 18, '''longest_edge''': 13_33} ) self.assertEqual(image_processor.do_pad ,__lowerCamelCase ) a = self.image_processing_class.from_dict( self.image_processor_dict ,size=42 ,max_size=84 ,pad_and_return_pixel_mask=__lowerCamelCase ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,Image.Image ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a , a = self.image_processor_tester.get_expected_values(__lowerCamelCase ,batched=__lowerCamelCase ) a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,numpify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,np.ndarray ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__lowerCamelCase ,batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a = prepare_image_inputs(self.image_processor_tester ,equal_resolution=__lowerCamelCase ,torchify=__lowerCamelCase ) for image in image_inputs: self.assertIsInstance(__lowerCamelCase ,torch.Tensor ) # Test not batched input a = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__lowerCamelCase ) self.assertEqual( encoded_images.shape ,(1, self.image_processor_tester.num_channels, expected_height, expected_width) ,) # Test batched a = image_processing(__lowerCamelCase ,return_tensors='''pt''' ).pixel_values a , a = self.image_processor_tester.get_expected_values(__lowerCamelCase ,batched=__lowerCamelCase ) self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) ,) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' ,'''r''' ) as f: a = json.loads(f.read() ) a = {'''image_id''': 3_97_69, '''annotations''': target} # encode them a = DeformableDetrImageProcessor() a = image_processing(images=__lowerCamelCase ,annotations=__lowerCamelCase ,return_tensors='''pt''' ) # verify pixel values a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape ,__lowerCamelCase ) a = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,__lowerCamelCase ,atol=1e-4 ) ) # verify area a = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,__lowerCamelCase ) ) # verify boxes a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,__lowerCamelCase ) a = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,__lowerCamelCase ,atol=1e-3 ) ) # verify image_id a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,__lowerCamelCase ) ) # verify is_crowd a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,__lowerCamelCase ) ) # verify class_labels a = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,__lowerCamelCase ) ) # verify orig_size a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,__lowerCamelCase ) ) # verify size a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,__lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' ,'''r''' ) as f: a = json.loads(f.read() ) a = {'''file_name''': '''000000039769.png''', '''image_id''': 3_97_69, '''segments_info''': target} a = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them a = DeformableDetrImageProcessor(format='''coco_panoptic''' ) a = image_processing(images=__lowerCamelCase ,annotations=__lowerCamelCase ,masks_path=__lowerCamelCase ,return_tensors='''pt''' ) # verify pixel values a = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding['''pixel_values'''].shape ,__lowerCamelCase ) a = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] ,__lowerCamelCase ,atol=1e-4 ) ) # verify area a = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] ,__lowerCamelCase ) ) # verify boxes a = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape ,__lowerCamelCase ) a = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] ,__lowerCamelCase ,atol=1e-3 ) ) # verify image_id a = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] ,__lowerCamelCase ) ) # verify is_crowd a = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] ,__lowerCamelCase ) ) # verify class_labels a = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] ,__lowerCamelCase ) ) # verify masks a = 82_28_73 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() ,__lowerCamelCase ) # verify orig_size a = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] ,__lowerCamelCase ) ) # verify size a = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] ,__lowerCamelCase ) )
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ : Any = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] UpperCamelCase__ : Optional[Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] UpperCamelCase__ : Optional[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : List[str] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : Optional[int] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: a = k.replace(snake_case_, snake_case_ ) return k def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" a = BigBirdPegasusConfig(**snake_case_ ) a = BigBirdPegasusForConditionalGeneration(snake_case_ ) a = torch_model.state_dict() a = {} # separating decoder weights a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = DECODER_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = REMAINING_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" a = mapping['''model.embed_positions.weight'''] a = mapping.pop('''model.embed_positions.weight''' ) a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ ) a = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = tf.train.list_variables(snake_case_ ) a = {} a = ['''global_step'''] for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ): a = any(pat in name for pat in ignore_name ) if skip_key: continue a = tf.train.load_variable(snake_case_, snake_case_ ) a = array return tf_weights def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" a = get_tf_weights_as_numpy(snake_case_ ) a = convert_bigbird_pegasus(snake_case_, snake_case_ ) torch_model.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase__ : int = parser.parse_args() UpperCamelCase__ : Tuple = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ : Optional[int] = { """configuration_encodec""": [ """ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EncodecConfig""", ], """feature_extraction_encodec""": ["""EncodecFeatureExtractor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ """ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST""", """EncodecModel""", """EncodecPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ : int = { """configuration_falcon""": ["""FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FalconConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ """FALCON_PRETRAINED_MODEL_ARCHIVE_LIST""", """FalconForCausalLM""", """FalconModel""", """FalconPreTrainedModel""", """FalconForSequenceClassification""", """FalconForTokenClassification""", """FalconForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ : Dict = logging.get_logger(__name__) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['input_features', 'attention_mask'] def __init__( self : int ,__lowerCamelCase : str=80 ,__lowerCamelCase : str=1_60_00 ,__lowerCamelCase : Any=80 ,__lowerCamelCase : List[Any]=0.0 ,__lowerCamelCase : Any=True ,__lowerCamelCase : Any=True ,__lowerCamelCase : int=True ,**__lowerCamelCase : Optional[int] ,): '''simple docstring''' super().__init__(feature_size=__lowerCamelCase ,sampling_rate=__lowerCamelCase ,padding_value=__lowerCamelCase ,**__lowerCamelCase ) a = num_mel_bins a = do_ceptral_normalize a = normalize_means a = normalize_vars a = True def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : np.ndarray ,): '''simple docstring''' a = waveform * (2**15) # Kaldi compliance: 16-bit signed integers a = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) a = ta_kaldi.fbank(__lowerCamelCase ,num_mel_bins=self.num_mel_bins ,sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase : np.ndarray ,__lowerCamelCase : int ,__lowerCamelCase : Optional[bool] = True ,__lowerCamelCase : Optional[bool] = True ,__lowerCamelCase : float = 0.0 ,): '''simple docstring''' if normalize_means: a = x[:input_length].mean(axis=0 ) a = np.subtract(__lowerCamelCase ,__lowerCamelCase ) if normalize_vars: a = x[:input_length].std(axis=0 ) a = np.divide(__lowerCamelCase ,__lowerCamelCase ) if input_length < x.shape[0]: a = padding_value # make sure array is in float32 a = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[np.ndarray] ,__lowerCamelCase : Optional[np.ndarray] = None ): '''simple docstring''' a = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__lowerCamelCase ,__lowerCamelCase ,self.normalize_means ,self.normalize_vars ,self.padding_value ) for x, n in zip(__lowerCamelCase ,__lowerCamelCase ) ] def __call__( self : Optional[Any] ,__lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,__lowerCamelCase : Union[bool, str, PaddingStrategy] = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : bool = False ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : Optional[bool] = None ,**__lowerCamelCase : Tuple ,): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) a = isinstance(__lowerCamelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) a = is_batched_numpy or ( isinstance(__lowerCamelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase ,np.ndarray ): a = np.asarray(__lowerCamelCase ,dtype=np.floataa ) elif isinstance(__lowerCamelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a = [raw_speech] # extract fbank features a = [self._extract_fbank_features(__lowerCamelCase ) for waveform in raw_speech] # convert into correct format for padding a = BatchFeature({'''input_features''': features} ) a = self.pad( __lowerCamelCase ,padding=__lowerCamelCase ,max_length=__lowerCamelCase ,truncation=__lowerCamelCase ,pad_to_multiple_of=__lowerCamelCase ,return_attention_mask=__lowerCamelCase ,**__lowerCamelCase ,) # make sure list is in array format a = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] ,__lowerCamelCase ): a = [np.asarray(__lowerCamelCase ,dtype=np.floataa ) for feature in input_features] a = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: a = [np.asarray(__lowerCamelCase ,dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: a = ( np.array(__lowerCamelCase ,dtype=np.intaa ) if self._get_padding_strategies(__lowerCamelCase ,max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) a = self.normalize( padded_inputs['''input_features'''] ,attention_mask=__lowerCamelCase ) if return_tensors is not None: a = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
330
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class lowerCamelCase_ ( a_ ): def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) requires_backends(self ,'''vision''' ) self.check_model_type(__lowerCamelCase ) def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ): '''simple docstring''' return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = load_image(__lowerCamelCase ) a = image.size a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = self.model(**__lowerCamelCase ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = model_outputs.predicted_depth a = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase ) a = prediction.squeeze().cpu().numpy() a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' ) a = Image.fromarray(__lowerCamelCase ) a = {} a = predicted_depth a = depth return output_dict
330
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['pixel_values'] def __init__( self : Dict ,__lowerCamelCase : bool = True ,__lowerCamelCase : int = 32 ,__lowerCamelCase : Dict=PILImageResampling.BILINEAR ,__lowerCamelCase : bool = True ,**__lowerCamelCase : Optional[int] ,): '''simple docstring''' a = do_resize a = do_rescale a = size_divisor a = resample super().__init__(**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[ChannelDimension] = None ,**__lowerCamelCase : List[str] ): '''simple docstring''' a , a = get_image_size(__lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor a = height // size_divisor * size_divisor a = width // size_divisor * size_divisor a = resize(__lowerCamelCase ,(new_h, new_w) ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) return image def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : float ,__lowerCamelCase : Optional[ChannelDimension] = None ,**__lowerCamelCase : str ): '''simple docstring''' return rescale(image=__lowerCamelCase ,scale=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : List[str]=None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[Union[TensorType, str]] = None ,__lowerCamelCase : ChannelDimension = ChannelDimension.FIRST ,**__lowerCamelCase : int ,): '''simple docstring''' a = do_resize if do_resize is not None else self.do_resize a = do_rescale if do_rescale is not None else self.do_rescale a = size_divisor if size_divisor is not None else self.size_divisor a = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''' ) a = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError('''Invalid image(s)''' ) # All transformations expect numpy arrays. a = [to_numpy_array(__lowerCamelCase ) for img in images] if do_resize: a = [self.resize(__lowerCamelCase ,size_divisor=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_rescale: a = [self.rescale(__lowerCamelCase ,scale=1 / 2_55 ) for image in images] a = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] a = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
330
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
1
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" a = np.array([[1, item, train_mtch[i]] for i, item in enumerate(snake_case_ )] ) a = np.array(snake_case_ ) a = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose(), snake_case_ ) ), x.transpose() ), snake_case_ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" a = (1, 2, 1) a = (1, 1, 0, 7) a = SARIMAX( snake_case_, exog=snake_case_, order=snake_case_, seasonal_order=snake_case_ ) a = model.fit(disp=snake_case_, maxiter=6_0_0, method='''nm''' ) a = model_fit.predict(1, len(snake_case_ ), exog=[test_match] ) return result[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> float: """simple docstring""" a = SVR(kernel='''rbf''', C=1, gamma=0.1, epsilon=0.1 ) regressor.fit(snake_case_, snake_case_ ) a = regressor.predict(snake_case_ ) return y_pred[0] def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> float: """simple docstring""" train_user.sort() a = np.percentile(snake_case_, 2_5 ) a = np.percentile(snake_case_, 7_5 ) a = qa - qa a = qa - (iqr * 0.1) return low_lim def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> bool: """simple docstring""" a = 0 a = 0 for i in list_vote: if i > actual_result: a = not_safe + 1 else: if abs(abs(snake_case_ ) - abs(snake_case_ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) UpperCamelCase__ : str = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] UpperCamelCase__ : Tuple = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) UpperCamelCase__ : Tuple = Normalizer().fit_transform(data_input_df.values) # split data UpperCamelCase__ : List[Any] = normalize_df[:, 2].tolist() UpperCamelCase__ : int = normalize_df[:, 0].tolist() UpperCamelCase__ : Optional[Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) UpperCamelCase__ : Optional[int] = normalize_df[:, [1, 2]].tolist() UpperCamelCase__ : List[Any] = x[: len(x) - 1] UpperCamelCase__ : List[str] = x[len(x) - 1 :] # for linear regression & sarimax UpperCamelCase__ : Optional[int] = total_date[: len(total_date) - 1] UpperCamelCase__ : int = total_user[: len(total_user) - 1] UpperCamelCase__ : Any = total_match[: len(total_match) - 1] UpperCamelCase__ : int = total_date[len(total_date) - 1 :] UpperCamelCase__ : Optional[int] = total_user[len(total_user) - 1 :] UpperCamelCase__ : Optional[Any] = total_match[len(total_match) - 1 :] # voting system with forecasting UpperCamelCase__ : List[Any] = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data UpperCamelCase__ : Any = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
330
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Tuple = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} UpperCamelCase__ : str = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } UpperCamelCase__ : int = { """abeja/gpt-neox-japanese-2.7b""": 2_048, } def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" with open(snake_case_, '''r''', encoding='''utf-8''' ) as f: a = json.loads(f.read() ) a = collections.OrderedDict() a = collections.OrderedDict() a = collections.OrderedDict() with open(snake_case_, '''r''', encoding='''utf-8''' ) as f: a = f.readlines() a = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(snake_case_ ): a = b a = idx for wd in b: a = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Any="<|endoftext|>" ,__lowerCamelCase : List[str]="<|endoftext|>" ,__lowerCamelCase : Optional[int]="<|startoftext|>" ,__lowerCamelCase : Tuple="<|endoftext|>" ,__lowerCamelCase : List[str]=False ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__( unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,do_clean_text=__lowerCamelCase ,**__lowerCamelCase ,) if not os.path.isfile(__lowerCamelCase ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) a = do_clean_text a , a , a , a = load_vocab_and_emoji(__lowerCamelCase ,__lowerCamelCase ) a = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return len(self.raw_vocab ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return dict(self.raw_vocab ,**self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[str] ): '''simple docstring''' return self.subword_tokenizer.tokenize(__lowerCamelCase ,clean=self.do_clean_text ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' return self.vocab.get(__lowerCamelCase ,self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Dict ): '''simple docstring''' a = ''''''.join(__lowerCamelCase ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : "Conversation" ): '''simple docstring''' a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: a = input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' a = 0 if os.path.isdir(__lowerCamelCase ): a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) a = token_index writer.write(''','''.join(__lowerCamelCase ) + '''\n''' ) index += 1 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: json.dump(self.emoji ,__lowerCamelCase ) return vocab_file, emoji_file class lowerCamelCase_ ( a_ ): def __init__( self : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : str ): '''simple docstring''' a = vocab # same as swe a = ids_to_tokens # same as bpe a = emoji a = np.max([len(__lowerCamelCase ) for w in self.vocab.keys()] ) a = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) a = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) a = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) a = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) a = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) a = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) a = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' a = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' a = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : Optional[int] ): '''simple docstring''' return len(self.ids_to_tokens ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = self.content_repattera.sub('''<URL>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<EMAIL>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<TEL>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<DATE>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<DATE>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<PRICE>''' ,__lowerCamelCase ) a = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: a = content.replace('''<BLOCK><BLOCK>''' ,'''<BLOCK>''' ) return content def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : str ,__lowerCamelCase : int=False ): '''simple docstring''' a = text.replace(''' ''' ,'''<SP>''' ) a = text.replace(''' ''' ,'''<SP>''' ) a = text.replace('''\r\n''' ,'''<BR>''' ) a = text.replace('''\n''' ,'''<BR>''' ) a = text.replace('''\r''' ,'''<BR>''' ) a = text.replace('''\t''' ,'''<TAB>''' ) a = text.replace('''—''' ,'''ー''' ) a = text.replace('''−''' ,'''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: a = text.replace(__lowerCamelCase ,__lowerCamelCase ) if clean: a = self.clean_text(__lowerCamelCase ) def check_simbol(__lowerCamelCase : Dict ): a = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 2: a = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2a1 and c <= 0Xc_2bf) or (c >= 0Xc_780 and c <= 0Xc_783) or (c >= 0Xc_ab9 and c <= 0Xc_bbf) or (c >= 0Xc_c80 and c <= 0Xc_da2) ): return True return False def checkuae(__lowerCamelCase : List[str] ): a = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 3: a = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28_080 and c <= 0Xe2b_07f: return True return False a = 0 a = [] while pos < len(__lowerCamelCase ): a = min(len(__lowerCamelCase ) ,pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 a = [] # (token_id, token, pos) for e in range(__lowerCamelCase ,__lowerCamelCase ,-1 ): a = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__lowerCamelCase ) > 2: a = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__lowerCamelCase ) > 0: # the smallest token_id is adopted a , a , a = sorted(__lowerCamelCase ,key=lambda __lowerCamelCase : x[0] )[0] result.append(__lowerCamelCase ) a = e else: a = pos + 1 a = text[pos:end] if check_simbol(__lowerCamelCase ): result.append('''<KIGOU>''' ) elif checkuae(__lowerCamelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) a = end return result def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple="\n" ): '''simple docstring''' a = [] a = [] a = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode('''utf-8''' ,errors='''replace''' ) ) a = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__lowerCamelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode('''utf-8''' ,errors='''replace''' ) ) a = ''''''.join(__lowerCamelCase ) return text
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : str = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Any = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Dict = 32 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 1_6 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) a = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : int = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": a = 2 # Initialize accelerator a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters(), lr=snake_case_ ) a , a = get_dataloaders(snake_case_, snake_case_ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**snake_case_ ) a = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**snake_case_ ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
330
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) UpperCamelCase__ : int = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( ) -> Any: """simple docstring""" a = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''', type=snake_case_, default='''data/dump.txt''', help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''', type=snake_case_, default='''bert''', choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''', type=snake_case_, default='''bert-base-uncased''', help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''', type=snake_case_, default='''data/dump''', help='''The dump file prefix.''' ) a = parser.parse_args() logger.info(f"""Loading Tokenizer ({args.tokenizer_name})""" ) if args.tokenizer_type == "bert": a = BertTokenizer.from_pretrained(args.tokenizer_name ) a = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` a = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": a = RobertaTokenizer.from_pretrained(args.tokenizer_name ) a = tokenizer.special_tokens_map['''cls_token'''] # `<s>` a = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": a = GPTaTokenizer.from_pretrained(args.tokenizer_name ) a = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` a = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(f"""Loading text from {args.file_path}""" ) with open(args.file_path, '''r''', encoding='''utf8''' ) as fp: a = fp.readlines() logger.info('''Start encoding''' ) logger.info(f"""{len(snake_case_ )} examples to process.""" ) a = [] a = 0 a = 1_0_0_0_0 a = time.time() for text in data: a = f"""{bos} {text.strip()} {sep}""" a = tokenizer.encode(snake_case_, add_special_tokens=snake_case_ ) rslt.append(snake_case_ ) iter += 1 if iter % interval == 0: a = time.time() logger.info(f"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" ) a = time.time() logger.info('''Finished binarization''' ) logger.info(f"""{len(snake_case_ )} examples processed.""" ) a = f"""{args.dump_file}.{args.tokenizer_name}.pickle""" a = tokenizer.vocab_size if vocab_size < (1 << 1_6): a = [np.uintaa(snake_case_ ) for d in rslt] else: a = [np.intaa(snake_case_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(f"""Dump to {dp_file}""" ) with open(snake_case_, '''wb''' ) as handle: pickle.dump(rslt_, snake_case_, protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any: """simple docstring""" a = args.pruning_method a = args.threshold a = args.model_name_or_path.rstrip('''/''' ) a = args.target_model_path print(f"""Load fine-pruned model from {model_name_or_path}""" ) a = torch.load(os.path.join(snake_case_, '''pytorch_model.bin''' ) ) a = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: a = tensor print(f"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: a = tensor print(f"""Copied layer {name}""" ) elif "bias" in name: a = tensor print(f"""Copied layer {name}""" ) else: if pruning_method == "magnitude": a = MagnitudeBinarizer.apply(inputs=snake_case_, threshold=snake_case_ ) a = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue a = name[:-6] a = model[f"""{prefix_}mask_scores"""] a = TopKBinarizer.apply(snake_case_, snake_case_ ) a = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue a = name[:-6] a = model[f"""{prefix_}mask_scores"""] a = ThresholdBinarizer.apply(snake_case_, snake_case_, snake_case_ ) a = tensor * mask print(f"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue a = name[:-6] a = model[f"""{prefix_}mask_scores"""] a , a = -0.1, 1.1 a = torch.sigmoid(snake_case_ ) a = s * (r - l) + l a = s_bar.clamp(min=0.0, max=1.0 ) a = tensor * mask print(f"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: a = os.path.join( os.path.dirname(snake_case_ ), f"""bertarized_{os.path.basename(snake_case_ )}""" ) if not os.path.isdir(snake_case_ ): shutil.copytree(snake_case_, snake_case_ ) print(f"""\nCreated folder {target_model_path}""" ) torch.save(snake_case_, os.path.join(snake_case_, '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) UpperCamelCase__ : Any = parser.parse_args() main(args)
330
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" class lowerCamelCase_ : def __init__( self : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = metric_id class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if "tmp_path" in args: a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case_ )
330
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCamelCase_ ( a_ , a_ ): @register_to_config def __init__( self : Tuple ,__lowerCamelCase : int = 1_28 ,__lowerCamelCase : int = 2_56 ,__lowerCamelCase : float = 2_000.0 ,__lowerCamelCase : int = 7_68 ,__lowerCamelCase : int = 12 ,__lowerCamelCase : int = 12 ,__lowerCamelCase : int = 64 ,__lowerCamelCase : int = 20_48 ,__lowerCamelCase : float = 0.1 ,): '''simple docstring''' super().__init__() a = nn.Sequential( nn.Linear(__lowerCamelCase ,d_model * 4 ,bias=__lowerCamelCase ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=__lowerCamelCase ) ,nn.SiLU() ,) a = nn.Embedding(__lowerCamelCase ,__lowerCamelCase ) a = False a = nn.Linear(__lowerCamelCase ,__lowerCamelCase ,bias=__lowerCamelCase ) a = nn.Dropout(p=__lowerCamelCase ) a = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder a = DecoderLayer(d_model=__lowerCamelCase ,d_kv=__lowerCamelCase ,num_heads=__lowerCamelCase ,d_ff=__lowerCamelCase ,dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) a = TaLayerNorm(__lowerCamelCase ) a = nn.Dropout(p=__lowerCamelCase ) a = nn.Linear(__lowerCamelCase ,__lowerCamelCase ,bias=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Dict ): '''simple docstring''' a , a , a = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. a = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) a = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) a = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. a = torch.broadcast_to( torch.arange(__lowerCamelCase ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) a = self.position_encoding(__lowerCamelCase ) a = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings a = self.dropout(__lowerCamelCase ) # decoder: No padding present. a = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. a = [(x, self.encoder_decoder_mask(__lowerCamelCase ,__lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings a = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) a = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: a = lyr( __lowerCamelCase ,conditioning_emb=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,encoder_attention_mask=__lowerCamelCase ,)[0] a = self.decoder_norm(__lowerCamelCase ) a = self.post_dropout(__lowerCamelCase ) a = self.spec_out(__lowerCamelCase ) return spec_out class lowerCamelCase_ ( nn.Module ): def __init__( self : Union[str, Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Dict ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Union[str, Any]=1e-6 ): '''simple docstring''' super().__init__() a = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase ,d_kv=__lowerCamelCase ,num_heads=__lowerCamelCase ,dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase ,d_kv=__lowerCamelCase ,num_heads=__lowerCamelCase ,dropout_rate=__lowerCamelCase ,layer_norm_epsilon=__lowerCamelCase ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase ,d_ff=__lowerCamelCase ,dropout_rate=__lowerCamelCase ,layer_norm_epsilon=__lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict=None ,__lowerCamelCase : int=None ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : Optional[Any]=None ,__lowerCamelCase : int=None ,): '''simple docstring''' a = self.layer[0]( __lowerCamelCase ,conditioning_emb=__lowerCamelCase ,attention_mask=__lowerCamelCase ,) if encoder_hidden_states is not None: a = torch.where(encoder_attention_mask > 0 ,0 ,-1e10 ).to( encoder_hidden_states.dtype ) a = self.layer[1]( __lowerCamelCase ,key_value_states=__lowerCamelCase ,attention_mask=__lowerCamelCase ,) # Apply Film Conditional Feed Forward layer a = self.layer[-1](__lowerCamelCase ,__lowerCamelCase ) return (hidden_states,) class lowerCamelCase_ ( nn.Module ): def __init__( self : Any ,__lowerCamelCase : Dict ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : int ): '''simple docstring''' super().__init__() a = TaLayerNorm(__lowerCamelCase ) a = TaFiLMLayer(in_features=d_model * 4 ,out_features=__lowerCamelCase ) a = Attention(query_dim=__lowerCamelCase ,heads=__lowerCamelCase ,dim_head=__lowerCamelCase ,out_bias=__lowerCamelCase ,scale_qk=__lowerCamelCase ) a = nn.Dropout(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Any ,__lowerCamelCase : Any=None ,__lowerCamelCase : List[Any]=None ,): '''simple docstring''' a = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: a = self.FiLMLayer(__lowerCamelCase ,__lowerCamelCase ) # Self-attention block a = self.attention(__lowerCamelCase ) a = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : List[str] ,__lowerCamelCase : int ): '''simple docstring''' super().__init__() a = Attention(query_dim=__lowerCamelCase ,heads=__lowerCamelCase ,dim_head=__lowerCamelCase ,out_bias=__lowerCamelCase ,scale_qk=__lowerCamelCase ) a = TaLayerNorm(__lowerCamelCase ,eps=__lowerCamelCase ) a = nn.Dropout(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any=None ,__lowerCamelCase : Dict=None ,): '''simple docstring''' a = self.layer_norm(__lowerCamelCase ) a = self.attention( __lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,attention_mask=attention_mask.squeeze(1 ) ,) a = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : str ,__lowerCamelCase : int ): '''simple docstring''' super().__init__() a = TaDenseGatedActDense(d_model=__lowerCamelCase ,d_ff=__lowerCamelCase ,dropout_rate=__lowerCamelCase ) a = TaFiLMLayer(in_features=d_model * 4 ,out_features=__lowerCamelCase ) a = TaLayerNorm(__lowerCamelCase ,eps=__lowerCamelCase ) a = nn.Dropout(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' a = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: a = self.film(__lowerCamelCase ,__lowerCamelCase ) a = self.DenseReluDense(__lowerCamelCase ) a = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__() a = nn.Linear(__lowerCamelCase ,__lowerCamelCase ,bias=__lowerCamelCase ) a = nn.Linear(__lowerCamelCase ,__lowerCamelCase ,bias=__lowerCamelCase ) a = nn.Linear(__lowerCamelCase ,__lowerCamelCase ,bias=__lowerCamelCase ) a = nn.Dropout(__lowerCamelCase ) a = NewGELUActivation() def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : Any ): '''simple docstring''' a = self.act(self.wi_a(__lowerCamelCase ) ) a = self.wi_a(__lowerCamelCase ) a = hidden_gelu * hidden_linear a = self.dropout(__lowerCamelCase ) a = self.wo(__lowerCamelCase ) return hidden_states class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] ,__lowerCamelCase : List[str] ,__lowerCamelCase : str=1e-6 ): '''simple docstring''' super().__init__() a = nn.Parameter(torch.ones(__lowerCamelCase ) ) a = eps def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : Optional[int] ): '''simple docstring''' a = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=__lowerCamelCase ) a = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: a = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCamelCase_ ( nn.Module ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : torch.Tensor ): '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__lowerCamelCase ,3.0 )) )) class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Any ): '''simple docstring''' super().__init__() a = nn.Linear(__lowerCamelCase ,out_features * 2 ,bias=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = self.scale_bias(__lowerCamelCase ) a , a = torch.chunk(__lowerCamelCase ,2 ,-1 ) a = x * (1 + scale) + shift return x
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
1
import math def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = len(snake_case_ ) a = int(math.floor(math.sqrt(snake_case_ ) ) ) a = 0 while arr[min(snake_case_, snake_case_ ) - 1] < x: a = step step += int(math.floor(math.sqrt(snake_case_ ) ) ) if prev >= n: return -1 while arr[prev] < x: a = prev + 1 if prev == min(snake_case_, snake_case_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : List[Any] = [int(item) for item in user_input.split(""",""")] UpperCamelCase__ : Tuple = int(input("""Enter the number to be searched:\n""")) UpperCamelCase__ : Dict = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(F"Number {x} is at index {res}")
330
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ , UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
330
1
import operator as op def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any: """simple docstring""" a = [] a = lambda snake_case_, snake_case_ : int(x / y ) # noqa: E731 integer division operation a = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ), '''Action'''.center(1_2 ), '''Stack''', sep=''' | ''' ) print('''-''' * (3_0 + len(snake_case_ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(snake_case_ ) # append x to stack # output in tabular format print(x.rjust(8 ), ('''push(''' + x + ''')''').ljust(1_2 ), ''','''.join(snake_case_ ), sep=''' | ''' ) else: a = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + b + ''')''').ljust(1_2 ), ''','''.join(snake_case_ ), sep=''' | ''' ) a = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + a + ''')''').ljust(1_2 ), ''','''.join(snake_case_ ), sep=''' | ''' ) stack.append( str(opr[x](int(snake_case_ ), int(snake_case_ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ('''push(''' + a + x + b + ''')''').ljust(1_2 ), ''','''.join(snake_case_ ), sep=''' | ''', ) return int(stack[0] ) if __name__ == "__main__": UpperCamelCase__ : List[str] = input("""\n\nEnter a Postfix Equation (space separated) = """).split(""" """) print("""\n\tResult = """, solve(Postfix))
330
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : int = { """vinvino02/glpn-kitti""": """https://huggingface.co/vinvino02/glpn-kitti/resolve/main/config.json""", # See all GLPN models at https://huggingface.co/models?filter=glpn } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'glpn' def __init__( self : int ,__lowerCamelCase : List[Any]=3 ,__lowerCamelCase : Tuple=4 ,__lowerCamelCase : Optional[int]=[2, 2, 2, 2] ,__lowerCamelCase : List[str]=[8, 4, 2, 1] ,__lowerCamelCase : Optional[int]=[32, 64, 1_60, 2_56] ,__lowerCamelCase : List[Any]=[7, 3, 3, 3] ,__lowerCamelCase : Dict=[4, 2, 2, 2] ,__lowerCamelCase : List[str]=[1, 2, 5, 8] ,__lowerCamelCase : int=[4, 4, 4, 4] ,__lowerCamelCase : Union[str, Any]="gelu" ,__lowerCamelCase : Any=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : str=0.02 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : List[Any]=1e-6 ,__lowerCamelCase : Optional[int]=64 ,__lowerCamelCase : Optional[int]=10 ,__lowerCamelCase : Tuple=-1 ,**__lowerCamelCase : Optional[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = num_channels a = num_encoder_blocks a = depths a = sr_ratios a = hidden_sizes a = patch_sizes a = strides a = mlp_ratios a = num_attention_heads a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = drop_path_rate a = layer_norm_eps a = decoder_hidden_size a = max_depth a = head_in_index
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ : str = """ Examples: ```py >>> import torch >>> import numpy as np >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline >>> from transformers import pipeline >>> from diffusers.utils import load_image >>> def make_hint(image, depth_estimator): ... image = depth_estimator(image)[\"depth\"] ... image = np.array(image) ... image = image[:, :, None] ... image = np.concatenate([image, image, image], axis=2) ... detected_map = torch.from_numpy(image).float() / 255.0 ... hint = detected_map.permute(2, 0, 1) ... return hint >>> depth_estimator = pipeline(\"depth-estimation\") >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior = pipe_prior.to(\"cuda\") >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to(\"cuda\") >>> img = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/cat.png\" ... ).resize((768, 768)) >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\") >>> prompt = \"A robot, 4k photo\" >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\" >>> generator = torch.Generator(device=\"cuda\").manual_seed(43) >>> image_emb, zero_image_emb = pipe_prior( ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator ... ).to_tuple() >>> images = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... hint=hint, ... num_inference_steps=50, ... generator=generator, ... height=768, ... width=768, ... ).images >>> images[0].save(\"robot_cat.png\") ``` """ def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=8 ) -> Dict: """simple docstring""" a = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCamelCase_ ( a_ ): def __init__( self : List[str] ,__lowerCamelCase : UNetaDConditionModel ,__lowerCamelCase : DDPMScheduler ,__lowerCamelCase : VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCamelCase ,scheduler=__lowerCamelCase ,movq=__lowerCamelCase ,) a = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : int ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : int ,__lowerCamelCase : Dict ): '''simple docstring''' if latents is None: a = randn_tensor(__lowerCamelCase ,generator=__lowerCamelCase ,device=__lowerCamelCase ,dtype=__lowerCamelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a = latents.to(__lowerCamelCase ) a = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) a = torch.device(F"""cuda:{gpu_id}""" ) a = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : List[Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' ,'''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) a = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' ,silence_dtype_warnings=__lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a = None for cpu_offloaded_model in [self.unet, self.movq]: a , a = cpu_offload_with_hook(__lowerCamelCase ,__lowerCamelCase ,prev_module_hook=__lowerCamelCase ) # We'll offload the last model manually. a = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' if not hasattr(self.unet ,'''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase ,'''_hf_hook''' ) and hasattr(module._hf_hook ,'''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCamelCase ) def __call__( self : Union[str, Any] ,__lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : int = 5_12 ,__lowerCamelCase : int = 5_12 ,__lowerCamelCase : int = 1_00 ,__lowerCamelCase : float = 4.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCamelCase : Optional[torch.FloatTensor] = None ,__lowerCamelCase : Optional[str] = "pil" ,__lowerCamelCase : bool = True ,): '''simple docstring''' a = self._execution_device a = guidance_scale > 1.0 if isinstance(__lowerCamelCase ,__lowerCamelCase ): a = torch.cat(__lowerCamelCase ,dim=0 ) if isinstance(__lowerCamelCase ,__lowerCamelCase ): a = torch.cat(__lowerCamelCase ,dim=0 ) if isinstance(__lowerCamelCase ,__lowerCamelCase ): a = torch.cat(__lowerCamelCase ,dim=0 ) a = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a = image_embeds.repeat_interleave(__lowerCamelCase ,dim=0 ) a = negative_image_embeds.repeat_interleave(__lowerCamelCase ,dim=0 ) a = hint.repeat_interleave(__lowerCamelCase ,dim=0 ) a = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCamelCase ) a = torch.cat([hint, hint] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCamelCase ) self.scheduler.set_timesteps(__lowerCamelCase ,device=__lowerCamelCase ) a = self.scheduler.timesteps a = self.movq.config.latent_channels a , a = downscale_height_and_width(__lowerCamelCase ,__lowerCamelCase ,self.movq_scale_factor ) # create initial latent a = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,image_embeds.dtype ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,self.scheduler ,) for i, t in enumerate(self.progress_bar(__lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a = {'''image_embeds''': image_embeds, '''hint''': hint} a = self.unet( sample=__lowerCamelCase ,timestep=__lowerCamelCase ,encoder_hidden_states=__lowerCamelCase ,added_cond_kwargs=__lowerCamelCase ,return_dict=__lowerCamelCase ,)[0] if do_classifier_free_guidance: a , a = noise_pred.split(latents.shape[1] ,dim=1 ) a , a = noise_pred.chunk(2 ) a , a = variance_pred.chunk(2 ) a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a , a = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a = self.scheduler.step( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,generator=__lowerCamelCase ,)[0] # post-processing a = self.movq.decode(__lowerCamelCase ,force_not_quantize=__lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a = image * 0.5 + 0.5 a = image.clamp(0 ,1 ) a = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": a = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
330
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__ ( ) -> Dict: """simple docstring""" a = argparse.ArgumentParser() parser.add_argument( '''-m''', '''--pretrained_model_name_or_path''', type=snake_case_, default=snake_case_, required=snake_case_, help='''Path to pretrained model or model identifier from huggingface.co/models.''', ) parser.add_argument( '''-c''', '''--caption''', type=snake_case_, default='''robotic cat with wings''', help='''Text used to generate images.''', ) parser.add_argument( '''-n''', '''--images_num''', type=snake_case_, default=4, help='''How much images to generate.''', ) parser.add_argument( '''-s''', '''--seed''', type=snake_case_, default=4_2, help='''Seed for random process.''', ) parser.add_argument( '''-ci''', '''--cuda_id''', type=snake_case_, default=0, help='''cuda_id.''', ) a = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" if not len(snake_case_ ) == rows * cols: raise ValueError('''The specified number of rows and columns are not correct.''' ) a , a = imgs[0].size a = Image.new('''RGB''', size=(cols * w, rows * h) ) a , a = grid.size for i, img in enumerate(snake_case_ ): grid.paste(snake_case_, box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_="robotic cat with wings", snake_case_=7.5, snake_case_=5_0, snake_case_=1, snake_case_=4_2, ) -> Any: """simple docstring""" a = torch.Generator(pipeline.device ).manual_seed(snake_case_ ) a = pipeline( snake_case_, guidance_scale=snake_case_, num_inference_steps=snake_case_, generator=snake_case_, num_images_per_prompt=snake_case_, ).images a = int(math.sqrt(snake_case_ ) ) a = image_grid(snake_case_, rows=_rows, cols=num_images_per_prompt // _rows ) return grid, images UpperCamelCase__ : Dict = parse_args() # Load models and create wrapper for stable diffusion UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") UpperCamelCase__ : str = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") UpperCamelCase__ : int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") UpperCamelCase__ : List[str] = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCamelCase__ : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): UpperCamelCase__ : Optional[int] = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: UpperCamelCase__ : int = unet.to(torch.device("""cuda""", args.cuda_id)) UpperCamelCase__ : str = pipeline.to(unet.device) UpperCamelCase__ , UpperCamelCase__ : Dict = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) UpperCamelCase__ : Any = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
330
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
1
UpperCamelCase__ : Optional[int] = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" assert type(snake_case_ ) in (int, float) and decimal == int(snake_case_ ) a = int(snake_case_ ) a = '''''' a = False if decimal < 0: a = True decimal *= -1 while decimal > 0: a , a = divmod(snake_case_, 1_6 ) a = values[remainder] + hexadecimal a = '''0x''' + hexadecimal if negative: a = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = ['pixel_values'] def __init__( self : List[str] ,__lowerCamelCase : bool = True ,__lowerCamelCase : Optional[Dict[str, int]] = None ,__lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR ,__lowerCamelCase : bool = True ,__lowerCamelCase : Dict[str, int] = None ,__lowerCamelCase : bool = True ,__lowerCamelCase : Union[int, float] = 1 / 2_55 ,__lowerCamelCase : bool = True ,__lowerCamelCase : Optional[Union[float, List[float]]] = None ,__lowerCamelCase : Optional[Union[float, List[float]]] = None ,**__lowerCamelCase : int ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = size if size is not None else {'''shortest_edge''': 2_56} a = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) a = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} a = get_size_dict(__lowerCamelCase ) a = do_resize a = size a = resample a = do_center_crop a = crop_size a = do_rescale a = rescale_factor a = do_normalize a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : Dict[str, int] ,__lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC ,__lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**__lowerCamelCase : Optional[int] ,): '''simple docstring''' a = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) a = get_resize_output_image_size(__lowerCamelCase ,size=size['''shortest_edge'''] ,default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : Dict[str, int] ,__lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**__lowerCamelCase : Dict ,): '''simple docstring''' a = get_size_dict(__lowerCamelCase ) return center_crop(__lowerCamelCase ,size=(size['''height'''], size['''width''']) ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : float ,__lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**__lowerCamelCase : Tuple ): '''simple docstring''' return rescale(__lowerCamelCase ,scale=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : np.ndarray ,__lowerCamelCase : Union[float, List[float]] ,__lowerCamelCase : Union[float, List[float]] ,__lowerCamelCase : Optional[Union[str, ChannelDimension]] = None ,**__lowerCamelCase : List[str] ,): '''simple docstring''' return normalize(__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ,data_format=__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : ImageInput ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Dict[str, int] = None ,__lowerCamelCase : PILImageResampling = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict[str, int] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[float] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[Union[float, List[float]]] = None ,__lowerCamelCase : Optional[Union[float, List[float]]] = None ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST ,**__lowerCamelCase : Dict ,): '''simple docstring''' a = do_resize if do_resize is not None else self.do_resize a = size if size is not None else self.size a = get_size_dict(__lowerCamelCase ,default_to_square=__lowerCamelCase ) a = resample if resample is not None else self.resample a = do_center_crop if do_center_crop is not None else self.do_center_crop a = crop_size if crop_size is not None else self.crop_size a = get_size_dict(__lowerCamelCase ) a = do_rescale if do_rescale is not None else self.do_rescale a = rescale_factor if rescale_factor is not None else self.rescale_factor a = do_normalize if do_normalize is not None else self.do_normalize a = image_mean if image_mean is not None else self.image_mean a = image_std if image_std is not None else self.image_std a = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. a = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: a = [self.resize(image=__lowerCamelCase ,size=__lowerCamelCase ,resample=__lowerCamelCase ) for image in images] if do_center_crop: a = [self.center_crop(image=__lowerCamelCase ,size=__lowerCamelCase ) for image in images] if do_rescale: a = [self.rescale(image=__lowerCamelCase ,scale=__lowerCamelCase ) for image in images] if do_normalize: a = [self.normalize(image=__lowerCamelCase ,mean=__lowerCamelCase ,std=__lowerCamelCase ) for image in images] a = [to_channel_dimension_format(__lowerCamelCase ,__lowerCamelCase ) for image in images] a = {'''pixel_values''': images} return BatchFeature(data=__lowerCamelCase ,tensor_type=__lowerCamelCase )
330
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : List[Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__ : List[Any] = """RegNetConfig""" # Base docstring UpperCamelCase__ : Dict = """facebook/regnet-y-040""" UpperCamelCase__ : int = [1, 1_088, 7, 7] # Image classification docstring UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040""" UpperCamelCase__ : Dict = """tabby, tabby cat""" UpperCamelCase__ : Dict = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) a = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ): '''simple docstring''' a = self.convolution(self.padding(__lowerCamelCase ) ) a = self.normalization(__lowerCamelCase ) a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config.num_channels a = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) ) a = self.embedder(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase ) class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) a = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = self.pooler(__lowerCamelCase ) for layer_module in self.attention: a = layer_module(__lowerCamelCase ) a = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer a = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ), *[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ): '''simple docstring''' for layer_module in self.layers: a = layer_module(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) ) a = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ): '''simple docstring''' a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a = hidden_states + (hidden_state,) a = stage_module(__lowerCamelCase ) if output_hidden_states: a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase ) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ = RegNetConfig def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' ) a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase ) a = self.encoder( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = encoder_outputs[0] a = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = RegNetConfig SCREAMING_SNAKE_CASE_ = 'regnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} UpperCamelCase__ : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCamelCase__ : List[str] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a_ , ) class lowerCamelCase_ ( a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , ) class lowerCamelCase_ ( a_ , a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = config.num_labels a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) # classification head a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = outputs.pooler_output if return_dict else outputs[1] a = self.classifier[0](__lowerCamelCase ) a = self.classifier[1](__lowerCamelCase ) a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase ) if not return_dict: a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
330
1
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> bool: """simple docstring""" if len(snake_case_ ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) a = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
330
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def SCREAMING_SNAKE_CASE__ ( ) -> str: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join a = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching, '''os.path.join''', snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os, _PatchedModuleObj ) assert isinstance(_test_patching.os.path, _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path, _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os, _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path, _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path, _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: """simple docstring""" assert _test_patching.open is open a = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching, '''open''', snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def SCREAMING_SNAKE_CASE__ ( ) -> Any: """simple docstring""" a = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching, '''pandas.read_csv''', snake_case_ ): pass def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: """simple docstring""" a = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching, '''len''', snake_case_ ) is None with patch_submodule(_test_patching, '''len''', snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" a = '''__test_patch_submodule_start_and_stop_mock__''' a = patch_submodule(_test_patching, '''open''', snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join a = '''__test_patch_submodule_successive_join__''' a = '''__test_patch_submodule_successive_dirname__''' a = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching, '''os.path.join''', snake_case_ ): with patch_submodule(_test_patching, '''os.rename''', snake_case_ ): with patch_submodule(_test_patching, '''os.path.dirname''', snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching, '''os.rename''', snake_case_ ): with patch_submodule(_test_patching, '''os.path.join''', snake_case_ ): with patch_submodule(_test_patching, '''os.path.dirname''', snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def SCREAMING_SNAKE_CASE__ ( ) -> int: """simple docstring""" a = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching, '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''', snake_case_ ): pass with patch_submodule(_test_patching, '''os.__attribute_that_doesn_exist__''', snake_case_ ): pass
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ : Any = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] UpperCamelCase__ : Optional[Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] UpperCamelCase__ : Optional[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : List[str] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : Optional[int] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: a = k.replace(snake_case_, snake_case_ ) return k def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" a = BigBirdPegasusConfig(**snake_case_ ) a = BigBirdPegasusForConditionalGeneration(snake_case_ ) a = torch_model.state_dict() a = {} # separating decoder weights a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = DECODER_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = REMAINING_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" a = mapping['''model.embed_positions.weight'''] a = mapping.pop('''model.embed_positions.weight''' ) a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ ) a = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = tf.train.list_variables(snake_case_ ) a = {} a = ['''global_step'''] for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ): a = any(pat in name for pat in ignore_name ) if skip_key: continue a = tf.train.load_variable(snake_case_, snake_case_ ) a = array return tf_weights def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" a = get_tf_weights_as_numpy(snake_case_ ) a = convert_bigbird_pegasus(snake_case_, snake_case_ ) torch_model.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase__ : int = parser.parse_args() UpperCamelCase__ : Tuple = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
330
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = TFCamembertModel.from_pretrained('''jplu/tf-camembert-base''' ) a = tf.convert_to_tensor( [[5, 1_21, 11, 6_60, 16, 7_30, 2_55_43, 1_10, 83, 6]] ,dtype=tf.intaa ,) # J'aime le camembert !" a = model(__lowerCamelCase )['''last_hidden_state'''] a = tf.TensorShape((1, 10, 7_68) ) self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice. a = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] ,dtype=tf.floataa ,) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
330
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
1
class lowerCamelCase_ : def __init__( self : int ,__lowerCamelCase : str ): '''simple docstring''' a = val a = None a = None def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: a = Node(__lowerCamelCase ) else: self.left.insert(__lowerCamelCase ) elif val > self.val: if self.right is None: a = Node(__lowerCamelCase ) else: self.right.insert(__lowerCamelCase ) else: a = val def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str: """simple docstring""" if root: inorder(root.left, snake_case_ ) res.append(root.val ) inorder(root.right, snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: """simple docstring""" if len(snake_case_ ) == 0: return arr a = Node(arr[0] ) for i in range(1, len(snake_case_ ) ): root.insert(arr[i] ) # Traverse BST in order. a = [] inorder(snake_case_, snake_case_ ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
330
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class lowerCamelCase_ ( a_ ): def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) requires_backends(self ,'''vision''' ) self.check_model_type(__lowerCamelCase ) def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ): '''simple docstring''' return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = load_image(__lowerCamelCase ) a = image.size a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = self.model(**__lowerCamelCase ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = model_outputs.predicted_depth a = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase ) a = prediction.squeeze().cpu().numpy() a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' ) a = Image.fromarray(__lowerCamelCase ) a = {} a = predicted_depth a = depth return output_dict
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = { """configuration_instructblip""": [ """INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InstructBlipConfig""", """InstructBlipQFormerConfig""", """InstructBlipVisionConfig""", ], """processing_instructblip""": ["""InstructBlipProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ """INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """InstructBlipQFormerModel""", """InstructBlipPreTrainedModel""", """InstructBlipForConditionalGeneration""", """InstructBlipVisionModel""", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Union[str, Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[Any]=13 ,__lowerCamelCase : Tuple=7 ,__lowerCamelCase : List[str]=True ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : int=True ,__lowerCamelCase : List[str]=True ,__lowerCamelCase : List[str]=99 ,__lowerCamelCase : Optional[Any]=32 ,__lowerCamelCase : Optional[int]=5 ,__lowerCamelCase : List[Any]=4 ,__lowerCamelCase : int=37 ,__lowerCamelCase : Union[str, Any]="gelu" ,__lowerCamelCase : Optional[int]=0.1 ,__lowerCamelCase : Optional[Any]=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=16 ,__lowerCamelCase : Dict=2 ,__lowerCamelCase : List[str]=0.02 ,__lowerCamelCase : Union[str, Any]=4 ,): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_attention_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_choices def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a = None if self.use_attention_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) a = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowerCamelCase ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = self.prepare_config_and_inputs() a , a , a , a = config_and_inputs a = True a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = FlaxBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxBertModel.from_pretrained('''bert-base-cased''' ) a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase )
330
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
1
def SCREAMING_SNAKE_CASE__ ( ) -> list[list[int]]: """simple docstring""" return [list(range(1_0_0_0 - i, -1_0_0_0 - i, -1 ) ) for i in range(1_0_0_0 )] UpperCamelCase__ : Optional[int] = generate_large_matrix() UpperCamelCase__ : List[str] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> None: """simple docstring""" assert all(row == sorted(snake_case_, reverse=snake_case_ ) for row in grid ) assert all(list(snake_case_ ) == sorted(snake_case_, reverse=snake_case_ ) for col in zip(*snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = 0 a = len(snake_case_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: a = (left + right) // 2 a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: a = mid + 1 else: a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = 0 a = len(grid[0] ) for i in range(len(snake_case_ ) ): a = find_negative_index(grid[i][:bound] ) total += bound return (len(snake_case_ ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" a = 0 for row in grid: for i, number in enumerate(snake_case_ ): if number < 0: total += len(snake_case_ ) - i break return total def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" from timeit import timeit print('''Running benchmarks''' ) a = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): a = timeit(f"""{func}(grid=grid)""", setup=snake_case_, number=5_0_0 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
330
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ : str = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : Dict = logging.getLogger(__name__) @dataclass(frozen=a_ ) class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None @dataclass(frozen=a_ ) class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 42 def __init__( self : int ,__lowerCamelCase : str ,__lowerCamelCase : PreTrainedTokenizer ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] = None ,__lowerCamelCase : List[Any]=False ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = hans_processors[task]() a = os.path.join( __lowerCamelCase ,'''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' ,tokenizer.__class__.__name__ ,str(__lowerCamelCase ) ,__lowerCamelCase ,) ,) a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a = label_list[2], label_list[1] a = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. a = cached_features_file + '''.lock''' with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) a = torch.load(__lowerCamelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) a = ( processor.get_dev_examples(__lowerCamelCase ) if evaluate else processor.get_train_examples(__lowerCamelCase ) ) logger.info('''Training examples: %s''' ,len(__lowerCamelCase ) ) a = hans_convert_examples_to_features(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) logger.info('''Saving features into cached file %s''' ,__lowerCamelCase ) torch.save(self.features ,__lowerCamelCase ) def __len__( self : str ): '''simple docstring''' return len(self.features ) def __getitem__( self : int ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = 42 def __init__( self : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : PreTrainedTokenizer ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] = 1_28 ,__lowerCamelCase : Dict=False ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = hans_processors[task]() a = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) a , a = label_list[2], label_list[1] a = label_list a = processor.get_dev_examples(__lowerCamelCase ) if evaluate else processor.get_train_examples(__lowerCamelCase ) a = hans_convert_examples_to_features(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(__lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) a = tf.data.Dataset.from_generator( __lowerCamelCase ,( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) ,( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self.dataset def __len__( self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[Any] ,__lowerCamelCase : Optional[int] ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return self.label_list class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Tuple ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__lowerCamelCase ,'''heuristics_train_set.txt''' ) ) ,'''train''' ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Any ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(__lowerCamelCase ,'''heuristics_evaluation_set.txt''' ) ) ,'''dev''' ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ): '''simple docstring''' a = [] for i, line in enumerate(__lowerCamelCase ): if i == 0: continue a = '''%s-%s''' % (set_type, line[0]) a = line[5] a = line[6] a = line[7][2:] if line[7].startswith('''ex''' ) else line[7] a = line[0] examples.append(InputExample(guid=__lowerCamelCase ,text_a=__lowerCamelCase ,text_b=__lowerCamelCase ,label=__lowerCamelCase ,pairID=__lowerCamelCase ) ) return examples def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, ) -> Union[str, Any]: """simple docstring""" a = {label: i for i, label in enumerate(snake_case_ )} a = [] for ex_index, example in tqdm.tqdm(enumerate(snake_case_ ), desc='''convert examples to features''' ): if ex_index % 1_0_0_0_0 == 0: logger.info('''Writing example %d''' % (ex_index) ) a = tokenizer( example.text_a, example.text_b, add_special_tokens=snake_case_, max_length=snake_case_, padding='''max_length''', truncation=snake_case_, return_overflowing_tokens=snake_case_, ) a = label_map[example.label] if example.label in label_map else 0 a = int(example.pairID ) features.append(InputFeatures(**snake_case_, label=snake_case_, pairID=snake_case_ ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features UpperCamelCase__ : Any = { """hans""": 3, } UpperCamelCase__ : Optional[int] = { """hans""": HansProcessor, }
330
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Dict = 32 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 1_6 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) a = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : int = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": a = 2 # Initialize accelerator a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters(), lr=snake_case_ ) a , a = get_dataloaders(snake_case_, snake_case_ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**snake_case_ ) a = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**snake_case_ ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
330
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : Any = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
class lowerCamelCase_ : # Public class to implement a graph def __init__( self : Union[str, Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : list[list[bool]] ): '''simple docstring''' a = row a = col a = graph def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : list[list[bool]] ): '''simple docstring''' return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : list[list[bool]] ): '''simple docstring''' a = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order a = [-1, 0, 1, -1, 1, -1, 0, 1] a = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,__lowerCamelCase ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): # And finally, count all islands. '''simple docstring''' a = [[False for j in range(self.COL )] for i in range(self.ROW )] a = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) count += 1 return count
330
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" class lowerCamelCase_ : def __init__( self : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = metric_id class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if "tmp_path" in args: a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case_ )
330
1
import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ = 1e-12, snake_case_ = 1_0_0, ) -> tuple[float, np.ndarray]: """simple docstring""" assert np.shape(snake_case_ )[0] == np.shape(snake_case_ )[1] # Ensure proper dimensionality. assert np.shape(snake_case_ )[0] == np.shape(snake_case_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(snake_case_ ) == np.iscomplexobj(snake_case_ ) a = np.iscomplexobj(snake_case_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(snake_case_, input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. a = False a = 0 a = 0 a = 1e12 while not convergence: # Multiple matrix by the vector. a = np.dot(snake_case_, snake_case_ ) # Normalize the resulting output vector. a = w / np.linalg.norm(snake_case_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) a = vector.conj().T if is_complex else vector.T a = np.dot(snake_case_, np.dot(snake_case_, snake_case_ ) ) # Check convergence. a = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: a = True a = lambda_ if is_complex: a = np.real(lambda_ ) return lambda_, vector def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]] ) a = np.array([4_1, 4, 2_0] ) a = real_input_matrix.astype(np.complexaaa ) a = np.triu(1J * complex_input_matrix, 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T a = np.array([4_1, 4, 2_0] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": a = real_input_matrix a = real_vector elif problem_type == "complex": a = complex_input_matrix a = complex_vector # Our implementation. a , a = power_iteration(snake_case_, snake_case_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). a , a = np.linalg.eigh(snake_case_ ) # Last eigenvalue is the maximum one. a = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. a = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(snake_case_ ) - np.abs(snake_case_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
1
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(snake_case_ ) * abs(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
330
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ , UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
330
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCamelCase__ : str = pytest.mark.integration @pytest.mark.parametrize('''path''', ['''paws''', '''csv'''] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Tuple: """simple docstring""" inspect_dataset(snake_case_, snake_case_ ) a = path + '''.py''' assert script_name in os.listdir(snake_case_ ) assert "__pycache__" not in os.listdir(snake_case_ ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''', ['''accuracy'''] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str: """simple docstring""" inspect_metric(snake_case_, snake_case_ ) a = path + '''.py''' assert script_name in os.listdir(snake_case_ ) assert "__pycache__" not in os.listdir(snake_case_ ) @pytest.mark.parametrize( '''path, config_name, expected_splits''', [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ], ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> str: """simple docstring""" a = get_dataset_config_info(snake_case_, config_name=snake_case_ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''', [ ('''paws''', None, ValueError), ], ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" with pytest.raises(snake_case_ ): get_dataset_config_info(snake_case_, config_name=snake_case_ ) @pytest.mark.parametrize( '''path, expected''', [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ], ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Any: """simple docstring""" a = get_dataset_config_names(snake_case_ ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''', [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ], ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Any: """simple docstring""" a = get_dataset_infos(snake_case_ ) assert list(infos.keys() ) == expected_configs a = expected_configs[0] assert expected_config in infos a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''', [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ], ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" a = get_dataset_infos(snake_case_ ) assert expected_config in infos a = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''', [ ('''paws''', None, ValueError), ], ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> List[str]: """simple docstring""" with pytest.raises(snake_case_ ): get_dataset_split_names(snake_case_, config_name=snake_case_ )
330
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase__ : int = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Union[str, Any] = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Tuple = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCamelCase__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
from collections.abc import Sequence def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> float: """simple docstring""" a = 0.0 for coeff in reversed(snake_case_ ): a = result * x + coeff return result if __name__ == "__main__": UpperCamelCase__ : List[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCamelCase__ : Union[str, Any] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
330
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES UpperCamelCase__ : Optional[Any] = """tiny-wmt19-en-ru""" # Build # borrowed from a test UpperCamelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] UpperCamelCase__ : List[Any] = dict(zip(vocab, range(len(vocab)))) UpperCamelCase__ : Any = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = Path(tmpdirname) UpperCamelCase__ : Tuple = build_dir / VOCAB_FILES_NAMES["""src_vocab_file"""] UpperCamelCase__ : int = build_dir / VOCAB_FILES_NAMES["""tgt_vocab_file"""] UpperCamelCase__ : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["""merges_file"""] with open(src_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, """w""") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, """w""") as fp: fp.write("""\n""".join(merges)) UpperCamelCase__ : Dict = FSMTTokenizer( langs=["""en""", """ru"""], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) UpperCamelCase__ : Union[str, Any] = FSMTConfig( langs=["""ru""", """en"""], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) UpperCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test UpperCamelCase__ : List[str] = tokenizer(["""Making tiny model"""], return_tensors="""pt""") UpperCamelCase__ : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-ru
330
1
from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class lowerCamelCase_ ( a_ , a_ ): SCREAMING_SNAKE_CASE_ = 'pixel_values' SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = TimmBackboneConfig def __init__( self : Optional[Any] ,__lowerCamelCase : str ,**__lowerCamelCase : Any ): '''simple docstring''' requires_backends(self ,'''timm''' ) super().__init__(__lowerCamelCase ) a = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F"""backbone {config.backbone} is not supported by timm.""" ) if hasattr(__lowerCamelCase ,'''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) a = getattr(__lowerCamelCase ,'''use_pretrained_backbone''' ,__lowerCamelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. a = config.out_indices if getattr(__lowerCamelCase ,'''out_indices''' ,__lowerCamelCase ) is not None else (-1,) a = timm.create_model( config.backbone ,pretrained=__lowerCamelCase ,features_only=config.features_only ,in_chans=config.num_channels ,out_indices=__lowerCamelCase ,**__lowerCamelCase ,) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. a = self._backbone.return_layers a = {layer['''module''']: str(__lowerCamelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[Any] ,__lowerCamelCase : Optional[Any] ,*__lowerCamelCase : List[Any] ,**__lowerCamelCase : int ): '''simple docstring''' requires_backends(cls ,['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig a = kwargs.pop('''config''' ,TimmBackboneConfig() ) a = kwargs.pop('''use_timm_backbone''' ,__lowerCamelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) a = kwargs.pop('''num_channels''' ,config.num_channels ) a = kwargs.pop('''features_only''' ,config.features_only ) a = kwargs.pop('''use_pretrained_backbone''' ,config.use_pretrained_backbone ) a = kwargs.pop('''out_indices''' ,config.out_indices ) a = TimmBackboneConfig( backbone=__lowerCamelCase ,num_channels=__lowerCamelCase ,features_only=__lowerCamelCase ,use_pretrained_backbone=__lowerCamelCase ,out_indices=__lowerCamelCase ,) return super()._from_config(__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : List[Any] ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Dict ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=None ,**__lowerCamelCase : Dict ): '''simple docstring''' a = return_dict if return_dict is not None else self.config.use_return_dict a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone a = self._all_layers a = self._backbone(__lowerCamelCase ,**__lowerCamelCase ) a = self._return_layers a = tuple(hidden_states[i] for i in self.out_indices ) else: a = self._backbone(__lowerCamelCase ,**__lowerCamelCase ) a = None a = tuple(__lowerCamelCase ) a = tuple(__lowerCamelCase ) if hidden_states is not None else None if not return_dict: a = (feature_maps,) if output_hidden_states: a = output + (hidden_states,) return output return BackboneOutput(feature_maps=__lowerCamelCase ,hidden_states=__lowerCamelCase ,attentions=__lowerCamelCase )
330
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) UpperCamelCase__ : Optional[Any] = """bert-base-cased""" UpperCamelCase__ : int = """fp16""" UpperCamelCase__ : str = """bf16""" UpperCamelCase__ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' super().setUp() a = dict( ACCELERATE_USE_FSDP='''true''' ,MASTER_ADDR='''localhost''' ,MASTER_PORT='''10999''' ,RANK='''0''' ,LOCAL_RANK='''0''' ,WORLD_SIZE='''1''' ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = F"""{i + 1}""" a = strategy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy ,ShardingStrategy(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = prefetch_policy with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch ,BackwardPrefetch(i + 1 ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCamelCase ): a = self.dist_env.copy() a = state_dict_type with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type ,StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModel.from_pretrained(__lowerCamelCase ) for policy in FSDP_AUTO_WRAP_POLICY: a = self.dist_env.copy() a = policy if policy == "TRANSFORMER_BASED_WRAP": a = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": a = '''2000''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) a = self.dist_env.copy() a = '''TRANSFORMER_BASED_WRAP''' a = '''T5Layer''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCamelCase ) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) a = self.dist_env.copy() a = '''SIZE_BASED_WRAP''' a = '''0''' with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCamelCase ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: a = self.dist_env.copy() a = mp_dtype with mockenv_context(**__lowerCamelCase ): a = Accelerator() if mp_dtype == "fp16": a = torch.floataa elif mp_dtype == "bf16": a = torch.bfloataa a = MixedPrecision(param_dtype=__lowerCamelCase ,reduce_dtype=__lowerCamelCase ,buffer_dtype=__lowerCamelCase ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy ,__lowerCamelCase ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler ,__lowerCamelCase ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: a = self.dist_env.copy() a = str(__lowerCamelCase ).lower() with mockenv_context(**__lowerCamelCase ): a = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload ,CPUOffload(offload_params=__lowerCamelCase ) ) @require_fsdp @require_multi_gpu @slow class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' super().setUp() a = 0.82 a = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] a = { '''multi_gpu_fp16''': 32_00, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 20_00, '''fsdp_full_shard_transformer_based_wrap_fp16''': 19_00, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } a = 1_60 a = 1_60 a = inspect.getfile(accelerate.test_utils ) a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_performance.py''' ) a = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: a = cmd.copy() for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in config: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--performance_lower_bound={self.performance_lower_bound}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_checkpointing.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__lowerCamelCase ): a = cmd.copy() cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) if strategy != "FULL_SHARD": continue a = len(__lowerCamelCase ) for state_dict_type in FSDP_STATE_DICT_TYPE: a = cmd_config[:state_dict_config_index] cmd_config.append(F"""--fsdp_state_dict_type={state_dict_type}""" ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) a = cmd_config[:-1] a = os.path.join(self.tmpdir ,'''epoch_0''' ) cmd_config.extend( [ F"""--resume_from_checkpoint={resume_from_checkpoint}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = os.path.join(self.test_scripts_folder ,'''test_peak_memory_usage.py''' ) a = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): a = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__lowerCamelCase ): if strategy.lower() in spec: cmd_config.append(F"""--fsdp_sharding_strategy={i+1}""" ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F"""--fsdp_auto_wrap_policy={policy}""" ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F"""--output_dir={self.tmpdir}""", F"""--peak_memory_upper_bound={peak_mem_upper_bound}""", F"""--n_train={self.n_train}""", F"""--n_val={self.n_val}""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__lowerCamelCase ,env=os.environ.copy() )
330
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase_ : def __init__( self : List[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[Any]=3 ,__lowerCamelCase : Tuple=4 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : Union[str, Any]=7 ,__lowerCamelCase : Union[str, Any]=True ,__lowerCamelCase : Optional[int]=True ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : str=True ,__lowerCamelCase : Tuple=99 ,__lowerCamelCase : int=36 ,__lowerCamelCase : List[str]=2 ,__lowerCamelCase : int=4 ,__lowerCamelCase : Any=37 ,__lowerCamelCase : List[str]="gelu" ,__lowerCamelCase : List[Any]=0.1 ,__lowerCamelCase : Optional[Any]=0.1 ,__lowerCamelCase : Dict=5_12 ,__lowerCamelCase : Any=16 ,__lowerCamelCase : Optional[Any]=2 ,__lowerCamelCase : str=0.02 ,__lowerCamelCase : Tuple=6 ,__lowerCamelCase : Optional[Any]=6 ,__lowerCamelCase : int=3 ,__lowerCamelCase : int=4 ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : Union[str, Any]=10_00 ,): '''simple docstring''' a = parent a = batch_size a = num_channels a = image_size a = patch_size a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = coordinate_size a = shape_size a = num_labels a = num_choices a = scope a = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) a = text_seq_length a = (image_size // patch_size) ** 2 + 1 a = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) a = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) a = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: a = bbox[i, j, 3] a = bbox[i, j, 1] a = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: a = bbox[i, j, 2] a = bbox[i, j, 0] a = tmp_coordinate a = tf.constant(__lowerCamelCase ) a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.text_seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) a = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : int ,__lowerCamelCase : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Any ): '''simple docstring''' a = TFLayoutLMvaModel(config=__lowerCamelCase ) # text + image a = model(__lowerCamelCase ,pixel_values=__lowerCamelCase ,training=__lowerCamelCase ) a = model( __lowerCamelCase ,bbox=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,training=__lowerCamelCase ,) a = model(__lowerCamelCase ,bbox=__lowerCamelCase ,pixel_values=__lowerCamelCase ,training=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only a = model(__lowerCamelCase ,training=__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only a = model({'''pixel_values''': pixel_values} ,training=__lowerCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Tuple ): '''simple docstring''' a = self.num_labels a = TFLayoutLMvaForSequenceClassification(config=__lowerCamelCase ) a = model( __lowerCamelCase ,bbox=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,training=__lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Dict ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ,__lowerCamelCase : str ): '''simple docstring''' a = self.num_labels a = TFLayoutLMvaForTokenClassification(config=__lowerCamelCase ) a = model( __lowerCamelCase ,bbox=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,labels=__lowerCamelCase ,training=__lowerCamelCase ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str] ,__lowerCamelCase : Dict ): '''simple docstring''' a = 2 a = TFLayoutLMvaForQuestionAnswering(config=__lowerCamelCase ) a = model( __lowerCamelCase ,bbox=__lowerCamelCase ,pixel_values=__lowerCamelCase ,attention_mask=__lowerCamelCase ,token_type_ids=__lowerCamelCase ,start_positions=__lowerCamelCase ,end_positions=__lowerCamelCase ,training=__lowerCamelCase ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.prepare_config_and_inputs() ((a) , (a) , (a) , (a) , (a) , (a) , (a) , (a)) = config_and_inputs a = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str ,__lowerCamelCase : Any=False ): '''simple docstring''' a = copy.deepcopy(__lowerCamelCase ) if model_class in get_values(__lowerCamelCase ): a = { k: tf.tile(tf.expand_dims(__lowerCamelCase ,1 ) ,(1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__lowerCamelCase ,tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__lowerCamelCase ): a = tf.ones(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(__lowerCamelCase ): a = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) a = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(__lowerCamelCase ): a = tf.zeros(self.model_tester.batch_size ,dtype=tf.intaa ) elif model_class in get_values(__lowerCamelCase ): a = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=tf.intaa ) return inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = TFLayoutLMvaModelTester(self ) a = ConfigTester(self ,config_class=__lowerCamelCase ,hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) if getattr(__lowerCamelCase ,'''hf_compute_loss''' ,__lowerCamelCase ): # The number of elements in the loss should be the same as the number of elements in the label a = self._prepare_for_class(inputs_dict.copy() ,__lowerCamelCase ,return_labels=__lowerCamelCase ) a = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() ,reverse=__lowerCamelCase )[0] ] a = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs a = self._prepare_for_class(inputs_dict.copy() ,__lowerCamelCase ,return_labels=__lowerCamelCase ) a = prepared_for_class.pop('''input_ids''' ) a = model(__lowerCamelCase ,**__lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions a = self._prepare_for_class(inputs_dict.copy() ,__lowerCamelCase ,return_labels=__lowerCamelCase ) a = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: a = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: a = -1_00 a = tf.convert_to_tensor(__lowerCamelCase ) a = model(__lowerCamelCase ,**__lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict a = self._prepare_for_class(inputs_dict.copy() ,__lowerCamelCase ,return_labels=__lowerCamelCase ) a = model(__lowerCamelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple a = self._prepare_for_class(inputs_dict.copy() ,__lowerCamelCase ,return_labels=__lowerCamelCase ) # Get keys that were added with the _prepare_for_class function a = prepared_for_class.keys() - inputs_dict.keys() a = inspect.signature(model.call ).parameters a = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple a = {0: '''input_ids'''} for label_key in label_keys: a = signature_names.index(__lowerCamelCase ) a = label_key a = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple a = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: a = prepared_for_class[value] a = tuple(__lowerCamelCase ) # Send to model a = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a = type self.model_tester.create_and_check_model(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) @slow def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = TFLayoutLMvaModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: """simple docstring""" a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class lowerCamelCase_ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__lowerCamelCase ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) a = self.default_image_processor a = prepare_img() a = image_processor(images=__lowerCamelCase ,return_tensors='''tf''' ).pixel_values a = tf.constant([[1, 2]] ) a = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) ,axis=0 ) # forward pass a = model(input_ids=__lowerCamelCase ,bbox=__lowerCamelCase ,pixel_values=__lowerCamelCase ,training=__lowerCamelCase ) # verify the logits a = (1, 1_99, 7_68) self.assertEqual(outputs.last_hidden_state.shape ,__lowerCamelCase ) a = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__lowerCamelCase ,atol=1e-4 ) )
330
from __future__ import annotations import os from collections.abc import Mapping UpperCamelCase__ : Any = tuple[int, int] class lowerCamelCase_ : def __init__( self : Optional[Any] ,__lowerCamelCase : set[int] ,__lowerCamelCase : Mapping[EdgeT, int] ): '''simple docstring''' a = vertices a = { (min(__lowerCamelCase ), max(__lowerCamelCase )): weight for edge, weight in edges.items() } def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : EdgeT ,__lowerCamelCase : int ): '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) a = weight def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = Graph({min(self.vertices )} ,{} ) a = 42 a = 42 a = 42 a = 42 while len(subgraph.vertices ) < len(self.vertices ): a = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: a = edge a = weight subgraph.add_edge(__lowerCamelCase ,__lowerCamelCase ) return subgraph def SCREAMING_SNAKE_CASE__ ( snake_case_ = "p107_network.txt" ) -> int: """simple docstring""" a = os.path.abspath(os.path.dirname(snake_case_ ) ) a = os.path.join(snake_case_, snake_case_ ) a = {} a = 42 a = 42 a = 42 with open(snake_case_ ) as f: a = f.read().strip().split('''\n''' ) a = [line.split(''',''' ) for line in data] for edgea in range(1, len(snake_case_ ) ): for edgea in range(snake_case_ ): if adjaceny_matrix[edgea][edgea] != "-": a = int(adjaceny_matrix[edgea][edgea] ) a = Graph(set(range(len(snake_case_ ) ) ), snake_case_ ) a = graph.prims_algorithm() a = sum(graph.edges.values() ) a = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"{solution() = }")
330
1
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() UpperCamelCase__ : Any = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model UpperCamelCase__ : Optional[Any] = { # fairseq: """wmt19-ru-en""": {"""length_penalty""": 1.1}, """wmt19-en-ru""": {"""length_penalty""": 1.1_5}, """wmt19-en-de""": {"""length_penalty""": 1.0}, """wmt19-de-en""": {"""length_penalty""": 1.1}, # allenai: """wmt16-en-de-dist-12-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-dist-6-1""": {"""length_penalty""": 0.6}, """wmt16-en-de-12-1""": {"""length_penalty""": 0.8}, """wmt19-de-en-6-6-base""": {"""length_penalty""": 0.6}, """wmt19-de-en-6-6-big""": {"""length_penalty""": 0.6}, } # this remaps the different models to their organization names UpperCamelCase__ : Optional[int] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ : Optional[int] = """facebook""" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: UpperCamelCase__ : List[Any] = """allenai""" def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = dict((re.sub(r'''@@$''', '''''', snake_case_ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''', '''</w>''', snake_case_ ), v) for k, v in d.items() ) a = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[f"""{k}</w>"""] a = d[k] # restore return da def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" assert os.path.exists(snake_case_ ) os.makedirs(snake_case_, exist_ok=snake_case_ ) print(f"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models a = basename(snake_case_ ) a = dirname(snake_case_ ) a = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel a = cls.hub_models() a = {'''bpe''': '''fastbpe''', '''tokenizer''': '''moses'''} a = '''.''' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f"""using checkpoint {checkpoint_file}""" ) a = hub_utils.from_pretrained( snake_case_, snake_case_, snake_case_, archive_map=snake_case_, **snake_case_ ) a = vars(chkpt['''args''']['''model'''] ) a = args['''source_lang'''] a = args['''target_lang'''] a = dirname(snake_case_ ) a = basename(snake_case_ ) # dicts a = os.path.join(snake_case_, f"""dict.{src_lang}.txt""" ) a = os.path.join(snake_case_, f"""dict.{tgt_lang}.txt""" ) a = Dictionary.load(snake_case_ ) a = rewrite_dict_keys(src_dict.indices ) a = len(snake_case_ ) a = os.path.join(snake_case_, '''vocab-src.json''' ) print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab a = True for k in src_vocab.keys(): if not k.islower(): a = False break a = Dictionary.load(snake_case_ ) a = rewrite_dict_keys(tgt_dict.indices ) a = len(snake_case_ ) a = os.path.join(snake_case_, '''vocab-tgt.json''' ) print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # merges_file (bpecodes) a = os.path.join(snake_case_, VOCAB_FILES_NAMES['''merges_file'''] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" a = os.path.join(snake_case_, snake_case_ ) if os.path.exists(snake_case_ ): break with open(snake_case_, encoding='''utf-8''' ) as fin: a = fin.read() a = re.sub(r''' \d+$''', '''''', snake_case_, 0, re.M ) # remove frequency number print(f"""Generating {merges_file}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as fout: fout.write(snake_case_ ) # model config a = os.path.join(snake_case_, '''config.json''' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args["bpe"]}""" assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args["tokenizer"]}""" a = { '''architectures''': ['''FSMTForConditionalGeneration'''], '''model_type''': '''fsmt''', '''activation_dropout''': args['''activation_dropout'''], '''activation_function''': '''relu''', '''attention_dropout''': args['''attention_dropout'''], '''d_model''': args['''decoder_embed_dim'''], '''dropout''': args['''dropout'''], '''init_std''': 0.02, '''max_position_embeddings''': args['''max_source_positions'''], '''num_hidden_layers''': args['''encoder_layers'''], '''src_vocab_size''': src_vocab_size, '''tgt_vocab_size''': tgt_vocab_size, '''langs''': [src_lang, tgt_lang], '''encoder_attention_heads''': args['''encoder_attention_heads'''], '''encoder_ffn_dim''': args['''encoder_ffn_embed_dim'''], '''encoder_layerdrop''': args['''encoder_layerdrop'''], '''encoder_layers''': args['''encoder_layers'''], '''decoder_attention_heads''': args['''decoder_attention_heads'''], '''decoder_ffn_dim''': args['''decoder_ffn_embed_dim'''], '''decoder_layerdrop''': args['''decoder_layerdrop'''], '''decoder_layers''': args['''decoder_layers'''], '''bos_token_id''': 0, '''pad_token_id''': 1, '''eos_token_id''': 2, '''is_encoder_decoder''': True, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_all_embeddings'''], } # good hparam defaults to start with a = 5 a = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: a = best_score_hparams[model_dir]['''length_penalty'''] else: a = 1.0 print(f"""Generating {fsmt_model_config_file}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # tokenizer config a = os.path.join(snake_case_, snake_case_ ) a = { '''langs''': [src_lang, tgt_lang], '''model_max_length''': 1_0_2_4, '''do_lower_case''': do_lower_case, } print(f"""Generating {fsmt_tokenizer_config_file}""" ) with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(snake_case_, ensure_ascii=snake_case_, indent=snake_case_ ) ) # model a = chkpt['''models'''][0] a = model.state_dict() # rename keys to start with 'model.' a = OrderedDict(('''model.''' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys a = [ '''model.model''', '''model.encoder.version''', '''model.decoder.version''', '''model.encoder_embed_tokens.weight''', '''model.decoder_embed_tokens.weight''', '''model.encoder.embed_positions._float_tensor''', '''model.decoder.embed_positions._float_tensor''', ] for k in ignore_keys: model_state_dict.pop(snake_case_, snake_case_ ) a = FSMTConfig.from_pretrained(snake_case_ ) a = FSMTForConditionalGeneration(snake_case_ ) # check that it loads ok model_new.load_state_dict(snake_case_, strict=snake_case_ ) # save a = os.path.join(snake_case_, snake_case_ ) print(f"""Generating {pytorch_weights_dump_path}""" ) torch.save(snake_case_, snake_case_ ) print('''Conversion is done!''' ) print('''\nLast step is to upload the files to s3''' ) print(f"""cd {data_root}""" ) print(f"""transformers-cli upload {model_dir}""" ) if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fsmt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCamelCase__ : List[str] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
330
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ : List[Any] = logging.get_logger(__name__) # General docstring UpperCamelCase__ : List[Any] = """RegNetConfig""" # Base docstring UpperCamelCase__ : Dict = """facebook/regnet-y-040""" UpperCamelCase__ : int = [1, 1_088, 7, 7] # Image classification docstring UpperCamelCase__ : Optional[Any] = """facebook/regnet-y-040""" UpperCamelCase__ : Dict = """tabby, tabby cat""" UpperCamelCase__ : Dict = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[str] ,__lowerCamelCase : int ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : Optional[str] = "relu" ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb a = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=__lowerCamelCase ,strides=__lowerCamelCase ,padding='''VALID''' ,groups=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ,) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) a = ACTaFN[activation] if activation is not None else tf.identity def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[str] ): '''simple docstring''' a = self.convolution(self.padding(__lowerCamelCase ) ) a = self.normalization(__lowerCamelCase ) a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Any ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config.num_channels a = TFRegNetConvLayer( out_channels=config.embedding_size ,kernel_size=3 ,stride=2 ,activation=config.hidden_act ,name='''embedder''' ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = shape_list(__lowerCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) a = tf.transpose(__lowerCamelCase ,perm=(0, 2, 3, 1) ) a = self.embedder(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : str ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.ConvaD( filters=__lowerCamelCase ,kernel_size=1 ,strides=__lowerCamelCase ,use_bias=__lowerCamelCase ,name='''convolution''' ) a = tf.keras.layers.BatchNormalization(epsilon=1e-5 ,momentum=0.9 ,name='''normalization''' ) def SCREAMING_SNAKE_CASE_ ( self : Dict ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__lowerCamelCase ) ,training=__lowerCamelCase ) class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : List[Any] ,__lowerCamelCase : int ,__lowerCamelCase : int ,**__lowerCamelCase : str ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) a = [ tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''relu''' ,name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowerCamelCase ,kernel_size=1 ,activation='''sigmoid''' ,name='''attention.2''' ), ] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = self.pooler(__lowerCamelCase ) for layer_module in self.attention: a = layer_module(__lowerCamelCase ) a = hidden_state * pooled return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : Dict ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.2''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Dict ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 1 ,**__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = in_channels != out_channels or stride != 1 a = max(1 ,out_channels // config.groups_width ) a = ( TFRegNetShortCut(__lowerCamelCase ,stride=__lowerCamelCase ,name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' ,name='''shortcut''' ) ) a = [ TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=config.hidden_act ,name='''layer.0''' ), TFRegNetConvLayer( __lowerCamelCase ,stride=__lowerCamelCase ,groups=__lowerCamelCase ,activation=config.hidden_act ,name='''layer.1''' ), TFRegNetSELayer(__lowerCamelCase ,reduced_channels=int(round(in_channels / 4 ) ) ,name='''layer.2''' ), TFRegNetConvLayer(__lowerCamelCase ,kernel_size=1 ,activation=__lowerCamelCase ,name='''layer.3''' ), ] a = ACTaFN[config.hidden_act] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ,__lowerCamelCase : str ): '''simple docstring''' a = hidden_state for layer_module in self.layers: a = layer_module(__lowerCamelCase ) a = self.shortcut(__lowerCamelCase ) hidden_state += residual a = self.activation(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 2 ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer a = [ # downsampling is done in the first layer with stride of 2 layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,stride=__lowerCamelCase ,name='''layers.0''' ), *[layer(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,name=F"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : int ): '''simple docstring''' for layer_module in self.layers: a = layer_module(__lowerCamelCase ) return hidden_state class lowerCamelCase_ ( tf.keras.layers.Layer ): def __init__( self : Union[str, Any] ,__lowerCamelCase : RegNetConfig ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowerCamelCase ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,name='''stages.0''' ,) ) a = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowerCamelCase ,config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,depth=__lowerCamelCase ,name=F"""stages.{i+1}""" ) ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ): '''simple docstring''' a = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a = hidden_states + (hidden_state,) a = stage_module(__lowerCamelCase ) if output_hidden_states: a = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowerCamelCase ,hidden_states=__lowerCamelCase ) @keras_serializable class lowerCamelCase_ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE_ = RegNetConfig def __init__( self : Dict ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = config a = TFRegNetEmbeddings(__lowerCamelCase ,name='''embedder''' ) a = TFRegNetEncoder(__lowerCamelCase ,name='''encoder''' ) a = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowerCamelCase ,name='''pooler''' ) @unpack_inputs def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : bool = False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.embedder(__lowerCamelCase ,training=__lowerCamelCase ) a = self.encoder( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = encoder_outputs[0] a = self.pooler(__lowerCamelCase ) # Change to NCHW output format have uniformity in the modules a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) a = tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: a = tuple([tf.transpose(__lowerCamelCase ,perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase ,pooler_output=__lowerCamelCase ,hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states ,) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = RegNetConfig SCREAMING_SNAKE_CASE_ = 'regnet' SCREAMING_SNAKE_CASE_ = 'pixel_values' @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) ,dtype=tf.floataa )} UpperCamelCase__ : Union[str, Any] = R""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ UpperCamelCase__ : List[str] = R""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a_ , ) class lowerCamelCase_ ( a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : int ,**__lowerCamelCase : Union[str, Any] ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,modality='''vision''' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : tf.Tensor ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : Optional[bool] = None ,__lowerCamelCase : List[str]=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( pixel_values=__lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ,) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state ,pooler_output=outputs.pooler_output ,hidden_states=outputs.hidden_states ,) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a_ , ) class lowerCamelCase_ ( a_ , a_ ): def __init__( self : Optional[int] ,__lowerCamelCase : RegNetConfig ,*__lowerCamelCase : str ,**__lowerCamelCase : Any ): '''simple docstring''' super().__init__(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) a = config.num_labels a = TFRegNetMainLayer(__lowerCamelCase ,name='''regnet''' ) # classification head a = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels ,name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=__lowerCamelCase ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : tf.Tensor = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : bool = None ,__lowerCamelCase : Dict=False ,): '''simple docstring''' a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = return_dict if return_dict is not None else self.config.use_return_dict a = self.regnet( __lowerCamelCase ,output_hidden_states=__lowerCamelCase ,return_dict=__lowerCamelCase ,training=__lowerCamelCase ) a = outputs.pooler_output if return_dict else outputs[1] a = self.classifier[0](__lowerCamelCase ) a = self.classifier[1](__lowerCamelCase ) a = None if labels is None else self.hf_compute_loss(labels=__lowerCamelCase ,logits=__lowerCamelCase ) if not return_dict: a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowerCamelCase ,logits=__lowerCamelCase ,hidden_states=outputs.hidden_states )
330
1
import math from collections.abc import Iterator from itertools import takewhile def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(snake_case_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( ) -> Iterator[int]: """simple docstring""" a = 2 while True: if is_prime(snake_case_ ): yield num num += 1 def SCREAMING_SNAKE_CASE__ ( snake_case_ = 2_0_0_0_0_0_0 ) -> int: """simple docstring""" return sum(takewhile(lambda snake_case_ : x < n, prime_generator() ) ) if __name__ == "__main__": print(F"{solution() = }")
330
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : List[str] = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'efficientformer' def __init__( self : Optional[int] ,__lowerCamelCase : List[int] = [3, 2, 6, 4] ,__lowerCamelCase : List[int] = [48, 96, 2_24, 4_48] ,__lowerCamelCase : List[bool] = [True, True, True, True] ,__lowerCamelCase : int = 4_48 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 7 ,__lowerCamelCase : int = 5 ,__lowerCamelCase : int = 8 ,__lowerCamelCase : int = 4 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 16 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 2 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : float = 0.0 ,__lowerCamelCase : int = 1 ,__lowerCamelCase : bool = True ,__lowerCamelCase : bool = True ,__lowerCamelCase : float = 1e-5 ,__lowerCamelCase : str = "gelu" ,__lowerCamelCase : float = 0.02 ,__lowerCamelCase : float = 1e-12 ,__lowerCamelCase : int = 2_24 ,__lowerCamelCase : float = 1e-05 ,**__lowerCamelCase : Dict ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_act a = hidden_dropout_prob a = hidden_sizes a = num_hidden_layers a = num_attention_heads a = initializer_range a = layer_norm_eps a = patch_size a = num_channels a = depths a = mlp_expansion_ratio a = downsamples a = dim a = key_dim a = attention_ratio a = resolution a = pool_size a = downsample_patch_size a = downsample_stride a = downsample_pad a = drop_path_rate a = num_metaad_blocks a = distillation a = use_layer_scale a = layer_scale_init_value a = image_size a = batch_norm_eps
330
1
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCamelCase_ : def __init__( self : Union[str, Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Dict=99 ,__lowerCamelCase : Any=13 ,__lowerCamelCase : List[Any]=7 ,__lowerCamelCase : Union[str, Any]=9 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=True ,__lowerCamelCase : List[Any]=False ,__lowerCamelCase : Dict=32 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[Any]=4 ,__lowerCamelCase : int=37 ,__lowerCamelCase : List[Any]=8 ,__lowerCamelCase : List[Any]=0.1 ,__lowerCamelCase : Optional[int]=0.002 ,__lowerCamelCase : Tuple=1 ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : Tuple=0 ,__lowerCamelCase : Any=None ,__lowerCamelCase : Tuple=None ,): '''simple docstring''' a = parent a = batch_size a = encoder_seq_length a = decoder_seq_length # For common tests a = self.decoder_seq_length a = is_training a = use_attention_mask a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = d_ff a = relative_attention_num_buckets a = dropout_rate a = initializer_factor a = eos_token_id a = pad_token_id a = decoder_start_token_id a = None a = decoder_layers def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return TaConfig.from_pretrained('''google/umt5-base''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : int ,__lowerCamelCase : Any ,__lowerCamelCase : Union[str, Any]=None ,__lowerCamelCase : Dict=None ,__lowerCamelCase : Optional[int]=None ,__lowerCamelCase : Union[str, Any]=None ,__lowerCamelCase : int=None ,): '''simple docstring''' if attention_mask is None: a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: a = torch.ones(config.num_hidden_layers ,config.num_attention_heads ,device=__lowerCamelCase ) if decoder_head_mask is None: a = torch.ones(config.num_decoder_layers ,config.num_attention_heads ,device=__lowerCamelCase ) if cross_attn_head_mask is None: a = torch.ones( config.num_decoder_layers ,config.num_attention_heads ,device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = ids_tensor([self.batch_size, self.encoder_seq_length] ,self.vocab_size ) a = ids_tensor([self.batch_size, self.decoder_seq_length] ,self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input a = input_ids.clamp(self.pad_token_id + 1 ) a = decoder_input_ids.clamp(self.pad_token_id + 1 ) a = self.get_config() a = config.num_attention_heads a = self.prepare_inputs_dict(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return config, input_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a , a = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' return TaConfig( vocab_size=1_66 ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' return TaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,d_ff=self.d_ff ,d_kv=self.hidden_size // self.num_attention_heads ,num_layers=self.num_hidden_layers ,num_decoder_layers=self.decoder_layers ,num_heads=self.num_attention_heads ,relative_attention_num_buckets=self.relative_attention_num_buckets ,dropout_rate=self.dropout_rate ,initializer_factor=self.initializer_factor ,eos_token_id=self.eos_token_id ,bos_token_id=self.pad_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.decoder_start_token_id ,) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any] ,): '''simple docstring''' a = UMTaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model( input_ids=__lowerCamelCase ,decoder_input_ids=__lowerCamelCase ,attention_mask=__lowerCamelCase ,decoder_attention_mask=__lowerCamelCase ,) a = model(input_ids=__lowerCamelCase ,decoder_input_ids=__lowerCamelCase ) a = result.last_hidden_state a = result.past_key_values a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() ,(self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() ,(self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__lowerCamelCase ) ,config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) ,4 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : Union[str, Any] ,): '''simple docstring''' a = UMTaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() # first forward pass a = model(__lowerCamelCase ,use_cache=__lowerCamelCase ) a = model(__lowerCamelCase ) a = model(__lowerCamelCase ,use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 1) ,config.vocab_size ) # append to next input_ids and a = torch.cat([input_ids, next_tokens] ,dim=-1 ) a = model(__lowerCamelCase )['''last_hidden_state'''] a = model(__lowerCamelCase ,past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice a = ids_tensor((1,) ,output_from_past.shape[-1] ).item() a = output_from_no_past[:, -1, random_slice_idx].detach() a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase ,__lowerCamelCase ,atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : str ,__lowerCamelCase : str ,): '''simple docstring''' a = UMTaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).half().eval() a = model(**__lowerCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__lowerCamelCase ).any().item() ) @require_torch class lowerCamelCase_ ( a_ , a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = (UMTaForConditionalGeneration,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True # The small UMT5 model needs higher percentages for CPU/MP tests SCREAMING_SNAKE_CASE_ = [0.8, 0.9] def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() a = UMTaModel(config_and_inputs[0] ).to(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __lowerCamelCase ,(config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) ,F"""{tmpdirname}/t5_test.onnx""" ,export_params=__lowerCamelCase ,opset_version=9 ,input_names=['''input_ids''', '''decoder_input_ids'''] ,) @unittest.skipIf(torch_device == '''cpu''' ,'''Cant do half precision''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] a = self.model_tester.prepare_config_and_inputs() a = config_and_inputs[0] a = UMTaForConditionalGeneration(__lowerCamelCase ).eval() model.to(__lowerCamelCase ) a = { '''head_mask''': torch.zeros(config.num_layers ,config.num_heads ,device=__lowerCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=__lowerCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers ,config.num_heads ,device=__lowerCamelCase ), } for attn_name, (name, mask) in zip(__lowerCamelCase ,head_masking.items() ): a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": a = torch.ones( config.num_decoder_layers ,config.num_heads ,device=__lowerCamelCase ) a = model.generate( config_and_inputs[1]['''input_ids'''] ,num_beams=1 ,max_length=3 ,output_attentions=__lowerCamelCase ,return_dict_in_generate=__lowerCamelCase ,**__lowerCamelCase ,) # We check the state of decoder_attentions and cross_attentions just from the last step a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) ,0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase_ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' ,return_dict=__lowerCamelCase ).to(__lowerCamelCase ) a = AutoTokenizer.from_pretrained('''google/umt5-small''' ,use_fast=__lowerCamelCase ,legacy=__lowerCamelCase ) a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] a = tokenizer(__lowerCamelCase ,return_tensors='''pt''' ,padding=__lowerCamelCase ).input_ids # fmt: off a = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(__lowerCamelCase ,__lowerCamelCase ) a = model.generate(input_ids.to(__lowerCamelCase ) ) a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] a = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase )
330
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration UpperCamelCase__ : Any = [ # tf -> hf ("""/""", """."""), ("""layer_""", """layers."""), ("""kernel""", """weight"""), ("""beta""", """bias"""), ("""gamma""", """weight"""), ("""pegasus""", """model"""), ] UpperCamelCase__ : Optional[Any] = [ (""".output.dense""", """.fc2"""), ("""intermediate.LayerNorm""", """final_layer_norm"""), ("""intermediate.dense""", """fc1"""), ] UpperCamelCase__ : Optional[Any] = ( INIT_COMMON + [ ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.out_proj"""), ("""attention.self""", """self_attn"""), ("""attention.encdec.LayerNorm""", """encoder_attn_layer_norm"""), ("""attention.encdec_output.dense""", """encoder_attn.out_proj"""), ("""attention.encdec""", """encoder_attn"""), ("""key""", """k_proj"""), ("""value""", """v_proj"""), ("""query""", """q_proj"""), ("""decoder.LayerNorm""", """decoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : List[str] = ( INIT_COMMON + [ ("""embeddings.word_embeddings""", """shared.weight"""), ("""embeddings.position_embeddings""", """embed_positions.weight"""), ("""attention.self.LayerNorm""", """self_attn_layer_norm"""), ("""attention.output.dense""", """self_attn.output"""), ("""attention.self""", """self_attn.self"""), ("""encoder.LayerNorm""", """encoder.layernorm_embedding"""), ] + END_COMMON ) UpperCamelCase__ : Optional[int] = [ """encdec/key/bias""", """encdec/query/bias""", """encdec/value/bias""", """self/key/bias""", """self/query/bias""", """self/value/bias""", """encdec_output/dense/bias""", """attention/output/dense/bias""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for tf_name, hf_name in patterns: a = k.replace(snake_case_, snake_case_ ) return k def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> BigBirdPegasusForConditionalGeneration: """simple docstring""" a = BigBirdPegasusConfig(**snake_case_ ) a = BigBirdPegasusForConditionalGeneration(snake_case_ ) a = torch_model.state_dict() a = {} # separating decoder weights a = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} a = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = DECODER_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items(), '''tf -> hf conversion''' ): a = [k.endswith(snake_case_ ) for ending in KEYS_TO_IGNORE] if any(snake_case_ ): continue a = REMAINING_PATTERNS a = rename_state_dict_key(snake_case_, snake_case_ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): a = v.T a = torch.from_numpy(snake_case_ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" a = mapping['''model.embed_positions.weight'''] a = mapping.pop('''model.embed_positions.weight''' ) a , a = torch_model.load_state_dict(snake_case_, strict=snake_case_ ) a = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = tf.train.list_variables(snake_case_ ) a = {} a = ['''global_step'''] for name, shape in tqdm(snake_case_, desc='''converting tf checkpoint to dict''' ): a = any(pat in name for pat in ignore_name ) if skip_key: continue a = tf.train.load_variable(snake_case_, snake_case_ ) a = array return tf_weights def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> int: """simple docstring""" a = get_tf_weights_as_numpy(snake_case_ ) a = convert_bigbird_pegasus(snake_case_, snake_case_ ) torch_model.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : str = argparse.ArgumentParser() parser.add_argument("""--tf_ckpt_path""", type=str, help="""passed to tf.train.list_variables""") parser.add_argument("""--save_dir""", default=None, type=str, help="""Path to the output PyTorch model.""") UpperCamelCase__ : int = parser.parse_args() UpperCamelCase__ : Tuple = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
330
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 42 class lowerCamelCase_ ( a_ , a_ ): SCREAMING_SNAKE_CASE_ = True @register_to_config def __init__( self : Optional[int] ,__lowerCamelCase : int = 3 ,__lowerCamelCase : int = 3 ,__lowerCamelCase : Tuple[str] = ("DownEncoderBlock2D",) ,__lowerCamelCase : Tuple[str] = ("UpDecoderBlock2D",) ,__lowerCamelCase : Tuple[int] = (64,) ,__lowerCamelCase : int = 1 ,__lowerCamelCase : str = "silu" ,__lowerCamelCase : int = 4 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : int = 32 ,__lowerCamelCase : float = 0.18_215 ,): '''simple docstring''' super().__init__() # pass init params to Encoder a = Encoder( in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,down_block_types=__lowerCamelCase ,block_out_channels=__lowerCamelCase ,layers_per_block=__lowerCamelCase ,act_fn=__lowerCamelCase ,norm_num_groups=__lowerCamelCase ,double_z=__lowerCamelCase ,) # pass init params to Decoder a = Decoder( in_channels=__lowerCamelCase ,out_channels=__lowerCamelCase ,up_block_types=__lowerCamelCase ,block_out_channels=__lowerCamelCase ,layers_per_block=__lowerCamelCase ,norm_num_groups=__lowerCamelCase ,act_fn=__lowerCamelCase ,) a = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) a = nn.Convad(__lowerCamelCase ,__lowerCamelCase ,1 ) a = False a = False # only relevant if vae tiling is enabled a = self.config.sample_size a = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) a = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) a = 0.25 def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : str=False ): '''simple docstring''' if isinstance(__lowerCamelCase ,(Encoder, Decoder) ): a = value def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : bool = True ): '''simple docstring''' a = use_tiling def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.enable_tiling(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = True def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = {} def fn_recursive_add_processors(__lowerCamelCase : str ,__lowerCamelCase : torch.nn.Module ,__lowerCamelCase : Dict[str, AttentionProcessor] ): if hasattr(__lowerCamelCase ,'''set_processor''' ): a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"""{name}.{sub_name}""" ,__lowerCamelCase ,__lowerCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return processors def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' a = len(self.attn_processors.keys() ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) and len(__lowerCamelCase ) != count: raise ValueError( F"""A dict of processors was passed, but the number of processors {len(__lowerCamelCase )} does not match the""" F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(__lowerCamelCase : str ,__lowerCamelCase : torch.nn.Module ,__lowerCamelCase : str ): if hasattr(__lowerCamelCase ,'''set_processor''' ): if not isinstance(__lowerCamelCase ,__lowerCamelCase ): module.set_processor(__lowerCamelCase ) else: module.set_processor(processor.pop(F"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"""{name}.{sub_name}""" ,__lowerCamelCase ,__lowerCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : bool = True ): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__lowerCamelCase ,return_dict=__lowerCamelCase ) if self.use_slicing and x.shape[0] > 1: a = [self.encoder(__lowerCamelCase ) for x_slice in x.split(1 )] a = torch.cat(__lowerCamelCase ) else: a = self.encoder(__lowerCamelCase ) a = self.quant_conv(__lowerCamelCase ) a = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : bool = True ): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__lowerCamelCase ,return_dict=__lowerCamelCase ) a = self.post_quant_conv(__lowerCamelCase ) a = self.decoder(__lowerCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) @apply_forward_hook def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : bool = True ): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: a = [self._decode(__lowerCamelCase ).sample for z_slice in z.split(1 )] a = torch.cat(__lowerCamelCase ) else: a = self._decode(__lowerCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = min(a.shape[2] ,b.shape[2] ,__lowerCamelCase ) for y in range(__lowerCamelCase ): a = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Dict ): '''simple docstring''' a = min(a.shape[3] ,b.shape[3] ,__lowerCamelCase ) for x in range(__lowerCamelCase ): a = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : bool = True ): '''simple docstring''' a = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) a = int(self.tile_latent_min_size * self.tile_overlap_factor ) a = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. a = [] for i in range(0 ,x.shape[2] ,__lowerCamelCase ): a = [] for j in range(0 ,x.shape[3] ,__lowerCamelCase ): a = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] a = self.encoder(__lowerCamelCase ) a = self.quant_conv(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) a = [] for i, row in enumerate(__lowerCamelCase ): a = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a = self.blend_v(rows[i - 1][j] ,__lowerCamelCase ,__lowerCamelCase ) if j > 0: a = self.blend_h(row[j - 1] ,__lowerCamelCase ,__lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase ,dim=3 ) ) a = torch.cat(__lowerCamelCase ,dim=2 ) a = DiagonalGaussianDistribution(__lowerCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : bool = True ): '''simple docstring''' a = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) a = int(self.tile_sample_min_size * self.tile_overlap_factor ) a = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. a = [] for i in range(0 ,z.shape[2] ,__lowerCamelCase ): a = [] for j in range(0 ,z.shape[3] ,__lowerCamelCase ): a = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] a = self.post_quant_conv(__lowerCamelCase ) a = self.decoder(__lowerCamelCase ) row.append(__lowerCamelCase ) rows.append(__lowerCamelCase ) a = [] for i, row in enumerate(__lowerCamelCase ): a = [] for j, tile in enumerate(__lowerCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: a = self.blend_v(rows[i - 1][j] ,__lowerCamelCase ,__lowerCamelCase ) if j > 0: a = self.blend_h(row[j - 1] ,__lowerCamelCase ,__lowerCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__lowerCamelCase ,dim=3 ) ) a = torch.cat(__lowerCamelCase ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : torch.FloatTensor ,__lowerCamelCase : bool = False ,__lowerCamelCase : bool = True ,__lowerCamelCase : Optional[torch.Generator] = None ,): '''simple docstring''' a = sample a = self.encode(__lowerCamelCase ).latent_dist if sample_posterior: a = posterior.sample(generator=__lowerCamelCase ) else: a = posterior.mode() a = self.decode(__lowerCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__lowerCamelCase )
330
import re def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" if len(re.findall('''[ATCG]''', snake_case_ ) ) != len(snake_case_ ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
1
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
from __future__ import annotations from collections.abc import Sequence from typing import Literal def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str | Literal[False]: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count += 1 a = '''_''' if count > 1: return False else: return "".join(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[str]: """simple docstring""" a = [] while True: a = ['''$'''] * len(snake_case_ ) a = [] for i in range(len(snake_case_ ) ): for j in range(i + 1, len(snake_case_ ) ): a = compare_string(binary[i], binary[j] ) if k is False: a = '''*''' a = '''*''' temp.append('''X''' ) for i in range(len(snake_case_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(snake_case_ ) == 0: return pi a = list(set(snake_case_ ) ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] for minterm in minterms: a = '''''' for _ in range(snake_case_ ): a = str(minterm % 2 ) + string minterm //= 2 temp.append(snake_case_ ) return temp def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> bool: """simple docstring""" a = list(snake_case_ ) a = list(snake_case_ ) a = 0 for i in range(len(snake_case_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[str]: """simple docstring""" a = [] a = [0] * len(snake_case_ ) for i in range(len(chart[0] ) ): a = 0 a = -1 for j in range(len(snake_case_ ) ): if chart[j][i] == 1: count += 1 a = j if count == 1: a = 1 for i in range(len(snake_case_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(snake_case_ ) ): a = 0 temp.append(prime_implicants[i] ) while True: a = 0 a = -1 a = 0 for i in range(len(snake_case_ ) ): a = chart[i].count(1 ) if count_n > max_n: a = count_n a = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(snake_case_ ) ): a = 0 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> list[list[int]]: """simple docstring""" a = [[0 for x in range(len(snake_case_ ) )] for x in range(len(snake_case_ ) )] for i in range(len(snake_case_ ) ): a = prime_implicants[i].count('''_''' ) for j in range(len(snake_case_ ) ): if is_for_table(prime_implicants[i], binary[j], snake_case_ ): a = 1 return chart def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a = int(input('''Enter the no. of variables\n''' ) ) a = [ float(snake_case_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] a = decimal_to_binary(snake_case_, snake_case_ ) a = check(snake_case_ ) print('''Prime Implicants are:''' ) print(snake_case_ ) a = prime_implicant_chart(snake_case_, snake_case_ ) a = selection(snake_case_, snake_case_ ) print('''Essential Prime Implicants are:''' ) print(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
330
1
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) a = [True] * (num + 1) a = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, snake_case_ ): a = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Optional[Any] = int(input("""Enter a positive integer: """).strip()) print(prime_sieve_eratosthenes(user_num))
330
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING UpperCamelCase__ : List[str] = logging.get_logger(__name__) @add_end_docstrings(a_ ) class lowerCamelCase_ ( a_ ): def __init__( self : int ,*__lowerCamelCase : str ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' super().__init__(*__lowerCamelCase ,**__lowerCamelCase ) requires_backends(self ,'''vision''' ) self.check_model_type(__lowerCamelCase ) def __call__( self : int ,__lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] ,**__lowerCamelCase : str ): '''simple docstring''' return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,**__lowerCamelCase : Dict ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = load_image(__lowerCamelCase ) a = image.size a = self.image_processor(images=__lowerCamelCase ,return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = self.model(**__lowerCamelCase ) return model_outputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = model_outputs.predicted_depth a = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode='''bicubic''' ,align_corners=__lowerCamelCase ) a = prediction.squeeze().cpu().numpy() a = (output * 2_55 / np.max(__lowerCamelCase )).astype('''uint8''' ) a = Image.fromarray(__lowerCamelCase ) a = {} a = predicted_depth a = depth return output_dict
330
1
import os from collections.abc import Iterator def SCREAMING_SNAKE_CASE__ ( snake_case_ = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(snake_case_ ): a = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(snake_case_ )[1] in (".py", ".ipynb"): yield os.path.join(snake_case_, snake_case_ ).lstrip('''./''' ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[Any]: """simple docstring""" return f"""{i * " "}*""" if i else "\n##" def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> str: """simple docstring""" a = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(snake_case_ ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(snake_case_ )} {new_part.replace("_", " " ).title()}""" ) return new_path def SCREAMING_SNAKE_CASE__ ( snake_case_ = "." ) -> None: """simple docstring""" a = '''''' for filepath in sorted(good_file_paths(snake_case_ ) ): a , a = os.path.split(snake_case_ ) if filepath != old_path: a = print_path(snake_case_, snake_case_ ) a = (filepath.count(os.sep ) + 1) if filepath else 0 a = f"""{filepath}/{filename}""".replace(''' ''', '''%20''' ) a = os.path.splitext(filename.replace('''_''', ''' ''' ).title() )[0] print(f"""{md_prefix(snake_case_ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
330
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a_ ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) SCREAMING_SNAKE_CASE_ = Features({'text': Value('string' )} ) SCREAMING_SNAKE_CASE_ = Features({} ) SCREAMING_SNAKE_CASE_ = "text" @property def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' return {self.text_column: "text"}
330
1
import argparse from collections import defaultdict import yaml UpperCamelCase__ : Tuple = """docs/source/en/_toctree.yml""" def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" a = defaultdict(snake_case_ ) for doc in model_doc: counts[doc["local"]] += 1 a = [key for key, value in counts.items() if value > 1] a = [] for duplicate_key in duplicates: a = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(snake_case_ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(snake_case_, key=lambda snake_case_ : s["title"].lower() ) def SCREAMING_SNAKE_CASE__ ( snake_case_=False ) -> List[str]: """simple docstring""" with open(snake_case_, encoding='''utf-8''' ) as f: a = yaml.safe_load(f.read() ) # Get to the API doc a = 0 while content[api_idx]["title"] != "API": api_idx += 1 a = content[api_idx]['''sections'''] # Then to the model doc a = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 a = api_doc[model_idx]['''sections'''] a = [(idx, section) for idx, section in enumerate(snake_case_ ) if '''sections''' in section] a = False for idx, modality_doc in modalities_docs: a = modality_doc['''sections'''] a = clean_model_doc_toc(snake_case_ ) if old_modality_doc != new_modality_doc: a = True if overwrite: a = new_modality_doc if diff: if overwrite: a = model_doc a = api_doc with open(snake_case_, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(snake_case_, allow_unicode=snake_case_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": UpperCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") UpperCamelCase__ : int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
330
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase__ : Union[str, Any] = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'yolos' def __init__( self : Union[str, Any] ,__lowerCamelCase : int=7_68 ,__lowerCamelCase : Dict=12 ,__lowerCamelCase : Union[str, Any]=12 ,__lowerCamelCase : List[Any]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : int=0.0 ,__lowerCamelCase : str=0.0 ,__lowerCamelCase : Optional[Any]=0.02 ,__lowerCamelCase : int=1e-12 ,__lowerCamelCase : Any=[5_12, 8_64] ,__lowerCamelCase : Tuple=16 ,__lowerCamelCase : int=3 ,__lowerCamelCase : Tuple=True ,__lowerCamelCase : Optional[int]=1_00 ,__lowerCamelCase : List[Any]=True ,__lowerCamelCase : List[str]=False ,__lowerCamelCase : int=1 ,__lowerCamelCase : List[Any]=5 ,__lowerCamelCase : Optional[int]=2 ,__lowerCamelCase : int=5 ,__lowerCamelCase : str=2 ,__lowerCamelCase : Tuple=0.1 ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = num_detection_tokens a = use_mid_position_embeddings a = auxiliary_loss # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return 1e-4 @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return 12
330
1
import math def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" if not isinstance(snake_case_, snake_case_ ): a = f"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case_ ) if number < 1: a = f"""Input value of [number={number}] must be > 0""" raise ValueError(snake_case_ ) elif number == 1: return 3 elif number == 2: return 5 else: a = int(math.log(number // 3, 2 ) ) + 2 a = [3, 5] a = 2 a = 3 for block in range(1, snake_case_ ): for _ in range(snake_case_ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): UpperCamelCase__ : List[Any] = 0 try: UpperCamelCase__ : Any = proth(number) except ValueError: print(F"ValueError: there is no {number}th Proth number") continue print(F"The {number}th Proth number: {value}")
330
def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" a = '''''' for i in table: res += inp[i - 1] return res def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: """simple docstring""" return data[1:] + data[0] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[str]: """simple docstring""" a = '''''' for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Dict: """simple docstring""" a = int('''0b''' + data[0] + data[-1], 2 ) a = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Optional[int]: """simple docstring""" a = message[:4] a = message[4:] a = apply_table(snake_case_, snake_case_ ) a = xor(snake_case_, snake_case_ ) a = apply_sbox(snake_case_, temp[:4] ) # noqa: E741 a = apply_sbox(snake_case_, temp[4:] ) a = '''0''' * (2 - len(snake_case_ )) + l # noqa: E741 a = '''0''' * (2 - len(snake_case_ )) + r a = apply_table(l + r, snake_case_ ) a = xor(snake_case_, snake_case_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ : int = input("""Enter 10 bit key: """) UpperCamelCase__ : Union[str, Any] = input("""Enter 8 bit message: """) UpperCamelCase__ : Dict = [6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ : Union[str, Any] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ : Optional[int] = [2, 4, 3, 1] UpperCamelCase__ : List[Any] = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ : str = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ : List[Any] = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ : int = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ : Optional[Any] = apply_table(key, paa_table) UpperCamelCase__ : str = temp[:5] UpperCamelCase__ : List[Any] = temp[5:] UpperCamelCase__ : Dict = left_shift(left) UpperCamelCase__ : Any = left_shift(right) UpperCamelCase__ : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : int = left_shift(right) UpperCamelCase__ : List[str] = left_shift(left) UpperCamelCase__ : Dict = left_shift(right) UpperCamelCase__ : List[str] = apply_table(left + right, pa_table) # encryption UpperCamelCase__ : Tuple = apply_table(message, IP) UpperCamelCase__ : Optional[Any] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[int] = temp[4:] + temp[:4] UpperCamelCase__ : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Tuple = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCamelCase__ : Union[str, Any] = apply_table(CT, IP) UpperCamelCase__ : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase__ : Optional[int] = function(expansion, sa, sa, keya, temp) UpperCamelCase__ : Any = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
330
1
import argparse from collections import defaultdict def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" a = f"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(snake_case_, '''r''' ) as f: a = f.readlines() a = f"""class {class_name}(""" a = f"""{4 * " "}def {test_name}(""" a = f"""{8 * " "}{correct_line.split()[0]}""" a = f"""{1_6 * " "}{correct_line.split()[0]}""" a = False a = False a = False a = False a = 0 a = 0 a = [] for line in lines: if line.startswith(snake_case_ ): a = True elif in_class and line.startswith(snake_case_ ): a = True elif in_class and in_func and (line.startswith(snake_case_ ) or line.startswith(snake_case_ )): a = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: a = True if in_class and in_func and in_line: if ")" not in line: continue else: a = True if in_class and in_func and in_line and insert_line: new_lines.append(f"""{spaces * " "}{correct_line}""" ) a = a = a = a = False else: new_lines.append(snake_case_ ) with open(snake_case_, '''w''' ) as f: for line in new_lines: f.write(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_=None ) -> str: """simple docstring""" if fail is not None: with open(snake_case_, '''r''' ) as f: a = {l.strip() for l in f.readlines()} else: a = None with open(snake_case_, '''r''' ) as f: a = f.readlines() a = defaultdict(snake_case_ ) for line in correct_lines: a , a , a , a = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCamelCase__ : List[str] = parser.parse_args() main(args.correct_filename, args.fail_filename)
330
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = FlaxXLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) a = AutoTokenizer.from_pretrained('''xlm-roberta-base''' ) a = '''The dog is cute and lives in the garden house''' a = jnp.array([tokenizer.encode(__lowerCamelCase )] ) a = (1, 12, 7_68) # batch_size, sequence_length, embedding_vector_dim a = jnp.array( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) a = model(__lowerCamelCase )['''last_hidden_state'''] self.assertEqual(output.shape ,__lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] ,__lowerCamelCase ,atol=1e-3 ) )
330
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 'gelu' def __init__( self : Any ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=13 ,__lowerCamelCase : str=7 ,__lowerCamelCase : Optional[int]=True ,__lowerCamelCase : Tuple=False ,__lowerCamelCase : Tuple=99 ,__lowerCamelCase : Dict=32 ,__lowerCamelCase : Dict=2 ,__lowerCamelCase : Optional[Any]=4 ,__lowerCamelCase : Union[str, Any]=37 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Optional[int]=0.1 ,__lowerCamelCase : str=20 ,__lowerCamelCase : List[str]=2 ,__lowerCamelCase : Dict=1 ,__lowerCamelCase : List[Any]=0 ,): '''simple docstring''' a = parent a = batch_size a = seq_length a = is_training a = use_labels a = vocab_size a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = eos_token_id a = pad_token_id a = bos_token_id def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ) a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) ,1 ) a = tf.concat([input_ids, eos_tensor] ,axis=1 ) a = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) a = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) a = prepare_blenderbot_small_inputs_dict(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : List[str] ): '''simple docstring''' a = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() a = inputs_dict['''input_ids'''] a = input_ids[:1, :] a = inputs_dict['''attention_mask'''][:1, :] a = inputs_dict['''head_mask'''] a = 1 # first forward pass a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,head_mask=__lowerCamelCase ,use_cache=__lowerCamelCase ) a , a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a = ids_tensor((self.batch_size, 3) ,config.vocab_size ) a = tf.cast(ids_tensor((self.batch_size, 3) ,2 ) ,tf.inta ) # append to next input_ids and a = tf.concat([input_ids, next_tokens] ,axis=-1 ) a = tf.concat([attention_mask, next_attn_mask] ,axis=-1 ) a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase )[0] a = model(__lowerCamelCase ,attention_mask=__lowerCamelCase ,past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] ,output_from_past.shape[1] ) # select random slice a = int(ids_tensor((1,) ,output_from_past.shape[-1] ) ) a = output_from_no_past[:, -3:, random_slice_idx] a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=None, snake_case_=None, snake_case_=None, ) -> Any: """simple docstring""" if attention_mask is None: a = tf.cast(tf.math.not_equal(snake_case_, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase_ ( a_ , a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = TFBlenderbotSmallModelTester(self ) a = ConfigTester(self ,config_class=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCamelCase_ ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] SCREAMING_SNAKE_CASE_ = 'facebook/blenderbot_small-90M' @cached_property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.tokenizer(self.src_text ,return_tensors='''tf''' ) a = self.model.generate( model_inputs.input_ids ,attention_mask=model_inputs.attention_mask ,num_beams=2 ,use_cache=__lowerCamelCase ,) a = self.tokenizer.batch_decode(generated_ids.numpy() ,skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
330
import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ : Union[str, Any] = 16 UpperCamelCase__ : Dict = 32 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ = 1_6 ) -> Tuple: """simple docstring""" a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) a = load_dataset('''glue''', '''mrpc''' ) def tokenize_function(snake_case_ ): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=snake_case_, max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( snake_case_, batched=snake_case_, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(snake_case_ ): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 1_6 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( snake_case_, padding='''longest''', max_length=snake_case_, pad_to_multiple_of=snake_case_, return_tensors='''pt''', ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets['''train'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) a = DataLoader( tokenized_datasets['''validation'''], shuffle=snake_case_, collate_fn=snake_case_, batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ : int = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''', snake_case_ ) == "1": a = 2 # Initialize accelerator a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['''lr'''] a = int(config['''num_epochs'''] ) a = int(config['''seed'''] ) a = int(config['''batch_size'''] ) a = evaluate.load('''glue''', '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=snake_case_ ) def inner_training_loop(snake_case_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device ) # Instantiate optimizer a = AdamW(params=model.parameters(), lr=snake_case_ ) a , a = get_dataloaders(snake_case_, snake_case_ ) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=snake_case_, num_warmup_steps=1_0_0, num_training_steps=(len(snake_case_ ) * num_epochs), ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a , a , a , a , a = accelerator.prepare( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) a = model(**snake_case_ ) a = outputs.loss accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a = model(**snake_case_ ) a = outputs.logits.argmax(dim=-1 ) a , a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=snake_case_, references=snake_case_, ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""", snake_case_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: """simple docstring""" a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=snake_case_, default=snake_case_, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) a = parser.parse_args() a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6} training_function(snake_case_, snake_case_ ) if __name__ == "__main__": main()
330
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[str] = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : Optional[Any] = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys UpperCamelCase__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } UpperCamelCase__ : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" for attribute in key.split('''.''' ): a = getattr(snake_case_, snake_case_ ) if weight_type is not None: a = getattr(snake_case_, snake_case_ ).shape else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value else: a = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = [] a = fairseq_model.state_dict() a = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( snake_case_, snake_case_, snake_case_, snake_case_, hf_model.config.feat_extract_norm == '''group''', ) a = True else: for key, mapped_key in MAPPING.items(): a = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue a = True if "*" in mapped_key: a = name.split(snake_case_ )[0].split('''.''' )[-2] a = mapped_key.replace('''*''', snake_case_ ) if "weight_g" in name: a = '''weight_g''' elif "weight_v" in name: a = '''weight_v''' elif "bias" in name: a = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj a = '''weight''' else: a = None set_recursively(snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = full_name.split('''conv_layers.''' )[-1] a = name.split('''.''' ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) a = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_=None, snake_case_=None, snake_case_=True ) -> Union[str, Any]: """simple docstring""" if config_path is not None: a = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: a = UniSpeechSatConfig() a = '''''' if is_finetuned: a = UniSpeechSatForCTC(snake_case_ ) else: a = UniSpeechSatForPreTraining(snake_case_ ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) a = model[0].eval() recursively_load_weights(snake_case_, snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCamelCase__ : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
330
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowerCamelCase_ ( nn.Module ): def __init__( self : List[Any] ,__lowerCamelCase : nn.Module ,__lowerCamelCase : int ): '''simple docstring''' super().__init__() a = module a = nn.Sequential( nn.Linear(module.in_features ,__lowerCamelCase ,bias=__lowerCamelCase ) ,nn.Linear(__lowerCamelCase ,module.out_features ,bias=__lowerCamelCase ) ,) a = (2.0 / (5 * min(module.in_features ,module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight ,std=__lowerCamelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : Union[str, Any] ,*__lowerCamelCase : List[Any] ,**__lowerCamelCase : Optional[int] ): '''simple docstring''' return self.module(__lowerCamelCase ,*__lowerCamelCase ,**__lowerCamelCase ) + self.adapter(__lowerCamelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase_ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module SCREAMING_SNAKE_CASE_ = 'bigscience/bloom-1b7' # Constant values SCREAMING_SNAKE_CASE_ = 2.109659552692574 SCREAMING_SNAKE_CASE_ = 'Hello my name is' SCREAMING_SNAKE_CASE_ = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) SCREAMING_SNAKE_CASE_ = 10 def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = AutoTokenizer.from_pretrained(self.model_name ) class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' super().setUp() # Models and tokenizer a = AutoModelForCausalLM.from_pretrained( self.model_name ,torch_dtype=torch.floataa ,device_map='''auto''' ) a = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = self.model_abit.config self.assertTrue(hasattr(__lowerCamelCase ,'''quantization_config''' ) ) a = config.to_dict() a = config.to_diff_dict() a = config.to_json_string() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' from bitsandbytes.nn import Paramsabit a = self.model_fpaa.get_memory_footprint() a = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit ,self.EXPECTED_RELATIVE_DIFFERENCE ) a = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(__lowerCamelCase ,torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = self.tokenizer(self.input_text ,return_tensors='''pt''' ) a = self.model_abit.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=__lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = BitsAndBytesConfig() a = True a = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=__lowerCamelCase ,device_map='''auto''' ) a = self.tokenizer(self.input_text ,return_tensors='''pt''' ) a = model_abit_from_config.generate( input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] ,skip_special_tokens=__lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' with self.assertRaises(__lowerCamelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' a = BitsAndBytesConfig() with self.assertRaises(__lowerCamelCase ): a = AutoModelForCausalLM.from_pretrained( self.model_name ,quantization_config=__lowerCamelCase ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ,bnb_abit_quant_type='''nf4''' ,) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' with self.assertRaises(__lowerCamelCase ): # Tries with `str` self.model_abit.to('''cpu''' ) with self.assertRaises(__lowerCamelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(__lowerCamelCase ): # Tries with a `device` self.model_abit.to(torch.device('''cuda:0''' ) ) with self.assertRaises(__lowerCamelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(__lowerCamelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a = self.tokenizer(self.input_text ,return_tensors='''pt''' ) a = self.model_fpaa.to(torch.floataa ) a = self.model_fpaa.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) # Check this does not throw an error a = self.model_fpaa.to('''cpu''' ) # Check this does not throw an error a = self.model_fpaa.half() # Check this does not throw an error a = self.model_fpaa.float() def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = AutoModelForSeqaSeqLM.from_pretrained('''t5-small''' ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowerCamelCase_ ( unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any ): '''simple docstring''' a = '''t5-small''' a = '''google/flan-t5-small''' # flan-t5 uses dense-act instead of dense-relu-dense a = AutoTokenizer.from_pretrained(cls.model_name ) a = '''Translate in German: Hello, my dog is cute''' def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from transformers import TaForConditionalGeneration a = TaForConditionalGeneration._keep_in_fpaa_modules a = None # test with `t5-small` a = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) a = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) a = model.generate(**__lowerCamelCase ) # test with `flan-t5-small` a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) a = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) a = model.generate(**__lowerCamelCase ) a = modules def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a = TaForConditionalGeneration.from_pretrained(self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q ,bnb.nn.Linearabit ) ) a = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) a = model.generate(**__lowerCamelCase ) # test with `flan-t5-small` a = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) a = self.tokenizer(self.input_text ,return_tensors='''pt''' ).to(0 ) a = model.generate(**__lowerCamelCase ) class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().setUp() # model_name a = '''bigscience/bloom-560m''' a = '''t5-small''' # Different types of model a = AutoModel.from_pretrained(self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) # Sequence classification model a = AutoModelForSequenceClassification.from_pretrained( self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) # CausalLM model a = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) # Seq2seq model a = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name ,load_in_abit=__lowerCamelCase ,device_map='''auto''' ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' super().setUp() def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' del self.pipe gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' a = pipeline( '''text-generation''' ,model=self.model_name ,model_kwargs={'''device_map''': '''auto''', '''load_in_4bit''': True, '''torch_dtype''': torch.floataa} ,max_new_tokens=self.MAX_NEW_TOKENS ,) # Real second forward pass a = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['''generated_text'''] ,self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' super().setUp() def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = AutoModelForCausalLM.from_pretrained( self.model_name ,load_in_abit=__lowerCamelCase ,device_map='''balanced''' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) ,{0, 1} ) # Check that inference pass works on the model a = self.tokenizer(self.input_text ,return_tensors='''pt''' ) # Second real batch a = model_parallel.generate(input_ids=encoded_input['''input_ids'''].to(0 ) ,max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] ,skip_special_tokens=__lowerCamelCase ) ,self.EXPECTED_OUTPUTS ) class lowerCamelCase_ ( a_ ): def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = '''facebook/opt-350m''' super().setUp() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' if version.parse(importlib.metadata.version('''bitsandbytes''' ) ) < version.parse('''0.37.0''' ): return # Step 1: freeze all parameters a = AutoModelForCausalLM.from_pretrained(self.model_name ,load_in_abit=__lowerCamelCase ) self.assertEqual(set(model.hf_device_map.values() ) ,{torch.cuda.current_device()} ) for param in model.parameters(): a = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(__lowerCamelCase ) ): a = LoRALayer(module.q_proj ,rank=16 ) a = LoRALayer(module.k_proj ,rank=16 ) a = LoRALayer(module.v_proj ,rank=16 ) # Step 3: dummy batch a = self.tokenizer('''Test batch ''' ,return_tensors='''pt''' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a = model.forward(**__lowerCamelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(__lowerCamelCase ,__lowerCamelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(__lowerCamelCase ,nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'gpt2-xl' SCREAMING_SNAKE_CASE_ = 3.3191854854152187
330
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" monkeypatch.setattr('''datasets.utils.deprecation_utils._emitted_deprecation_warnings''', set() ) @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" class lowerCamelCase_ : def __init__( self : Dict ,__lowerCamelCase : List[str] ): '''simple docstring''' a = metric_id class lowerCamelCase_ : SCREAMING_SNAKE_CASE_ = [MetricMock(a_ ) for metric_id in ['accuracy', 'mse', 'precision', 'codeparrot/apps_metric']] def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' return self._metrics monkeypatch.setattr('''datasets.inspect.huggingface_hub''', HfhMock() ) @pytest.mark.parametrize( '''func, args''', [(load_metric, ('''metrics/mse''',)), (list_metrics, ()), (inspect_metric, ('''metrics/mse''', '''tmp_path'''))] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Tuple: """simple docstring""" if "tmp_path" in args: a = tuple(arg if arg != '''tmp_path''' else tmp_path for arg in args ) with pytest.warns(snake_case_, match='''https://huggingface.co/docs/evaluate''' ): func(*snake_case_ )
330
1
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = tempfile.mkdtemp() # fmt: off a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on a = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) a = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } a = os.path.join(self.tmpdirname ,__lowerCamelCase ) with open(self.image_processor_file ,'''w''' ,encoding='''utf-8''' ) as fp: json.dump(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ,**__lowerCamelCase : Dict ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE_ ( self : Dict ): '''simple docstring''' a = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] a = [Image.fromarray(np.moveaxis(__lowerCamelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.get_tokenizer() a = self.get_image_processor() a = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) a = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) a = self.get_image_processor(do_normalize=__lowerCamelCase ,padding_value=1.0 ) a = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=__lowerCamelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = self.prepare_image_inputs() a = image_processor(__lowerCamelCase ,return_tensors='''np''' ) a = processor(images=__lowerCamelCase ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = '''lower newer''' a = processor(text=__lowerCamelCase ) a = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase ,images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__lowerCamelCase ): processor() def SCREAMING_SNAKE_CASE_ ( self : int ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a = processor.batch_decode(__lowerCamelCase ) a = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' a = self.get_image_processor() a = self.get_tokenizer() a = VisionTextDualEncoderProcessor(tokenizer=__lowerCamelCase ,image_processor=__lowerCamelCase ) a = '''lower newer''' a = self.prepare_image_inputs() a = processor(text=__lowerCamelCase ,images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : str = logging.get_logger(__name__) UpperCamelCase__ : Optional[int] = { """studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""", """studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""", } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'luke' def __init__( self : Dict ,__lowerCamelCase : Optional[Any]=5_02_67 ,__lowerCamelCase : str=50_00_00 ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : int=2_56 ,__lowerCamelCase : Optional[int]=12 ,__lowerCamelCase : Tuple=12 ,__lowerCamelCase : Any=30_72 ,__lowerCamelCase : Any="gelu" ,__lowerCamelCase : Any=0.1 ,__lowerCamelCase : Tuple=0.1 ,__lowerCamelCase : Tuple=5_12 ,__lowerCamelCase : int=2 ,__lowerCamelCase : Optional[int]=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=True ,__lowerCamelCase : Tuple=None ,__lowerCamelCase : Any=1 ,__lowerCamelCase : Dict=0 ,__lowerCamelCase : Any=2 ,**__lowerCamelCase : str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase ,bos_token_id=__lowerCamelCase ,eos_token_id=__lowerCamelCase ,**__lowerCamelCase ) a = vocab_size a = entity_vocab_size a = hidden_size a = entity_emb_size a = num_hidden_layers a = num_attention_heads a = hidden_act a = intermediate_size a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = layer_norm_eps a = use_entity_aware_attention a = classifier_dropout
330
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCamelCase_ ( a_ ): @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' a = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' ,'''prajjwal1/bert-tiny''' ) a = BertTokenizer.from_pretrained('''bert-base-uncased''' ) a = bertabert.config.encoder.vocab_size a = tokenizer.sep_token_id a = tokenizer.cls_token_id a = 1_28 a = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''train[:1%]''' ) a = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''validation[:1%]''' ) a = train_dataset.select(range(32 ) ) a = val_dataset.select(range(16 ) ) a = 4 def _map_to_encoder_decoder_inputs(__lowerCamelCase : List[Any] ): # Tokenizer will automatically set [BOS] <text> [EOS] a = tokenizer(batch['''article'''] ,padding='''max_length''' ,truncation=__lowerCamelCase ,max_length=5_12 ) a = tokenizer(batch['''highlights'''] ,padding='''max_length''' ,truncation=__lowerCamelCase ,max_length=1_28 ) a = inputs.input_ids a = inputs.attention_mask a = outputs.input_ids a = outputs.input_ids.copy() a = [ [-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] a = outputs.attention_mask assert all(len(__lowerCamelCase ) == 5_12 for x in inputs.input_ids ) assert all(len(__lowerCamelCase ) == 1_28 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCamelCase : List[Any] ): a = pred.label_ids a = pred.predictions # all unnecessary tokens are removed a = tokenizer.batch_decode(__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ) a = tokenizer.batch_decode(__lowerCamelCase ,skip_special_tokens=__lowerCamelCase ) a = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase ) return {"accuracy": accuracy} # map train dataset a = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=__lowerCamelCase ,batch_size=__lowerCamelCase ,remove_columns=['''article''', '''highlights'''] ,) train_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) # same for validation dataset a = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=__lowerCamelCase ,batch_size=__lowerCamelCase ,remove_columns=['''article''', '''highlights'''] ,) val_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) a = self.get_auto_remove_tmp_dir() a = SeqaSeqTrainingArguments( output_dir=__lowerCamelCase ,per_device_train_batch_size=__lowerCamelCase ,per_device_eval_batch_size=__lowerCamelCase ,predict_with_generate=__lowerCamelCase ,evaluation_strategy='''steps''' ,do_train=__lowerCamelCase ,do_eval=__lowerCamelCase ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer a = SeqaSeqTrainer( model=__lowerCamelCase ,args=__lowerCamelCase ,compute_metrics=_compute_metrics ,train_dataset=__lowerCamelCase ,eval_dataset=__lowerCamelCase ,tokenizer=__lowerCamelCase ,) # start training trainer.train()
330
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase__ : Optional[int] = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase__ : Tuple = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase__ : List[Any] = df.iloc[:, 1:2] UpperCamelCase__ : Union[str, Any] = actual_data.values.reshape(len_data, 1) UpperCamelCase__ : List[Any] = MinMaxScaler().fit_transform(actual_data) UpperCamelCase__ : Optional[Any] = 10 UpperCamelCase__ : int = 5 UpperCamelCase__ : List[str] = 20 UpperCamelCase__ : Optional[int] = len_data - periods * look_back UpperCamelCase__ : Union[str, Any] = actual_data[:division] UpperCamelCase__ : str = actual_data[division - look_back :] UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = [], [] UpperCamelCase__ , UpperCamelCase__ : str = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase__ : List[str] = np.array(train_x) UpperCamelCase__ : Optional[Any] = np.array(test_x) UpperCamelCase__ : Tuple = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase__ : Optional[Any] = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase__ : Union[str, Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase__ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase__ : Tuple = model.predict(x_test)
330
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer UpperCamelCase__ : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase__ : int = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } UpperCamelCase__ : Optional[Any] = { """unc-nlp/lxmert-base-uncased""": 512, } UpperCamelCase__ : Any = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = LxmertTokenizer def __init__( self : Dict ,__lowerCamelCase : List[Any]=None ,__lowerCamelCase : Dict=None ,__lowerCamelCase : Dict=True ,__lowerCamelCase : int="[UNK]" ,__lowerCamelCase : Any="[SEP]" ,__lowerCamelCase : str="[PAD]" ,__lowerCamelCase : str="[CLS]" ,__lowerCamelCase : Optional[int]="[MASK]" ,__lowerCamelCase : int=True ,__lowerCamelCase : Optional[Any]=None ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__( __lowerCamelCase ,tokenizer_file=__lowerCamelCase ,do_lower_case=__lowerCamelCase ,unk_token=__lowerCamelCase ,sep_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,cls_token=__lowerCamelCase ,mask_token=__lowerCamelCase ,tokenize_chinese_chars=__lowerCamelCase ,strip_accents=__lowerCamelCase ,**__lowerCamelCase ,) a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,__lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' ,__lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,__lowerCamelCase ) != tokenize_chinese_chars ): a = getattr(__lowerCamelCase ,normalizer_state.pop('''type''' ) ) a = do_lower_case a = strip_accents a = tokenize_chinese_chars a = normalizer_class(**__lowerCamelCase ) a = do_lower_case def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Union[str, Any] ,__lowerCamelCase : Tuple=None ): '''simple docstring''' a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : List[int] ,__lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' a = self._tokenizer.model.save(__lowerCamelCase ,name=__lowerCamelCase ) return tuple(__lowerCamelCase )
330
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = FileLock(str(tmpdir / '''foo.lock''' ) ) a = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): a = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = '''a''' * 1_0_0_0 + '''.lock''' a = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 a = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
330
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Tuple = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
330
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = 'vit_mae' def __init__( self : Dict ,__lowerCamelCase : Any=7_68 ,__lowerCamelCase : Optional[Any]=12 ,__lowerCamelCase : List[str]=12 ,__lowerCamelCase : Optional[int]=30_72 ,__lowerCamelCase : int="gelu" ,__lowerCamelCase : Union[str, Any]=0.0 ,__lowerCamelCase : Optional[int]=0.0 ,__lowerCamelCase : Dict=0.02 ,__lowerCamelCase : List[Any]=1e-12 ,__lowerCamelCase : Dict=2_24 ,__lowerCamelCase : str=16 ,__lowerCamelCase : Union[str, Any]=3 ,__lowerCamelCase : Optional[Any]=True ,__lowerCamelCase : Dict=16 ,__lowerCamelCase : List[str]=5_12 ,__lowerCamelCase : int=8 ,__lowerCamelCase : int=20_48 ,__lowerCamelCase : Optional[Any]=0.75 ,__lowerCamelCase : int=False ,**__lowerCamelCase : Any ,): '''simple docstring''' super().__init__(**__lowerCamelCase ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = image_size a = patch_size a = num_channels a = qkv_bias a = decoder_num_attention_heads a = decoder_hidden_size a = decoder_num_hidden_layers a = decoder_intermediate_size a = mask_ratio a = norm_pix_loss
330
1
import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' a = [10, 20, 30, 40, 50, 60] a = [2, 4, 6, 8, 10, 12] a = 1_00 self.assertEqual(kp.calc_profit(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ,2_10 ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' self.assertRaisesRegex(__lowerCamelCase ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' self.assertRaisesRegex(__lowerCamelCase ,'''Weight can not be negative.''' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' self.assertRaisesRegex(__lowerCamelCase ,'''Profit can not be negative.''' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self.assertRaisesRegex(__lowerCamelCase ,'''max_weight must greater than zero.''' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self.assertRaisesRegex( __lowerCamelCase ,'''The length of profit and weight must be same.''' ) if __name__ == "__main__": unittest.main()
330
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Union[str, Any]: """simple docstring""" stooge(snake_case_, 0, len(snake_case_ ) - 1 ) return arr def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> Optional[Any]: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: a , a = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: a = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) # Recursively sort last 2/3 elements stooge(snake_case_, i + t, (snake_case_) ) # Recursively sort first 2/3 elements stooge(snake_case_, snake_case_, (h - t) ) if __name__ == "__main__": UpperCamelCase__ : Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ : Optional[int] = [int(item) for item in user_input.split(""",""")] print(stooge_sort(unsorted))
330
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) UpperCamelCase__ : Optional[int] = """\ Text data. Second line of data.""" UpperCamelCase__ : Tuple = """file""" @pytest.fixture(scope='''session''' ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> str: """simple docstring""" a = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') a = bytes(snake_case_, '''utf-8''' ) with zstd.open(snake_case_, '''wb''' ) as f: f.write(snake_case_ ) return path @pytest.fixture def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Tuple: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir, snake_case_ ), '''w''' ) as f: f.write(snake_case_ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''', ['''gzip''', '''xz''', '''zstd'''] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> List[Any]: """simple docstring""" a = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} a = input_paths[compression_format] a = tmp_path / '''cache''' a = DownloadConfig(cache_dir=snake_case_, extract_compressed_file=snake_case_ ) a = cached_path(snake_case_, download_config=snake_case_ ) with open(snake_case_ ) as f: a = f.read() with open(snake_case_ ) as f: a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''', [True, False] ) @pytest.mark.parametrize('''default_cache_dir''', [True, False] ) def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_, snake_case_, snake_case_ ) -> Union[str, Any]: """simple docstring""" a = '''custom_cache''' a = '''custom_extracted_dir''' a = tmp_path / '''custom_extracted_path''' if default_extracted: a = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''', snake_case_ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(snake_case_ ) ) a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) a = xz_file a = ( DownloadConfig(extract_compressed_file=snake_case_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=snake_case_ ) ) a = cached_path(snake_case_, download_config=snake_case_ ) assert Path(snake_case_ ).parent.parts[-2:] == expected def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any: """simple docstring""" a = str(Path(snake_case_ ).resolve() ) assert cached_path(snake_case_ ) == text_file # relative path a = str(Path(snake_case_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(snake_case_ ) == text_file def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> List[str]: """simple docstring""" a = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(snake_case_ ): cached_path(snake_case_ ) # relative path a = '''./__missing_file__.txt''' with pytest.raises(snake_case_ ): cached_path(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Any: """simple docstring""" a = get_from_cache(f"""tmp://{tmpfs_file}""" ) with open(snake_case_ ) as f: a = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''', snake_case_ ) def SCREAMING_SNAKE_CASE__ ( ) -> Dict: """simple docstring""" with pytest.raises(snake_case_ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''', snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Dict: """simple docstring""" a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case_ ): http_get('''https://huggingface.co''', temp_file=snake_case_ ) with pytest.raises(snake_case_ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''', snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[Any]: """simple docstring""" a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case_ ): ftp_get('''ftp://huggingface.co''', temp_file=snake_case_ ) with pytest.raises(snake_case_ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''', snake_case_ ) def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> Optional[int]: """simple docstring""" a = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(snake_case_ ): fsspec_get('''s3://huggingface.co''', temp_file=snake_case_ ) with pytest.raises(snake_case_ ): fsspec_head('''s3://huggingface.co''' )
330
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : Optional[Any] = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } UpperCamelCase__ : Union[str, Any] = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } UpperCamelCase__ : str = { """jukebox""": 512, } class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_LYRIC_TOKENS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Optional[Any] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Tuple ,__lowerCamelCase : Union[str, Any]=["v3", "v2", "v2"] ,__lowerCamelCase : List[Any]=5_12 ,__lowerCamelCase : Tuple=5 ,__lowerCamelCase : List[Any]="<|endoftext|>" ,**__lowerCamelCase : List[str] ,): '''simple docstring''' a = AddedToken(__lowerCamelCase ,lstrip=__lowerCamelCase ,rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase ,__lowerCamelCase ) else unk_token super().__init__( unk_token=__lowerCamelCase ,n_genres=__lowerCamelCase ,version=__lowerCamelCase ,max_n_lyric_tokens=__lowerCamelCase ,**__lowerCamelCase ,) a = version a = max_n_lyric_tokens a = n_genres with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: a = json.load(__lowerCamelCase ) a = r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: a = oov.replace(r'''\-\'''' ,r'''\-+\'''' ) a = regex.compile(__lowerCamelCase ) a = {v: k for k, v in self.artists_encoder.items()} a = {v: k for k, v in self.genres_encoder.items()} a = {v: k for k, v in self.lyrics_encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : Optional[Any] ,__lowerCamelCase : List[Any] ): '''simple docstring''' a = [self.artists_encoder.get(__lowerCamelCase ,0 ) for artist in list_artists] for genres in range(len(__lowerCamelCase ) ): a = [self.genres_encoder.get(__lowerCamelCase ,0 ) for genre in list_genres[genres]] a = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) a = [[self.lyrics_encoder.get(__lowerCamelCase ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def SCREAMING_SNAKE_CASE_ ( self : Tuple ,__lowerCamelCase : List[str] ): '''simple docstring''' return list(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : Any ,__lowerCamelCase : Optional[int] ,**__lowerCamelCase : Optional[Any] ): '''simple docstring''' a , a , a = self.prepare_for_tokenization(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = self._tokenize(__lowerCamelCase ) return artist, genre, lyrics def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : bool = False ): '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": a = artists[idx].lower() a = [genres[idx].lower()] else: a = self._normalize(artists[idx] ) + '''.v2''' a = [ self._normalize(__lowerCamelCase ) + '''.v2''' for genre in genres[idx].split('''_''' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' ) a = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' a = {vocab[index]: index + 1 for index in range(len(__lowerCamelCase ) )} a = 0 a = len(__lowerCamelCase ) + 1 a = self.vocab a = {v: k for k, v in self.vocab.items()} a = '''''' else: a = regex.compile(r'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' ) a = self._run_strip_accents(__lowerCamelCase ) a = lyrics.replace('''\\''' ,'''\n''' ) a = self.out_of_vocab.sub('''''' ,__lowerCamelCase ), [], [] return artists, genres, lyrics def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : int ): '''simple docstring''' a = unicodedata.normalize('''NFD''' ,__lowerCamelCase ) a = [] for char in text: a = unicodedata.category(__lowerCamelCase ) if cat == "Mn": continue output.append(__lowerCamelCase ) return "".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : str ): '''simple docstring''' a = ( [chr(__lowerCamelCase ) for i in range(ord('''a''' ) ,ord('''z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''A''' ) ,ord('''Z''' ) + 1 )] + [chr(__lowerCamelCase ) for i in range(ord('''0''' ) ,ord('''9''' ) + 1 )] + ['''.'''] ) a = frozenset(__lowerCamelCase ) a = re.compile(r'''_+''' ) a = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] ) a = pattern.sub('''_''' ,__lowerCamelCase ).strip('''_''' ) return text def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : List[str] ): '''simple docstring''' return " ".join(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Union[str, TensorType]] = None ,__lowerCamelCase : bool = False ): '''simple docstring''' if not isinstance(__lowerCamelCase ,__lowerCamelCase ): a = TensorType(__lowerCamelCase ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( '''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' ) import tensorflow as tf a = tf.constant a = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' ) import torch a = torch.tensor a = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' ) import jax.numpy as jnp # noqa: F811 a = jnp.array a = _is_jax else: a = np.asarray a = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: a = [inputs] if not is_tensor(__lowerCamelCase ): a = as_tensor(__lowerCamelCase ) except: # noqa E722 raise ValueError( '''Unable to create tensor, you should probably activate truncation and/or padding ''' '''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' ) return inputs def __call__( self : Tuple ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int] ,__lowerCamelCase : List[str]="" ,__lowerCamelCase : List[Any]="pt" ): '''simple docstring''' a = [0, 0, 0] a = [artist] * len(self.version ) a = [genres] * len(self.version ) a , a , a = self.tokenize(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a , a , a = self._convert_token_to_id(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) a = [-INFINITY] * len(full_tokens[-1] ) a = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=__lowerCamelCase ) for i in range(len(self.version ) ) ] return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=__lowerCamelCase ) ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=__lowerCamelCase ) ) return (artists_file, genres_file, lyrics_file) def SCREAMING_SNAKE_CASE_ ( self : Any ,__lowerCamelCase : Any ,__lowerCamelCase : Any ,__lowerCamelCase : str ): '''simple docstring''' a = self.artists_decoder.get(__lowerCamelCase ) a = [self.genres_decoder.get(__lowerCamelCase ) for genre in genres_index] a = [self.lyrics_decoder.get(__lowerCamelCase ) for character in lyric_index] return artist, genres, lyrics
330
1