code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = dataset _lowercase : Dict = process _lowercase : Optional[int] = params def __len__( self ): return len(self.dataset ) def __getitem__( self ,UpperCAmelCase_ ): _lowercase : Dict = self.dataset[i] _lowercase : str = self.process(UpperCAmelCase_ ,**self.params ) return processed class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ): _lowercase : Optional[Any] = loader _lowercase : Any = infer _lowercase : Tuple = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowercase : Tuple = None _lowercase : int = loader_batch_size # Internal bookkeeping _lowercase : int = None _lowercase : Optional[Any] = None def __len__( self ): return len(self.loader ) def __iter__( self ): _lowercase : Optional[Any] = iter(self.loader ) return self def lowerCamelCase__ ( self ): if isinstance(self._loader_batch_data ,torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowercase : Optional[int] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowercase : Dict = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): # Convert ModelOutput to tuple first _lowercase : int = element.to_tuple() if isinstance(element[0] ,torch.Tensor ): _lowercase : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _lowercase : Dict = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] ,torch.Tensor ): _lowercase : List[Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] ,np.ndarray ): _lowercase : int = tuple(np.expand_dims(el[self._loader_batch_index] ,0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowercase : Union[str, Any] = None elif isinstance(element[self._loader_batch_index] ,torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowercase : str = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] ,np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowercase : Optional[Any] = np.expand_dims(element[self._loader_batch_index] ,0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowercase : int = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowercase : int = self._loader_batch_data.__class__(UpperCAmelCase_ ) self._loader_batch_index += 1 return result def lowerCamelCase__ ( self ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowercase : List[str] = next(self.iterator ) _lowercase : List[str] = self.infer(UpperCAmelCase_ ,**self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase_ ,torch.Tensor ): _lowercase : int = processed else: _lowercase : Optional[Any] = list(processed.keys() )[0] _lowercase : int = processed[key] if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = len(UpperCAmelCase_ ) else: _lowercase : Dict = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowercase : Optional[Any] = observed_batch_size # Setting internal index to unwrap the batch _lowercase : Union[str, Any] = processed _lowercase : Union[str, Any] = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_=None ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def __iter__( self ): _lowercase : List[Any] = iter(self.loader ) _lowercase : Any = None return self def lowerCamelCase__ ( self ): if self.subiterator is None: _lowercase : int = self.infer(next(self.iterator ) ,**self.params ) try: # Try to return next item _lowercase : int = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowercase : Dict = self.infer(next(self.iterator ) ,**self.params ) _lowercase : List[str] = next(self.subiterator ) return processed class UpperCamelCase ( snake_case ): """simple docstring""" def __iter__( self ): _lowercase : Any = iter(self.loader ) return self def lowerCamelCase__ ( self ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _lowercase : int = False _lowercase : Tuple = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowercase : Union[str, Any] = self.loader_batch_item() _lowercase : Optional[int] = item.pop("""is_last""" ) accumulator.append(UpperCAmelCase_ ) if is_last: return accumulator while not is_last: _lowercase : Optional[int] = self.infer(next(self.iterator ) ,**self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase_ ,torch.Tensor ): _lowercase : Any = processed else: _lowercase : int = list(processed.keys() )[0] _lowercase : str = processed[key] if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = len(UpperCAmelCase_ ) else: _lowercase : int = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowercase : Any = observed_batch_size _lowercase : List[str] = processed _lowercase : Union[str, Any] = 0 while self._loader_batch_index < self.loader_batch_size: _lowercase : Optional[int] = self.loader_batch_item() _lowercase : List[str] = item.pop("""is_last""" ) accumulator.append(UpperCAmelCase_ ) if is_last: return accumulator else: _lowercase : List[Any] = processed _lowercase : List[str] = item.pop("""is_last""" ) accumulator.append(UpperCAmelCase_ ) return accumulator class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = dataset _lowercase : Optional[int] = key def __len__( self ): return len(self.dataset ) def __getitem__( self ,UpperCAmelCase_ ): return self.dataset[i][self.key] class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = dataset _lowercase : Optional[int] = keya _lowercase : Any = keya def __len__( self ): return len(self.dataset ) def __getitem__( self ,UpperCAmelCase_ ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
336
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
1
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
1
"""simple docstring""" import random def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): _lowercase : dict = {i: [] for i in range(__UpperCAmelCase )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__UpperCAmelCase ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__UpperCAmelCase ): for j in range(i + 1 , __UpperCAmelCase ): if random.random() < probability: graph[i].append(__UpperCAmelCase ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__UpperCAmelCase ) return graph def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return { i: [j for j in range(__UpperCAmelCase ) if i != j] for i in range(__UpperCAmelCase ) } if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
1
"""simple docstring""" import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase ( snake_case ): """simple docstring""" def __get__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): # See docs.python.org/3/howto/descriptor.html#properties if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) _lowercase : Dict = """__cached_""" + self.fget.__name__ _lowercase : int = getattr(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) if cached is None: _lowercase : str = self.fget(UpperCAmelCase_ ) setattr(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) return cached def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"""invalid truth value {val!r}""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if is_torch_fx_proxy(__UpperCAmelCase ): return True if is_torch_available(): import torch if isinstance(__UpperCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__UpperCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__UpperCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(__UpperCAmelCase , np.ndarray ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return isinstance(__UpperCAmelCase , np.ndarray ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return _is_numpy(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import torch return isinstance(__UpperCAmelCase , torch.Tensor ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return False if not is_torch_available() else _is_torch(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import torch return isinstance(__UpperCAmelCase , torch.device ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return False if not is_torch_available() else _is_torch_device(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import torch if isinstance(__UpperCAmelCase , __UpperCAmelCase ): if hasattr(__UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = getattr(__UpperCAmelCase , __UpperCAmelCase ) else: return False return isinstance(__UpperCAmelCase , torch.dtype ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return False if not is_torch_available() else _is_torch_dtype(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import tensorflow as tf return isinstance(__UpperCAmelCase , tf.Tensor ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return False if not is_tf_available() else _is_tensorflow(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__UpperCAmelCase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__UpperCAmelCase ) return type(__UpperCAmelCase ) == tf.Tensor def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return False if not is_tf_available() else _is_tf_symbolic_tensor(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): import jax.numpy as jnp # noqa: F811 return isinstance(__UpperCAmelCase , jnp.ndarray ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return False if not is_flax_available() else _is_jax(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (dict, UserDict) ): return {k: to_py_obj(__UpperCAmelCase ) for k, v in obj.items()} elif isinstance(__UpperCAmelCase , (list, tuple) ): return [to_py_obj(__UpperCAmelCase ) for o in obj] elif is_tf_tensor(__UpperCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(__UpperCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__UpperCAmelCase ): return np.asarray(__UpperCAmelCase ).tolist() elif isinstance(__UpperCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (dict, UserDict) ): return {k: to_numpy(__UpperCAmelCase ) for k, v in obj.items()} elif isinstance(__UpperCAmelCase , (list, tuple) ): return np.array(__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): return obj.numpy() elif is_torch_tensor(__UpperCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__UpperCAmelCase ): return np.asarray(__UpperCAmelCase ) else: return obj class UpperCamelCase ( snake_case ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : List[Any] = fields(self ) # Safety and consistency checks if not len(UpperCAmelCase_ ): raise ValueError(f"""{self.__class__.__name__} has no fields.""" ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"""{self.__class__.__name__} should not have more than one required field.""" ) _lowercase : Optional[Any] = getattr(self ,class_fields[0].name ) _lowercase : Tuple = all(getattr(self ,field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = first_field.items() _lowercase : Optional[Any] = True else: try: _lowercase : str = iter(UpperCAmelCase_ ) _lowercase : int = True except TypeError: _lowercase : List[str] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(UpperCAmelCase_ ): if ( not isinstance(UpperCAmelCase_ ,(list, tuple) ) or not len(UpperCAmelCase_ ) == 2 or not isinstance(element[0] ,UpperCAmelCase_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowercase : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"""Cannot set key/value for {element}. It needs to be a tuple (key, value).""" ) break setattr(self ,element[0] ,element[1] ) if element[1] is not None: _lowercase : Any = element[1] elif first_field is not None: _lowercase : Dict = first_field else: for field in class_fields: _lowercase : Optional[int] = getattr(self ,field.name ) if v is not None: _lowercase : Tuple = v def __delitem__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): raise Exception(f"""You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.""" ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): raise Exception(f"""You cannot use ``setdefault`` on a {self.__class__.__name__} instance.""" ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): raise Exception(f"""You cannot use ``pop`` on a {self.__class__.__name__} instance.""" ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): raise Exception(f"""You cannot use ``update`` on a {self.__class__.__name__} instance.""" ) def __getitem__( self ,UpperCAmelCase_ ): if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(UpperCAmelCase_ ,UpperCAmelCase_ ) super().__setattr__(UpperCAmelCase_ ,UpperCAmelCase_ ) def __setitem__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): # Will raise a KeyException if needed super().__setitem__(UpperCAmelCase_ ,UpperCAmelCase_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): return tuple(self[k] for k in self.keys() ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ): raise ValueError( f"""{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}""" ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "longest" SCREAMING_SNAKE_CASE_ : Optional[Any] = "max_length" SCREAMING_SNAKE_CASE_ : Optional[int] = "do_not_pad" class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "pt" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "tf" SCREAMING_SNAKE_CASE_ : Optional[Any] = "np" SCREAMING_SNAKE_CASE_ : Dict = "jax" class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : List[Any] = context_managers _lowercase : Any = ExitStack() def __enter__( self ): for context_manager in self.context_managers: self.stack.enter_context(UpperCAmelCase_ ) def __exit__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): self.stack.__exit__(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[Any] = infer_framework(__UpperCAmelCase ) if framework == "tf": _lowercase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowercase : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: _lowercase : List[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = model_class.__name__ _lowercase : Union[str, Any] = infer_framework(__UpperCAmelCase ) if framework == "tf": _lowercase : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowercase : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: _lowercase : Dict = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = "" , __UpperCAmelCase = "." ): def _flatten_dict(__UpperCAmelCase , __UpperCAmelCase="" , __UpperCAmelCase="." ): for k, v in d.items(): _lowercase : Any = str(__UpperCAmelCase ) + delimiter + str(__UpperCAmelCase ) if parent_key else k if v and isinstance(__UpperCAmelCase , __UpperCAmelCase ): yield from flatten_dict(__UpperCAmelCase , __UpperCAmelCase , delimiter=__UpperCAmelCase ).items() else: yield key, v return dict(_flatten_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) ) @contextmanager def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = False ): if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if is_numpy_array(__UpperCAmelCase ): return np.transpose(__UpperCAmelCase , axes=__UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.T if axes is None else array.permute(*__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.transpose(__UpperCAmelCase , perm=__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.transpose(__UpperCAmelCase , axes=__UpperCAmelCase ) else: raise ValueError(F"""Type not supported for transpose: {type(__UpperCAmelCase )}.""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if is_numpy_array(__UpperCAmelCase ): return np.reshape(__UpperCAmelCase , __UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.reshape(*__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.reshape(__UpperCAmelCase , __UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.reshape(__UpperCAmelCase , __UpperCAmelCase ) else: raise ValueError(F"""Type not supported for reshape: {type(__UpperCAmelCase )}.""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if is_numpy_array(__UpperCAmelCase ): return np.squeeze(__UpperCAmelCase , axis=__UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.squeeze(__UpperCAmelCase , axis=__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.squeeze(__UpperCAmelCase , axis=__UpperCAmelCase ) else: raise ValueError(F"""Type not supported for squeeze: {type(__UpperCAmelCase )}.""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if is_numpy_array(__UpperCAmelCase ): return np.expand_dims(__UpperCAmelCase , __UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.unsqueeze(dim=__UpperCAmelCase ) elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.expand_dims(__UpperCAmelCase , axis=__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return jnp.expand_dims(__UpperCAmelCase , axis=__UpperCAmelCase ) else: raise ValueError(F"""Type not supported for expand_dims: {type(__UpperCAmelCase )}.""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if is_numpy_array(__UpperCAmelCase ): return np.size(__UpperCAmelCase ) elif is_torch_tensor(__UpperCAmelCase ): return array.numel() elif is_tf_tensor(__UpperCAmelCase ): import tensorflow as tf return tf.size(__UpperCAmelCase ) elif is_jax_tensor(__UpperCAmelCase ): return array.size else: raise ValueError(F"""Type not supported for expand_dims: {type(__UpperCAmelCase )}.""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for key, value in auto_map.items(): if isinstance(__UpperCAmelCase , (tuple, list) ): _lowercase : Optional[Any] = [F"""{repo_id}--{v}""" if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: _lowercase : Any = F"""{repo_id}--{value}""" return auto_map def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): for base_class in inspect.getmro(__UpperCAmelCase ): _lowercase : str = base_class.__module__ _lowercase : Optional[Any] = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"""Could not infer framework from class {model_class}.""" )
336
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
1
"""simple docstring""" from __future__ import annotations UpperCAmelCase: str = [True] * 1_000_001 UpperCAmelCase: List[Any] = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): UpperCAmelCase: Optional[Any] = False i += 1 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return seive[n] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return any(digit in """02468""" for digit in str(__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000000 ): _lowercase : Any = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__UpperCAmelCase ) and not contains_an_even_digit(__UpperCAmelCase ): _lowercase : Union[str, Any] = str(__UpperCAmelCase ) _lowercase : Optional[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(__UpperCAmelCase ) )] if all(is_prime(__UpperCAmelCase ) for i in list_nums ): result.append(__UpperCAmelCase ) return result def __SCREAMING_SNAKE_CASE ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(F'{len(find_circular_primes()) = }')
336
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
1
"""simple docstring""" import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": UpperCAmelCase: int = """%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") UpperCAmelCase: Dict = F'https://www.google.com/search?q={query}&num=100' UpperCAmelCase: str = requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: UpperCAmelCase: List[Any] = ( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: UpperCAmelCase: Tuple = parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
336
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase: List[str] = logging.get_logger(__name__) UpperCAmelCase: Union[str, Any] = """▁""" UpperCAmelCase: List[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} UpperCAmelCase: Optional[Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } UpperCAmelCase: int = { """facebook/nllb-200-distilled-600M""": 1_024, } # fmt: off UpperCAmelCase: Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : List[int] = [] SCREAMING_SNAKE_CASE_ : List[int] = [] def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="</s>" ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_ = None ,UpperCAmelCase_=None ,UpperCAmelCase_=False ,**UpperCAmelCase_ ,): # Mask token behave like a normal word, i.e. include the space before it _lowercase : List[str] = AddedToken(UpperCAmelCase_ ,lstrip=UpperCAmelCase_ ,rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) else mask_token _lowercase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs _lowercase : str = legacy_behaviour super().__init__( bos_token=UpperCAmelCase_ ,eos_token=UpperCAmelCase_ ,unk_token=UpperCAmelCase_ ,sep_token=UpperCAmelCase_ ,cls_token=UpperCAmelCase_ ,pad_token=UpperCAmelCase_ ,mask_token=UpperCAmelCase_ ,tokenizer_file=UpperCAmelCase_ ,src_lang=UpperCAmelCase_ ,tgt_lang=UpperCAmelCase_ ,additional_special_tokens=UpperCAmelCase_ ,sp_model_kwargs=self.sp_model_kwargs ,legacy_behaviour=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCAmelCase_ ) ) _lowercase : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _lowercase : Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase : Tuple = 1 _lowercase : List[Any] = len(self.sp_model ) _lowercase : Any = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCAmelCase_ ) } _lowercase : List[str] = {v: k for k, v in self.lang_code_to_id.items()} _lowercase : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowercase : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowercase : int = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _lowercase : Optional[int] = src_lang if src_lang is not None else """eng_Latn""" _lowercase : Dict = self.lang_code_to_id[self._src_lang] _lowercase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): _lowercase : Optional[int] = self.__dict__.copy() _lowercase : List[str] = None _lowercase : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): _lowercase : Optional[int] = {} _lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self ): return self._src_lang @src_lang.setter def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ ,token_ids_a=UpperCAmelCase_ ,already_has_special_tokens=UpperCAmelCase_ ) _lowercase : Any = [1] * len(self.prefix_tokens ) _lowercase : List[Any] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCAmelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCAmelCase_ )) + ([0] * len(UpperCAmelCase_ )) + suffix_ones def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : List[Any] = [self.sep_token_id] _lowercase : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowercase : List[Any] = src_lang _lowercase : List[str] = self(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : int = self.convert_tokens_to_ids(UpperCAmelCase_ ) _lowercase : int = tgt_lang_id return inputs def lowerCamelCase__ ( self ): _lowercase : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.sp_model.encode(UpperCAmelCase_ ,out_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : List[Any] = self.sp_model.PieceToId(UpperCAmelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Dict = """""".join(UpperCAmelCase_ ).replace(UpperCAmelCase_ ,""" """ ).strip() return out_string def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _lowercase : int = os.path.join( UpperCAmelCase_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,UpperCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase_ ,"""wb""" ) as fi: _lowercase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase_ ) return (out_vocab_file,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "eng_Latn" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "fra_Latn" ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = src_lang _lowercase : List[str] = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Dict = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _lowercase : Optional[Any] = [] _lowercase : List[Any] = [self.eos_token_id, self.cur_lang_code] else: _lowercase : Optional[Any] = [self.cur_lang_code] _lowercase : int = [self.eos_token_id] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Dict = self.lang_code_to_id[lang] if self.legacy_behaviour: _lowercase : Optional[int] = [] _lowercase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowercase : int = [self.cur_lang_code] _lowercase : List[str] = [self.eos_token_id]
336
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCamelCase ( ctypes.Structure ): """simple docstring""" # _fields is a specific attr expected by ctypes SCREAMING_SNAKE_CASE_ : List[str] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def __SCREAMING_SNAKE_CASE ( ): if os.name == "nt": _lowercase : Dict = CursorInfo() _lowercase : Union[str, Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCAmelCase , ctypes.byref(__UpperCAmelCase ) ) _lowercase : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCAmelCase , ctypes.byref(__UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def __SCREAMING_SNAKE_CASE ( ): if os.name == "nt": _lowercase : Optional[int] = CursorInfo() _lowercase : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__UpperCAmelCase , ctypes.byref(__UpperCAmelCase ) ) _lowercase : Any = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__UpperCAmelCase , ctypes.byref(__UpperCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def __SCREAMING_SNAKE_CASE ( ): try: hide_cursor() yield finally: show_cursor()
336
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
336
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Dict = [0] * len(__UpperCAmelCase ) for i in range(1 , len(__UpperCAmelCase ) ): # use last results for better performance - dynamic programming _lowercase : List[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowercase : str = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowercase : str = j return prefix_result def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return max(prefix_function(__UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase: str = { """configuration_rag""": ["""RagConfig"""], """retrieval_rag""": ["""RagRetriever"""], """tokenization_rag""": ["""RagTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[Any] = [ """RagModel""", """RagPreTrainedModel""", """RagSequenceForGeneration""", """RagTokenForGeneration""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = [ """TFRagModel""", """TFRagPreTrainedModel""", """TFRagSequenceForGeneration""", """TFRagTokenForGeneration""", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): print("""\nThe shortest path matrix using Floyd Warshall algorithm\n""" ) for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): if dist[i][j] != float("""inf""" ): print(int(dist[i][j] ) , end="""\t""" ) else: print("""INF""" , end="""\t""" ) print() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[str] = [[float("""inf""" ) for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase ): for j in range(__UpperCAmelCase ): _lowercase : int = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__UpperCAmelCase ): # looping through rows of graph array for i in range(__UpperCAmelCase ): # looping through columns of graph array for j in range(__UpperCAmelCase ): if ( dist[i][k] != float("""inf""" ) and dist[k][j] != float("""inf""" ) and dist[i][k] + dist[k][j] < dist[i][j] ): _lowercase : Optional[int] = dist[i][k] + dist[k][j] _print_dist(__UpperCAmelCase , __UpperCAmelCase ) return dist, v if __name__ == "__main__": UpperCAmelCase: Optional[Any] = int(input("""Enter number of vertices: """)) UpperCAmelCase: Any = int(input("""Enter number of edges: """)) UpperCAmelCase: Dict = [[float("""inf""") for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase: Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("""\nEdge """, i + 1) UpperCAmelCase: List[str] = int(input("""Enter source:""")) UpperCAmelCase: Optional[int] = int(input("""Enter destination:""")) UpperCAmelCase: int = float(input("""Enter weight:""")) UpperCAmelCase: List[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
336
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCAmelCase: Any = datasets.utils.logging.get_logger(__name__) class UpperCamelCase ( folder_based_builder.FolderBasedBuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : bool = None SCREAMING_SNAKE_CASE_ : bool = None class UpperCamelCase ( folder_based_builder.FolderBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = datasets.Audio() SCREAMING_SNAKE_CASE_ : Dict = "audio" SCREAMING_SNAKE_CASE_ : List[Any] = AudioFolderConfig SCREAMING_SNAKE_CASE_ : List[str] # definition at the bottom of the script SCREAMING_SNAKE_CASE_ : List[str] = AudioClassification(audio_column="audio" , label_column="label" ) UpperCAmelCase: int = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] UpperCAmelCase: Dict = AUDIO_EXTENSIONS
336
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_="None" ,UpperCAmelCase_=3 ,UpperCAmelCase_=4 ,UpperCAmelCase_=None ,): _lowercase : str = parent _lowercase : Any = batch_size _lowercase : Optional[Any] = seq_length _lowercase : List[str] = is_training _lowercase : int = use_input_mask _lowercase : str = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : Dict = vocab_size _lowercase : Dict = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : int = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Dict = type_vocab_size _lowercase : Optional[int] = type_sequence_label_size _lowercase : Tuple = initializer_range _lowercase : Union[str, Any] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : Optional[int] = relative_attention _lowercase : Union[str, Any] = position_biased_input _lowercase : Any = pos_att_type _lowercase : Union[str, Any] = scope def lowerCamelCase__ ( self ): _lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : Any = None if self.use_input_mask: _lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Dict = None if self.use_token_type_ids: _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase : Tuple = None _lowercase : List[str] = None _lowercase : List[Any] = None if self.use_labels: _lowercase : List[Any] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _lowercase : str = DebertaVaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,relative_attention=self.relative_attention ,position_biased_input=self.position_biased_input ,initializer_range=self.initializer_range ,return_dict=UpperCAmelCase_ ,) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = TFDebertaVaModel(config=UpperCAmelCase_ ) _lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _lowercase : int = [input_ids, input_mask] _lowercase : Optional[Any] = model(UpperCAmelCase_ ) _lowercase : Any = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : int = TFDebertaVaForMaskedLM(config=UpperCAmelCase_ ) _lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : Dict = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.num_labels _lowercase : List[Any] = TFDebertaVaForSequenceClassification(config=UpperCAmelCase_ ) _lowercase : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : Optional[Any] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.num_labels _lowercase : Tuple = TFDebertaVaForTokenClassification(config=UpperCAmelCase_ ) _lowercase : List[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : str = TFDebertaVaForQuestionAnswering(config=UpperCAmelCase_ ) _lowercase : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } _lowercase : List[str] = model(UpperCAmelCase_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : Dict = ( { "feature-extraction": TFDebertaVaModel, "fill-mask": TFDebertaVaForMaskedLM, "question-answering": TFDebertaVaForQuestionAnswering, "text-classification": TFDebertaVaForSequenceClassification, "token-classification": TFDebertaVaForTokenClassification, "zero-shot": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : str = False def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = TFDebertaVaModelTester(self ) _lowercase : str = ConfigTester(self ,config_class=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase__ ( self ): _lowercase : List[str] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(UpperCAmelCase_ ) @require_tf class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase__ ( self ): pass @slow def lowerCamelCase__ ( self ): _lowercase : Tuple = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) _lowercase : Tuple = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) _lowercase : str = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowercase : Dict = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ )[0] _lowercase : Any = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] ,UpperCAmelCase_ ,atol=1E-4 )
336
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: List[Any] = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = "speech_to_text_2" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = {"num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model"} def __init__( self ,UpperCAmelCase_=1_00_00 ,UpperCAmelCase_=6 ,UpperCAmelCase_=20_48 ,UpperCAmelCase_=4 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=True ,UpperCAmelCase_="relu" ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=2 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,UpperCAmelCase_=10_24 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : Dict = d_model _lowercase : int = decoder_ffn_dim _lowercase : Any = decoder_layers _lowercase : Tuple = decoder_attention_heads _lowercase : List[str] = dropout _lowercase : str = attention_dropout _lowercase : Optional[int] = activation_dropout _lowercase : List[str] = activation_function _lowercase : Any = init_std _lowercase : Tuple = decoder_layerdrop _lowercase : Optional[int] = use_cache _lowercase : str = decoder_layers _lowercase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase : List[str] = max_target_positions super().__init__( pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,decoder_start_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ,)
336
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
1
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = LayoutLMTokenizer SCREAMING_SNAKE_CASE_ : Union[str, Any] = LayoutLMTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[int] = True SCREAMING_SNAKE_CASE_ : str = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Dict = """UNwant\u00E9d,running""" _lowercase : Any = """unwanted, running""" return input_text, output_text def lowerCamelCase__ ( self ): _lowercase : Dict = self.tokenizer_class(self.vocab_file ) _lowercase : Union[str, Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(UpperCAmelCase_ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[7, 4, 5, 10, 8, 9] ) def lowerCamelCase__ ( self ): pass
336
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
1
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=30 ,UpperCAmelCase_=2 ,UpperCAmelCase_=3 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=10 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=3 ,UpperCAmelCase_=None ,): _lowercase : Optional[int] = parent _lowercase : str = batch_size _lowercase : str = image_size _lowercase : str = patch_size _lowercase : str = num_channels _lowercase : Tuple = is_training _lowercase : Dict = use_labels _lowercase : Union[str, Any] = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Dict = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = type_sequence_label_size _lowercase : Tuple = initializer_range _lowercase : Dict = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase : int = (image_size // patch_size) ** 2 _lowercase : Dict = num_patches + 1 def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Tuple = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _lowercase : Optional[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self ): return ViTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = TFViTModel(config=UpperCAmelCase_ ) _lowercase : str = model(UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. _lowercase : Any = self.image_size // 2 _lowercase : Optional[Any] = pixel_values[:, :, :image_size, :image_size] _lowercase : Tuple = model(UpperCAmelCase_ ,interpolate_pos_encoding=UpperCAmelCase_ ,training=UpperCAmelCase_ ) _lowercase : List[Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, seq_length, self.hidden_size) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = self.type_sequence_label_size _lowercase : int = TFViTForImageClassification(UpperCAmelCase_ ) _lowercase : List[str] = model(UpperCAmelCase_ ,labels=UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. _lowercase : Union[str, Any] = self.image_size // 2 _lowercase : Dict = pixel_values[:, :, :image_size, :image_size] _lowercase : Optional[Any] = model(UpperCAmelCase_ ,interpolate_pos_encoding=UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowercase : Union[str, Any] = 1 _lowercase : Dict = TFViTForImageClassification(UpperCAmelCase_ ) _lowercase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowercase : int = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self ): _lowercase : int = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : str = config_and_inputs _lowercase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class UpperCamelCase ( snake_case , snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ): _lowercase : Optional[int] = TFViTModelTester(self ) _lowercase : Any = ConfigTester(self ,config_class=UpperCAmelCase_ ,has_text_modality=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[Any] = model_class(UpperCAmelCase_ ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) _lowercase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ ,tf.keras.layers.Layer ) ) def lowerCamelCase__ ( self ): _lowercase , _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Optional[int] = model_class(UpperCAmelCase_ ) _lowercase : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Optional[int] = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @slow def lowerCamelCase__ ( self ): _lowercase : Tuple = TFViTModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(UpperCAmelCase_ ) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self ): return ViTImageProcessor.from_pretrained("""google/vit-base-patch16-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self ): _lowercase : int = TFViTForImageClassification.from_pretrained("""google/vit-base-patch16-224""" ) _lowercase : Optional[int] = self.default_image_processor _lowercase : str = prepare_img() _lowercase : Dict = image_processor(images=UpperCAmelCase_ ,return_tensors="""tf""" ) # forward pass _lowercase : str = model(**UpperCAmelCase_ ) # verify the logits _lowercase : int = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape ,UpperCAmelCase_ ) _lowercase : Optional[Any] = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] ,UpperCAmelCase_ ,atol=1E-4 )
336
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
1
"""simple docstring""" import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): # Load configuration defined in the metadata file with open(__UpperCAmelCase ) as metadata_file: _lowercase : Dict = json.load(__UpperCAmelCase ) _lowercase : List[Any] = LukeConfig(use_entity_aware_attention=__UpperCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _lowercase : Optional[int] = torch.load(__UpperCAmelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file _lowercase : Union[str, Any] = load_original_entity_vocab(__UpperCAmelCase ) # add an entry for [MASK2] _lowercase : Optional[int] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _lowercase : int = AddedToken("""<ent>""" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) _lowercase : Optional[Any] = AddedToken("""<ent2>""" , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(__UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , """r""" ) as f: _lowercase : int = json.load(__UpperCAmelCase ) _lowercase : int = """MLukeTokenizer""" with open(os.path.join(__UpperCAmelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) with open(os.path.join(__UpperCAmelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) _lowercase : Dict = MLukeTokenizer.from_pretrained(__UpperCAmelCase ) # Initialize the embeddings of the special tokens _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(["""@"""] )[0] _lowercase : Union[str, Any] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] _lowercase : Union[str, Any] = state_dict["""embeddings.word_embeddings.weight"""] _lowercase : List[Any] = word_emb[ent_init_index].unsqueeze(0 ) _lowercase : int = word_emb[enta_init_index].unsqueeze(0 ) _lowercase : Tuple = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: _lowercase : Optional[int] = state_dict[bias_name] _lowercase : Dict = decoder_bias[ent_init_index].unsqueeze(0 ) _lowercase : List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) _lowercase : Tuple = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowercase : Tuple = F"""encoder.layer.{layer_index}.attention.self.""" _lowercase : Optional[Any] = state_dict[prefix + matrix_name] _lowercase : Any = state_dict[prefix + matrix_name] _lowercase : Dict = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowercase : Any = state_dict["""entity_embeddings.entity_embeddings.weight"""] _lowercase : int = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowercase : Optional[int] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' _lowercase : Union[str, Any] = state_dict["""entity_predictions.bias"""] _lowercase : Optional[int] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) _lowercase : Dict = torch.cat([entity_prediction_bias, entity_mask_bias] ) _lowercase : Any = LukeForMaskedLM(config=__UpperCAmelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) _lowercase : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): _lowercase : Optional[int] = state_dict[key] else: _lowercase : Dict = state_dict[key] _lowercase , _lowercase : Any = model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if set(__UpperCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(__UpperCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs _lowercase : Optional[Any] = MLukeTokenizer.from_pretrained(__UpperCAmelCase , task="""entity_classification""" ) _lowercase : List[Any] = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" _lowercase : List[str] = (0, 9) _lowercase : Dict = tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) _lowercase : List[Any] = model(**__UpperCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base _lowercase : List[str] = torch.Size((1, 33, 768) ) _lowercase : int = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base _lowercase : str = torch.Size((1, 1, 768) ) _lowercase : List[Any] = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction _lowercase : Any = MLukeTokenizer.from_pretrained(__UpperCAmelCase ) _lowercase : Dict = """Tokyo is the capital of <mask>.""" _lowercase : Union[str, Any] = (24, 30) _lowercase : Dict = tokenizer(__UpperCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) _lowercase : Union[str, Any] = model(**__UpperCAmelCase ) _lowercase : Dict = encoding["""input_ids"""][0].tolist() _lowercase : List[Any] = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) _lowercase : List[Any] = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__UpperCAmelCase ) _lowercase : Tuple = outputs.entity_logits[0][0].argmax().item() _lowercase : int = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__UpperCAmelCase ) ) model.save_pretrained(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = ["""[MASK]""", """[PAD]""", """[UNK]"""] _lowercase : Union[str, Any] = [json.loads(__UpperCAmelCase ) for line in open(__UpperCAmelCase )] _lowercase : Dict = {} for entry in data: _lowercase : Optional[Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: _lowercase : Tuple = entity_id break _lowercase : Optional[int] = F"""{language}:{entity_name}""" _lowercase : int = entity_id return new_mapping if __name__ == "__main__": UpperCAmelCase: Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) UpperCAmelCase: Dict = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
336
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): return "\n".join( F"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
336
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
1
"""simple docstring""" class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Optional[int] = set_counts _lowercase : str = max(UpperCAmelCase_ ) _lowercase : str = len(UpperCAmelCase_ ) _lowercase : Any = [1] * num_sets _lowercase : str = list(range(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Any = self.get_parent(UpperCAmelCase_ ) _lowercase : str = self.get_parent(UpperCAmelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowercase : Tuple = 0 _lowercase : List[str] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowercase : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowercase : List[Any] = 0 _lowercase : List[str] = src_parent _lowercase : Union[str, Any] = self.set_counts[src_parent] _lowercase : Optional[int] = max(self.max_set ,UpperCAmelCase_ ) return True def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.parents[disj_set] == disj_set: return disj_set _lowercase : Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
336
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
1
"""simple docstring""" import os def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "input.txt" ): with open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) as input_file: _lowercase : Dict = [ [int(__UpperCAmelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] _lowercase : Optional[int] = len(__UpperCAmelCase ) _lowercase : Tuple = len(matrix[0] ) _lowercase : Any = [[-1 for _ in range(__UpperCAmelCase )] for _ in range(__UpperCAmelCase )] for i in range(__UpperCAmelCase ): _lowercase : Optional[int] = matrix[i][0] for j in range(1 , __UpperCAmelCase ): for i in range(__UpperCAmelCase ): _lowercase : List[str] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __UpperCAmelCase ): _lowercase : Dict = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase : List[str] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'{solution() = }')
336
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ): # test for the above condition self.test() def lowerCamelCase__ ( self ): _lowercase : Any = 0 _lowercase : Tuple = False while not completed: if counter == 1: self.reset() _lowercase : Optional[Any] = self.advance() if not self.does_advance(UpperCAmelCase_ ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) _lowercase , _lowercase , _lowercase : Optional[Any] = self.update(UpperCAmelCase_ ) counter += 1 if counter > 1_00_00: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) _lowercase : int = token_ids _lowercase : str = len(self.token_ids ) _lowercase : List[str] = -1 # the index of the currently fulfilled step _lowercase : Optional[Any] = False def lowerCamelCase__ ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Optional[int] = False _lowercase : List[str] = False _lowercase : Optional[Any] = False if self.does_advance(UpperCAmelCase_ ): self.fulfilled_idx += 1 _lowercase : Any = True if self.fulfilled_idx == (self.seqlen - 1): _lowercase : int = True _lowercase : Union[str, Any] = completed else: # failed to make progress. _lowercase : Optional[Any] = True self.reset() return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Optional[int] = False _lowercase : List[str] = 0 def lowerCamelCase__ ( self ): return self.seqlen - (self.fulfilled_idx + 1) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Any = PhrasalConstraint(self.token_ids ) if stateful: _lowercase : Dict = self.seqlen _lowercase : Tuple = self.fulfilled_idx _lowercase : Tuple = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=True ): _lowercase : Optional[int] = max([len(UpperCAmelCase_ ) for one in nested_token_ids] ) _lowercase : List[Any] = {} for token_ids in nested_token_ids: _lowercase : Union[str, Any] = root for tidx, token_id in enumerate(UpperCAmelCase_ ): if token_id not in level: _lowercase : int = {} _lowercase : str = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" f""" {nested_token_ids}.""" ) _lowercase : int = root def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Any = self.trie for current_token in current_seq: _lowercase : Optional[Any] = start[current_token] _lowercase : Any = list(start.keys() ) return next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : str = self.next_tokens(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) == 0 def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[Any] = list(root.values() ) if len(UpperCAmelCase_ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_ ) for nn in next_nodes] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[Any] = self.count_leaves(UpperCAmelCase_ ) return len(UpperCAmelCase_ ) != leaf_count class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ): super(UpperCAmelCase_ ,self ).__init__() if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or len(UpperCAmelCase_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) _lowercase : str = DisjunctiveTrie(UpperCAmelCase_ ) _lowercase : Optional[Any] = nested_token_ids _lowercase : Optional[Any] = self.trie.max_height _lowercase : Optional[int] = [] _lowercase : int = False def lowerCamelCase__ ( self ): _lowercase : str = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Dict = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_ )}""" ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : List[str] = False if self.does_advance(UpperCAmelCase_ ): self.current_seq.append(UpperCAmelCase_ ) _lowercase : Union[str, Any] = True else: _lowercase : Optional[int] = True self.reset() _lowercase : List[str] = self.trie.reached_leaf(self.current_seq ) _lowercase : Optional[int] = completed return stepped, completed, reset def lowerCamelCase__ ( self ): _lowercase : Tuple = False _lowercase : Union[str, Any] = [] def lowerCamelCase__ ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCamelCase__ ( self ,UpperCAmelCase_=False ): _lowercase : Tuple = DisjunctiveConstraint(self.token_ids ) if stateful: _lowercase : Optional[Any] = self.seqlen _lowercase : Any = self.current_seq _lowercase : Dict = self.completed return new_constraint class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Dict = constraints # max # of steps required to fulfill a given constraint _lowercase : str = max([c.seqlen for c in constraints] ) _lowercase : str = len(UpperCAmelCase_ ) _lowercase : Any = False self.init_state() def lowerCamelCase__ ( self ): _lowercase : List[str] = [] _lowercase : Dict = None _lowercase : List[str] = [constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.constraints] def lowerCamelCase__ ( self ): _lowercase : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCamelCase__ ( self ): _lowercase : Any = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowercase : Any = constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) else: _lowercase : List[Any] = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.append(UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): token_list.extend(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 0: return None else: return token_list def lowerCamelCase__ ( self ,UpperCAmelCase_ ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowercase , _lowercase : int = self.add(UpperCAmelCase_ ) # the entire list of constraints are fulfilled if self.completed: break def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) _lowercase , _lowercase : Tuple = False, False if self.completed: _lowercase : Union[str, Any] = True _lowercase : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowercase , _lowercase , _lowercase : List[Any] = self.inprogress_constraint.update(UpperCAmelCase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) ) _lowercase : List[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowercase : List[Any] = None if len(self.pending_constraints ) == 0: # we're done! _lowercase : int = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase_ ): _lowercase , _lowercase , _lowercase : Dict = pending_constraint.update(UpperCAmelCase_ ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(UpperCAmelCase_ ) _lowercase : Tuple = None if not complete and stepped: _lowercase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowercase : Optional[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowercase : Any = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCamelCase__ ( self ,UpperCAmelCase_=True ): _lowercase : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowercase : int = [ constraint.copy(stateful=UpperCAmelCase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowercase : Optional[int] = self.inprogress_constraint.copy(stateful=UpperCAmelCase_ ) _lowercase : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
336
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
1
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = CpmAntTokenizer SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ): super().setUp() _lowercase : Optional[int] = [ """<d>""", """</d>""", """<s>""", """</s>""", """</_>""", """<unk>""", """<pad>""", """</n>""", """我""", """是""", """C""", """P""", """M""", """A""", """n""", """t""", ] _lowercase : int = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) @tooslow def lowerCamelCase__ ( self ): _lowercase : str = CpmAntTokenizer.from_pretrained("""openbmb/cpm-ant-10b""" ) _lowercase : List[str] = """今天天气真好!""" _lowercase : Dict = ["""今天""", """天气""", """真""", """好""", """!"""] _lowercase : List[str] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Tuple = """今天天气真好!""" _lowercase : Any = [tokenizer.bos_token] + tokens _lowercase : Union[str, Any] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.decode(UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ )
336
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters UpperCAmelCase: List[str] = (720, 1_280) # Height, Width UpperCAmelCase: List[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. UpperCAmelCase: List[Any] = 1 / 100 UpperCAmelCase: List[Any] = """""" UpperCAmelCase: Union[str, Any] = """""" UpperCAmelCase: Optional[int] = """""" UpperCAmelCase: int = 250 def __SCREAMING_SNAKE_CASE ( ): _lowercase , _lowercase : Optional[int] = get_dataset(__UpperCAmelCase , __UpperCAmelCase ) for index in range(__UpperCAmelCase ): _lowercase : Tuple = random.sample(range(len(__UpperCAmelCase ) ) , 4 ) _lowercase , _lowercase , _lowercase : Tuple = update_image_and_anno( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , filter_scale=__UpperCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowercase : int = random_chars(32 ) _lowercase : Optional[Any] = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] _lowercase : Any = F"""{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}""" cva.imwrite(F"""{file_root}.jpg""" , __UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F"""Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}""" ) _lowercase : List[str] = [] for anno in new_annos: _lowercase : Optional[Any] = anno[3] - anno[1] _lowercase : Optional[Any] = anno[4] - anno[2] _lowercase : List[Any] = anno[1] + width / 2 _lowercase : int = anno[2] + height / 2 _lowercase : List[Any] = F"""{anno[0]} {x_center} {y_center} {width} {height}""" annos_list.append(__UpperCAmelCase ) with open(F"""{file_root}.txt""" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Union[str, Any] = [] _lowercase : List[str] = [] for label_file in glob.glob(os.path.join(__UpperCAmelCase , """*.txt""" ) ): _lowercase : int = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(__UpperCAmelCase ) as in_file: _lowercase : Any = in_file.readlines() _lowercase : List[Any] = os.path.join(__UpperCAmelCase , F"""{label_name}.jpg""" ) _lowercase : Any = [] for obj_list in obj_lists: _lowercase : Union[str, Any] = obj_list.rstrip("""\n""" ).split(""" """ ) _lowercase : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 _lowercase : Optional[Any] = float(obj[2] ) - float(obj[4] ) / 2 _lowercase : List[Any] = float(obj[1] ) + float(obj[3] ) / 2 _lowercase : Dict = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__UpperCAmelCase ) labels.append(__UpperCAmelCase ) return img_paths, labels def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.0 , ): _lowercase : Optional[Any] = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowercase : str = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowercase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowercase : Dict = int(scale_x * output_size[1] ) _lowercase : Optional[Any] = int(scale_y * output_size[0] ) _lowercase : Dict = [] _lowercase : List[str] = [] for i, index in enumerate(__UpperCAmelCase ): _lowercase : Dict = all_img_list[index] path_list.append(__UpperCAmelCase ) _lowercase : Optional[Any] = all_annos[index] _lowercase : Optional[Any] = cva.imread(__UpperCAmelCase ) if i == 0: # top-left _lowercase : Any = cva.resize(__UpperCAmelCase , (divid_point_x, divid_point_y) ) _lowercase : List[Any] = img for bbox in img_annos: _lowercase : Optional[Any] = bbox[1] * scale_x _lowercase : int = bbox[2] * scale_y _lowercase : List[str] = bbox[3] * scale_x _lowercase : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowercase : str = cva.resize(__UpperCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) _lowercase : Union[str, Any] = img for bbox in img_annos: _lowercase : Any = scale_x + bbox[1] * (1 - scale_x) _lowercase : List[Any] = bbox[2] * scale_y _lowercase : List[str] = scale_x + bbox[3] * (1 - scale_x) _lowercase : List[str] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowercase : Optional[Any] = cva.resize(__UpperCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) _lowercase : str = img for bbox in img_annos: _lowercase : str = bbox[1] * scale_x _lowercase : Optional[int] = scale_y + bbox[2] * (1 - scale_y) _lowercase : Dict = bbox[3] * scale_x _lowercase : Any = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowercase : List[str] = cva.resize( __UpperCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowercase : Union[str, Any] = img for bbox in img_annos: _lowercase : Dict = scale_x + bbox[1] * (1 - scale_x) _lowercase : Optional[Any] = scale_y + bbox[2] * (1 - scale_y) _lowercase : int = scale_x + bbox[3] * (1 - scale_x) _lowercase : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowercase : List[str] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert number_char > 1, "The number of character should greater than 1" _lowercase : Dict = ascii_lowercase + digits return "".join(random.choice(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
336
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
1
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel UpperCAmelCase: Dict = HfApi() UpperCAmelCase: Optional[Any] = {} # fmt: off UpperCAmelCase: Optional[int] = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) UpperCAmelCase: int = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) UpperCAmelCase: Dict = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) UpperCAmelCase: str = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) UpperCAmelCase: Dict = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) UpperCAmelCase: List[str] = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) UpperCAmelCase: Dict = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) UpperCAmelCase: Optional[int] = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) UpperCAmelCase: Optional[int] = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) UpperCAmelCase: List[Any] = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) UpperCAmelCase: Optional[int] = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) UpperCAmelCase: str = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) UpperCAmelCase: Optional[int] = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) UpperCAmelCase: Any = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) UpperCAmelCase: Tuple = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on UpperCAmelCase: str = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": UpperCAmelCase: Union[str, Any] = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'Started running {mod.modelId}!!!') if mod.modelId.startswith("""CompVis"""): UpperCAmelCase: int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: UpperCAmelCase: Optional[int] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) UpperCAmelCase: int = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) UpperCAmelCase: Union[str, Any] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): UpperCAmelCase: Tuple = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F'{mod.modelId} has passed successfully!!!')
336
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
336
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
1
"""simple docstring""" import os from math import logaa def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = "base_exp.txt" ): _lowercase : float = 0 _lowercase : str = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(__UpperCAmelCase ) , __UpperCAmelCase ) ) ): _lowercase , _lowercase : List[str] = list(map(__UpperCAmelCase , line.split(""",""" ) ) ) if x * logaa(__UpperCAmelCase ) > largest: _lowercase : Optional[Any] = x * logaa(__UpperCAmelCase ) _lowercase : int = i + 1 return result if __name__ == "__main__": print(solution())
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase: int = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "codegen" SCREAMING_SNAKE_CASE_ : Optional[int] = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=5_04_00 ,UpperCAmelCase_=20_48 ,UpperCAmelCase_=20_48 ,UpperCAmelCase_=40_96 ,UpperCAmelCase_=28 ,UpperCAmelCase_=16 ,UpperCAmelCase_=64 ,UpperCAmelCase_=None ,UpperCAmelCase_="gelu_new" ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=True ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=False ,**UpperCAmelCase_ ,): _lowercase : List[str] = vocab_size _lowercase : Tuple = n_ctx _lowercase : List[Any] = n_positions _lowercase : Any = n_embd _lowercase : Tuple = n_layer _lowercase : List[Any] = n_head _lowercase : List[Any] = n_inner _lowercase : Tuple = rotary_dim _lowercase : List[str] = activation_function _lowercase : Any = resid_pdrop _lowercase : str = embd_pdrop _lowercase : Any = attn_pdrop _lowercase : List[str] = layer_norm_epsilon _lowercase : List[Any] = initializer_range _lowercase : List[str] = use_cache _lowercase : List[str] = bos_token_id _lowercase : List[str] = eos_token_id super().__init__( bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,tie_word_embeddings=UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "default" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,): super().__init__(UpperCAmelCase_ ,task=UpperCAmelCase_ ,patching_specs=UpperCAmelCase_ ,use_past=UpperCAmelCase_ ) if not getattr(self._config ,"""pad_token_id""" ,UpperCAmelCase_ ): # TODO: how to do that better? _lowercase : List[Any] = 0 @property def lowerCamelCase__ ( self ): _lowercase : str = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ ,direction="""inputs""" ) _lowercase : Dict = {0: """batch""", 1: """past_sequence + sequence"""} else: _lowercase : Optional[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def lowerCamelCase__ ( self ): return self._config.n_layer @property def lowerCamelCase__ ( self ): return self._config.n_head def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,): _lowercase : Optional[Any] = super(UpperCAmelCase_ ,self ).generate_dummy_inputs( UpperCAmelCase_ ,batch_size=UpperCAmelCase_ ,seq_length=UpperCAmelCase_ ,is_pair=UpperCAmelCase_ ,framework=UpperCAmelCase_ ) # We need to order the input in the way they appears in the forward() _lowercase : Tuple = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _lowercase , _lowercase : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _lowercase : Dict = seqlen + 2 _lowercase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowercase : List[str] = [ (torch.zeros(UpperCAmelCase_ ), torch.zeros(UpperCAmelCase_ )) for _ in range(self.num_layers ) ] _lowercase : Optional[int] = common_inputs["""attention_mask"""] if self.use_past: _lowercase : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype _lowercase : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )] ,dim=1 ) return ordered_inputs @property def lowerCamelCase__ ( self ): return 13
336
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
1
"""simple docstring""" UpperCAmelCase: Optional[Any] = { """a""": """AAAAA""", """b""": """AAAAB""", """c""": """AAABA""", """d""": """AAABB""", """e""": """AABAA""", """f""": """AABAB""", """g""": """AABBA""", """h""": """AABBB""", """i""": """ABAAA""", """j""": """BBBAA""", """k""": """ABAAB""", """l""": """ABABA""", """m""": """ABABB""", """n""": """ABBAA""", """o""": """ABBAB""", """p""": """ABBBA""", """q""": """ABBBB""", """r""": """BAAAA""", """s""": """BAAAB""", """t""": """BAABA""", """u""": """BAABB""", """v""": """BBBAB""", """w""": """BABAA""", """x""": """BABAB""", """y""": """BABBA""", """z""": """BABBB""", """ """: """ """, } UpperCAmelCase: Optional[Any] = {value: key for key, value in encode_dict.items()} def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Union[str, Any] = """""" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("""encode() accepts only letters of the alphabet and spaces""" ) return encoded def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if set(__UpperCAmelCase ) - {"A", "B", " "} != set(): raise Exception("""decode() accepts only 'A', 'B' and spaces""" ) _lowercase : Optional[Any] = """""" for word in coded.split(): while len(__UpperCAmelCase ) != 0: decoded += decode_dict[word[:5]] _lowercase : Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
336
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
1
"""simple docstring""" from __future__ import annotations import math UpperCAmelCase: Union[str, Any] = """2020.9.26""" UpperCAmelCase: Any = """xcodz-dot, cclaus, dhruvmanila""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not all(isinstance(__UpperCAmelCase , (float, int) ) for val in locals().values() ): _lowercase : Union[str, Any] = F"""Input values must either be float or int: {list(locals().values() )}""" raise TypeError(__UpperCAmelCase ) _lowercase : Dict = ((x * distance) / (z + distance)) * scale _lowercase : Optional[int] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""Axis must be a str""" ) _lowercase : Dict = locals() del input_variables["axis"] if not all(isinstance(__UpperCAmelCase , (float, int) ) for val in input_variables.values() ): _lowercase : Union[str, Any] = ( """Input values except axis must either be float or int: """ F"""{list(input_variables.values() )}""" ) raise TypeError(__UpperCAmelCase ) _lowercase : List[str] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _lowercase : Optional[int] = x * math.cos(__UpperCAmelCase ) - y * math.sin(__UpperCAmelCase ) _lowercase : Any = y * math.cos(__UpperCAmelCase ) + x * math.sin(__UpperCAmelCase ) _lowercase : Tuple = z elif axis == "x": _lowercase : Tuple = y * math.cos(__UpperCAmelCase ) - z * math.sin(__UpperCAmelCase ) _lowercase : Any = z * math.cos(__UpperCAmelCase ) + y * math.sin(__UpperCAmelCase ) _lowercase : List[Any] = x elif axis == "y": _lowercase : Dict = x * math.cos(__UpperCAmelCase ) - z * math.sin(__UpperCAmelCase ) _lowercase : Tuple = z * math.cos(__UpperCAmelCase ) + x * math.sin(__UpperCAmelCase ) _lowercase : str = y else: raise ValueError("""not a valid axis, choose one of 'x', 'y', 'z'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }') print(F'{rotate(1.0, 2.0, 3.0, "y", 90.0) = }')
336
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "trocr" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : str = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self ,UpperCAmelCase_=5_02_65 ,UpperCAmelCase_=10_24 ,UpperCAmelCase_=12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=40_96 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=True ,UpperCAmelCase_=False ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,**UpperCAmelCase_ ,): _lowercase : List[Any] = vocab_size _lowercase : Optional[Any] = d_model _lowercase : List[Any] = decoder_layers _lowercase : Optional[int] = decoder_attention_heads _lowercase : Dict = decoder_ffn_dim _lowercase : Any = activation_function _lowercase : Tuple = max_position_embeddings _lowercase : int = dropout _lowercase : Union[str, Any] = attention_dropout _lowercase : Optional[Any] = activation_dropout _lowercase : List[Any] = init_std _lowercase : List[Any] = decoder_layerdrop _lowercase : str = use_cache _lowercase : Tuple = scale_embedding _lowercase : Optional[int] = use_learned_position_embeddings _lowercase : str = layernorm_embedding super().__init__( pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,decoder_start_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ,)
336
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: str = { """openai/imagegpt-small""": """""", """openai/imagegpt-medium""": """""", """openai/imagegpt-large""": """""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "imagegpt" SCREAMING_SNAKE_CASE_ : Any = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Any = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=5_12 + 1 ,UpperCAmelCase_=32 * 32 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=24 ,UpperCAmelCase_=8 ,UpperCAmelCase_=None ,UpperCAmelCase_="quick_gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=1E-5 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=False ,UpperCAmelCase_=False ,UpperCAmelCase_=False ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = vocab_size _lowercase : int = n_positions _lowercase : Optional[int] = n_embd _lowercase : Tuple = n_layer _lowercase : List[str] = n_head _lowercase : Dict = n_inner _lowercase : Union[str, Any] = activation_function _lowercase : Any = resid_pdrop _lowercase : Tuple = embd_pdrop _lowercase : Dict = attn_pdrop _lowercase : int = layer_norm_epsilon _lowercase : Dict = initializer_range _lowercase : Dict = scale_attn_weights _lowercase : Any = use_cache _lowercase : Dict = scale_attn_by_inverse_layer_idx _lowercase : str = reorder_and_upcast_attn _lowercase : Optional[Any] = tie_word_embeddings super().__init__(tie_word_embeddings=UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" @property def lowerCamelCase__ ( self ): return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = -1 ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 32 ,): _lowercase : List[Any] = self._generate_dummy_images(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[Any] = dict(preprocessor(images=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) ) return inputs
336
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
1
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not sentence: return "" _lowercase : Any = dict(zip(__UpperCAmelCase , __UpperCAmelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
336
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ShapEPipeline SCREAMING_SNAKE_CASE_ : List[str] = ["prompt"] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ["prompt"] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] SCREAMING_SNAKE_CASE_ : Dict = False @property def lowerCamelCase__ ( self ): return 32 @property def lowerCamelCase__ ( self ): return 32 @property def lowerCamelCase__ ( self ): return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): return 8 @property def lowerCamelCase__ ( self ): _lowercase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModelWithProjection(UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } _lowercase : Any = PriorTransformer(**UpperCAmelCase_ ) return model @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Dict = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } _lowercase : Tuple = ShapERenderer(**UpperCAmelCase_ ) return model def lowerCamelCase__ ( self ): _lowercase : str = self.dummy_prior _lowercase : Optional[int] = self.dummy_text_encoder _lowercase : Union[str, Any] = self.dummy_tokenizer _lowercase : str = self.dummy_renderer _lowercase : int = HeunDiscreteScheduler( beta_schedule="""exp""" ,num_train_timesteps=10_24 ,prediction_type="""sample""" ,use_karras_sigmas=UpperCAmelCase_ ,clip_sample=UpperCAmelCase_ ,clip_sample_range=1.0 ,) _lowercase : Tuple = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith("""mps""" ): _lowercase : str = torch.manual_seed(UpperCAmelCase_ ) else: _lowercase : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _lowercase : Optional[int] = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): _lowercase : Tuple = """cpu""" _lowercase : List[str] = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**UpperCAmelCase_ ) _lowercase : Union[str, Any] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : List[str] = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _lowercase : Tuple = output.images[0] _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowercase : int = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self ): _lowercase : Dict = torch_device == """cpu""" _lowercase : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=UpperCAmelCase_ ,relax_max_difference=UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.get_dummy_components() _lowercase : Optional[int] = self.pipeline_class(**UpperCAmelCase_ ) _lowercase : int = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : Tuple = 1 _lowercase : Tuple = 2 _lowercase : Dict = self.get_dummy_inputs(UpperCAmelCase_ ) for key in inputs.keys(): if key in self.batch_params: _lowercase : List[str] = batch_size * [inputs[key]] _lowercase : List[str] = pipe(**UpperCAmelCase_ ,num_images_per_prompt=UpperCAmelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): _lowercase : Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) _lowercase : Any = ShapEPipeline.from_pretrained("""openai/shap-e""" ) _lowercase : Dict = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _lowercase : List[str] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) _lowercase : List[Any] = pipe( """a shark""" ,generator=UpperCAmelCase_ ,guidance_scale=15.0 ,num_inference_steps=64 ,frame_size=64 ,output_type="""np""" ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase_ ,UpperCAmelCase_ )
336
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
1
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = (PNDMScheduler,) SCREAMING_SNAKE_CASE_ : List[Any] = (("num_inference_steps", 5_0),) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): _lowercase : int = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**UpperCAmelCase_ ) return config def lowerCamelCase__ ( self ,UpperCAmelCase_=0 ,**UpperCAmelCase_ ): _lowercase : Union[str, Any] = dict(self.forward_default_kwargs ) _lowercase : Any = kwargs.pop("""num_inference_steps""" ,UpperCAmelCase_ ) _lowercase : Dict = self.dummy_sample _lowercase : Union[str, Any] = 0.1 * sample _lowercase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowercase : int = self.get_scheduler_config(**UpperCAmelCase_ ) _lowercase : Tuple = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals _lowercase : Optional[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) _lowercase : Optional[Any] = scheduler_class.from_pretrained(UpperCAmelCase_ ) new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals _lowercase : Any = dummy_past_residuals[:] _lowercase : int = scheduler.step_prk(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample _lowercase : Union[str, Any] = new_scheduler.step_prk(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowercase : int = scheduler.step_plms(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample _lowercase : int = new_scheduler.step_plms(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ,UpperCAmelCase_=0 ,**UpperCAmelCase_ ): _lowercase : List[Any] = dict(self.forward_default_kwargs ) _lowercase : Dict = kwargs.pop("""num_inference_steps""" ,UpperCAmelCase_ ) _lowercase : Dict = self.dummy_sample _lowercase : List[Any] = 0.1 * sample _lowercase : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowercase : str = self.get_scheduler_config() _lowercase : Dict = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _lowercase : List[str] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_ ) _lowercase : List[str] = scheduler_class.from_pretrained(UpperCAmelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_ ) # copy over dummy past residual (must be after setting timesteps) _lowercase : Any = dummy_past_residuals[:] _lowercase : Union[str, Any] = scheduler.step_prk(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample _lowercase : Union[str, Any] = new_scheduler.step_prk(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowercase : Union[str, Any] = scheduler.step_plms(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample _lowercase : List[Any] = new_scheduler.step_plms(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): _lowercase : int = self.scheduler_classes[0] _lowercase : Optional[Any] = self.get_scheduler_config(**UpperCAmelCase_ ) _lowercase : Optional[int] = scheduler_class(**UpperCAmelCase_ ) _lowercase : Optional[int] = 10 _lowercase : Optional[Any] = self.dummy_model() _lowercase : Dict = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_ ) for i, t in enumerate(scheduler.prk_timesteps ): _lowercase : Optional[Any] = model(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = scheduler.step_prk(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowercase : List[str] = model(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : int = scheduler.step_plms(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ).prev_sample return sample def lowerCamelCase__ ( self ): _lowercase : int = dict(self.forward_default_kwargs ) _lowercase : List[str] = kwargs.pop("""num_inference_steps""" ,UpperCAmelCase_ ) for scheduler_class in self.scheduler_classes: _lowercase : str = self.get_scheduler_config() _lowercase : str = scheduler_class(**UpperCAmelCase_ ) _lowercase : Union[str, Any] = self.dummy_sample _lowercase : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase_ ,"""set_timesteps""" ): scheduler.set_timesteps(UpperCAmelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCAmelCase_ ,"""set_timesteps""" ): _lowercase : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowercase : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowercase : Optional[int] = dummy_past_residuals[:] _lowercase : Optional[int] = scheduler.step_prk(UpperCAmelCase_ ,0 ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample _lowercase : Union[str, Any] = scheduler.step_prk(UpperCAmelCase_ ,1 ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) _lowercase : Tuple = scheduler.step_plms(UpperCAmelCase_ ,0 ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample _lowercase : Union[str, Any] = scheduler.step_plms(UpperCAmelCase_ ,1 ,UpperCAmelCase_ ,**UpperCAmelCase_ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def lowerCamelCase__ ( self ): for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=UpperCAmelCase_ ) _lowercase : List[Any] = self.scheduler_classes[0] _lowercase : Tuple = self.get_scheduler_config(steps_offset=1 ) _lowercase : Optional[int] = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) ,) def lowerCamelCase__ ( self ): for beta_start, beta_end in zip([0.0001, 0.001] ,[0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase_ ,beta_end=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): for t in [1, 5, 10]: self.check_over_forward(time_step=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 1_00] ): self.check_over_forward(num_inference_steps=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 _lowercase : Optional[Any] = 27 for scheduler_class in self.scheduler_classes: _lowercase : Dict = self.dummy_sample _lowercase : Tuple = 0.1 * sample _lowercase : str = self.get_scheduler_config() _lowercase : List[str] = scheduler_class(**UpperCAmelCase_ ) scheduler.set_timesteps(UpperCAmelCase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowercase : List[Any] = scheduler.step_prk(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ).prev_sample def lowerCamelCase__ ( self ): with self.assertRaises(UpperCAmelCase_ ): _lowercase : Optional[int] = self.scheduler_classes[0] _lowercase : int = self.get_scheduler_config() _lowercase : Tuple = scheduler_class(**UpperCAmelCase_ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def lowerCamelCase__ ( self ): _lowercase : List[Any] = self.full_loop() _lowercase : Any = torch.sum(torch.abs(UpperCAmelCase_ ) ) _lowercase : Optional[int] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.full_loop(prediction_type="""v_prediction""" ) _lowercase : List[str] = torch.sum(torch.abs(UpperCAmelCase_ ) ) _lowercase : List[str] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowerCamelCase__ ( self ): # We specify different beta, so that the first alpha is 0.99 _lowercase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCAmelCase_ ,beta_start=0.01 ) _lowercase : Any = torch.sum(torch.abs(UpperCAmelCase_ ) ) _lowercase : Optional[Any] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowerCamelCase__ ( self ): # We specify different beta, so that the first alpha is 0.99 _lowercase : str = self.full_loop(set_alpha_to_one=UpperCAmelCase_ ,beta_start=0.01 ) _lowercase : Optional[int] = torch.sum(torch.abs(UpperCAmelCase_ ) ) _lowercase : List[str] = torch.mean(torch.abs(UpperCAmelCase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
336
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
1
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCAmelCase: Tuple = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCAmelCase: Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
336
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) _lowercase : Optional[int] = str(bin(__UpperCAmelCase ) )[2:] # remove the leading "0b" _lowercase : Any = str(bin(__UpperCAmelCase ) )[2:] _lowercase : str = max(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCAmelCase ) , b_binary.zfill(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
336
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
1
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
336
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=13 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=5 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=4 ,): _lowercase : Tuple = parent _lowercase : Optional[int] = batch_size _lowercase : List[Any] = seq_length _lowercase : int = is_training _lowercase : Any = use_attention_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : Dict = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : List[str] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : Any = type_vocab_size _lowercase : List[str] = type_sequence_label_size _lowercase : Tuple = initializer_range _lowercase : int = num_choices def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : Any = None if self.use_attention_mask: _lowercase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Dict = None if self.use_token_type_ids: _lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _lowercase : int = RobertaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=UpperCAmelCase_ ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self ): _lowercase : Tuple = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Dict = config_and_inputs _lowercase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Any = config_and_inputs _lowercase : Optional[Any] = True _lowercase : Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowercase : int = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Any = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = FlaxRobertaModelTester(self ) @slow def lowerCamelCase__ ( self ): for model_class_name in self.all_model_classes: _lowercase : str = model_class_name.from_pretrained("""roberta-base""" ,from_pt=UpperCAmelCase_ ) _lowercase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
336
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = len(__UpperCAmelCase ) print("""The following activities are selected:""" ) # The first activity is always selected _lowercase : Tuple = 0 print(__UpperCAmelCase , end=""",""" ) # Consider rest of the activities for j in range(__UpperCAmelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__UpperCAmelCase , end=""",""" ) _lowercase : int = j if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase: Union[str, Any] = [1, 3, 0, 5, 8, 5] UpperCAmelCase: List[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
336
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCamelCase ( unittest.TestCase , snake_case ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = load_tool("""text-classification""" ) self.tool.setup() _lowercase : Tuple = load_tool("""text-classification""" ,remote=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.remote_tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" ) def lowerCamelCase__ ( self ): _lowercase : Any = self.tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.remote_tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" )
336
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase: List[Any] = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "ibert" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=False ,UpperCAmelCase_="none" ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Any = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : Tuple = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : Tuple = type_vocab_size _lowercase : List[Any] = initializer_range _lowercase : List[Any] = layer_norm_eps _lowercase : str = position_embedding_type _lowercase : str = quant_mode _lowercase : Union[str, Any] = force_dequant class UpperCamelCase ( snake_case ): """simple docstring""" @property def lowerCamelCase__ ( self ): if self.task == "multiple-choice": _lowercase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowercase : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
336
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
1
"""simple docstring""" import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): UpperCAmelCase: List[str] = True from torch.cuda.amp import autocast UpperCAmelCase: Tuple = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=None , __UpperCAmelCase=None ): return field(default_factory=lambda: default , metadata=__UpperCAmelCase ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) SCREAMING_SNAKE_CASE_ : Optional[bool] = field( default=snake_case , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for the attention probabilities."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout ratio for activations inside the fully connected layer."} ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={ "help": "The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler." } , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.1 , metadata={"help": "The dropout probabilitiy for all 1D convolutional layers in feature extractor."} , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field( default=0.05 , metadata={ "help": ( "Propability of each feature vector along the time axis to be chosen as the start of the vector" "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature" "vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[float] = field(default=0.0 , metadata={"help": "The LayerDrop probability."} ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[str] = field( default=snake_case , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) SCREAMING_SNAKE_CASE_ : Optional[str] = field( default="train+validation" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) SCREAMING_SNAKE_CASE_ : bool = field( default=snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=snake_case , metadata={"help": "The number of processes to use for the preprocessing."} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : Optional[int] = field( default=snake_case , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of validation examples to this " "value if set." ) } , ) SCREAMING_SNAKE_CASE_ : List[str] = list_field( default=[",", "?", ".", "!", "-", ";", ":", "\"\"", "%", "'", "\"", "�"] , metadata={"help": "A list of characters to remove from the transcripts."} , ) @dataclass class UpperCamelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : WavaVecaProcessor SCREAMING_SNAKE_CASE_ : Union[bool, str] = True SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = None def __call__( self ,UpperCAmelCase_ ): # split inputs and labels since they have to be of different lenghts and need # different padding methods _lowercase : Any = [{"""input_values""": feature["""input_values"""]} for feature in features] _lowercase : Union[str, Any] = [{"""input_ids""": feature["""labels"""]} for feature in features] _lowercase : List[Any] = self.processor.pad( UpperCAmelCase_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="""pt""" ,) _lowercase : Union[str, Any] = self.processor.pad( labels=UpperCAmelCase_ ,padding=self.padding ,max_length=self.max_length_labels ,pad_to_multiple_of=self.pad_to_multiple_of_labels ,return_tensors="""pt""" ,) # replace padding with -100 to ignore loss correctly _lowercase : Optional[Any] = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) ,-1_00 ) _lowercase : Optional[Any] = labels return batch class UpperCamelCase ( snake_case ): """simple docstring""" def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): model.train() _lowercase : List[str] = self._prepare_inputs(UpperCAmelCase_ ) if self.use_amp: with autocast(): _lowercase : Optional[int] = self.compute_loss(UpperCAmelCase_ ,UpperCAmelCase_ ) else: _lowercase : List[str] = self.compute_loss(UpperCAmelCase_ ,UpperCAmelCase_ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _lowercase : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _lowercase : Tuple = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _lowercase : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase_ ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase_ ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase_ ) else: loss.backward() return loss.detach() def __SCREAMING_SNAKE_CASE ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowercase , _lowercase , _lowercase : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowercase , _lowercase , _lowercase : Union[str, Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowercase : List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , __UpperCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _lowercase : List[Any] = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) _lowercase : Optional[Any] = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer _lowercase : Any = F"""[{"".join(data_args.chars_to_ignore )}]""" def remove_special_characters(__UpperCAmelCase ): _lowercase : Optional[Any] = re.sub(__UpperCAmelCase , """""" , batch["""sentence"""] ).lower() + """ """ return batch _lowercase : Optional[Any] = train_dataset.map(__UpperCAmelCase , remove_columns=["""sentence"""] ) _lowercase : Optional[Any] = eval_dataset.map(__UpperCAmelCase , remove_columns=["""sentence"""] ) def extract_all_chars(__UpperCAmelCase ): _lowercase : str = """ """.join(batch["""text"""] ) _lowercase : Any = list(set(__UpperCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} _lowercase : Dict = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , batch_size=-1 , keep_in_memory=__UpperCAmelCase , remove_columns=train_dataset.column_names , ) _lowercase : Tuple = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , batch_size=-1 , keep_in_memory=__UpperCAmelCase , remove_columns=eval_dataset.column_names , ) _lowercase : Optional[int] = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) _lowercase : Dict = {v: k for k, v in enumerate(__UpperCAmelCase )} _lowercase : int = vocab_dict[""" """] del vocab_dict[" "] _lowercase : Union[str, Any] = len(__UpperCAmelCase ) _lowercase : Optional[int] = len(__UpperCAmelCase ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(__UpperCAmelCase , __UpperCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : List[str] = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0.0 , do_normalize=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase ) _lowercase : Union[str, Any] = WavaVecaProcessor(feature_extractor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) _lowercase : List[str] = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: _lowercase : Dict = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) _lowercase : List[Any] = train_dataset.select(range(__UpperCAmelCase ) ) if data_args.max_val_samples is not None: _lowercase : str = eval_dataset.select(range(data_args.max_val_samples ) ) _lowercase : Union[str, Any] = torchaudio.transforms.Resample(48000 , 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__UpperCAmelCase ): _lowercase , _lowercase : int = torchaudio.load(batch["""path"""] ) _lowercase : Any = resampler(__UpperCAmelCase ).squeeze().numpy() _lowercase : Tuple = 16000 _lowercase : Any = batch["""text"""] return batch _lowercase : str = train_dataset.map( __UpperCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) _lowercase : int = eval_dataset.map( __UpperCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__UpperCAmelCase ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _lowercase : Union[str, Any] = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(__UpperCAmelCase ) return batch _lowercase : Union[str, Any] = train_dataset.map( __UpperCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) _lowercase : Dict = eval_dataset.map( __UpperCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric _lowercase : Dict = datasets.load_metric("""wer""" ) def compute_metrics(__UpperCAmelCase ): _lowercase : int = pred.predictions _lowercase : str = np.argmax(__UpperCAmelCase , axis=-1 ) _lowercase : Optional[Any] = processor.tokenizer.pad_token_id _lowercase : Tuple = processor.batch_decode(__UpperCAmelCase ) # we do not want to group tokens when computing the metrics _lowercase : Optional[int] = processor.batch_decode(pred.label_ids , group_tokens=__UpperCAmelCase ) _lowercase : str = wer_metric.compute(predictions=__UpperCAmelCase , references=__UpperCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _lowercase : Any = DataCollatorCTCWithPadding(processor=__UpperCAmelCase , padding=__UpperCAmelCase ) # Initialize our Trainer _lowercase : Dict = CTCTrainer( model=__UpperCAmelCase , data_collator=__UpperCAmelCase , args=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowercase : int = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _lowercase : List[str] = model_args.model_name_or_path else: _lowercase : Dict = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _lowercase : List[Any] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() _lowercase : int = train_result.metrics _lowercase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) _lowercase : int = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""train""" , __UpperCAmelCase ) trainer.save_metrics("""train""" , __UpperCAmelCase ) trainer.save_state() # Evaluation _lowercase : List[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowercase : Tuple = trainer.evaluate() _lowercase : Optional[Any] = data_args.max_val_samples if data_args.max_val_samples is not None else len(__UpperCAmelCase ) _lowercase : Dict = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics("""eval""" , __UpperCAmelCase ) trainer.save_metrics("""eval""" , __UpperCAmelCase ) return results if __name__ == "__main__": main()
336
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
1
"""simple docstring""" # flake8: noqa # Lint as: python3 UpperCAmelCase: str = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
336
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=12 ,UpperCAmelCase_=7 ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=99 ,UpperCAmelCase_=32 ,UpperCAmelCase_=32 ,UpperCAmelCase_=2 ,UpperCAmelCase_=4 ,UpperCAmelCase_=37 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=0 ,UpperCAmelCase_=None ,): _lowercase : Dict = parent _lowercase : int = batch_size _lowercase : int = seq_length _lowercase : Any = is_training _lowercase : Dict = use_input_mask _lowercase : str = use_labels _lowercase : int = vocab_size _lowercase : Tuple = hidden_size _lowercase : Dict = projection_dim _lowercase : Tuple = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Any = intermediate_size _lowercase : Dict = dropout _lowercase : Tuple = attention_dropout _lowercase : Dict = max_position_embeddings _lowercase : List[str] = initializer_range _lowercase : Optional[int] = scope _lowercase : Optional[int] = bos_token_id def lowerCamelCase__ ( self ): _lowercase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _lowercase : Optional[Any] = None if self.use_input_mask: _lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _lowercase : List[str] = input_mask.numpy() _lowercase , _lowercase : Dict = input_mask.shape _lowercase : Dict = np.random.randint(1 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): _lowercase : int = 1 _lowercase : Union[str, Any] = 0 _lowercase : Any = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCAmelCase_ ) def lowerCamelCase__ ( self ): return BlipTextConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,projection_dim=self.projection_dim ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,dropout=self.dropout ,attention_dropout=self.attention_dropout ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,bos_token_id=self.bos_token_id ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = TFBlipTextModel(config=UpperCAmelCase_ ) _lowercase : List[Any] = model(UpperCAmelCase_ ,attention_mask=UpperCAmelCase_ ,training=UpperCAmelCase_ ) _lowercase : Tuple = model(UpperCAmelCase_ ,training=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = (TFBlipTextModel,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : List[str] = False def lowerCamelCase__ ( self ): _lowercase : Tuple = BlipTextModelTester(self ) _lowercase : int = ConfigTester(self ,config_class=UpperCAmelCase_ ,hidden_size=37 ) def lowerCamelCase__ ( self ): self.config_tester.run_common_tests() def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowerCamelCase__ ( self ): pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def lowerCamelCase__ ( self ): pass @slow def lowerCamelCase__ ( self ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFBlipTextModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCAmelCase_ )
336
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
1
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : List[str] = 0 def lowerCamelCase__ ( self ): _lowercase : List[Any] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : str = Path(UpperCAmelCase_ ) / """preprocessor_config.json""" _lowercase : Dict = Path(UpperCAmelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(UpperCAmelCase_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(UpperCAmelCase_ ,"""w""" ) ) _lowercase : List[str] = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Dict = Path(UpperCAmelCase_ ) / """preprocessor_config.json""" _lowercase : int = Path(UpperCAmelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(UpperCAmelCase_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(UpperCAmelCase_ ,"""w""" ) ) _lowercase : List[str] = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Dict = CLIPConfig() # Create a dummy config file with image_proceesor_type _lowercase : Optional[Any] = Path(UpperCAmelCase_ ) / """preprocessor_config.json""" _lowercase : Optional[int] = Path(UpperCAmelCase_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(UpperCAmelCase_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(UpperCAmelCase_ ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _lowercase : List[Any] = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ).to_dict() config_dict.pop("""image_processor_type""" ) _lowercase : Union[str, Any] = CLIPImageProcessor(**UpperCAmelCase_ ) # save in new folder model_config.save_pretrained(UpperCAmelCase_ ) config.save_pretrained(UpperCAmelCase_ ) _lowercase : Any = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) # make sure private variable is not incorrectly saved _lowercase : List[Any] = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : str = Path(UpperCAmelCase_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(UpperCAmelCase_ ,"""w""" ) ,) _lowercase : Tuple = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): with self.assertRaisesRegex( UpperCAmelCase_ ,"""clip-base is not a local folder and is not a valid model identifier""" ): _lowercase : int = AutoImageProcessor.from_pretrained("""clip-base""" ) def lowerCamelCase__ ( self ): with self.assertRaisesRegex( UpperCAmelCase_ ,R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _lowercase : Tuple = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ,revision="""aaaaaa""" ) def lowerCamelCase__ ( self ): with self.assertRaisesRegex( UpperCAmelCase_ ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): _lowercase : List[Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def lowerCamelCase__ ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCAmelCase_ ): _lowercase : str = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCAmelCase_ ): _lowercase : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=UpperCAmelCase_ ) _lowercase : List[Any] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=UpperCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase_ ) _lowercase : List[Any] = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ,trust_remote_code=UpperCAmelCase_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def lowerCamelCase__ ( self ): try: AutoConfig.register("""custom""" ,UpperCAmelCase_ ) AutoImageProcessor.register(UpperCAmelCase_ ,UpperCAmelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCAmelCase_ ): AutoImageProcessor.register(UpperCAmelCase_ ,UpperCAmelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Optional[int] = Path(UpperCAmelCase_ ) / """preprocessor_config.json""" _lowercase : Tuple = Path(UpperCAmelCase_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(UpperCAmelCase_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(UpperCAmelCase_ ,"""w""" ) ) _lowercase : List[Any] = CustomImageProcessor.from_pretrained(UpperCAmelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(UpperCAmelCase_ ) _lowercase : Optional[int] = AutoImageProcessor.from_pretrained(UpperCAmelCase_ ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase__ ( self ): class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = True try: AutoConfig.register("""custom""" ,UpperCAmelCase_ ) AutoImageProcessor.register(UpperCAmelCase_ ,UpperCAmelCase_ ) # If remote code is not set, the default is to use local _lowercase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _lowercase : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=UpperCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _lowercase : Any = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=UpperCAmelCase_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(UpperCAmelCase_ ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
336
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
1
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
1
"""simple docstring""" from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake UpperCAmelCase: Dict = numpy.array([0, 0]) UpperCAmelCase: Tuple = numpy.array([0.5, 0.8_660_254]) UpperCAmelCase: Any = numpy.array([1, 0]) UpperCAmelCase: Dict = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Tuple = initial_vectors for _ in range(_UpperCAmelCase ): _lowercase : Tuple = iteration_step(_UpperCAmelCase ) return vectors def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[Any] = [] for i, start_vector in enumerate(vectors[:-1] ): _lowercase : Union[str, Any] = vectors[i + 1] new_vectors.append(_UpperCAmelCase ) _lowercase : Union[str, Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : int = numpy.radians(_UpperCAmelCase ) _lowercase : Tuple = numpy.cos(_UpperCAmelCase ), numpy.sin(_UpperCAmelCase ) _lowercase : Union[str, Any] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(_UpperCAmelCase , _UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[str] = plt.gca() axes.set_aspect("""equal""" ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _lowercase : List[Any] = zip(*_UpperCAmelCase ) plt.plot(_UpperCAmelCase , _UpperCAmelCase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase: Optional[Any] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Dict = logging.get_logger(__name__) UpperCAmelCase: Optional[int] = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class UpperCamelCase ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "funnel" SCREAMING_SNAKE_CASE_ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "n_head", } def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=[4, 4, 4] ,UpperCAmelCase_=None ,UpperCAmelCase_=2 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=64 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu_new" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=None ,UpperCAmelCase_=1E-9 ,UpperCAmelCase_="mean" ,UpperCAmelCase_="relative_shift" ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): _lowercase : int = vocab_size _lowercase : List[str] = block_sizes _lowercase : List[str] = [1] * len(__A ) if block_repeats is None else block_repeats assert len(__A ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _lowercase : Tuple = num_decoder_layers _lowercase : Dict = d_model _lowercase : str = n_head _lowercase : Dict = d_head _lowercase : Optional[int] = d_inner _lowercase : int = hidden_act _lowercase : List[Any] = hidden_dropout _lowercase : int = attention_dropout _lowercase : Optional[Any] = activation_dropout _lowercase : List[Any] = initializer_range _lowercase : int = initializer_std _lowercase : Any = layer_norm_eps assert pooling_type in [ "mean", "max", ], f"""Got {pooling_type} for `pooling_type` but only 'mean' and 'max' are supported.""" _lowercase : Dict = pooling_type assert attention_type in [ "relative_shift", "factorized", ], f"""Got {attention_type} for `attention_type` but only 'relative_shift' and 'factorized' are supported.""" _lowercase : str = attention_type _lowercase : str = separate_cls _lowercase : List[Any] = truncate_seq _lowercase : Tuple = pool_q_only super().__init__(**__A ) @property def lowerCamelCase__ ( self ): return sum(self.block_sizes ) @num_hidden_layers.setter def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""" ) @property def lowerCamelCase__ ( self ): return len(self.block_sizes ) @num_blocks.setter def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""" )
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase: Optional[Any] = { """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[str] = [ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys UpperCAmelCase: Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase: List[str] = logging.get_logger(__name__) @add_end_docstrings(A__ ) class UpperCamelCase ( A__ ): """simple docstring""" def __init__( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): super().__init__(*__snake_case ,**__snake_case ) self.check_model_type(__snake_case ) def lowerCamelCase__ ( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ): _lowercase , _lowercase : Tuple = {}, {} if padding is not None: _lowercase : str = padding if truncation is not None: _lowercase : List[str] = truncation if top_k is not None: _lowercase : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ): if isinstance(__snake_case ,(Image.Image, str) ) and isinstance(__snake_case ,__snake_case ): _lowercase : int = {"""image""": image, """question""": question} else: _lowercase : Tuple = image _lowercase : str = super().__call__(__snake_case ,**__snake_case ) return results def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=False ,UpperCAmelCase_=False ): _lowercase : int = load_image(inputs["""image"""] ) _lowercase : List[Any] = self.tokenizer( inputs["""question"""] ,return_tensors=self.framework ,padding=__snake_case ,truncation=__snake_case ) _lowercase : str = self.image_processor(images=__snake_case ,return_tensors=self.framework ) model_inputs.update(__snake_case ) return model_inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.model(**__snake_case ) return model_outputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=5 ): if top_k > self.model.config.num_labels: _lowercase : Any = self.model.config.num_labels if self.framework == "pt": _lowercase : Dict = model_outputs.logits.sigmoid()[0] _lowercase , _lowercase : Optional[Any] = probs.topk(__snake_case ) else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) _lowercase : Optional[int] = scores.tolist() _lowercase : Optional[int] = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case ,__snake_case )]
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 1 / sqrt(2 ) ): _lowercase : Dict = tau * frequency / samplerate _lowercase : Union[str, Any] = sin(lowerCamelCase__ ) _lowercase : str = cos(lowerCamelCase__ ) _lowercase : Optional[int] = _sin / (2 * q_factor) _lowercase : Dict = (1 - _cos) / 2 _lowercase : Optional[int] = 1 - _cos _lowercase : List[Any] = 1 + alpha _lowercase : str = -2 * _cos _lowercase : Optional[int] = 1 - alpha _lowercase : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 1 / sqrt(2 ) ): _lowercase : Union[str, Any] = tau * frequency / samplerate _lowercase : str = sin(lowerCamelCase__ ) _lowercase : str = cos(lowerCamelCase__ ) _lowercase : Union[str, Any] = _sin / (2 * q_factor) _lowercase : str = (1 + _cos) / 2 _lowercase : Optional[int] = -1 - _cos _lowercase : Optional[Any] = 1 + alpha _lowercase : int = -2 * _cos _lowercase : Tuple = 1 - alpha _lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 1 / sqrt(2 ) ): _lowercase : Optional[Any] = tau * frequency / samplerate _lowercase : List[str] = sin(lowerCamelCase__ ) _lowercase : str = cos(lowerCamelCase__ ) _lowercase : Optional[Any] = _sin / (2 * q_factor) _lowercase : List[str] = _sin / 2 _lowercase : Optional[int] = 0 _lowercase : List[str] = -ba _lowercase : Optional[Any] = 1 + alpha _lowercase : Optional[int] = -2 * _cos _lowercase : Tuple = 1 - alpha _lowercase : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float = 1 / sqrt(2 ) ): _lowercase : Dict = tau * frequency / samplerate _lowercase : List[Any] = sin(lowerCamelCase__ ) _lowercase : str = cos(lowerCamelCase__ ) _lowercase : Optional[int] = _sin / (2 * q_factor) _lowercase : Optional[Any] = 1 - alpha _lowercase : List[str] = -2 * _cos _lowercase : Tuple = 1 + alpha _lowercase : Any = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : float = 1 / sqrt(2 ) , ): _lowercase : str = tau * frequency / samplerate _lowercase : str = sin(lowerCamelCase__ ) _lowercase : Union[str, Any] = cos(lowerCamelCase__ ) _lowercase : Any = _sin / (2 * q_factor) _lowercase : Tuple = 10 ** (gain_db / 40) _lowercase : List[str] = 1 + alpha * big_a _lowercase : str = -2 * _cos _lowercase : Optional[int] = 1 - alpha * big_a _lowercase : List[Any] = 1 + alpha / big_a _lowercase : Dict = -2 * _cos _lowercase : Optional[Any] = 1 - alpha / big_a _lowercase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : float = 1 / sqrt(2 ) , ): _lowercase : Any = tau * frequency / samplerate _lowercase : Any = sin(lowerCamelCase__ ) _lowercase : Any = cos(lowerCamelCase__ ) _lowercase : str = _sin / (2 * q_factor) _lowercase : Tuple = 10 ** (gain_db / 40) _lowercase : List[Any] = (big_a + 1) - (big_a - 1) * _cos _lowercase : int = (big_a + 1) + (big_a - 1) * _cos _lowercase : Dict = (big_a - 1) - (big_a + 1) * _cos _lowercase : str = (big_a - 1) + (big_a + 1) * _cos _lowercase : List[str] = 2 * sqrt(lowerCamelCase__ ) * alpha _lowercase : Optional[Any] = big_a * (pmc + aaa) _lowercase : Any = 2 * big_a * mpc _lowercase : int = big_a * (pmc - aaa) _lowercase : Optional[int] = ppmc + aaa _lowercase : int = -2 * pmpc _lowercase : Tuple = ppmc - aaa _lowercase : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : float = 1 / sqrt(2 ) , ): _lowercase : Any = tau * frequency / samplerate _lowercase : int = sin(lowerCamelCase__ ) _lowercase : str = cos(lowerCamelCase__ ) _lowercase : Tuple = _sin / (2 * q_factor) _lowercase : Any = 10 ** (gain_db / 40) _lowercase : List[str] = (big_a + 1) - (big_a - 1) * _cos _lowercase : Any = (big_a + 1) + (big_a - 1) * _cos _lowercase : Tuple = (big_a - 1) - (big_a + 1) * _cos _lowercase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos _lowercase : Any = 2 * sqrt(lowerCamelCase__ ) * alpha _lowercase : Optional[int] = big_a * (ppmc + aaa) _lowercase : Optional[Any] = -2 * big_a * pmpc _lowercase : Union[str, Any] = big_a * (ppmc - aaa) _lowercase : Tuple = pmc + aaa _lowercase : List[str] = 2 * mpc _lowercase : Optional[Any] = pmc - aaa _lowercase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0
"""simple docstring""" import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline UpperCAmelCase: Any = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None SCREAMING_SNAKE_CASE_ : str = "utf-8" SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : Optional[str] = None SCREAMING_SNAKE_CASE_ : bool = True # deprecated SCREAMING_SNAKE_CASE_ : Optional[int] = None # deprecated SCREAMING_SNAKE_CASE_ : int = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE_ : Optional[bool] = None class UpperCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = JsonConfig def lowerCamelCase__ ( self ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) _lowercase : Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) _lowercase : Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a ,(str, list, tuple) ): _lowercase : Any = data_files if isinstance(_a ,_a ): _lowercase : Any = [files] _lowercase : int = [dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN ,gen_kwargs={"""files""": files} )] _lowercase : str = [] for split_name, files in data_files.items(): if isinstance(_a ,_a ): _lowercase : int = [files] _lowercase : List[Any] = [dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a ,gen_kwargs={"""files""": files} ) ) return splits def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): _lowercase : Any = self.config.features.arrow_schema.field(_a ).type _lowercase : str = pa_table.append_column(_a ,pa.array([None] * len(_a ) ,type=_a ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example _lowercase : Tuple = table_cast(_a ,self.config.features.arrow_schema ) return pa_table def lowerCamelCase__ ( self ,UpperCAmelCase_ ): for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_a ,encoding=self.config.encoding ,errors=self.config.encoding_errors ) as f: _lowercase : Optional[Any] = json.load(_a ) # We keep only the field we are interested in _lowercase : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_a ,(list, tuple) ): _lowercase : Any = set().union(*[row.keys() for row in dataset] ) _lowercase : List[Any] = {col: [row.get(_a ) for row in dataset] for col in keys} else: _lowercase : Optional[int] = dataset _lowercase : str = pa.Table.from_pydict(_a ) yield file_idx, self._cast_table(_a ) # If the file has one json object per line else: with open(_a ,"""rb""" ) as f: _lowercase : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small _lowercase : Any = max(self.config.chunksize // 32 ,16 << 10 ) _lowercase : Union[str, Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else 'strict' ) while True: _lowercase : Optional[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_a ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": _lowercase : str = batch.decode(self.config.encoding ,errors=_a ).encode("""utf-8""" ) try: while True: try: _lowercase : Optional[Any] = paj.read_json( io.BytesIO(_a ) ,read_options=paj.ReadOptions(block_size=_a ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_a ,pa.ArrowInvalid ) and "straddling" not in str(_a ) or block_size > len(_a ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f"""Batch of {len(_a )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _a ,encoding=self.config.encoding ,errors=self.config.encoding_errors ) as f: _lowercase : Tuple = json.load(_a ) except json.JSONDecodeError: logger.error(f"""Failed to read file '{file}' with error {type(_a )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_a ,_a ): # list is the only sequence type supported in JSON try: _lowercase : Tuple = set().union(*[row.keys() for row in dataset] ) _lowercase : Tuple = {col: [row.get(_a ) for row in dataset] for col in keys} _lowercase : List[Any] = pa.Table.from_pydict(_a ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f"""Failed to read file '{file}' with error {type(_a )}: {e}""" ) raise ValueError(f"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(_a ) break else: logger.error(f"""Failed to read file '{file}' with error {type(_a )}: {e}""" ) raise ValueError( f"""Not able to read records in the JSON file at {file}. """ f"""You should probably indicate the field of the JSON file containing your records. """ f"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ f"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) batch_idx += 1
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" import numpy as np from PIL import Image def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) _lowercase : Union[str, Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : List[str] = 0 _lowercase : Union[str, Any] = 0 # compute the shape of the output matrix _lowercase : Union[str, Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape _lowercase : Tuple = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix _lowercase : Any = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _lowercase : Optional[int] = 0 _lowercase : str = 0 return updated_arr def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Tuple = np.array(__snake_case ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) _lowercase : Optional[Any] = 0 _lowercase : Any = 0 _lowercase : str = 0 _lowercase : Optional[int] = 0 # compute the shape of the output matrix _lowercase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape _lowercase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix _lowercase : List[Any] = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 _lowercase : Optional[Any] = 0 _lowercase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="""avgpooling""", verbose=True) # Loading the image UpperCAmelCase: int = Image.open("""path_to_image""") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase = 0 ): _lowercase : Dict = length or len(__A ) _lowercase : Optional[Any] = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowercase , _lowercase : Optional[int] = list_data[i + 1], list_data[i] _lowercase : int = True return list_data if not swapped else bubble_sort(__A , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCAmelCase: Optional[Any] = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class UpperCamelCase ( lowercase__ ): """simple docstring""" @staticmethod def lowerCamelCase__ ( UpperCAmelCase_ ): _lowercase : Optional[int] = parser.add_parser( """convert""" ,help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" ,) train_parser.add_argument("""--model_type""" ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" ,type=_UpperCamelCase ,required=_UpperCamelCase ,help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" ,type=_UpperCamelCase ,default="""""" ,help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" ,type=_UpperCamelCase ,default=_UpperCamelCase ,help="""Optional fine-tuning task name if the TF model was a finetuned model.""" ,) train_parser.set_defaults(func=_UpperCamelCase ) def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,*UpperCAmelCase_ ,): _lowercase : Dict = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(f"""Loading model {model_type}""" ) _lowercase : str = model_type _lowercase : Dict = tf_checkpoint _lowercase : List[Any] = pytorch_dump_output _lowercase : int = config _lowercase : int = finetuning_task_name def lowerCamelCase__ ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_UpperCamelCase ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) if "ckpt" in self._tf_checkpoint.lower(): _lowercase : Optional[int] = self._tf_checkpoint _lowercase : List[str] = """""" else: _lowercase : Any = self._tf_checkpoint _lowercase : Tuple = """""" convert_transfo_xl_checkpoint_to_pytorch( _UpperCamelCase ,self._config ,self._pytorch_dump_output ,_UpperCamelCase ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_UpperCamelCase ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint ,self._config ,self._pytorch_dump_output ,self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint ,self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint ,self._config ,self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" import time from contextlib import contextmanager from pathlib import Path import pytest import requests from huggingface_hub.hf_api import HfApi, HfFolder UpperCAmelCase: Dict = """__DUMMY_TRANSFORMERS_USER__""" UpperCAmelCase: str = """Dummy User""" UpperCAmelCase: Optional[int] = """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""" UpperCAmelCase: Any = """https://hub-ci.huggingface.co""" UpperCAmelCase: Any = CI_HUB_ENDPOINT + """/datasets/{repo_id}/resolve/{revision}/{path}""" UpperCAmelCase: Optional[Any] = CI_HUB_ENDPOINT + """/{repo_id}/resolve/{revision}/{filename}""" UpperCAmelCase: Optional[Any] = Path("""~/.huggingface/hub_ci_token""").expanduser() @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): monkeypatch.setattr( """huggingface_hub.file_download.HUGGINGFACE_CO_URL_TEMPLATE""" , __UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): monkeypatch.setattr("""datasets.config.HF_ENDPOINT""" , __UpperCAmelCase ) monkeypatch.setattr("""datasets.config.HUB_DATASETS_URL""" , __UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): monkeypatch.setattr("""huggingface_hub.hf_api.HfFolder.path_token""" , __UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): HfFolder.save_token(__UpperCAmelCase ) yield HfFolder.delete_token() @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( ): return HfApi(endpoint=__UpperCAmelCase ) @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = HfFolder.get_token() HfFolder.save_token(__UpperCAmelCase ) yield CI_HUB_USER_TOKEN if previous_token is not None: HfFolder.save_token(__UpperCAmelCase ) @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): def _cleanup_repo(__UpperCAmelCase ): hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) return _cleanup_repo @pytest.fixture def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): @contextmanager def _temporary_repo(__UpperCAmelCase ): try: yield repo_id finally: cleanup_repo(__UpperCAmelCase ) return _temporary_repo @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = F"""repo_txt_data-{int(time.time() * 1_0E3 )}""" _lowercase : List[Any] = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data/text_data.txt""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return hf_private_dataset_repo_txt_data_ @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = F"""repo_zipped_txt_data-{int(time.time() * 1_0E3 )}""" _lowercase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return hf_private_dataset_repo_zipped_txt_data_ @pytest.fixture(scope="""session""" ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[str] = F"""repo_zipped_img_data-{int(time.time() * 1_0E3 )}""" _lowercase : Dict = F"""{CI_HUB_USER}/{repo_name}""" hf_api.create_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" , private=__UpperCAmelCase ) hf_api.upload_file( token=__UpperCAmelCase , path_or_fileobj=str(__UpperCAmelCase ) , path_in_repo="""data.zip""" , repo_id=__UpperCAmelCase , repo_type="""dataset""" , ) yield repo_id try: hf_api.delete_repo(__UpperCAmelCase , token=__UpperCAmelCase , repo_type="""dataset""" ) except (requests.exceptions.HTTPError, ValueError): # catch http error and token invalid error pass @pytest.fixture() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return hf_private_dataset_repo_zipped_img_data_
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase ( A_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = MobileBertTokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = MobileBertTokenizerFast SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[Any] = filter_non_english SCREAMING_SNAKE_CASE_ : List[str] = "google/mobilebert-uncased" def lowerCamelCase__ ( self ): super().setUp() _lowercase : Optional[int] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowercase : Optional[int] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = "UNwant\u00E9d,running" _lowercase : Optional[int] = "unwanted, running" return input_text, output_text def lowerCamelCase__ ( self ): _lowercase : List[Any] = self.tokenizer_class(self.vocab_file ) _lowercase : Optional[int] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(snake_case__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) ,[9, 6, 7, 12, 10, 11] ) def lowerCamelCase__ ( self ): if not self.test_rust_tokenizer: return _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Optional[int] = self.get_rust_tokenizer() _lowercase : List[str] = "UNwant\u00E9d,running" _lowercase : str = tokenizer.tokenize(snake_case__ ) _lowercase : Optional[int] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : str = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : List[str] = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : int = self.get_rust_tokenizer() _lowercase : str = tokenizer.encode(snake_case__ ) _lowercase : Optional[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) # With lower casing _lowercase : Optional[int] = self.get_tokenizer(do_lower_case=snake_case__ ) _lowercase : Optional[int] = self.get_rust_tokenizer(do_lower_case=snake_case__ ) _lowercase : Any = "UNwant\u00E9d,running" _lowercase : str = tokenizer.tokenize(snake_case__ ) _lowercase : Optional[Any] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : Dict = tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : List[str] = rust_tokenizer.encode(snake_case__ ,add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : str = self.get_rust_tokenizer() _lowercase : List[str] = tokenizer.encode(snake_case__ ) _lowercase : Optional[Any] = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self ): _lowercase : Dict = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): _lowercase : Any = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = BasicTokenizer(do_lower_case=snake_case__ ,strip_accents=snake_case__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self ): _lowercase : List[Any] = BasicTokenizer(do_lower_case=snake_case__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self ): _lowercase : Any = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _lowercase : Optional[int] = {} for i, token in enumerate(snake_case__ ): _lowercase : Optional[int] = i _lowercase : Optional[Any] = WordpieceTokenizer(vocab=snake_case__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def lowerCamelCase__ ( self ): self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self ): self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self ): self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(snake_case__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(snake_case__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def lowerCamelCase__ ( self ): _lowercase : List[str] = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=snake_case__ ) _lowercase : Union[str, Any] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=snake_case__ ) _lowercase : Any = tokenizer.build_inputs_with_special_tokens(snake_case__ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(snake_case__ ,snake_case__ ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Dict = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : Tuple = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" _lowercase : str = tokenizer_r.encode_plus( snake_case__ ,return_attention_mask=snake_case__ ,return_token_type_ids=snake_case__ ,return_offsets_mapping=snake_case__ ,add_special_tokens=snake_case__ ,) _lowercase : Dict = tokenizer_r.do_lower_case if hasattr(snake_case__ ,"""do_lower_case""" ) else False _lowercase : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def lowerCamelCase__ ( self ): _lowercase : str = ["的", "人", "有"] _lowercase : Dict = "".join(snake_case__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : str = True _lowercase : Dict = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : Tuple = tokenizer_p.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : int = tokenizer_r.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : List[str] = tokenizer_r.convert_ids_to_tokens(snake_case__ ) _lowercase : List[Any] = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(snake_case__ ,snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ ) _lowercase : List[Any] = False _lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : List[str] = self.tokenizer_class.from_pretrained(snake_case__ ,**snake_case__ ) _lowercase : int = tokenizer_r.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : Optional[Any] = tokenizer_p.encode(snake_case__ ,add_special_tokens=snake_case__ ) _lowercase : Any = tokenizer_r.convert_ids_to_tokens(snake_case__ ) _lowercase : List[Any] = tokenizer_p.convert_ids_to_tokens(snake_case__ ) # it is expected that only the first Chinese character is not preceded by "##". _lowercase : Optional[int] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(snake_case__ ) ] self.assertListEqual(snake_case__ ,snake_case__ ) self.assertListEqual(snake_case__ ,snake_case__ )
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" UpperCAmelCase: Optional[Any] = { """meter""": """m""", """kilometer""": """km""", """megametre""": """Mm""", """gigametre""": """Gm""", """terametre""": """Tm""", """petametre""": """Pm""", """exametre""": """Em""", """zettametre""": """Zm""", """yottametre""": """Ym""", } # Exponent of the factor(meter) UpperCAmelCase: Union[str, Any] = { """m""": 0, """km""": 3, """Mm""": 6, """Gm""": 9, """Tm""": 12, """Pm""": 15, """Em""": 18, """Zm""": 21, """Ym""": 24, } def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[str] = from_type.lower().strip("""s""" ) _lowercase : Union[str, Any] = to_type.lower().strip("""s""" ) _lowercase : Optional[Any] = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) _lowercase : Tuple = UNIT_SYMBOL.get(lowerCAmelCase__ , lowerCAmelCase__ ) if from_sanitized not in METRIC_CONVERSION: _lowercase : Dict = ( F"""Invalid \'from_type\' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) if to_sanitized not in METRIC_CONVERSION: _lowercase : Dict = ( F"""Invalid \'to_type\' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) _lowercase : Optional[int] = METRIC_CONVERSION[from_sanitized] _lowercase : List[str] = METRIC_CONVERSION[to_sanitized] _lowercase : Union[str, Any] = 1 if from_exponent > to_exponent: _lowercase : Optional[int] = from_exponent - to_exponent else: _lowercase : int = -(to_exponent - from_exponent) return value * pow(10 , lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed UpperCAmelCase: Union[str, Any] = """true""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=16 ): set_seed(42 ) _lowercase : Dict = RegressionModel() _lowercase : Dict = deepcopy(lowercase__ ) _lowercase : Tuple = RegressionDataset(length=lowercase__ ) _lowercase : Optional[Any] = DataLoader(lowercase__ , batch_size=lowercase__ ) model.to(accelerator.device ) _lowercase : Union[str, Any] = accelerator.prepare(lowercase__ , lowercase__ ) return model, ddp_model, dataloader def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=False ): _lowercase : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) _lowercase : List[Any] = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(__UpperCAmelCase ): _lowercase : Tuple = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowercase__ , max_length=lowercase__ ) return outputs with accelerator.main_process_first(): _lowercase : List[str] = dataset.map( lowercase__ , batched=lowercase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) _lowercase : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCAmelCase ): if use_longest: return tokenizer.pad(lowercase__ , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(lowercase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(lowercase__ , shuffle=lowercase__ , collate_fn=lowercase__ , batch_size=16 ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = Accelerator(dispatch_batches=lowercase__ , split_batches=lowercase__ ) _lowercase : List[Any] = get_dataloader(lowercase__ , not dispatch_batches ) _lowercase : str = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=lowercase__ ) _lowercase : int = accelerator.prepare(lowercase__ , lowercase__ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = [] for batch in dataloader: _lowercase : str = batch.values() with torch.no_grad(): _lowercase : List[Any] = model(lowercase__ ) _lowercase : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowercase : Any = [], [] for logit, targ in logits_and_targets: logits.append(lowercase__ ) targs.append(lowercase__ ) _lowercase : str = torch.cat(lowercase__ ), torch.cat(lowercase__ ) return logits, targs def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=82 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=16 ): _lowercase : List[str] = get_basic_setup(lowercase__ , lowercase__ , lowercase__ ) _lowercase : Any = generate_predictions(lowercase__ , lowercase__ , lowercase__ ) assert ( len(lowercase__ ) == num_samples ), F"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(lowercase__ )}""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = False , __UpperCAmelCase = False ): _lowercase : Tuple = evaluate.load("""glue""" , """mrpc""" ) _lowercase : Any = get_mrpc_setup(lowercase__ , lowercase__ ) # First do baseline _lowercase : Any = setup['no'] model.to(lowercase__ ) model.eval() for batch in dataloader: batch.to(lowercase__ ) with torch.inference_mode(): _lowercase : List[str] = model(**lowercase__ ) _lowercase : str = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=lowercase__ , references=batch["""labels"""] ) _lowercase : List[Any] = metric.compute() # Then do distributed _lowercase : Dict = setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): _lowercase : Any = model(**lowercase__ ) _lowercase : Optional[Any] = outputs.logits.argmax(dim=-1 ) _lowercase : Any = batch['labels'] _lowercase : Optional[int] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=lowercase__ , references=lowercase__ ) _lowercase : str = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def __SCREAMING_SNAKE_CASE ( ): _lowercase : List[Any] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(lowercase__ , lowercase__ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowercase : List[str] = Accelerator(split_batches=lowercase__ , dispatch_batches=lowercase__ ) if accelerator.is_local_main_process: print(F"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(lowercase__ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) _lowercase : Optional[int] = Accelerator() test_torch_metrics(lowercase__ , 512 ) accelerator.state._reset_state() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" from __future__ import annotations from math import pi def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE_ : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE_ : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE_ : List[str] = frozenset([] ) def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : str = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=9 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,attention_head_dim=(2, 4) ,use_linear_projection=lowercase_ ,) _lowercase : int = PNDMScheduler(skip_prk_steps=lowercase_ ) torch.manual_seed(0 ) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,sample_size=1_28 ,) torch.manual_seed(0 ) _lowercase : str = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,hidden_act="""gelu""" ,projection_dim=5_12 ,) _lowercase : List[str] = CLIPTextModel(lowercase_ ) _lowercase : Optional[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _lowercase : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0 ): _lowercase : str = floats_tensor((1, 3, 32, 32) ,rng=random.Random(lowercase_ ) ).to(lowercase_ ) _lowercase : List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _lowercase : Union[str, Any] = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((64, 64) ) _lowercase : List[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowercase_ ).startswith("""mps""" ): _lowercase : int = torch.manual_seed(lowercase_ ) else: _lowercase : List[str] = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) _lowercase : Union[str, Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase : str = self.get_dummy_components() _lowercase : List[Any] = StableDiffusionInpaintPipeline(**lowercase_ ) _lowercase : Any = sd_pipe.to(lowercase_ ) sd_pipe.set_progress_bar_config(disable=lowercase_ ) _lowercase : Tuple = self.get_dummy_inputs(lowercase_ ) _lowercase : Optional[Any] = sd_pipe(**lowercase_ ).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : str = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowercase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowercase : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _lowercase : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" _lowercase : Any = StableDiffusionInpaintPipeline.from_pretrained(lowercase_ ,safety_checker=lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() _lowercase : Union[str, Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowercase : Tuple = torch.manual_seed(0 ) _lowercase : Dict = pipe( prompt=lowercase_ ,image=lowercase_ ,mask_image=lowercase_ ,generator=lowercase_ ,output_type="""np""" ,) _lowercase : Optional[int] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9E-3 def lowerCamelCase__ ( self ): _lowercase : List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowercase : Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowercase : Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _lowercase : Optional[Any] = """stabilityai/stable-diffusion-2-inpainting""" _lowercase : Dict = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ ,torch_dtype=torch.floataa ,safety_checker=lowercase_ ,) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing() _lowercase : str = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowercase : int = torch.manual_seed(0 ) _lowercase : Tuple = pipe( prompt=lowercase_ ,image=lowercase_ ,mask_image=lowercase_ ,generator=lowercase_ ,output_type="""np""" ,) _lowercase : List[Any] = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5E-1 def lowerCamelCase__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _lowercase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _lowercase : Optional[int] = """stabilityai/stable-diffusion-2-inpainting""" _lowercase : Dict = PNDMScheduler.from_pretrained(lowercase_ ,subfolder="""scheduler""" ) _lowercase : List[str] = StableDiffusionInpaintPipeline.from_pretrained( lowercase_ ,safety_checker=lowercase_ ,scheduler=lowercase_ ,torch_dtype=torch.floataa ,) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowercase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench""" _lowercase : Any = torch.manual_seed(0 ) _lowercase : List[str] = pipe( prompt=lowercase_ ,image=lowercase_ ,mask_image=lowercase_ ,generator=lowercase_ ,num_inference_steps=2 ,output_type="""np""" ,) _lowercase : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" from math import ceil, sqrt def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000000 ): _lowercase : Any = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowercase : Any = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowercase : List[str] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase: Dict = { """configuration_whisper""": ["""WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """WhisperConfig""", """WhisperOnnxConfig"""], """feature_extraction_whisper""": ["""WhisperFeatureExtractor"""], """processing_whisper""": ["""WhisperProcessor"""], """tokenization_whisper""": ["""WhisperTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Dict = ["""WhisperTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: int = [ """WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """WhisperForConditionalGeneration""", """WhisperModel""", """WhisperPreTrainedModel""", """WhisperForAudioClassification""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = [ """TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWhisperForConditionalGeneration""", """TFWhisperModel""", """TFWhisperPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[Any] = [ """FlaxWhisperForConditionalGeneration""", """FlaxWhisperModel""", """FlaxWhisperPreTrainedModel""", """FlaxWhisperForAudioClassification""", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase: Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0
"""simple docstring""" from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar UpperCAmelCase: Optional[int] = TypeVar("""T""") class UpperCamelCase ( Generic[T] ): """simple docstring""" def __init__( self ,UpperCAmelCase_ = True ): _lowercase : dict[T, list[T]] = {} # dictionary of lists _lowercase : Dict = directed def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) self.adj_list[destination_vertex].append(lowerCAmelCase__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) _lowercase : Union[str, Any] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(lowerCAmelCase__ ) _lowercase : List[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: _lowercase : List[Any] = [destination_vertex] _lowercase : Tuple = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(lowerCAmelCase__ ) _lowercase : Tuple = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: _lowercase : Optional[Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: _lowercase : List[Any] = [destination_vertex] _lowercase : List[str] = [] return self def __repr__( self ): return pformat(self.adj_list )
367
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
0
"""simple docstring""" import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = KandinskyVaaPriorPipeline SCREAMING_SNAKE_CASE_ : List[Any] = ['prompt'] SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['prompt', 'negative_prompt'] SCREAMING_SNAKE_CASE_ : Tuple = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] SCREAMING_SNAKE_CASE_ : Optional[int] = False @property def lowerCamelCase__ ( self ): return 32 @property def lowerCamelCase__ ( self ): return 32 @property def lowerCamelCase__ ( self ): return self.time_input_dim @property def lowerCamelCase__ ( self ): return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): return 1_00 @property def lowerCamelCase__ ( self ): _lowercase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Tuple = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,layer_norm_eps=1E-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) return CLIPTextModelWithProjection(_SCREAMING_SNAKE_CASE ) @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : Union[str, Any] = { """num_attention_heads""": 2, """attention_head_dim""": 12, """embedding_dim""": self.text_embedder_hidden_size, """num_layers""": 1, } _lowercase : Any = PriorTransformer(**_SCREAMING_SNAKE_CASE ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowercase : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCamelCase__ ( self ): torch.manual_seed(0 ) _lowercase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=2_24 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=14 ,) _lowercase : List[Any] = CLIPVisionModelWithProjection(_SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): _lowercase : str = CLIPImageProcessor( crop_size=2_24 ,do_center_crop=_SCREAMING_SNAKE_CASE ,do_normalize=_SCREAMING_SNAKE_CASE ,do_resize=_SCREAMING_SNAKE_CASE ,image_mean=[0.48145466, 0.4578275, 0.40821073] ,image_std=[0.26862954, 0.26130258, 0.27577711] ,resample=3 ,size=2_24 ,) return image_processor def lowerCamelCase__ ( self ): _lowercase : Optional[int] = self.dummy_prior _lowercase : Optional[Any] = self.dummy_image_encoder _lowercase : Union[str, Any] = self.dummy_text_encoder _lowercase : Tuple = self.dummy_tokenizer _lowercase : str = self.dummy_image_processor _lowercase : int = UnCLIPScheduler( variance_type="""fixed_small_log""" ,prediction_type="""sample""" ,num_train_timesteps=10_00 ,clip_sample=_SCREAMING_SNAKE_CASE ,clip_sample_range=10.0 ,) _lowercase : List[str] = { """prior""": prior, """image_encoder""": image_encoder, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """scheduler""": scheduler, """image_processor""": image_processor, } return components def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=0 ): if str(_SCREAMING_SNAKE_CASE ).startswith("""mps""" ): _lowercase : List[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: _lowercase : str = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = { """prompt""": """horse""", """generator""": generator, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): _lowercase : int = """cpu""" _lowercase : List[Any] = self.get_dummy_components() _lowercase : Dict = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) _lowercase : Any = pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) _lowercase : str = pipe(**self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ) _lowercase : List[str] = output.image_embeds _lowercase : Dict = pipe( **self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) ,return_dict=_SCREAMING_SNAKE_CASE ,)[0] _lowercase : Optional[int] = image[0, -10:] _lowercase : Optional[int] = image_from_tuple[0, -10:] assert image.shape == (1, 32) _lowercase : Optional[int] = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def lowerCamelCase__ ( self ): _lowercase : List[str] = torch_device == """cpu""" _lowercase : Optional[Any] = True _lowercase : int = False self._test_inference_batch_single_identical( test_max_difference=_SCREAMING_SNAKE_CASE ,relax_max_difference=_SCREAMING_SNAKE_CASE ,test_mean_pixel_difference=_SCREAMING_SNAKE_CASE ,) @skip_mps def lowerCamelCase__ ( self ): _lowercase : str = torch_device == """cpu""" _lowercase : Optional[int] = False self._test_attention_slicing_forward_pass( test_max_difference=_SCREAMING_SNAKE_CASE ,test_mean_pixel_difference=_SCREAMING_SNAKE_CASE ,)
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" from math import pi, sqrt, tan def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if side_length < 0: raise ValueError("""surface_area_cube() only accepts non-negative values""" ) return 6 * side_length**2 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if length < 0 or breadth < 0 or height < 0: raise ValueError("""surface_area_cuboid() only accepts non-negative values""" ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if radius < 0: raise ValueError("""surface_area_sphere() only accepts non-negative values""" ) return 4 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if radius < 0: raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" ) return 3 * pi * radius**2 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if radius < 0 or height < 0: raise ValueError("""surface_area_cone() only accepts non-negative values""" ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( """surface_area_conical_frustum() only accepts non-negative values""" ) _lowercase : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if radius < 0 or height < 0: raise ValueError("""surface_area_cylinder() only accepts non-negative values""" ) return 2 * pi * radius * (height + radius) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if torus_radius < 0 or tube_radius < 0: raise ValueError("""surface_area_torus() only accepts non-negative values""" ) if torus_radius < tube_radius: raise ValueError( """surface_area_torus() does not support spindle or self intersecting tori""" ) return 4 * pow(a__ , 2 ) * torus_radius * tube_radius def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if length < 0 or width < 0: raise ValueError("""area_rectangle() only accepts non-negative values""" ) return length * width def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if side_length < 0: raise ValueError("""area_square() only accepts non-negative values""" ) return side_length**2 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if base < 0 or height < 0: raise ValueError("""area_triangle() only accepts non-negative values""" ) return (base * height) / 2 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError("""Given three sides do not form a triangle""" ) _lowercase : int = (sidea + sidea + sidea) / 2 _lowercase : List[str] = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if base < 0 or height < 0: raise ValueError("""area_parallelogram() only accepts non-negative values""" ) return base * height def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if basea < 0 or basea < 0 or height < 0: raise ValueError("""area_trapezium() only accepts non-negative values""" ) return 1 / 2 * (basea + basea) * height def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if radius < 0: raise ValueError("""area_circle() only accepts non-negative values""" ) return pi * radius**2 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if radius_x < 0 or radius_y < 0: raise ValueError("""area_ellipse() only accepts non-negative values""" ) return pi * radius_x * radius_y def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError("""area_rhombus() only accepts non-negative values""" ) return 1 / 2 * diagonal_a * diagonal_a def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(a__ , a__ ) or sides < 3: raise ValueError( """area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides""" ) elif length < 0: raise ValueError( """area_reg_polygon() only accepts non-negative values as \ length of a side""" ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print("""[DEMO] Areas of various geometric shapes: \n""") print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print("""\nSurface Areas of various geometric shapes: \n""") print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( __UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__SCREAMING_SNAKE_CASE ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Dict = all_rotations(__SCREAMING_SNAKE_CASE ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__SCREAMING_SNAKE_CASE ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : int = int(__SCREAMING_SNAKE_CASE ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__SCREAMING_SNAKE_CASE ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : str = [""""""] * len(__SCREAMING_SNAKE_CASE ) for _ in range(len(__SCREAMING_SNAKE_CASE ) ): for i in range(len(__SCREAMING_SNAKE_CASE ) ): _lowercase : Any = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: str = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: Optional[Any] = input(entry_msg).strip() UpperCAmelCase: Dict = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: str = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
"""simple docstring""" from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase: Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase: Dict = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = "xlm-prophetnet" SCREAMING_SNAKE_CASE_ : Any = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Any = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = "gelu" ,UpperCAmelCase_ = 3_05_22 ,UpperCAmelCase_ = 10_24 ,UpperCAmelCase_ = 40_96 ,UpperCAmelCase_ = 12 ,UpperCAmelCase_ = 16 ,UpperCAmelCase_ = 40_96 ,UpperCAmelCase_ = 12 ,UpperCAmelCase_ = 16 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 0.1 ,UpperCAmelCase_ = 5_12 ,UpperCAmelCase_ = 0.02 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 2 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 1_28 ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 0.0 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = 2 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Optional[int] = encoder_ffn_dim _lowercase : Any = num_encoder_layers _lowercase : int = num_encoder_attention_heads _lowercase : Tuple = decoder_ffn_dim _lowercase : List[str] = num_decoder_layers _lowercase : List[str] = num_decoder_attention_heads _lowercase : List[Any] = max_position_embeddings _lowercase : int = init_std # Normal(0, this parameter) _lowercase : Tuple = activation_function # parameters for xlmprophetnet _lowercase : Optional[Any] = ngram _lowercase : str = num_buckets _lowercase : str = relative_max_distance _lowercase : Union[str, Any] = disable_ngram_loss _lowercase : List[Any] = eps # 3 Types of Dropout _lowercase : Optional[Any] = attention_dropout _lowercase : str = activation_dropout _lowercase : Any = dropout _lowercase : Tuple = use_cache super().__init__( pad_token_id=lowercase_ ,bos_token_id=lowercase_ ,eos_token_id=lowercase_ ,is_encoder_decoder=lowercase_ ,add_cross_attention=lowercase_ ,decoder_start_token_id=lowercase_ ,**lowercase_ ,) @property def lowerCamelCase__ ( self ): return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def lowerCamelCase__ ( self ,UpperCAmelCase_ ): raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and""" """ `num_decoder_layers`.""" )
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline UpperCAmelCase: Dict = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class UpperCamelCase ( __lowercase ): """simple docstring""" def __init__( self ,**UpperCAmelCase_ ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): return super().__call__(_a ,**_a ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Optional[int] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _lowercase : Dict = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,UpperCAmelCase_="This is a sound of {}." ): if isinstance(_a ,_a ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _lowercase : str = requests.get(_a ).content else: with open(_a ,"""rb""" ) as f: _lowercase : Tuple = f.read() if isinstance(_a ,_a ): _lowercase : int = ffmpeg_read(_a ,self.feature_extractor.sampling_rate ) if not isinstance(_a ,np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) _lowercase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors="""pt""" ) _lowercase : Tuple = candidate_labels _lowercase : Optional[int] = [hypothesis_template.format(_a ) for x in candidate_labels] _lowercase : List[Any] = self.tokenizer(_a ,return_tensors=self.framework ,padding=_a ) _lowercase : Tuple = [text_inputs] return inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = model_inputs.pop("""candidate_labels""" ) _lowercase : Dict = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] ,_a ): _lowercase : Any = text_inputs[0] else: # Batching case. _lowercase : Any = text_inputs[0][0] _lowercase : Tuple = self.model(**_a ,**_a ) _lowercase : Union[str, Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Any = model_outputs.pop("""candidate_labels""" ) _lowercase : str = model_outputs["""logits"""][0] if self.framework == "pt": _lowercase : Any = logits.softmax(dim=0 ) _lowercase : Any = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) _lowercase : Optional[Any] = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(_a ,_a ) ,key=lambda UpperCAmelCase_ : -x[0] ) ] return result
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" import os import numpy import onnx def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : List[Any] = a.name _lowercase : Any = b.name _lowercase : List[str] = "" _lowercase : Dict = "" _lowercase : List[Any] = a == b _lowercase : List[Any] = name_a _lowercase : Any = name_b return res def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__lowerCamelCase , __lowerCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCamelCase , __lowerCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __lowerCamelCase , __lowerCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): for n in graph_proto.node: _node_replace_input_with(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Tuple = list(model.graph.initializer ) _lowercase : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _lowercase : List[str] = inits[i].name _lowercase : Union[str, Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __lowerCamelCase , __lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : str = os.path.dirname(__lowerCamelCase ) _lowercase : Dict = os.path.basename(__lowerCamelCase ) _lowercase : Union[str, Any] = onnx.load(os.path.join(__lowerCamelCase , __lowerCamelCase ) ) _lowercase : Dict = list(model.graph.initializer ) _lowercase : Any = set() _lowercase : List[Any] = {} _lowercase : Union[str, Any] = [] _lowercase : str = 0 for i in range(len(__lowerCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__lowerCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__lowerCamelCase ) dup_set.add(__lowerCamelCase ) _lowercase : Optional[int] = inits[j].data_type _lowercase : int = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print("""unexpected data type: """ , __lowerCamelCase ) total_reduced_size += mem_size _lowercase : Optional[Any] = inits[i].name _lowercase : Dict = inits[j].name if name_i in dup_map: dup_map[name_i].append(__lowerCamelCase ) else: _lowercase : Optional[Any] = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ , total_reduced_size / 1024 / 1024 / 1024 , """GB""" ) _lowercase : str = sorted(__lowerCamelCase ) _remove_dup_initializers_from_model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowercase : List[Any] = "optimized_" + model_file_name _lowercase : int = os.path.join(__lowerCamelCase , __lowerCamelCase ) onnx.save(__lowerCamelCase , __lowerCamelCase ) return new_model
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = n _lowercase : Dict = [None] * self.n _lowercase : List[str] = 0 # index of the first element _lowercase : Optional[int] = 0 _lowercase : Tuple = 0 def __len__( self ): return self.size def lowerCamelCase__ ( self ): return self.size == 0 def lowerCamelCase__ ( self ): return False if self.is_empty() else self.array[self.front] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) _lowercase : Tuple = data _lowercase : Any = (self.rear + 1) % self.n self.size += 1 return self def lowerCamelCase__ ( self ): if self.size == 0: raise Exception("""UNDERFLOW""" ) _lowercase : int = self.array[self.front] _lowercase : Union[str, Any] = None _lowercase : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" UpperCAmelCase: Dict = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 4_2 class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = True @register_to_config def __init__( self ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = 3 ,UpperCAmelCase_ = ("DownEncoderBlock2D",) ,UpperCAmelCase_ = ("UpDecoderBlock2D",) ,UpperCAmelCase_ = (64,) ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = "silu" ,UpperCAmelCase_ = 4 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 32 ,UpperCAmelCase_ = 0.18215 ,): super().__init__() # pass init params to Encoder _lowercase : int = Encoder( in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,down_block_types=__UpperCAmelCase ,block_out_channels=__UpperCAmelCase ,layers_per_block=__UpperCAmelCase ,act_fn=__UpperCAmelCase ,norm_num_groups=__UpperCAmelCase ,double_z=__UpperCAmelCase ,) # pass init params to Decoder _lowercase : Any = Decoder( in_channels=__UpperCAmelCase ,out_channels=__UpperCAmelCase ,up_block_types=__UpperCAmelCase ,block_out_channels=__UpperCAmelCase ,layers_per_block=__UpperCAmelCase ,norm_num_groups=__UpperCAmelCase ,act_fn=__UpperCAmelCase ,) _lowercase : List[Any] = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) _lowercase : Optional[Any] = nn.Convad(__UpperCAmelCase ,__UpperCAmelCase ,1 ) _lowercase : Union[str, Any] = False _lowercase : int = False # only relevant if vae tiling is enabled _lowercase : Dict = self.config.sample_size _lowercase : Any = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) _lowercase : Optional[Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _lowercase : List[str] = 0.25 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=False ): if isinstance(__UpperCAmelCase ,(Encoder, Decoder) ): _lowercase : List[Any] = value def lowerCamelCase__ ( self ,UpperCAmelCase_ = True ): _lowercase : str = use_tiling def lowerCamelCase__ ( self ): self.enable_tiling(__UpperCAmelCase ) def lowerCamelCase__ ( self ): _lowercase : Optional[int] = True def lowerCamelCase__ ( self ): _lowercase : Dict = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCamelCase__ ( self ): _lowercase : Optional[int] = {} def fn_recursive_add_processors(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if hasattr(__UpperCAmelCase ,"""set_processor""" ): _lowercase : Any = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" ,__UpperCAmelCase ,__UpperCAmelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) return processors def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : str = len(self.attn_processors.keys() ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) and len(__UpperCAmelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(__UpperCAmelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): if hasattr(__UpperCAmelCase ,"""set_processor""" ): if not isinstance(__UpperCAmelCase ,__UpperCAmelCase ): module.set_processor(__UpperCAmelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" ,__UpperCAmelCase ,__UpperCAmelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) def lowerCamelCase__ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__UpperCAmelCase ,return_dict=__UpperCAmelCase ) if self.use_slicing and x.shape[0] > 1: _lowercase : List[str] = [self.encoder(__UpperCAmelCase ) for x_slice in x.split(1 )] _lowercase : Union[str, Any] = torch.cat(__UpperCAmelCase ) else: _lowercase : List[str] = self.encoder(__UpperCAmelCase ) _lowercase : int = self.quant_conv(__UpperCAmelCase ) _lowercase : List[str] = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__UpperCAmelCase ,return_dict=__UpperCAmelCase ) _lowercase : str = self.post_quant_conv(__UpperCAmelCase ) _lowercase : Tuple = self.decoder(__UpperCAmelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) @apply_forward_hook def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): if self.use_slicing and z.shape[0] > 1: _lowercase : Union[str, Any] = [self._decode(__UpperCAmelCase ).sample for z_slice in z.split(1 )] _lowercase : List[Any] = torch.cat(__UpperCAmelCase ) else: _lowercase : Union[str, Any] = self._decode(__UpperCAmelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Dict = min(a.shape[2] ,b.shape[2] ,__UpperCAmelCase ) for y in range(__UpperCAmelCase ): _lowercase : Dict = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : List[Any] = min(a.shape[3] ,b.shape[3] ,__UpperCAmelCase ) for x in range(__UpperCAmelCase ): _lowercase : Optional[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): _lowercase : Tuple = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _lowercase : str = int(self.tile_latent_min_size * self.tile_overlap_factor ) _lowercase : Dict = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowercase : Dict = [] for i in range(0 ,x.shape[2] ,__UpperCAmelCase ): _lowercase : Optional[int] = [] for j in range(0 ,x.shape[3] ,__UpperCAmelCase ): _lowercase : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowercase : Tuple = self.encoder(__UpperCAmelCase ) _lowercase : List[Any] = self.quant_conv(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) _lowercase : Tuple = [] for i, row in enumerate(__UpperCAmelCase ): _lowercase : int = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowercase : Any = self.blend_v(rows[i - 1][j] ,__UpperCAmelCase ,__UpperCAmelCase ) if j > 0: _lowercase : List[Any] = self.blend_h(row[j - 1] ,__UpperCAmelCase ,__UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase ,dim=3 ) ) _lowercase : Tuple = torch.cat(__UpperCAmelCase ,dim=2 ) _lowercase : str = DiagonalGaussianDistribution(__UpperCAmelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__UpperCAmelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = True ): _lowercase : Any = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _lowercase : Union[str, Any] = int(self.tile_sample_min_size * self.tile_overlap_factor ) _lowercase : Optional[int] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowercase : List[str] = [] for i in range(0 ,z.shape[2] ,__UpperCAmelCase ): _lowercase : Optional[Any] = [] for j in range(0 ,z.shape[3] ,__UpperCAmelCase ): _lowercase : Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowercase : str = self.post_quant_conv(__UpperCAmelCase ) _lowercase : Tuple = self.decoder(__UpperCAmelCase ) row.append(__UpperCAmelCase ) rows.append(__UpperCAmelCase ) _lowercase : str = [] for i, row in enumerate(__UpperCAmelCase ): _lowercase : Optional[int] = [] for j, tile in enumerate(__UpperCAmelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowercase : Any = self.blend_v(rows[i - 1][j] ,__UpperCAmelCase ,__UpperCAmelCase ) if j > 0: _lowercase : int = self.blend_h(row[j - 1] ,__UpperCAmelCase ,__UpperCAmelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(__UpperCAmelCase ,dim=3 ) ) _lowercase : List[str] = torch.cat(__UpperCAmelCase ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,): _lowercase : Any = sample _lowercase : Optional[int] = self.encode(__UpperCAmelCase ).latent_dist if sample_posterior: _lowercase : Union[str, Any] = posterior.sample(generator=__UpperCAmelCase ) else: _lowercase : int = posterior.mode() _lowercase : int = self.decode(__UpperCAmelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=__UpperCAmelCase )
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0
"""simple docstring""" import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = 'char' SCREAMING_SNAKE_CASE_ : Dict = 'bpe' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'wp' UpperCAmelCase: Dict = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ['image_processor', 'char_tokenizer'] SCREAMING_SNAKE_CASE_ : int = 'ViTImageProcessor' SCREAMING_SNAKE_CASE_ : Dict = 'MgpstrTokenizer' def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ): _lowercase : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,SCREAMING_SNAKE_CASE_ ,) _lowercase : List[Any] = kwargs.pop("""feature_extractor""" ) _lowercase : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) _lowercase : Optional[int] = tokenizer _lowercase : Optional[int] = AutoTokenizer.from_pretrained("""gpt2""" ) _lowercase : Tuple = AutoTokenizer.from_pretrained("""bert-base-uncased""" ) super().__init__(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def __call__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,**UpperCAmelCase_ ): if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) if text is not None: _lowercase : Dict = self.char_tokenizer(SCREAMING_SNAKE_CASE_ ,return_tensors=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) if text is None: return inputs elif images is None: return encodings else: _lowercase : int = encodings["""input_ids"""] return inputs def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[Any] = sequences _lowercase : Optional[int] = char_preds.size(0 ) _lowercase : List[str] = self._decode_helper(SCREAMING_SNAKE_CASE_ ,"""char""" ) _lowercase : Union[str, Any] = self._decode_helper(SCREAMING_SNAKE_CASE_ ,"""bpe""" ) _lowercase : Any = self._decode_helper(SCREAMING_SNAKE_CASE_ ,"""wp""" ) _lowercase : Optional[int] = [] _lowercase : Union[str, Any] = [] for i in range(SCREAMING_SNAKE_CASE_ ): _lowercase : int = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowercase : Union[str, Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowercase : List[Any] = scores.index(max(SCREAMING_SNAKE_CASE_ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) _lowercase : Any = {} _lowercase : List[str] = final_strs _lowercase : Optional[int] = final_scores _lowercase : List[str] = char_strs _lowercase : Optional[Any] = bpe_strs _lowercase : Dict = wp_strs return out def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if format == DecodeType.CHARACTER: _lowercase : Any = self.char_decode _lowercase : Union[str, Any] = 1 _lowercase : Dict = """[s]""" elif format == DecodeType.BPE: _lowercase : str = self.bpe_decode _lowercase : List[Any] = 2 _lowercase : Tuple = """#""" elif format == DecodeType.WORDPIECE: _lowercase : Union[str, Any] = self.wp_decode _lowercase : Union[str, Any] = 1_02 _lowercase : int = """[SEP]""" else: raise ValueError(f"""Format {format} is not supported.""" ) _lowercase : Any = [], [] _lowercase : Dict = pred_logits.size(0 ) _lowercase : Optional[int] = pred_logits.size(1 ) _lowercase : List[str] = pred_logits.topk(1 ,dim=-1 ,largest=SCREAMING_SNAKE_CASE_ ,sorted=SCREAMING_SNAKE_CASE_ ) _lowercase : Optional[Any] = preds_index.view(-1 ,SCREAMING_SNAKE_CASE_ )[:, 1:] _lowercase : Tuple = decoder(SCREAMING_SNAKE_CASE_ ) _lowercase : Union[str, Any] = torch.nn.functional.softmax(SCREAMING_SNAKE_CASE_ ,dim=2 ).max(dim=2 ) _lowercase : Optional[int] = preds_max_prob[:, 1:] for index in range(SCREAMING_SNAKE_CASE_ ): _lowercase : int = preds_str[index].find(SCREAMING_SNAKE_CASE_ ) _lowercase : Dict = preds_str[index][:pred_eos] _lowercase : List[str] = preds_index[index].cpu().tolist() _lowercase : List[str] = pred_index.index(SCREAMING_SNAKE_CASE_ ) if eos_token in pred_index else -1 _lowercase : Dict = preds_max_prob[index][: pred_eos_index + 1] _lowercase : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(SCREAMING_SNAKE_CASE_ ) conf_scores.append(SCREAMING_SNAKE_CASE_ ) return dec_strs, conf_scores def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Tuple = [seq.replace(""" """ ,"""""" ) for seq in self.char_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )] return decode_strs def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return self.bpe_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Optional[Any] = [seq.replace(""" """ ,"""""" ) for seq in self.wp_tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )] return decode_strs
355
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [randint(-1000 , 1000 ) for i in range(10 )] _lowercase : Tuple = randint(-5000 , 5000 ) return (arr, r) UpperCAmelCase: int = make_dataset() def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): for triplet in permutations(__UpperCAmelCase , 3 ): if sum(__UpperCAmelCase ) == target: return tuple(sorted(__UpperCAmelCase ) ) return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): arr.sort() _lowercase : Optional[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): _lowercase , _lowercase : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = """ from __main__ import dataset, triplet_sum1, triplet_sum2 """ _lowercase : Union[str, Any] = """ triplet_sum1(*dataset) """ _lowercase : Union[str, Any] = """ triplet_sum2(*dataset) """ _lowercase : Dict = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) _lowercase : Any = repeat(setup=__UpperCAmelCase , stmt=__UpperCAmelCase , repeat=5 , number=10000 ) return (min(__UpperCAmelCase ), min(__UpperCAmelCase )) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase: Any = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
336
0
"""simple docstring""" from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("""To use the rich extension, install rich with `pip install rich`""")
356
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["image_processor", "tokenizer"] SCREAMING_SNAKE_CASE_ : Optional[int] = "BlipImageProcessor" SCREAMING_SNAKE_CASE_ : Tuple = "AutoTokenizer" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): super().__init__(UpperCAmelCase_ ,UpperCAmelCase_ ) # add QFormer tokenizer _lowercase : Optional[int] = qformer_tokenizer def __call__( self ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = False ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = 0 ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = False ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""" ) _lowercase : List[Any] = BatchFeature() if text is not None: _lowercase : List[str] = self.tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) encoding.update(UpperCAmelCase_ ) _lowercase : Dict = self.qformer_tokenizer( text=UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,stride=UpperCAmelCase_ ,pad_to_multiple_of=UpperCAmelCase_ ,return_attention_mask=UpperCAmelCase_ ,return_overflowing_tokens=UpperCAmelCase_ ,return_special_tokens_mask=UpperCAmelCase_ ,return_offsets_mapping=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ,return_length=UpperCAmelCase_ ,verbose=UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ,**UpperCAmelCase_ ,) _lowercase : str = qformer_text_encoding.pop("""input_ids""" ) _lowercase : int = qformer_text_encoding.pop("""attention_mask""" ) if images is not None: _lowercase : Optional[Any] = self.image_processor(UpperCAmelCase_ ,return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.batch_decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): return self.tokenizer.decode(*UpperCAmelCase_ ,**UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer.model_input_names _lowercase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,**UpperCAmelCase_ ): if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(UpperCAmelCase_ ,exist_ok=UpperCAmelCase_ ) _lowercase : Any = os.path.join(UpperCAmelCase_ ,"""qformer_tokenizer""" ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): _lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ ,subfolder="""qformer_tokenizer""" ) _lowercase : Any = cls._get_arguments_from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
336
0
"""simple docstring""" import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return (data["data"], data["target"]) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = XGBClassifier() classifier.fit(A__ , A__ ) return classifier def __SCREAMING_SNAKE_CASE ( ): _lowercase : Tuple = load_iris() _lowercase , _lowercase : Optional[Any] = data_handling(A__ ) _lowercase , _lowercase , _lowercase , _lowercase : str = train_test_split( A__ , A__ , test_size=0.2_5 ) _lowercase : Optional[int] = iris["""target_names"""] # Create an XGBoost Classifier from the training data _lowercase : int = xgboost(A__ , A__ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( A__ , A__ , A__ , display_labels=A__ , cmap="""Blues""" , normalize="""true""" , ) plt.title("""Normalized Confusion Matrix - IRIS Dataset""" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
357
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Tuple = logging.get_logger(__name__) UpperCAmelCase: List[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "trajectory_transformer" SCREAMING_SNAKE_CASE_ : Optional[int] = ["past_key_values"] SCREAMING_SNAKE_CASE_ : Tuple = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self ,UpperCAmelCase_=1_00 ,UpperCAmelCase_=5 ,UpperCAmelCase_=1 ,UpperCAmelCase_=1 ,UpperCAmelCase_=2_49 ,UpperCAmelCase_=6 ,UpperCAmelCase_=17 ,UpperCAmelCase_=25 ,UpperCAmelCase_=4 ,UpperCAmelCase_=4 ,UpperCAmelCase_=1_28 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.0006 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=True ,UpperCAmelCase_=1 ,UpperCAmelCase_=5_02_56 ,UpperCAmelCase_=5_02_56 ,**UpperCAmelCase_ ,): _lowercase : Dict = vocab_size _lowercase : List[str] = action_weight _lowercase : int = reward_weight _lowercase : List[Any] = value_weight _lowercase : List[str] = max_position_embeddings _lowercase : Any = block_size _lowercase : Any = action_dim _lowercase : List[str] = observation_dim _lowercase : Union[str, Any] = transition_dim _lowercase : str = learning_rate _lowercase : Tuple = n_layer _lowercase : Optional[int] = n_head _lowercase : List[str] = n_embd _lowercase : List[str] = embd_pdrop _lowercase : Optional[Any] = attn_pdrop _lowercase : List[Any] = resid_pdrop _lowercase : str = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : List[Any] = kaiming_initializer_range _lowercase : List[Any] = use_cache super().__init__(pad_token_id=UpperCAmelCase_ ,bos_token_id=UpperCAmelCase_ ,eos_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ )
336
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: Optional[Any] = { """Visual-Attention-Network/van-base""": ( """https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json""" ), } class UpperCamelCase ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'van' def __init__( self ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=3 ,UpperCAmelCase_=[7, 3, 3, 3] ,UpperCAmelCase_=[4, 2, 2, 2] ,UpperCAmelCase_=[64, 1_28, 3_20, 5_12] ,UpperCAmelCase_=[3, 3, 12, 3] ,UpperCAmelCase_=[8, 8, 4, 4] ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=1E-2 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=0.0 ,**UpperCAmelCase_ ,): super().__init__(**__lowerCAmelCase ) _lowercase : List[Any] = image_size _lowercase : Union[str, Any] = num_channels _lowercase : Optional[int] = patch_sizes _lowercase : int = strides _lowercase : List[str] = hidden_sizes _lowercase : List[str] = depths _lowercase : int = mlp_ratios _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = initializer_range _lowercase : str = layer_norm_eps _lowercase : Tuple = layer_scale_init_value _lowercase : List[Any] = drop_path_rate _lowercase : int = dropout_rate
358
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase: Any = logging.get_logger(__name__) UpperCAmelCase: List[str] = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "instructblip_vision_model" def __init__( self ,UpperCAmelCase_=14_08 ,UpperCAmelCase_=61_44 ,UpperCAmelCase_=39 ,UpperCAmelCase_=16 ,UpperCAmelCase_=2_24 ,UpperCAmelCase_=14 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=1E-6 ,UpperCAmelCase_=0.0 ,UpperCAmelCase_=1E-10 ,UpperCAmelCase_=True ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Tuple = intermediate_size _lowercase : List[Any] = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = patch_size _lowercase : Optional[Any] = image_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[Any] = attention_dropout _lowercase : List[Any] = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : Tuple = qkv_bias @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : List[Any] = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = "instructblip_qformer" def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=0 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=2 ,UpperCAmelCase_=14_08 ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Optional[Any] = hidden_act _lowercase : int = intermediate_size _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Tuple = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : Dict = cross_attention_frequency _lowercase : Optional[Any] = encoder_hidden_size @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,**UpperCAmelCase_ ): cls._set_token_in_kwargs(UpperCAmelCase_ ) _lowercase , _lowercase : Dict = cls.get_config_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("""model_type""" ) == "instructblip": _lowercase : str = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase_ ,**UpperCAmelCase_ ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = "instructblip" SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=32 ,**UpperCAmelCase_ ): super().__init__(**UpperCAmelCase_ ) if vision_config is None: _lowercase : str = {} logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" ) if qformer_config is None: _lowercase : Any = {} logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" ) if text_config is None: _lowercase : Optional[int] = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) _lowercase : int = InstructBlipVisionConfig(**UpperCAmelCase_ ) _lowercase : Optional[int] = InstructBlipQFormerConfig(**UpperCAmelCase_ ) _lowercase : Dict = text_config["""model_type"""] if """model_type""" in text_config else """opt""" _lowercase : str = CONFIG_MAPPING[text_model_type](**UpperCAmelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : Union[str, Any] = self.text_config.is_encoder_decoder _lowercase : List[str] = num_query_tokens _lowercase : List[str] = self.vision_config.hidden_size _lowercase : Dict = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : Union[str, Any] = 1.0 _lowercase : Dict = 0.02 @classmethod def lowerCamelCase__ ( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,**UpperCAmelCase_ ,): return cls( vision_config=vision_config.to_dict() ,qformer_config=qformer_config.to_dict() ,text_config=text_config.to_dict() ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = copy.deepcopy(self.__dict__ ) _lowercase : int = self.vision_config.to_dict() _lowercase : Any = self.qformer_config.to_dict() _lowercase : Any = self.text_config.to_dict() _lowercase : Optional[int] = self.__class__.model_type return output
336
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase: Union[str, Any] = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE__ ) ) class UpperCamelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = None SCREAMING_SNAKE_CASE_ : Tuple = None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): with TemporaryDirectory() as tmp_dir: _lowercase : str = dataset_module_factory(a_ ,cache_dir=a_ ) _lowercase : Dict = import_main_class(dataset_module.module_path ,dataset=a_ ) _lowercase : Optional[Any] = builder_cls( cache_dir=a_ ,config_name=a_ ,hash=dataset_module.hash ,) _lowercase : List[Any] = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=a_ ).replace(os.sep ,"""/""" ), config.DATASET_INFO_FILENAME, ] ) _lowercase : int = cached_path(a_ ,cache_dir=a_ ) self.assertTrue(os.path.exists(a_ ) ) @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : List[str] = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" _lowercase : int = dataset_module_factory("""wikipedia""" , cache_dir=_UpperCamelCase ) _lowercase : Dict = import_main_class(dataset_module.module_path ) _lowercase : Optional[int] = builder_cls( cache_dir=_UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowercase : Union[str, Any] = None builder_instance.download_and_prepare() _lowercase : List[Any] = builder_instance.as_dataset() assert ds @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = dataset_module_factory("""wikipedia""" , cache_dir=_UpperCamelCase ) _lowercase : List[str] = import_main_class(dataset_module.module_path , dataset=_UpperCamelCase ) _lowercase : Union[str, Any] = builder_cls( cache_dir=_UpperCamelCase , config_name="""20220301.frr""" , hash=dataset_module.hash , ) _lowercase : Any = builder_instance.as_streaming_dataset() assert ds assert isinstance(_UpperCamelCase , _UpperCamelCase ) assert "train" in ds assert isinstance(ds["""train"""] , _UpperCamelCase ) assert next(iter(ds["""train"""] ) )
359
"""simple docstring""" import cva import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if k in (0.04, 0.06): _lowercase : Optional[Any] = k _lowercase : Optional[Any] = window_size else: raise ValueError("""invalid k value""" ) def __str__( self ): return str(self.k ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = cva.imread(UpperCAmelCase_ ,0 ) _lowercase , _lowercase : Dict = img.shape _lowercase : list[list[int]] = [] _lowercase : int = img.copy() _lowercase : List[str] = cva.cvtColor(UpperCAmelCase_ ,cva.COLOR_GRAY2RGB ) _lowercase , _lowercase : Optional[Any] = np.gradient(UpperCAmelCase_ ) _lowercase : Optional[int] = dx**2 _lowercase : Optional[Any] = dy**2 _lowercase : Optional[Any] = dx * dy _lowercase : List[str] = 0.04 _lowercase : Optional[Any] = self.window_size // 2 for y in range(UpperCAmelCase_ ,h - offset ): for x in range(UpperCAmelCase_ ,w - offset ): _lowercase : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Dict = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : Union[str, Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() _lowercase : int = (wxx * wyy) - (wxy**2) _lowercase : Union[str, Any] = wxx + wyy _lowercase : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) ,0 ) color_img.itemset((y, x, 1) ,0 ) color_img.itemset((y, x, 2) ,2_55 ) return color_img, corner_list if __name__ == "__main__": UpperCAmelCase: Optional[int] = HarrisCorner(0.04, 3) UpperCAmelCase , UpperCAmelCase: List[Any] = edge_detect.detect("""path_to_image""") cva.imwrite("""detect.png""", color_img)
336
0
"""simple docstring""" UpperCAmelCase: Dict = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
360
"""simple docstring""" import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = LEDTokenizer SCREAMING_SNAKE_CASE_ : List[str] = LEDTokenizerFast SCREAMING_SNAKE_CASE_ : List[str] = True def lowerCamelCase__ ( self ): super().setUp() _lowercase : Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Dict = {"""unk_token""": """<unk>"""} _lowercase : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return "lower newer", "lower newer" @cached_property def lowerCamelCase__ ( self ): return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def lowerCamelCase__ ( self ): return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] _lowercase : Any = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(UpperCAmelCase_ ,max_length=len(UpperCAmelCase_ ) ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 9) ,batch.input_ids.shape ) self.assertEqual((2, 9) ,batch.attention_mask.shape ) _lowercase : Optional[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIn("""input_ids""" ,UpperCAmelCase_ ) self.assertIn("""attention_mask""" ,UpperCAmelCase_ ) self.assertNotIn("""labels""" ,UpperCAmelCase_ ) self.assertNotIn("""decoder_attention_mask""" ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Tuple = tokenizer(text_target=UpperCAmelCase_ ,max_length=32 ,padding="""max_length""" ,return_tensors="""pt""" ) self.assertEqual(32 ,targets["""input_ids"""].shape[1] ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : List[Any] = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,return_tensors="""pt""" ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual(batch.input_ids.shape ,(2, 51_22) ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[Any] = ["""A long paragraph for summarization."""] _lowercase : Dict = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : Dict = tokenizer(UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : List[str] = tokenizer(text_target=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : Union[str, Any] = inputs["""input_ids"""] _lowercase : List[str] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def lowerCamelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowercase : str = ["""Summary of the text.""", """Another summary."""] _lowercase : Optional[int] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ) _lowercase : str = [[0] * len(UpperCAmelCase_ ) for x in encoded_output["""input_ids"""]] _lowercase : Optional[int] = tokenizer.pad(UpperCAmelCase_ ) self.assertSequenceEqual(outputs["""global_attention_mask"""] ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass def lowerCamelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[int] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Dict = """A, <mask> AllenNLP sentence.""" _lowercase : List[Any] = tokenizer_r.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.encode_plus(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,return_token_type_ids=UpperCAmelCase_ ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) ,sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) ,sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) ,) _lowercase : str = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) _lowercase : str = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] ,[0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( UpperCAmelCase_ ,["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
336
0
"""simple docstring""" from typing import List from .keymap import KEYMAP, get_character def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): def decorator(__UpperCAmelCase ): _lowercase : Optional[Any] = getattr(a__ , """handle_key""" , [] ) handle += [key] setattr(a__ , """handle_key""" , a__ ) return func return decorator def __SCREAMING_SNAKE_CASE ( *__UpperCAmelCase ): def decorator(__UpperCAmelCase ): _lowercase : int = getattr(a__ , """handle_key""" , [] ) handle += keys setattr(a__ , """handle_key""" , a__ ) return func return decorator class UpperCamelCase ( snake_case ): """simple docstring""" def __new__( cls ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = super().__new__(cls ,_snake_case ,_snake_case ,_snake_case ) if not hasattr(_snake_case ,"""key_handler""" ): setattr(_snake_case ,"""key_handler""" ,{} ) setattr(_snake_case ,"""handle_input""" ,KeyHandler.handle_input ) for value in attrs.values(): _lowercase : List[Any] = getattr(_snake_case ,"""handle_key""" ,[] ) for key in handled_keys: _lowercase : Dict = value return new_cls @staticmethod def lowerCamelCase__ ( cls ): _lowercase : Optional[int] = get_character() if char != KEYMAP["undefined"]: _lowercase : Union[str, Any] = ord(_snake_case ) _lowercase : Dict = cls.key_handler.get(_snake_case ) if handler: _lowercase : int = char return handler(cls ) else: return None def __SCREAMING_SNAKE_CASE ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
361
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
0
"""simple docstring""" import doctest from collections import deque import numpy as np class UpperCamelCase : """simple docstring""" def __init__( self ): _lowercase : Union[str, Any] = [2, 1, 2, -1] _lowercase : Tuple = [1, 2, 3, 4] def lowerCamelCase__ ( self ): _lowercase : Any = len(self.first_signal ) _lowercase : str = len(self.second_signal ) _lowercase : Tuple = max(UpperCAmelCase_ ,UpperCAmelCase_ ) # create a zero matrix of max_length x max_length _lowercase : Tuple = [[0] * max_length for i in range(UpperCAmelCase_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(UpperCAmelCase_ ): _lowercase : Tuple = deque(self.second_signal ) rotated_signal.rotate(UpperCAmelCase_ ) for j, item in enumerate(UpperCAmelCase_ ): matrix[i][j] += item # multiply the matrix with the first signal _lowercase : Optional[Any] = np.matmul(np.transpose(UpperCAmelCase_ ) ,np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(UpperCAmelCase_ ,2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
362
"""simple docstring""" UpperCAmelCase: List[str] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Tuple = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __SCREAMING_SNAKE_CASE ( ): print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
363
"""simple docstring""" UpperCAmelCase: str = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ UpperCAmelCase: Any = [{"""type""": """code""", """content""": INSTALL_CONTENT}] UpperCAmelCase: int = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
336
0
"""simple docstring""" import numpy as np def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
364
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL UpperCAmelCase: List[Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): def constraint_to_multiple_of(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0 , __UpperCAmelCase=None ): _lowercase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: _lowercase : str = math.floor(val / multiple ) * multiple if x < min_val: _lowercase : Dict = math.ceil(val / multiple ) * multiple return x _lowercase : List[str] = (output_size, output_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else output_size _lowercase , _lowercase : List[Any] = get_image_size(__UpperCAmelCase ) _lowercase , _lowercase : Union[str, Any] = output_size # determine new height and width _lowercase : str = output_height / input_height _lowercase : List[Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width _lowercase : str = scale_width else: # fit height _lowercase : int = scale_height _lowercase : List[Any] = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCAmelCase ) _lowercase : Optional[Any] = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCAmelCase ) return (new_height, new_width) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : List[Any] = size if size is not None else {"""height""": 3_84, """width""": 3_84} _lowercase : str = get_size_dict(UpperCAmelCase_ ) _lowercase : Tuple = do_resize _lowercase : Any = size _lowercase : List[Any] = keep_aspect_ratio _lowercase : Any = ensure_multiple_of _lowercase : str = resample _lowercase : Optional[Any] = do_rescale _lowercase : List[Any] = rescale_factor _lowercase : Union[str, Any] = do_normalize _lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = False ,UpperCAmelCase_ = 1 ,UpperCAmelCase_ = PILImageResampling.BICUBIC ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) _lowercase : Dict = get_resize_output_image_size( UpperCAmelCase_ ,output_size=(size["""height"""], size["""width"""]) ,keep_aspect_ratio=UpperCAmelCase_ ,multiple=UpperCAmelCase_ ,) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : Any = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : int = get_size_dict(UpperCAmelCase_ ) _lowercase : Any = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio _lowercase : List[str] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of _lowercase : List[str] = resample if resample is not None else self.resample _lowercase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : str = do_normalize if do_normalize is not None else self.do_normalize _lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean _lowercase : int = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(UpperCAmelCase_ ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowercase : int = [to_numpy_array(UpperCAmelCase_ ) for image in images] if do_resize: _lowercase : Union[str, Any] = [self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) for image in images] if do_rescale: _lowercase : int = [self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ) for image in images] if do_normalize: _lowercase : str = [self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) for image in images] _lowercase : Tuple = [to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) for image in images] _lowercase : int = {"""pixel_values""": images} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCAmelCase_ ) != len(UpperCAmelCase_ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(UpperCAmelCase_ ): _lowercase : Tuple = target_sizes.numpy() _lowercase : Optional[Any] = [] for idx in range(len(UpperCAmelCase_ ) ): _lowercase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode="""bilinear""" ,align_corners=UpperCAmelCase_ ) _lowercase : Optional[int] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCAmelCase_ ) else: _lowercase : Union[str, Any] = logits.argmax(dim=1 ) _lowercase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
336
0
"""simple docstring""" from typing import Any class UpperCamelCase : """simple docstring""" def __init__( self ,UpperCAmelCase_ ): _lowercase : str = data _lowercase : Tuple = None class UpperCamelCase : """simple docstring""" def __init__( self ): _lowercase : Union[str, Any] = None def lowerCamelCase__ ( self ): _lowercase : int = self.head while temp is not None: print(temp.data ,end=""" """ ) _lowercase : List[str] = temp.next print() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = Node(UpperCAmelCase_ ) _lowercase : int = self.head _lowercase : Any = new_node def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): if node_data_a == node_data_a: return else: _lowercase : List[str] = self.head while node_a is not None and node_a.data != node_data_a: _lowercase : Union[str, Any] = node_a.next _lowercase : str = self.head while node_a is not None and node_a.data != node_data_a: _lowercase : str = node_a.next if node_a is None or node_a is None: return _lowercase : Optional[int] = node_a.data, node_a.data if __name__ == "__main__": UpperCAmelCase: List[str] = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
365
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
0
"""simple docstring""" import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class UpperCamelCase ( lowerCamelCase_ ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Optional[int] = tempfile.mkdtemp() _lowercase : Optional[int] = 8 # DPR tok _lowercase : Optional[int] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _lowercase : List[Any] = os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) _lowercase : Optional[int] = os.path.join(lowerCAmelCase__ ,DPR_VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) # BART tok _lowercase : Tuple = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowercase : Optional[Any] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) ) _lowercase : Optional[Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : Optional[Any] = {"""unk_token""": """<unk>"""} _lowercase : Optional[int] = os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) _lowercase : Dict = os.path.join(lowerCAmelCase__ ,BART_VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : List[str] = os.path.join(lowerCAmelCase__ ,BART_VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) def lowerCamelCase__ ( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def lowerCamelCase__ ( self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""dpr_tokenizer""" ) ) def lowerCamelCase__ ( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname ,"""bart_tokenizer""" ) ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Tuple = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_dummy_dataset() _lowercase : Union[str, Any] = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,) with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: _lowercase : Any = dataset _lowercase : Optional[Any] = RagRetriever( lowerCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) return retriever def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.get_dummy_dataset() _lowercase : str = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""custom""" ,) if from_disk: _lowercase : List[str] = os.path.join(self.tmpdirname ,"""dataset""" ) _lowercase : str = os.path.join(self.tmpdirname ,"""index.faiss""" ) dataset.get_index("""embeddings""" ).save(os.path.join(self.tmpdirname ,"""index.faiss""" ) ) dataset.drop_index("""embeddings""" ) dataset.save_to_disk(os.path.join(self.tmpdirname ,"""dataset""" ) ) del dataset _lowercase : Optional[int] = RagRetriever( lowerCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,) else: _lowercase : List[Any] = RagRetriever( lowerCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ,index=CustomHFIndex(config.retrieval_vector_size ,lowerCAmelCase__ ) ,) return retriever def lowerCamelCase__ ( self ): _lowercase : int = Dataset.from_dict( { """id""": ["""0""", """1"""], """text""": ["""foo""", """bar"""], """title""": ["""Foo""", """Bar"""], """embeddings""": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("""embeddings""" ,string_factory="""Flat""" ,metric_type=faiss.METRIC_INNER_PRODUCT ) _lowercase : List[Any] = os.path.join(self.tmpdirname ,"""hf_bert_base.hnswSQ8_correct_phi_128.c_index""" ) dataset.save_faiss_index("""embeddings""" ,index_file_name + """.index.dpr""" ) pickle.dump(dataset["""id"""] ,open(index_file_name + """.index_meta.dpr""" ,"""wb""" ) ) _lowercase : Dict = os.path.join(self.tmpdirname ,"""psgs_w100.tsv.pkl""" ) _lowercase : List[Any] = {sample["""id"""]: [sample["""text"""], sample["""title"""]] for sample in dataset} pickle.dump(lowerCAmelCase__ ,open(lowerCAmelCase__ ,"""wb""" ) ) _lowercase : int = RagConfig( retrieval_vector_size=self.retrieval_vector_size ,question_encoder=DPRConfig().to_dict() ,generator=BartConfig().to_dict() ,index_name="""legacy""" ,index_path=self.tmpdirname ,) _lowercase : str = RagRetriever( lowerCAmelCase__ ,question_encoder_tokenizer=self.get_dpr_tokenizer() ,generator_tokenizer=self.get_bart_tokenizer() ) return retriever def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = 1 _lowercase : str = self.get_dummy_canonical_hf_index_retriever() _lowercase : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase , _lowercase , _lowercase : List[str] = retriever.retrieve(lowerCAmelCase__ ,n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("""transformers.models.rag.retrieval_rag.load_dataset""" ) as mock_load_dataset: _lowercase : Any = self.get_dummy_dataset() retriever.save_pretrained(lowerCAmelCase__ ) _lowercase : List[Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase : Dict = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase : List[str] = retriever.retrieve(lowerCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase__ ( self ): _lowercase : Any = 1 _lowercase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) _lowercase : Any = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase , _lowercase , _lowercase : Any = retriever.retrieve(lowerCAmelCase__ ,n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) _lowercase : Union[str, Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase : Dict = retriever.retrieve(lowerCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase__ ( self ): _lowercase : int = 1 _lowercase : Dict = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) _lowercase : List[str] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase , _lowercase , _lowercase : int = retriever.retrieve(lowerCAmelCase__ ,n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""embeddings""", """id""", """text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""id"""] ) ,lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["""id"""][0] ,"""1""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""id"""][0] ,"""0""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) _lowercase : Tuple = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase : str = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase : Dict = retriever.retrieve(lowerCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) def lowerCamelCase__ ( self ): _lowercase : Dict = 1 _lowercase : Tuple = self.get_dummy_legacy_index_retriever() _lowercase : Tuple = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase , _lowercase , _lowercase : Optional[int] = retriever.retrieve(lowerCAmelCase__ ,n_docs=lowerCAmelCase__ ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(lowerCAmelCase__ ) ,2 ) self.assertEqual(sorted(doc_dicts[0] ) ,["""text""", """title"""] ) self.assertEqual(len(doc_dicts[0]["""text"""] ) ,lowerCAmelCase__ ) self.assertEqual(doc_dicts[0]["""text"""][0] ,"""bar""" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["""text"""][0] ,"""foo""" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() ,[[1], [0]] ) def lowerCamelCase__ ( self ): _lowercase : List[str] = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(lowerCAmelCase__ ) _lowercase : Optional[Any] = RagRetriever.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) _lowercase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase : Union[str, Any] = retriever.retrieve(lowerCAmelCase__ ,n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase__ ( self ): import torch _lowercase : str = 1 _lowercase : List[Any] = self.get_dummy_canonical_hf_index_retriever() _lowercase : List[Any] = [[5, 7], [10, 11]] _lowercase : Union[str, Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase : List[str] = retriever(lowerCAmelCase__ ,lowerCAmelCase__ ,prefix=retriever.config.generator.prefix ,n_docs=lowerCAmelCase__ ) _lowercase , _lowercase , _lowercase : List[Any] = ( out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ ,np.ndarray ) _lowercase : Tuple = retriever( lowerCAmelCase__ ,lowerCAmelCase__ ,prefix=retriever.config.generator.prefix ,n_docs=lowerCAmelCase__ ,return_tensors="""pt""" ,) _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = ( # noqa: F841 out["""context_input_ids"""], out["""context_attention_mask"""], out["""retrieved_doc_embeds"""], out["""doc_ids"""], ) self.assertEqual(retrieved_doc_embeds.shape ,(2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) self.assertIsInstance(lowerCAmelCase__ ,torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def lowerCamelCase__ ( self ): _lowercase : Any = self.get_dpr_ctx_encoder_tokenizer() _lowercase : Union[str, Any] = 1 _lowercase : List[str] = self.get_dummy_custom_hf_index_retriever(from_disk=lowerCAmelCase__ ) retriever.set_ctx_encoder_tokenizer(lowerCAmelCase__ ) _lowercase : Union[str, Any] = [[5, 7], [10, 11]] _lowercase : List[Any] = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] ,dtype=np.floataa ) _lowercase : Tuple = retriever(lowerCAmelCase__ ,lowerCAmelCase__ ,prefix=retriever.config.generator.prefix ,n_docs=lowerCAmelCase__ ) self.assertEqual( len(lowerCAmelCase__ ) ,6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("""tokenized_doc_ids""", """tokenized_doc_attention_mask""") ) ,lowerCAmelCase__ ) # check for doc token related keys in dictionary.
366
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : str = tempfile.mkdtemp() # fmt: off _lowercase : List[Any] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on _lowercase : Optional[int] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Optional[int] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] _lowercase : Optional[int] = {"""unk_token""": """<unk>"""} _lowercase : List[str] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) _lowercase : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } _lowercase : List[Any] = os.path.join(self.tmpdirname ,UpperCAmelCase_ ) with open(self.image_processor_file ,"""w""" ,encoding="""utf-8""" ) as fp: json.dump(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): return CLIPImageProcessor.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] _lowercase : Tuple = [Image.fromarray(np.moveaxis(UpperCAmelCase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : List[Any] = self.get_image_processor() _lowercase : List[str] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) _lowercase : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname ,use_fast=UpperCAmelCase_ ) _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) _lowercase : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() ,tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() ,tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor ,UpperCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = CLIPProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowercase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) _lowercase : Optional[int] = self.get_image_processor(do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) _lowercase : int = CLIPProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=UpperCAmelCase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,UpperCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[int] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : int = self.prepare_image_inputs() _lowercase : str = image_processor(UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : int = processor(images=UpperCAmelCase_ ,return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : Optional[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : List[Any] = """lower newer""" _lowercase : Any = processor(text=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer(UpperCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : str = """lower newer""" _lowercase : List[Any] = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_ ): processor() def lowerCamelCase__ ( self ): _lowercase : Dict = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : Union[str, Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowercase : int = processor.batch_decode(UpperCAmelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.get_image_processor() _lowercase : List[Any] = self.get_tokenizer() _lowercase : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ ,image_processor=UpperCAmelCase_ ) _lowercase : Optional[Any] = """lower newer""" _lowercase : Any = self.prepare_image_inputs() _lowercase : Optional[int] = processor(text=UpperCAmelCase_ ,images=UpperCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names )
336
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "x" , __UpperCAmelCase = 10**-10 , __UpperCAmelCase = 1 , ): _lowercase : Any = symbols(UpperCamelCase__ ) _lowercase : List[str] = lambdify(UpperCamelCase__ , UpperCamelCase__ ) _lowercase : Union[str, Any] = lambdify(UpperCamelCase__ , diff(UpperCamelCase__ , UpperCamelCase__ ) ) _lowercase : Union[str, Any] = starting_point while True: if diff_function(UpperCamelCase__ ) != 0: _lowercase : Optional[Any] = prev_guess - multiplicity * func(UpperCamelCase__ ) / diff_function( UpperCamelCase__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess _lowercase : Optional[int] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
367
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCAmelCase: str = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , ): import pyspark def generate_fn(): _lowercase : List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: _lowercase : Optional[int] = df_with_partition_id.select("""*""" ).where(F"""part_id = {partition_id}""" ).drop("""part_id""" ) _lowercase : int = partition_df.collect() _lowercase : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class UpperCamelCase ( _BaseExamplesIterable ): """simple docstring""" def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ,): _lowercase : Union[str, Any] = df _lowercase : List[str] = partition_order or range(self.df.rdd.getNumPartitions() ) _lowercase : Tuple = _generate_iterable_examples(self.df ,self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : List[str] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Union[str, Any] = self.split_shard_indices_by_worker(UpperCAmelCase_ ,UpperCAmelCase_ ) return SparkExamplesIterable(self.df ,partition_order=UpperCAmelCase_ ) @property def lowerCamelCase__ ( self ): return len(self.partition_order ) class UpperCamelCase ( datasets.DatasetBuilder ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = SparkConfig def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): import pyspark _lowercase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowercase : List[Any] = df _lowercase : int = working_dir super().__init__( cache_dir=UpperCAmelCase_ ,config_name=str(self.df.semanticHash() ) ,**UpperCAmelCase_ ,) def lowerCamelCase__ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase_ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir ,exist_ok=UpperCAmelCase_ ) _lowercase : Union[str, Any] = os.path.join(self._cache_dir ,"""fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase_ ,"""a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" ,"""""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowercase : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) ,1 ).mapPartitions(UpperCAmelCase_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase__ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase__ ( self ,UpperCAmelCase_ ): import pyspark def get_arrow_batch_size(UpperCAmelCase_ ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) _lowercase : List[str] = self.df.count() _lowercase : List[str] = df_num_rows if df_num_rows <= 1_00 else 1_00 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowercase : Union[str, Any] = ( self.df.limit(UpperCAmelCase_ ) .repartition(1 ) .mapInArrow(UpperCAmelCase_ ,"""batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowercase : List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowercase : int = min(UpperCAmelCase_ ,int(approx_total_size / max_shard_size ) ) _lowercase : List[Any] = self.df.repartition(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): import pyspark _lowercase : Union[str, Any] = ParquetWriter if file_format == """parquet""" else ArrowWriter _lowercase : List[Any] = os.path.join(self._working_dir ,os.path.basename(UpperCAmelCase_ ) ) if self._working_dir else fpath _lowercase : Any = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowercase : Union[str, Any] = self.config.features _lowercase : Optional[int] = self._writer_batch_size _lowercase : Optional[Any] = self._fs.storage_options def write_arrow(UpperCAmelCase_ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowercase : Any = pyspark.TaskContext().taskAttemptId() _lowercase : List[str] = next(UpperCAmelCase_ ,UpperCAmelCase_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) _lowercase : List[Any] = 0 _lowercase : int = writer_class( features=UpperCAmelCase_ ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Optional[int] = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowercase , _lowercase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) shard_id += 1 _lowercase : Union[str, Any] = writer_class( features=writer._features ,path=working_fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,writer_batch_size=UpperCAmelCase_ ,storage_options=UpperCAmelCase_ ,embed_local_files=UpperCAmelCase_ ,) _lowercase : Dict = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase_ ) if writer._num_bytes > 0: _lowercase , _lowercase : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] ,names=["""task_id""", """num_examples""", """num_bytes"""] ,) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase_ ) ): _lowercase : Dict = os.path.join(os.path.dirname(UpperCAmelCase_ ) ,os.path.basename(UpperCAmelCase_ ) ) shutil.move(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : List[str] = ( self.df.mapInArrow(UpperCAmelCase_ ,"""task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) ,pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) ,pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) ,pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) ,) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = "arrow" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): self._validate_cache_dir() _lowercase : Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase_ ) _lowercase : Optional[int] = not is_remote_filesystem(self._fs ) _lowercase : Dict = os.path.join if is_local else posixpath.join _lowercase : int = """-TTTTT-SSSSS-of-NNNNN""" _lowercase : Optional[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" _lowercase : Dict = path_join(self._output_dir ,UpperCAmelCase_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : int = 0 _lowercase : Any = [] _lowercase : Any = [] for task_id, content in self._prepare_split_single(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ): ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase_ ) _lowercase : Optional[int] = total_num_examples _lowercase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: _lowercase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowercase : Union[str, Any] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): rename( UpperCAmelCase_ ,fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace("""TTTTT-SSSSS""" ,f"""{global_shard_id:05d}""" ).replace("""NNNNN""" ,f"""{total_shards:05d}""" ) ,) _lowercase : Optional[Any] = [] _lowercase : List[str] = 0 for i in range(len(UpperCAmelCase_ ) ): _lowercase , _lowercase : List[str] = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ).map(lambda UpperCAmelCase_ : _rename_shard(*UpperCAmelCase_ ) ).collect() else: # don't use any pattern _lowercase : Tuple = 0 _lowercase : Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" ,f"""{shard_id:05d}""" ).replace("""TTTTT""" ,f"""{task_id:05d}""" ) ,fpath.replace(UpperCAmelCase_ ,"""""" ) ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,): return SparkExamplesIterable(self.df )
336
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase: Tuple = { """configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""], """tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[int] = ["""BertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[str] = [ """BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BertForMaskedLM""", """BertForMultipleChoice""", """BertForNextSentencePrediction""", """BertForPreTraining""", """BertForQuestionAnswering""", """BertForSequenceClassification""", """BertForTokenClassification""", """BertLayer""", """BertLMHeadModel""", """BertModel""", """BertPreTrainedModel""", """load_tf_weights_in_bert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[Any] = [ """TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBertEmbeddings""", """TFBertForMaskedLM""", """TFBertForMultipleChoice""", """TFBertForNextSentencePrediction""", """TFBertForPreTraining""", """TFBertForQuestionAnswering""", """TFBertForSequenceClassification""", """TFBertForTokenClassification""", """TFBertLMHeadModel""", """TFBertMainLayer""", """TFBertModel""", """TFBertPreTrainedModel""", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = ["""TFBertTokenizer"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: str = [ """FlaxBertForCausalLM""", """FlaxBertForMaskedLM""", """FlaxBertForMultipleChoice""", """FlaxBertForNextSentencePrediction""", """FlaxBertForPreTraining""", """FlaxBertForQuestionAnswering""", """FlaxBertForSequenceClassification""", """FlaxBertForTokenClassification""", """FlaxBertModel""", """FlaxBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase: List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: Optional[int] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = XLNetTokenizer SCREAMING_SNAKE_CASE_ : Dict = XLNetTokenizerFast SCREAMING_SNAKE_CASE_ : int = True SCREAMING_SNAKE_CASE_ : Union[str, Any] = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = """<s>""" _lowercase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) ,UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<unk>""" ) self.assertEqual(vocab_keys[1] ,"""<s>""" ) self.assertEqual(vocab_keys[-1] ,"""<eod>""" ) self.assertEqual(len(UpperCAmelCase_ ) ,10_06 ) def lowerCamelCase__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size ,10_00 ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[2_85, 46, 10, 1_70, 3_82] ) _lowercase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : List[Any] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,[8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) _lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""▁he""", """ll""", """o"""] ) def lowerCamelCase__ ( self ): _lowercase : int = XLNetTokenizer(UpperCAmelCase_ ,do_lower_case=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] ,) @slow def lowerCamelCase__ ( self ): _lowercase : Dict = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" ) _lowercase : int = tokenizer.encode("""sequence builders""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : List[str] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) _lowercase : Dict = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ,UpperCAmelCase_ ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def lowerCamelCase__ ( self ): # fmt: off _lowercase : Union[str, Any] = {"""input_ids""": [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ ,model_name="""xlnet-base-cased""" ,revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" ,)
336
0
"""simple docstring""" from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = CustomTokenizer pass
369
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000000 ): _lowercase : int = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
370
"""simple docstring""" import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : int = [] for line in lines: _lowercase : Dict = re.sub(R"""#.*""" , """""" , __UpperCAmelCase ) # remove comments if line: filtered_lines.append(__UpperCAmelCase ) _lowercase : Tuple = """\n""".join(__UpperCAmelCase ) # Make a hash from all this code _lowercase : Tuple = full_str.encode("""utf-8""" ) return shaaaa(__UpperCAmelCase ).hexdigest() # get importable module names and hash for caching UpperCAmelCase: Tuple = { """csv""": (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), """json""": (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), """pandas""": (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), """parquet""": (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), """arrow""": (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), """text""": (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), """imagefolder""": (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), """audiofolder""": (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions UpperCAmelCase: List[str] = { """.csv""": ("""csv""", {}), """.tsv""": ("""csv""", {"""sep""": """\t"""}), """.json""": ("""json""", {}), """.jsonl""": ("""json""", {}), """.parquet""": ("""parquet""", {}), """.arrow""": ("""arrow""", {}), """.txt""": ("""text""", {}), } _EXTENSION_TO_MODULE.update({ext: ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""imagefolder""", {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ("""audiofolder""", {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) UpperCAmelCase: Any = {"""imagefolder""", """audiofolder"""} # Used to filter data files based on extensions given a module name UpperCAmelCase: Dict[str, List[str]] = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append(""".zip""") _MODULE_TO_EXTENSIONS["audiofolder"].append(""".zip""")
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000000 ): _lowercase : int = 1 _lowercase : Dict = 1 _lowercase : Any = {1: 1} for inputa in range(2 , _lowerCAmelCase ): _lowercase : Dict = 0 _lowercase : List[Any] = inputa while True: if number in counters: counter += counters[number] break if number % 2 == 0: number //= 2 counter += 1 else: _lowercase : List[Any] = (3 * number) + 1 counter += 1 if inputa not in counters: _lowercase : Union[str, Any] = counter if counter > pre_counter: _lowercase : Optional[int] = inputa _lowercase : Optional[Any] = counter return largest_number if __name__ == "__main__": print(solution(int(input().strip())))
371
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : str = len(__lowerCAmelCase ) while cur > 1: # Find the maximum number in arr _lowercase : str = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi _lowercase : int = arr[mi::-1] + arr[mi + 1 : len(__lowerCAmelCase )] # Reverse whole list _lowercase : Dict = arr[cur - 1 :: -1] + arr[cur : len(__lowerCAmelCase )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase: Dict = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase: List[str] = [int(item) for item in user_input.split(""",""")] print(pancake_sort(unsorted))
350
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] UpperCAmelCase: Any = generate_large_matrix() UpperCAmelCase: Dict = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): assert all(row == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for row in grid ) assert all(list(__UpperCAmelCase ) == sorted(__UpperCAmelCase , reverse=__UpperCAmelCase ) for col in zip(*__UpperCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 _lowercase : List[Any] = len(__UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _lowercase : Tuple = (left + right) // 2 _lowercase : List[Any] = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _lowercase : Dict = mid + 1 else: _lowercase : Dict = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Any = 0 _lowercase : Optional[int] = len(grid[0] ) for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(__UpperCAmelCase ) * len(grid[0] )) - total def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return len([number for row in grid for number in row if number < 0] ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = 0 for row in grid: for i, number in enumerate(__UpperCAmelCase ): if number < 0: total += len(__UpperCAmelCase ) - i break return total def __SCREAMING_SNAKE_CASE ( ): from timeit import timeit print("""Running benchmarks""" ) _lowercase : Tuple = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _lowercase : Dict = timeit(F"""{func}(grid=grid)""" , setup=__UpperCAmelCase , number=500 ) print(F"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
336
0
"""simple docstring""" from itertools import permutations def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False _lowercase : Dict = [7, 11, 13, 17] for i, test in enumerate(_UpperCAmelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 10 ): return sum( int("""""".join(map(_UpperCAmelCase , _UpperCAmelCase ) ) ) for num in permutations(range(_UpperCAmelCase ) ) if is_substring_divisible(_UpperCAmelCase ) ) if __name__ == "__main__": print(F'{solution() = }')
351
"""simple docstring""" import re from filelock import FileLock try: import nltk UpperCAmelCase: List[str] = True except (ImportError, ModuleNotFoundError): UpperCAmelCase: int = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): re.sub("""<n>""" , """""" , __UpperCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__UpperCAmelCase ) )
336
0
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer UpperCAmelCase: str = logging.get_logger(__name__) UpperCAmelCase: int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase: str = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } UpperCAmelCase: Tuple = {"""allegro/herbert-base-cased""": 514} UpperCAmelCase: int = {} class UpperCamelCase ( lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[Any] = HerbertTokenizer def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_=None ,UpperCAmelCase_="<s>" ,UpperCAmelCase_="<unk>" ,UpperCAmelCase_="<pad>" ,UpperCAmelCase_="<mask>" ,UpperCAmelCase_="</s>" ,**UpperCAmelCase_ ,): super().__init__( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : Union[str, Any] = [self.cls_token_id] _lowercase : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE ,token_ids_a=__SCREAMING_SNAKE_CASE ,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : List[str] = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ): _lowercase : str = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE )
352
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=0.9_9_9 , __UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase : str = [] for i in range(__UpperCAmelCase ): _lowercase : Any = i / num_diffusion_timesteps _lowercase : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class UpperCamelCase ( snake_case , snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [e.name for e in KarrasDiffusionSchedulers] SCREAMING_SNAKE_CASE_ : str = 2 @register_to_config def __init__( self ,UpperCAmelCase_ = 10_00 ,UpperCAmelCase_ = 0.00085 ,UpperCAmelCase_ = 0.012 ,UpperCAmelCase_ = "linear" ,UpperCAmelCase_ = None ,UpperCAmelCase_ = "epsilon" ,UpperCAmelCase_ = "linspace" ,UpperCAmelCase_ = 0 ,): if trained_betas is not None: _lowercase : str = torch.tensor(UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "linear": _lowercase : Optional[Any] = torch.linspace(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowercase : Any = ( torch.linspace(beta_start**0.5 ,beta_end**0.5 ,UpperCAmelCase_ ,dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowercase : Any = betas_for_alpha_bar(UpperCAmelCase_ ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) _lowercase : Tuple = 1.0 - self.betas _lowercase : Dict = torch.cumprod(self.alphas ,dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_=None ): if schedule_timesteps is None: _lowercase : Optional[int] = self.timesteps _lowercase : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _lowercase : Optional[Any] = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _lowercase : Dict = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _lowercase : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCamelCase__ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,): _lowercase : str = self.index_for_timestep(UpperCAmelCase_ ) if self.state_in_first_order: _lowercase : Optional[Any] = self.sigmas[step_index] else: _lowercase : Dict = self.sigmas_interpol[step_index] _lowercase : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,): _lowercase : List[str] = num_inference_steps _lowercase : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _lowercase : Dict = np.linspace(0 ,num_train_timesteps - 1 ,UpperCAmelCase_ ,dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _lowercase : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : str = (np.arange(0 ,UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _lowercase : str = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowercase : Optional[int] = (np.arange(UpperCAmelCase_ ,0 ,-step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _lowercase : Union[str, Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _lowercase : Optional[Any] = torch.from_numpy(np.log(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _lowercase : List[str] = np.interp(UpperCAmelCase_ ,np.arange(0 ,len(UpperCAmelCase_ ) ) ,UpperCAmelCase_ ) _lowercase : int = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _lowercase : Any = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) # interpolate sigmas _lowercase : List[str] = sigmas.log().lerp(sigmas.roll(1 ).log() ,0.5 ).exp() _lowercase : Union[str, Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) _lowercase : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _lowercase : Tuple = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=torch.floataa ) else: _lowercase : str = torch.from_numpy(UpperCAmelCase_ ).to(UpperCAmelCase_ ) # interpolate timesteps _lowercase : int = self.sigma_to_t(UpperCAmelCase_ ).to(UpperCAmelCase_ ,dtype=timesteps.dtype ) _lowercase : Union[str, Any] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) ,dim=-1 ).flatten() _lowercase : str = torch.cat([timesteps[:1], interleaved_timesteps] ) _lowercase : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _lowercase : Optional[Any] = defaultdict(UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): # get log sigma _lowercase : Optional[Any] = sigma.log() # get distribution _lowercase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range _lowercase : Tuple = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) _lowercase : List[Any] = low_idx + 1 _lowercase : int = self.log_sigmas[low_idx] _lowercase : Any = self.log_sigmas[high_idx] # interpolate sigmas _lowercase : Any = (low - log_sigma) / (low - high) _lowercase : Dict = w.clamp(0 ,1 ) # transform interpolation to time range _lowercase : List[str] = (1 - w) * low_idx + w * high_idx _lowercase : Optional[int] = t.view(sigma.shape ) return t @property def lowerCamelCase__ ( self ): return self.sample is None def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,): _lowercase : Optional[int] = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _lowercase : str = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _lowercase : Any = self.sigmas[step_index] _lowercase : Any = self.sigmas_interpol[step_index + 1] _lowercase : Tuple = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method _lowercase : Union[str, Any] = self.sigmas[step_index - 1] _lowercase : int = self.sigmas_interpol[step_index] _lowercase : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _lowercase : Any = 0 _lowercase : int = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _lowercase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _lowercase : str = sigma_hat if self.state_in_first_order else sigma_interpol _lowercase : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _lowercase : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _lowercase : Any = sigma_interpol - sigma_hat # store for 2nd order step _lowercase : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order _lowercase : Optional[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep _lowercase : Optional[Any] = sigma_next - sigma_hat _lowercase : Any = self.sample _lowercase : Optional[int] = None _lowercase : str = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,): # Make sure sigmas and timesteps have the same device and dtype as original_samples _lowercase : int = self.sigmas.to(device=original_samples.device ,dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _lowercase : str = self.timesteps.to(original_samples.device ,dtype=torch.floataa ) _lowercase : Any = timesteps.to(original_samples.device ,dtype=torch.floataa ) else: _lowercase : List[Any] = self.timesteps.to(original_samples.device ) _lowercase : Union[str, Any] = timesteps.to(original_samples.device ) _lowercase : List[Any] = [self.index_for_timestep(UpperCAmelCase_ ,UpperCAmelCase_ ) for t in timesteps] _lowercase : Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _lowercase : List[Any] = sigma.unsqueeze(-1 ) _lowercase : int = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
336
0
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( ): _lowercase : Dict = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] _lowercase : Optional[int] = 6 _lowercase : int = 1 _lowercase : List[Any] = 1901 _lowercase : Any = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowercase : Optional[Any] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 _lowercase : Dict = day - 29 else: if day > days_per_month[month - 1]: month += 1 _lowercase : int = day - days_per_month[month - 2] if month > 12: year += 1 _lowercase : int = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
353
"""simple docstring""" import pprint import requests UpperCAmelCase: Tuple = """https://zenquotes.io/api""" def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/today""" ).json() def __SCREAMING_SNAKE_CASE ( ): return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": UpperCAmelCase: int = random_quotes() pprint.pprint(response)
336
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any]=1024 , __UpperCAmelCase : Dict=1024 , __UpperCAmelCase : Dict=False , **__UpperCAmelCase : Union[str, Any] ): _lowercase : Dict = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _lowercase : Union[str, Any] = SeqaSeqDataset(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , type_path="""train""" , **_lowerCAmelCase ) _lowercase : str = tok.pad_token_id def get_lens(__UpperCAmelCase : int ): _lowercase : List[Any] = tqdm( DataLoader(_lowerCAmelCase , batch_size=512 , num_workers=8 , shuffle=_lowerCAmelCase , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) _lowercase : List[Any] = [] for batch in dl: _lowercase : Dict = batch["""input_ids"""].ne(_lowerCAmelCase ).sum(1 ).tolist() _lowercase : Optional[Any] = batch["""labels"""].ne(_lowerCAmelCase ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_lowerCAmelCase , _lowerCAmelCase ): max_lens.append(max(_lowerCAmelCase , _lowerCAmelCase ) ) else: max_lens.extend(_lowerCAmelCase ) return max_lens _lowercase : str = get_lens(_lowerCAmelCase ) _lowercase : Tuple = SeqaSeqDataset(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , type_path="""val""" , **_lowerCAmelCase ) _lowercase : Union[str, Any] = get_lens(_lowerCAmelCase ) pickle_save(_lowerCAmelCase , train_ds.len_file ) pickle_save(_lowerCAmelCase , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
354
"""simple docstring""" from __future__ import annotations from typing import TypedDict class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : int def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(__UpperCAmelCase ) )] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _lowercase : Tuple = all_rotations(__UpperCAmelCase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _lowercase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(__UpperCAmelCase ), } return response def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _lowercase : Optional[Any] = int(__UpperCAmelCase ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(__UpperCAmelCase ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _lowercase : int = [""""""] * len(__UpperCAmelCase ) for _ in range(len(__UpperCAmelCase ) ): for i in range(len(__UpperCAmelCase ) ): _lowercase : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": UpperCAmelCase: Optional[int] = """Provide a string that I will generate its BWT transform: """ UpperCAmelCase: int = input(entry_msg).strip() UpperCAmelCase: List[str] = bwt_transform(s) print( F'Burrows Wheeler transform for string \'{s}\' results ' F'in \'{result["bwt_string"]}\'' ) UpperCAmelCase: Union[str, Any] = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'Reversing Burrows Wheeler transform for entry \'{result["bwt_string"]}\' ' F'we get original string \'{original_string}\'' )
336
0